统计学 抽样估计习题
统计学习题答案参数估计
![统计学习题答案参数估计](https://img.taocdn.com/s3/m/3b09aae86394dd88d0d233d4b14e852458fb398c.png)
第5章参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n=40,为大样本,样本均值=25,(1)样本均值的抽样标准差===0。
7906(2)已知置信水平1-=95%,得=1。
96,于是,允许误差是E ==1.96×0.7906=1.5496。
●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本.(3)假定总体标准差为15元,求样本均值的抽样标准误差;(4)在95%的置信水平下,求允许误差;(5)如果样本均值为120元,求总体均值95%的置信区间。
解:(1)已假定总体标准差为=15元,则样本均值的抽样标准误差为===2.1429(2)已知置信水平1-=95%,得=1.96,于是,允许误差是E ==1.96×2.1429=4.2000。
(3)已知样本均值为=120元,置信水平1-=95%,得=1.96,这时总体均值的置信区间为=120±4。
2=可知,如果样本均值为120元,总体均值95%的置信区间为(115。
8,124.2)元。
●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3。
1 6。
2 5.8 2。
3 4。
1 5.4 4。
5 3。
24。
4 2。
0 5。
4 2。
6 6。
4 1.8 3.5 5.7 2。
32。
1 1.9 1.2 5.1 4.3 4。
2 3.6 0。
8 1。
54。
7 1。
4 1.2 2。
9 3。
5 2.4 0.5 3.6 2。
5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
解:⑴计算样本均值:将上表数据复制到Excel表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到=3。
统计学习题四
![统计学习题四](https://img.taocdn.com/s3/m/a01b6b3f3968011ca3009132.png)
第四章抽样推断一、单项选择题1、对一个有限总体进行有放回的抽样时,每次抽取的结果是:A、相互独立的B、相互依赖的C、互斥的D、相互对立的2、对一个有限总体进行无放回的抽样时,每次抽取的结果是:A、相互独立的B、相互依赖的C、互斥的D、相互对立的3、对一个无限总体进行无放回的抽样时,每次抽取的结果是:A、相互独立的B、相互依赖的C、互斥的D、相互对立的4、若两个事件是独立的,则:A、也一定是互斥的B、不可能是互斥的C、有时会出现互斥D、是否互斥要看两事件的具体情况5、以下哪一个符合概率分布的要求:A、P(X)= x / 4 ( x = 1、2、3 )B、P(X)= x2 / 8 ( x = 1、2、3 )C、P(X)= x / 6 ( x = 1、2、3 )D、P(X)= x / 3 ( x = -1、1、3 )6、若随机变量Y与X的关系为Y = 2X + 5,且E(X)= 4,D(X)= 2,则随机变量Y的期望值E(Y)与方差D(Y)分别为:A、11.4B、13.6C、13.8D、11.67、若随机变量X服从正态分布,且()10P和()20XP的>=XE,μ= 5,则()5<X概率分别为:A、0.0228 , 0.1587B、0.3173 , 0.4772C、0.1587 , 0.0228D、0.4772 , 0.31738、抽样推断的目的在于:A、了解总体的基本情况B、用样本指标推断总体指标C、了解样本的基本情况D、对样本进行深入细致地研究9、小样本一般是指样本单位数:A 、30个以下B 、30个以上C 、100个以下D 、100个以上10、样本指标是:A 、唯一确定的B 、是随总体的确定而确定的C 、是随样本的确定而确定的D 、不随总体和样本的确定而确定11、用重复抽样的平均误差公式计算不重复抽样的平均误差,结果是:A 、高估误差B 、低估误差C 、恰好相等D 、不一定高估或低估误差12、抽样平均误差与抽样极限误差相比,一般来说:A 、前者大于后者B 、前者小于后者C 、两者正好相等D 、前者可能大于、小于、等于后者13、抽样平均误差反映了样本指标与总体指标之间的:A 、实际误差B 、实际误差的平方C 、平均误差程度D 、可能误差范围14、一个样本指标与总体指标之间有一定的误差,而样本指标的期望值等于被估计的总体指标,称为抽样估计的:A 、无偏性B 、一致性C 、有效性D 、优良性15、抽样极限误差是样本指标与总体指标之间的:A 、抽样误差的平均数B 、抽样误差的标准差C 、抽样误差的可靠程度D 、抽样误差的最大可能范围16、用简单随机重复抽样抽取样本单位,如果要使抽样平均误差降低50%,则样本容量要扩大到原来的:A 、2倍B 、3倍C 、4倍D 、5倍17、对400名大学生抽取36%进行不重复抽样调查,优等生为10%,概率为95.45%,优等生比重的抽样极限误差为:A 、4.0%B 、3.8%C 、8.0%D 、7.6%18、在进行抽样估计时,常用的概率度z 的取值是:A 、1<zB 、31<<zC 、30≤≤zD 、3>z19、在计算必要的样本容量时,若成数的方差未知,则可选择( )进行计算。
统计学第五章抽样习题
![统计学第五章抽样习题](https://img.taocdn.com/s3/m/6f8c319eec3a87c24028c498.png)
19、随着样本单位数的无限增大,样本指标和未知的总体
指标之差的绝对值小于任意小的正整数的可能性趋于
必然性,称为抽样估计的( )
A、无偏性
B、一致性
C、有效性
D、 充足性
20、能够事先加以计算和控制的误差是( )
A、抽样误差
B、登记误差
C、标准差
D、标准差系数
2020/3/17
13
21、在一定抽样平均误差的条件下,要提高推断的可靠
31、抽样平均误差与抽样极限误差比较,抽样本平均误差 () A、大于抽样极限误差 B、小于抽样极限误差 C、等于抽样极限误差
D、可能大于、小于、等于极限误差
2020/3/17
18
32、所谓的小样本,一般是指样本单位数( ) A、30以上 B、30以下 C、100以下 D、100以上
33、根据简单随机抽样资料,同一门课及格率甲班为70%, 乙班为80%,在班级人数相同及抽样人数相等的情况下, 及格率的抽样误差( ) A、甲班大 B、乙班大 C、相同 D、无法判断
2020/3/17
8
11、在纯随机抽样条件下,若抽样比例都为36%,则不重复抽样 的抽样平均误差比重复抽样的抽样本平均误差小( ) A、20% B、36% C、80% D、64%
2020/3/17 9
12、事先将全及总体各单位按某一标志排列,然后依固定顺序和 间隔来抽选调查单位的抽样组织形式,被称为( )
E、大小是可以控制的
11.用抽样指标估计总体指标应满足的要求是( )
A、一致性 B、准确性 C、客观性
D、无偏性 E、有效性
12.在其他条件不变的情况下,下列关于抽样平均误差、总体变 异程度及样本容量之间关系的陈述,正确的有( )
统计学例题-抽样估计
![统计学例题-抽样估计](https://img.taocdn.com/s3/m/4839692d3b3567ec102d8ae0.png)
上 限 p p 91% 5% 96%
下 限 p p 91% 5% 86%
t p
5%
2.86
μp 0.91 0.09
100
查表得:F(2.86)= 0.9958,即合格率在86% ~96%之间,其可靠程度为99.58%。
样本容量推算:
置信度为95%的区间估计:
x t μx 1.961.082 2.10 p t μp 1.96 2.17% 4.25%
估计区间: 平均袋重:101±2.10 一等品率: 88.3%± 4.25%
例:分层抽样区间估计
对某某城市居民每年的家庭旅游支出进行抽样调 查。在不同的行政区域,随机抽取3%的家庭进 行调查,得统计结果如下表所示:
例3:用五数概括法进行数据汇总
对轿车保险索赔系数进行评分,平均分为100分, 评分越低意味着越好,越安全。下面是两种车型的 评分数据。
中型轿车:81 91 93 127 68 60 51 58 75 100 103 119 82 128 76 68 81 91 82
小型轿车:73 100 127 100 124 103 119 108 109 113 108 118 103 120 102 122 96 133 80 140
均合格率进行区间估计。
水泥生产情况表:
样本编号
1 2 3 4 5 6 7 8 9 10
合计
各群每袋平均重量 x 一 等品率 p(%)
98
75
102
80
104
87
106
95
100
90
98
88
100
85
96
统计学课后答案(第3版)第6章抽样分布与参数估计习题答案
![统计学课后答案(第3版)第6章抽样分布与参数估计习题答案](https://img.taocdn.com/s3/m/5dbe448728ea81c758f57888.png)
第六章 抽样分布与参数估计习题答案一、单选1.B ;2.D ;3.D ;4.C ;5.A ;6.B ;7.C ;8.D ;9.A ;10.A 二、多选1.ADE ;2.ACDE ;3.ABCD ;4.ADE ;5.BCE6.ACD ;7.ACDE ;8.ACE ;9.BCE ;10.ABD 三、计算分析题1、解:n=10,小样本,由EXCEL 计算有:11.6498==S x ; (1)方差已知,由10596.14982⨯±=±nz x σα得,(494.9,501.1)(2)方差未知,由1011.62622.2498)1(2⨯±=-±nS n t x α得,(493.63,502.37)2、n=500为大样本,p=80/500=16%,则置信区间为 016.096.1%16500)16.01(16.096.1%16)1(2⨯±=-⨯±=-±n p p z p α=(14.4%,17.6%) 3、nx σσ=,由于大国抽取的样本容量大,则抽样平均误差小。
4、(1)3.10100103===nS x σ(小时);=-=-=100)95.01(95.0)1(n p p p σ 2.18%(2)=⨯±=±3.10211202x z x σα(1099.4,1140.6) ⨯±=±2%952p z p σα2.18%=(90.64,99.36)5、为简化起见,按照重复抽样形式计算 (1)∑∑=ff s Si22=22.292; 472.010072.4===nS x σ(2)93.0691472.096.1100691002±=⨯±=±nSz x α=(690.07,691.93) 6、由于总体标准差已知,则用标准状态分布统计量估计nz x σα2=∆(1)10160170102022=-===∆αασz nz x则58.12=αz ,有%29.94)58.1(=F α=1-94.29%=5.71%,则概率%58.88%71.5%29.941=-=-=α (2)=⇒⨯=⇒⨯=∆n n nz x 2096.142σα97(个)(3)=⇒⨯=⇒⨯=∆n nnz x 2096.122σα385(个)允许误差缩小一半,样本容量则为原来的4倍。
统计学:抽样估计习题与答案
![统计学:抽样估计习题与答案](https://img.taocdn.com/s3/m/ae1775d73968011ca200910e.png)
一、单选题1、从某生产线上每隔55分钟抽取5分钟的产品进行检验,这种抽样方式属于( )。
A.等距抽样B.分层抽样C.整群抽样D.简单随机抽样正确答案:A2、若总体平均数X̅=50,在一次抽样调查中测得x̅=50,则以下说法正确的是( )。
A.抽样极限误差为2B.抽样平均误差为2C.抽样实际误差为2D.以上都不对正确答案:C3、重复抽样条件下,成数的抽样标准误计算公式是( )。
A.√P2(1−P2)/nB.√P(1−P)/nC.√D. P(1−P)/√n正确答案:B4、在其它条件不变情况下,采用重复抽样方式,将允许误差扩大为原来的3倍,则样本容量( )。
A.扩大为原来的9倍B.扩大为原来的3倍C.缩小为原来的1/9倍D.缩小为原来的1/3倍正确答案:C5、如果随着样本容量的增大,估计量的值会越来越靠近总体参数的真值,符合这一要求的估计量被称为( )。
A.无偏估计量B.有效估计量C.一致估计量D.充分估计量正确答案:C6、下列关于抽样标准误的叙述哪个是错误的。
( )A.抽样标准误是抽样分布的标准差B.抽样标准误的理论值是惟一的,与所抽样本无关C.抽样标准误比抽样极限误差小D.抽样标准误只能衡量抽样中的偶然性误差的大小正确答案:C7、简单重复随机抽样条件下,欲使误差范围缩小一半,其他要求不变,则样本容量须( )。
A.增加2倍B.增加3倍C.减少2倍D.减少3倍正确答案:B8、调查某市电话网100次通话,得知通话平均时间为4分钟,标准差为2分钟,在95.45%的置信水平下,估计通话的平均时间为( )。
A.[3.9,5.1]B.[3.8,4.2]C.[3.7,4.3]D.[3.6,4.4]正确答案:D9、从2000名学生中按不重复抽样方法抽取了100名进行调查,其中有女生45名,则样本成数的抽样标准误为( )。
A.0.24%B.4.85%C.4.97%D.以上都不对正确答案:B10、重复抽样条件下,平均数的抽样标准误计算公式是()。
统计学习题第五章_抽样与抽样估计答案
![统计学习题第五章_抽样与抽样估计答案](https://img.taocdn.com/s3/m/c1d02cb6aef8941ea66e0520.png)
第五章抽样与抽样估计复习题一、填空题1、在实际工作中,人们通常把n≥30 的样本称为大样本,而把n<30 的样本称为小样本。
2、在抽样估计中,常见的样本统计量有样本均值、样本比例、样本标准差或样本方差以及它们的函数。
3、在研究目的一定的条件下,抽样总体是唯一确定的,而样本则有许多个。
4、在抽样调查中,登记性误差和系统性误差都可以尽量避免,而抽样误差则是不可避免的,但可以计算并加以控制。
5、在抽样估计中,抽样估计量是指用于估计总体参数的样本指标(统计量),评价估计量优劣的标准有无偏性、有效性和一致性。
二、选择题单选题:1、在其它条件不变的情况下,要使抽样平均误差为原来的1/3,则样本单位数必须((2))(1)增加到原来的3倍(2)增加到原来的9倍(3)增加到原来的6倍(4)也是原来的1/32、在总体内部情况复杂,且各单位之间差异程度大,单位数又多的情况下,宜采用((3))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样3、某厂产品质量检查,确定按5%的比率抽取,按连续生产时间顺序每20小时抽1小时的全部产进行检验,这种方式是((4))(1)简单随机抽样(2)等距抽样(3)分层抽样(4)整群抽样4、其它条件一定,抽样推断的把握程度提高,抽样推断的准确性就会((2))(1)提高(2)降低(3)不变(4)不一定降低5、在城市电话网的100次通话中,通话持续平均时间为3分钟,均方差为分钟,则概率为时,通话平均持续时间的抽样极限误差为((2))(1)(2)(3)(4)6、假定11亿人口大国和100万人口小国的居民年龄变异程度相同,现在各自用重复抽样方法抽取本国人口的1%计算平均年龄,则平均年龄抽样平均误差((3))(1)两者相等(2)前者比后者大(3)前者比后者小(4)不能确定大小多选题:1、降低抽样误差,可以通过下列那些途径((2)(4)(5))(1)降低总体方差(2)增加样本容量。
(3)减少样本容量(4)改重复抽样为不重复抽样(5)改简单随机抽样为类型抽样2、抽样推断中的抽样误差((1)(5))(1)是不可避免要产生的(2)是可以通过改进调查方法来消除的(3)只有调查后才能计算(4)即不能减少,也不能消除(5)其大小是可以控制的3、抽样极限误差((1)(2)(4))(1)是所有可能的样本指标与总体指标之间的误差范围(2)也叫允许误差 (3)与所做估计的概率保证程度成反比 (4)通常用来表示抽样结果的精确度 4、影响样本容量的因素有((1)(2)(3)(4)(5) ) (1)总体方差(2)所要求的概率保证程度 (3)抽样方法(4)抽样的组织形式(5)允许误差法范围的大小 5、不重复抽样的抽样平均误差( (2)(4) )(1)总是大于重复抽样的抽样平均误差 (2)总是小于重复抽样的抽样平均误差(3)有时大于,有时小于重复抽样的平均误差(4)在Nn很小时,几乎等于重复抽样的抽样平均误差 6、从3000名职工中随机抽取400名调查收入水平,共抽了( (1) (3) (5) ) (1)一个样本 (2)400个样本(3)一个样本总体 (4)400各样本总体 (5)400个样本单位 7、简单随机抽样一般适合于( (1)(3) (5) )(1)具有某种标志的单位均匀分布的总体 (2)具有某种标志的单位存在不同类型的总体 (3)现象的标志变异程度较小的总体 (4)不能形成抽样框的单位 (5)总体单位可以编号的总体三、简答题1、 什么是抽样平均误差影响抽样平均误差的因素有哪些答:抽样平均误差是所有可能的样本指标与被估计的总体参数之间的平均离差,即样本指标的标准差。
统计学第五章抽样习题
![统计学第五章抽样习题](https://img.taocdn.com/s3/m/6f8c319eec3a87c24028c498.png)
11.用抽样指标估计总体指标应满足的要求是( )
A、一致性 B、准确性 C、客观性
D、无偏性 E、有效性
12.在其他条件不变的情况下,下列关于抽样平均误差、总体变 异程度及样本容量之间关系的陈述,正确的有( )
A、总体变异程度一定时,样本容量越大,抽样平均误差越大
B、总体变异程度一定时,样本容量越大,抽样平均误差越小
B、抽样单位数占总体单位数的比重很大时
C、抽样单位数目很少时
D、抽样单位数目很多时
2020/3/17
7
10、在其他条件不变的情况下,抽样单位数目和抽样误差的关系 是( ) A、抽样单位数目越大,抽样误差越大 B、抽样单位数目越大,抽样误差越小 C、抽样单位数目的变化与抽样误差的数值无关 D、抽样误差变化程度是抽样单位数变动程度的1/2
19、随着样本单位数的无限增大,样本指标和未知的总体
指标之差的绝对值小于任意小的正整数的可能性趋于
必然性,称为抽样估计的( )
A、无偏性
B、一致性
C、有效性
D、 充足性
20、能够事先加以计算和控制的误差是( )
A、抽样误差
B、登记误差
C、标准差
D、标准差系数
2020/3/17
13
21、在一定抽样平均误差的条件下,要提高推断的可靠
;
;
;
。
10.对于简单随机重复抽样,若其他条件不变,则当误差范围
缩小一半,抽样单位数必须
倍,若误差范围扩大一
倍,则抽样单位数为原来的
。
11.点估计是直接用
估计不考虑
及
估计总体指标的推断方法。点 。
2020/3/17
29
14. 抽样法的基本特点是( )
统计学抽样估计练习题
![统计学抽样估计练习题](https://img.taocdn.com/s3/m/41f1790b76232f60ddccda38376baf1ffc4fe3a2.png)
统计学抽样估计练习题一、单选题A. 样本均值B. 总体均值C. 样本标准差D. 样本比例A. 总体方差B. 样本方差C. 总体均值D. 总体比例3. 在简单随机抽样中,每个个体被抽中的概率是:A. 相等B. 不相等C. 一定大于0D. 一定小于1A. 简单随机抽样B. 分层抽样C. 整群抽样D. 便利抽样二、多选题A. 样本均值B. 总体均值C. 样本比例D. 总体比例A. 抽样框误差B. 回答误差C. 采样误差D. 测量误差A. 均值B. 方差C. 标准差D. 偏度三、判断题1. 抽样调查可以完全避免非抽样误差。
(错)2. 在简单随机抽样中,样本容量越大,抽样误差越小。
(对)3. 总体标准差越大,抽样误差越大。
(对)4. 抽样分布的标准差称为标准误差。
(对)四、填空题1. 在简单随机抽样中,每个个体被抽中的概率称为______。
2. 抽样分布的均值等于______。
3. 抽样分布的方差等于______。
4. 样本容量为n,总体容量为N,则有限总体校正系数为______。
五、计算题1. 某企业生产的产品重量服从正态分布,总体均值为200克,总体标准差为10克。
现从该企业随机抽取100件产品,求样本均值的抽样分布的均值和标准差。
2. 某城市居民月均收入服从正态分布,总体均值为8000元,总体标准差为1500元。
现从该城市随机抽取200户居民,求样本均值的抽样分布的均值和标准差。
3. 某班级有60名学生,随机抽取20名学生进行数学测试,测试成绩服从正态分布。
已知样本均值为80分,样本标准差为10分,求总体均值的95%置信区间。
六、应用题1. 某品牌手机电池的使用寿命服从正态分布,假设总体均值为400小时,总体标准差为50小时。
现从市场随机抽取了250块电池进行测试,试估计该品牌手机电池使用寿命的95%置信区间。
2. 一项调查显示,某城市有车家庭的汽车平均油耗为8升/100公里,标准差为1.5升/100公里。
(完整版)第五章抽样调查习题答案
![(完整版)第五章抽样调查习题答案](https://img.taocdn.com/s3/m/ad5336ea336c1eb91a375dcc.png)
《统计学》习题五 参考答案、单项选择题:1、抽样误差是指( )。
CA 在调查过程中由于观察、测量等差错所引起的误差B 人为原因所造成的误差C 随机抽样而产生的代表性误差D 在调查中违反随机原则出现的系统误差2、抽样平均误差就是( )。
DA 样本的标准差B 总体的标准差C 随机误差D 样本指标的标准差3、抽样估计的可靠性和精确度( )。
BA 是一致的B 是矛盾的C 成正比D 无关系4、在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应( )。
A A 增加 8 倍B 增加 9 倍C 增加 1.25 倍D 增加 2.25 倍5、当有多个参数需要估计时,可以计算出多个样品容量 n 为满足共同的要求,必要的样本容量 一般应是( )。
BA 总体的标志变异程度B 允许误差的大小C 重复抽样和不重复抽样D 样本的差异程度E 估计的可靠度三、填空题:3、 实施概率抽样的前提条件是要具备( )。
抽样框4、 对总体参数进行区间估计时,既要考虑极限误差的大小,即估计的( 虑估计的( )问题。
准确性 可靠性四、简答题:1、抽样调查与重点调查的主要不同点。
A 最小的n 值 B 最大的n 值 6、抽样时需要遵循随机原则的原因是( C 中间的n 值 D 第一个计算出来的n 值)。
CA 可以防止一些工作中的失误B 能使样本与总体有相同的分布C 能使样本与总体有相似或相同的分布D 可使单位调查费用降低二、多项选择题:1、抽样推断中哪些误差是可以避免的( A 工作条件造成的误差 B D 人为因素形成偏差 E2、区间估计的要素是( A 点估计值 B D 抽样极限误差 E3、影响必要样本容量的因素主要有( )。
A B D系统性偏差 C 抽样随机误差 抽样实际误差)。
A C D样本的分布 C 估计的可靠度总体的分布形式)。
A B C E1、抽样推断就是根据( )的信息去研究总体的特征。
样本2、样本单位选取方法可分为( )和( )。
统计学习题(抽样分布、参数估计)
![统计学习题(抽样分布、参数估计)](https://img.taocdn.com/s3/m/226a53f55f0e7cd185253658.png)
统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。
其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。
调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。
(2)绘制一张条形图,反映学历分布。
2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。
2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。
(2)用茎叶图将原始数据表现出来。
2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。
男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。
《统计学》抽样调查习题和答案
![《统计学》抽样调查习题和答案](https://img.taocdn.com/s3/m/4c7d8400aaea998fcc220ec6.png)
六.计算题部分1、对一批成品按重复抽样方法抽选100件,其中废品4件,当概率为95.45%(t=2)时,可否认为这批产品的废品率不超过6%?答案:解:2%,41004,100====t p n 0196.0100)04.01(04.0)1(=-=-=n p p p μ039.00196.02=⨯==∆p p t μ p p p P p ∆+≤≤∆-039.004.0039.004.0+≤≤-P0.1%------7.9% ∴废品率不超过6%2、某乡有5000农户,按随机原则重复抽取100户调查,得平均每户年纯收入12000元,标准差2000元。
要求:(1)以95%的概率(t=1.96)估计全乡平均每户年纯收入的区间。
(2)以同样概率估计全乡农户年纯收入总额的区间范围。
答案: 解: 2001002000===n x σμ 39220096.1=⨯==∆x x t μ x x x X x ∆+≤≤∆- 3921200039212000+≤≤-X11608-----12392(元) 5000×11608------5000×12392(元)3、某企业生产一种新的电子元件,用简单随机重复抽样方法抽取100只作耐用时间试验,测试结果,平均寿命6000小时,标准差300小时,试在95.45%(t=2)概率保证下,估计这种新电子元件平均寿命区间。
答案:解:2,300,6000,100====t x n σ (小时)30100300===n x σμ (小时)60302=⨯==∆x x t μ x x x X x ∆+≤≤∆- 606000606000+≤≤-X 5940-----6060(小时)4、 从某年级学生中按简单随机抽样方式抽取50名学生,对邓小平理论课的考试成绩进行检查,得知其平均分数为75.6分,样本标准差10分,试以95.45%(99.73%t=3、68.27%t=1)的概率保证程度推断全年级学生考试成绩的区间范围。
统计学第九章抽样与抽样估计
![统计学第九章抽样与抽样估计](https://img.taocdn.com/s3/m/6b22c6f6866fb84ae55c8d3d.png)
第九章抽样与抽样估计一、单项选择题1、抽样极限误差是指抽样指标和总体指标之间(D)。
A.抽样误差的平均数B.抽样误差的标准差C.抽样误差的可靠程度D.抽样误差的最大可能范围2、样本平均数和总体平均数(B)。
解析:样本平均数是以总体平均数为中心,在其范围内变动(P213)A.前者是一个确定值,B.前者是随机变量,后者是随机变量后者是一个确定值C.两者都是随机变量D.两者都是确定值3、某场要对某批产品进行抽样调查,一直以往的产品合格率分别为90%,93%,95%,要求误差范围小于5%,可靠性为95.45%,则必要样本容量应为(B)。
A.144B.105C.76D.1094、在总体方差不变的条件下,样本单位数增加3倍,则抽样误差(C)。
A.缩小1/2B.为原来的3/√3C.为原来的1/3D.为原来的2/35、在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量(B)。
A.增加9倍B.增加8倍C.为原来的2.25倍D.增加2.25倍6、抽样误差是指(C)。
解析:这题考的是抽样误差的定义(P213)A.在抽查过程中由于观察、测量等差错所引起的误差B.在调查中违反随机原则出现的系统误差C.随机抽样而产生的代表性误差D.人为原因所造成的误差7、在一定的抽样平均误差条件下(A)。
A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度8、抽样平均误差是(B)。
解析:这题考的是抽样平均误差的定义(P214)A.总体的标准差B.样本的标准差C.抽样指标的标准差D.抽样误差的平均差9、对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式(D)。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样10、先将总体各单位按主要标志分组,再从各组中随机抽取一定单位组成样本,这种抽样形式被称为(C)解析:这题考的是抽样调查的几种不同的方式的定义(P211)。
统计学 第6章 练习题
![统计学 第6章 练习题](https://img.taocdn.com/s3/m/beb415d0b9f3f90f76c61bbc.png)
一、 填空题 1. 抽样调查可以是 抽样,也可以是 抽样,但作为抽样推断 抽样。 基础的必须是 2. 抽样推断运用 的方法对总体的数量特征进行估计。 3. 在 组 织 抽 样 时 , 以 清 单 、 名 册 、 图 表 等 形 式 来 界 定 总 体 的 范 围 , 称 为 。 。 4. 样本成数的方差是 5. 重复抽样有 个可能的样本,而不重复抽样则有 个可能 的样本。 6. 抽样误差是由于抽样的 而产生的误差,这种误差不可避免,但可 以 。 。 7. 样本平均数的平均数等于 8. 抽样误差与抽样平均误差之比称为 。 9 优良估计的三个标准是 、 和 。 10. 在 实 际 的 抽 样 推 断 中 , 常 用 的 抽 样 组 织 形 式 有 、 、 、 和 等。 二、 单项选择题 1. 抽样推断的目的是( ) A、以样本指标推断总体指标 B、取得样本指标 C、以总体指标估计样本指标 D、以样本的某一指标推断另一指标 2. 在抽样推断中,可以计算和控制的误差是( ) A、抽样实际误差 B、抽样标准误差 C、非随机误差 D、系统性误差 3. 总体参数是( ) A、唯一且已知 B、唯一但已知 C、非唯一但可知 D、非唯一且不可知 4. 样本容量也称( ) A、样本个数 B、样本单位数 C、样本可能数目 D、样本指标数 5. 从总体的 N 个单位中随机抽取 n 个单位, 用不重复抽样方法一共可抽取 ( ) 个样本。 A、 PN B、 p C、 N D、 C N n 1
n
n
ቤተ መጻሕፍቲ ባይዱ
n
n
6. 在重复抽样条件下,平均数的抽样平均误差计算公式是(
)
2
n
)
A、 n B、 n C、 n D、
7. 不重复抽样的抽样标准误公式比重复抽样多了一个系数(
统计学习题 第四章 抽样估计
![统计学习题 第四章 抽样估计](https://img.taocdn.com/s3/m/299dbfe3856a561252d36fc1.png)
第四章抽样估计一、判断题1.抽样估计的目的是用以说明总体特征。
2.抽样分布就是样本分布。
3.既定总体在当抽样方法、抽样组织形式和样本容量确定时,样本均值的分布惟一确定。
4.样本容量就是样本个数。
5.在抽样中,样本容量是越大越好。
6.抽样的目的是判断样本估计值是否处于以总体指标为中心的某规定区域范围内。
7.当估计量有偏时,人们应该弃之不用。
8.对于一个确定的抽样分布,其方差是确定的,因而抽样标准误也是确定的。
9.抽样极限误差越大,用以包含总体参数的区间就越大,估计的把握程度也就越大,因此极限误差越大越好。
10.非抽样误差会随着样本容量的扩大而下降。
二、单项选择题1.想了解学生的眼睛视力状况,准备抽取若干学校、若干班级的学生进行测试,则()。
A.观测单位是学校B.观测单位是班级C.观测单位是学生D.观测单位可以是学校、也可班级或学生2.下列误差中属于非一致性的有()。
A.估计量偏差B.偶然性误差C.抽样标准误D.非抽样误差3.抽样估计中最常用的分布理论是()。
A.t分布理论B.二项分布理论C.正态分布理论D.超几何分布理论4.抽样标准误大小与下列哪个因素无关?()A.样本容量B.抽样方式、方法C.概率保证程度D.估计量5.下列关于抽样标准误的叙述哪个是错误的?()A.抽样标准误是抽样分布的标准差B.抽样标准误的理论值是惟一的,与所抽样本无关C.抽样标准误比抽样极限误差小D.抽样标准误只能衡量抽样中的偶然性误差的大小三、计算分析题1. 某小组5个工人的每周工资分别为520、540、560、580、600元,现从中用简单随机抽样形式(不重复抽样)随机抽取2个工人周工资构成样本。
要求:(1)计算总体平均工资的标准差;(2)列出全部可能的样本平均工资;(3)计算样本平均工资的平均数,并检验其是否等于总体平均工资;(4)计算样本平均工资的标准差;(5)用抽样平均误差的公式计算并验证是否等于(4)的结果。
2.从某大型企业中随机抽取100名职工,调查他们的工资。
抽样和参数估计习题及答案
![抽样和参数估计习题及答案](https://img.taocdn.com/s3/m/33dbb97a366baf1ffc4ffe4733687e21af45ff0b.png)
抽样和参数估计习题及答案抽样和参数估计习题及答案在统计学中,抽样和参数估计是非常重要的概念和技巧。
通过抽样,我们可以从总体中选择一部分样本,并通过对这些样本的观察和分析来推断总体的特征。
参数估计则是根据样本数据来估计总体的参数值。
下面,我们将介绍一些与抽样和参数估计相关的习题,并提供相应的答案。
习题一:某公司有1000名员工,你想估计他们的平均工资。
你随机选择了50名员工,并得到了他们的工资数据。
计算这些员工的平均工资,并给出对总体平均工资的估计。
答案:根据题目所给的信息,我们可以计算这50名员工的平均工资。
然后,我们可以将这个平均工资作为总体平均工资的估计。
例如,假设这50名员工的平均工资为5000元,那么我们就可以估计总体平均工资为5000元。
习题二:一家电商公司想估计他们网站上每天的访问量。
他们在连续的7天中记录了每天的访问量,并得到了以下数据:1000, 1200, 800, 1500, 900, 1100, 1300。
计算这7天的平均访问量,并给出对总体平均访问量的估计。
答案:根据题目所给的数据,我们可以计算这7天的平均访问量。
然后,我们可以将这个平均访问量作为总体平均访问量的估计。
例如,将这7天的访问量相加得到8000,再除以7得到平均访问量约为1143。
因此,我们可以估计总体平均访问量为1143。
习题三:某城市有100个小区,你想估计这些小区的平均房价。
你随机选择了10个小区,并得到了每个小区的房价数据。
计算这10个小区的平均房价,并给出对总体平均房价的估计。
答案:根据题目所给的信息,我们可以计算这10个小区的平均房价。
然后,我们可以将这个平均房价作为总体平均房价的估计。
例如,假设这10个小区的平均房价为200万元,那么我们就可以估计总体平均房价为200万元。
习题四:一家公司想估计他们产品的市场份额。
他们随机选择了100个消费者,并调查了他们对该产品的购买意向。
其中有80个消费者表示愿意购买该产品。
(完整版)第五章抽样调查习题答案
![(完整版)第五章抽样调查习题答案](https://img.taocdn.com/s3/m/cbf7e74d7f1922791788e884.png)
《统计学》习题五参考答案一、单项选择题:1、抽样误差是指()。
CA在调查过程中由于观察、测量等差错所引起的误差 B人为原因所造成的误差C随机抽样而产生的代表性误差 D在调查中违反随机原则出现的系统误差2、抽样平均误差就是()。
DA样本的标准差 B总体的标准差 C随机误差 D样本指标的标准差3、抽样估计的可靠性和精确度()。
BA是一致的 B是矛盾的 C成正比 D无关系4、在简单随机重复抽样下,欲使抽样平均误差缩小为原来的三分之一,则样本容量应()。
AA增加8倍 B增加9倍 C增加1.25倍 D增加2.25倍5、当有多个参数需要估计时,可以计算出多个样品容量n,为满足共同的要求,必要的样本容量一般应是()。
BA最小的n值 B最大的n值 C中间的n值 D第一个计算出来的n值6、抽样时需要遵循随机原则的原因是()。
CA可以防止一些工作中的失误 B能使样本与总体有相同的分布C能使样本与总体有相似或相同的分布 D可使单位调查费用降低二、多项选择题:1、抽样推断中哪些误差是可以避免的()。
A B DA工作条件造成的误差 B系统性偏差 C抽样随机误差D人为因素形成偏差 E抽样实际误差2、区间估计的要素是()。
A C DA点估计值 B样本的分布 C估计的可靠度D抽样极限误差 E总体的分布形式3、影响必要样本容量的因素主要有()。
A B C EA总体的标志变异程度 B允许误差的大小 C重复抽样和不重复抽样D样本的差异程度 E估计的可靠度三、填空题:1、抽样推断就是根据()的信息去研究总体的特征。
样本2、样本单位选取方法可分为()和()。
重复抽样不重复抽样3、实施概率抽样的前提条件是要具备()。
抽样框4、对总体参数进行区间估计时,既要考虑极限误差的大小,即估计的()问题,又要考虑估计的()问题。
准确性可靠性四、简答题:1、抽样调查与重点调查的主要不同点。
答:第一,选取调查单位的方法不同。
抽样调查是按随机原则抽取调查单位的,重点调查中的重点单位是调查标志值占总体标志总量比重很大的单位,调查单位是明显的;第二,作用不同。
统计学 抽样估计习题
![统计学 抽样估计习题](https://img.taocdn.com/s3/m/42037efc49649b6648d747b6.png)
第六章抽样估计题一、单项选择题1、抽样推断的基本内容是:A.参数估计B.假设检验C.参数估计和假设检验两方面D.数据的收集2、抽样平均误差的实质是A. 总体标准差B. 抽样总体的标准差C. 抽样总体方差D. 样本平均数(成数〉的标准差3、不重复抽样平均误差:A. 总是大于重复抽样平均误差B. 总是小于重复抽样平均误差C. 总是等于重复抽样平均误差D. 上情况都可能发生4、在其它条件不变的情况下,抽样单位数增加一半,抽样平差A. 缩小为原来的81.6%B. 缩小为原来的50%C. 缩小为原来的25%D.扩大为原来的四倍5、样本的形成是:A.随机的B.随意的C. 非随机的D.确定的6、抽样误差之所以产生是由于:A. 破坏了随机抽样的原则。
B. 抽样总体的结构不足以代表总体的结构。
C. 破坏了抽样的系统。
D.调查人员的素质。
7、抽样误差指的是:A. 代表性随机误差B. 非抽样误差C. 代表性误差D. 随机性误差8、抽样误差大小A. 可以事先计算,但不能控制B. 不可事先计算,但能控制C. 能够控制和消灭D.能够控制,但不能消灭9、随机抽出100个工人,占全体工人1%,工龄不到一年的比重为10%。
在概率为0.9545时,计算工龄不到一年的工人比重的极限抽样误差。
A.0.6%B. 6%C. 0.9%D. 3%10、根据抽样调查25个工厂(抽取2%)资料,采购阶段流动资金平均周转时间为52天,方差100,在概率为0.954时,计算流动资金平均周转时间的极限抽样误差。
A.0.8B.3.96C.4D.22611、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A.53.3B.1.65C.720D.132012、根据某市公共电话网100次通话情形抽样调查,知道每次通话平均持续时间为4分钟,均方差为2分钟。
在概率为0.9545时,计算每次通话平均持续时间的极限抽样误差。
统计学习题集6
![统计学习题集6](https://img.taocdn.com/s3/m/e1d2f22a2379168884868762caaedd3383c4b56e.png)
第六章抽样推断一、填空题1.抽样推断是按照原则,从全部研究对象中抽取部分单位进行调查.2.抽样推断的组织方式有抽样、抽样、等距抽样、整群抽样和抽样.3.抽样推断是用指标推断总体指标的一种统计方法.4.抽样平均误差与极限误差之间的关系为 .5.抽样极限误差是指指标和指标之间最大可能的误差范围.二、判断题1.抽样推断的目的是用样本指标从数量上推断全及总体指标.2.对各种不同型号的电冰箱进行使用寿命的检查,最好的方法是抽样推断.3.为了保证抽样指标的分布趋近于正态分布,抽样时,一般样本容量应大于或等于30,这时的样本称为大样本.4.某厂产品质量检查,按连续生产时间顺序每20小时抽取1小时的全部产品进行检验,这种方式是等距抽样.5.在其他条件一定时,重复抽样的抽样平均误差大于不重复抽样的抽样平均误差.6.抽样平均误差是样本指标与总体指标之间的平均离差.7.在抽样推断中,可能没有抽样平均误差.8.点估计是直接用样本指标代替总体指标.9.在其他条件一定的情况下,将重复抽样改为不重复抽样可以缩小抽样误差.10.在其他条件一定时,增大样本容量,抽样平均误差不变.三、单项选择题1.抽样调查的目的在于 .A.用样本指标推断总体指标B.对调查单位作深入的研究C.对全及总体作一般的了解D.提高调查的准确性和时效性2.对烟花爆竹进行质量检查,最好采用 .A.重点调查B.抽样调查C.典型调查D.普查3.从生产线上每隔1小时随机抽取10分钟的产品进行检验,这种方式属于 .A.等距抽样B.类型抽样C.整群抽样D.简单随机抽样4.在其他条件不变的情况下,如果重复抽样的极限误差缩小为原来的1/2,则样本容量 .A.扩大为原来的4倍B.扩大为原来的2倍C.缩小原来的1/2D. 缩小原来的1/45.纯随机抽样重复的抽样平均误差的大小取决于 .A.样本单位数B.总体方差C.总体单位数和总体方差D.样本单位数和总体方差6.从纯理论出发,最符合随机性原则的抽样方式是 .A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样7.根据对某超市100名顾客等候结账情况的调查,得知每次平均等候时间为4分钟,标准差为2分钟,在概率保证程度为95.45%的要求下,估计顾客平均等候时间的区间为 .z=2A.3.9~4.1分钟之间B.3.8~4.2分钟之间C.3.7~4.3分钟之间D.3.6~4.4分钟之间四、多项选择题1.缩小抽样误差的途径有 .A.缩小总体方差B.增加样本单位数C.减少样本单位数D.将重复抽样改为不重复抽样E.将不重复抽样改为重复抽样2.抽取样本的方法有 .A.简单随机抽样B.类型抽样C.重复抽样D.等距抽样E.不重复抽样3.抽样的组织方式有 .A.纯随机抽样B.类型抽样C.整群抽样D.等距抽样E.阶段抽样4.影响样本单位数多少的因素有 .A.总体的变异程度B.所要求的把握程度大小C.极限误差的大小D.抽样的组织方式E.抽取样本的方法5.影响平均抽样误差大小的因素有 .A.总体的变异程度B.抽取样本的方法C.抽样的组织方式D.样本单位数的多少E.是有限总体还是无限总体6.抽样推断中的抽样误差 .A.是不可不免要产生的B.是可以通过改进调查方法消除的C.只能在调查后才能计算D.既不能减小也不能消除E.其大小是可以控制的7.点估计,下列说法正确的有 .A.点估计是直接用样本指标作为总体指标的估计值B.这种估计没有表明抽样估计的误差大小C.这种估计能指出误差在一定范围内的概率保证程度的大小D.点估计是一种参数估计的方法E.点估计所得到的总体参数是一个区间范围8.抽样推断的特点有 .A.是用样本指标从数量上推断总体指标B.抽取样本时按随机性原则抽取的C.抽样误差可以计算和控制D.抽样误差是不可避免的E.是一种由部分认识总体的统计方法五、简答题1.什么是抽样误差 影响抽样误差大小的各因素与抽样误差的关系如何2.影响抽样单位数目的各因素与抽样单位数目的关系如何3.简要说明各种抽样组织方式有什么特点4.什么是抽样推断 有何特点六、计算题1.从某制药厂仓库中随机抽取100瓶c v 进行检验,其结果平均每瓶c v 为99片,样本标准差为3片,如果可靠程度为99.73%,计算该仓库平均每瓶c v 的区间范围;如果极限误差减少到原来的1∕2,可靠程度仍为99.73%,问需要调查多少瓶c v1已知:n=100 s=3 99=x z=33.010092===n s x μ 99-3×0.3≤X ≤99+3×0.3 98.1≤X ≤99.92已知:s=3 t=3 △=3×0.3∕2=0.45 222994000.2025z s n ⨯===∆ 2.某大学有学生6000人,欲调查学生的人均月生活费情况,现抽取60名学生进行调查,得到月生活费在500元以上的有42名,以95%的概率保证程度计算全体学生中月生活费在500元以上学生比重的区间范围;如果极限误差减少为5.8%,概率保证程度仍为95%,需要抽取多少名学生1已知:n=60 p=42∕60=70% z=1.96%660%30%70)1(=⨯=-=n p p p μ 70%-1.96×6%≤P ≤70%+1.96×6% 58.24%≤P ≤81.76%2已知:z=1.96 △=5.8%2222(1) 1.9670%30%2405.8%z p p n -⨯⨯===∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章抽样估计题一、单项选择题1、抽样推断的基本内容是:A.参数估计B.假设检验C.参数估计和假设检验两方面D.数据的收集2、抽样平均误差的实质是A. 总体标准差B. 抽样总体的标准差C. 抽样总体方差D. 样本平均数(成数〉的标准差3、不重复抽样平均误差:A. 总是大于重复抽样平均误差B. 总是小于重复抽样平均误差C. 总是等于重复抽样平均误差D. 上情况都可能发生4、在其它条件不变的情况下,抽样单位数增加一半,抽样平差A. 缩小为原来的81.6%B. 缩小为原来的50%C. 缩小为原来的25%D.扩大为原来的四倍5、样本的形成是:A.随机的B.随意的C. 非随机的D.确定的6、抽样误差之所以产生是由于:A. 破坏了随机抽样的原则。
B. 抽样总体的结构不足以代表总体的结构。
C. 破坏了抽样的系统。
D.调查人员的素质。
7、抽样误差指的是:A. 代表性随机误差B. 非抽样误差C. 代表性误差D. 随机性误差8、抽样误差大小A. 可以事先计算,但不能控制B. 不可事先计算,但能控制C. 能够控制和消灭D.能够控制,但不能消灭9、随机抽出100个工人,占全体工人1%,工龄不到一年的比重为10%。
在概率为0.9545时,计算工龄不到一年的工人比重的极限抽样误差。
A.0.6%B. 6%C. 0.9%D. 3%10、根据抽样调查25个工厂(抽取2%)资料,采购阶段流动资金平均周转时间为52天,方差100,在概率为0.954时,计算流动资金平均周转时间的极限抽样误差。
A.0.8B.3.96C.4D.22611、根据某城市抽样调查225户,计算出户均储蓄额30000元,抽样平均误差800元,试问概率为90%,户均储蓄余额极限误差是多少?A.53.3B.1.65C.720D.132012、根据某市公共电话网100次通话情形抽样调查,知道每次通话平均持续时间为4分钟,均方差为2分钟。
在概率为0.9545时,计算每次通话平均持续时间的极限抽样误差。
A.0.2B.0.4C.0.28D.0.142813、为研究劳动生产率,某工厂对19%工人进行调查,抽样324人。
这些工人加工某零件平均时间消耗35分钟,均方差为7.2分钟,试以0.9545置信度估计平均时间消耗的极限抽样误差。
A.0.8B.0.36C.0.076D.0.7214、为研究工人生产定额完成情况,对某工厂抽样调查36%的计件工人。
抽样的144人中,有80%的工人超额完成生产定额。
试计算概率为0.9973时超额完成生产定额工人比重的极限抽样误差。
A.10%B.8%C.12%D.3.2%15、为估计某地区10000名适龄儿童的入学率,用不重复抽样从该:地区抽取400名儿童,有320名儿童入学。
试计算概率为95.45%时的极限抽样误差。
A.1.96%B.4%C.3.92%D.1.87%16、对某高校19%学生进行抽样调查,调查的400人中,得到各种奖励的比重为20%,在概率为0.9545时,奖励比重的极限抽样误差:A.4%B.3.6%C.1.8%D.1.74%17、根据1%抽样调查的资料,计件工人平均完成生产定额l15%,变异系数12%,调查了100人,估计可靠程度为0.9545,则生产定额平均完成误差率为:A.7.4%B.0.24%C.1.2%D.2.4%18、假定抽样单位数为400,抽样平均数为300和30,相应的变异系数为50%和20%,试以0.9545的概率来确定估计精度。
A.15和0.6B.5%和2%C.95%和98%D.2.5%和119、调查某工厂19%的产品,不重复随机抽样误差为重复随机抽样误差的:A.10%B.19%C.90%D.不能预期其结果20、对两工厂工人工资做不重复抽样调查,调查工人数一样,两工厂工人工资方差相同,但第二个工厂工人数比第一个工厂多一倍,抽样平均误差:A.第一个工厂大B.第二个工厂大C.两工厂一样D.不能做结论21、假定10亿人口大国和100万人口小国的居民年龄的变异程相同,现在各自用重复抽样方法抽取本国的1%人口计算平均年龄,则平均年龄的抽样平均误差为:A.两者相等B.前者比后者大C.前者比后者小D.不能确定22、对两个牧场的奶牛挤奶量进行抽样观察。
这两牧场抽取的母牛头数和挤奶方差是一样的。
但第一牧场奶牛总头数为第二牧场的1.5倍。
则随机抽样误差:A.第一牧场小B.第一牧场大C.两者相等D.不能确定23、根据10%抽样调查资料,甲企业工人生产定额完成百分比方差为25,乙企业为49。
乙企业工人数四倍于甲企业,工人总体生产定额平均完成率的区间:A.甲企业较大B.乙企业较大C.两企业一样D.无法预期两者的差别24、根据抽样调查资料,某零件加工平均耗时8分钟,抽样平均误差为0.16分钟,班产定额平均完成120%,抽样平均误差为2.4%。
抽样误差率:A.零件加工平均耗时较大B.加工定额平均完成百分比较大C.相等D.不能做出结论25、对某轻工企业抽样调查的资料,优质品比重40%,抽样误差为4%,用多大的概率才能确信全及总体的这个指标不小于32%?A.0.6827B.0.9545C.0.9973D.2.0026、根据抽样调查的资料,某城市人均日摄入热量2500千卡,抽样平均误差150千卡,试问有多大的置信度来断定该市人均摄入热量在2350千卡至2650千卡之间?A.0.9545B.0.6827C.1D.0.9027、对某型号电子组件耐用性能进行抽样调查,耐用时数的平均数为1055.5小时,抽样平均误差为5.191小时,要求耐用时数误差范围10.5小时,据以估计该批电子组件的耐用时数在1045——1066小时之间,其概率保证程度为A.95.45%B.68.27%C.99.73%D.228、对进口的一批服装取25件作抽样检验,发现有一件不合格。
概率为0.9545时计算服装不合格率的抽样误差为7.3%。
要使抽样误差减少一半,必须抽多少件服装做检验?A.50B.100C.625D.2529、根据以往调查的资料,某城市职工平均每户拥有国库券和国债的方差为1600,为使极限抽样误差在概率保证程度为0.9545时不超过4元,应抽取几户来进行调查?A.I600B.400C.10D.20030、对某型号电子组件10000只进行耐用性能检查,根据以往抽样检验知道,组件合格率为91%,合格率均方差28.62%,要求概率度为2的条件下,合格率的允许误差不超过5%,试确定不重复抽样所需要抽取的单位数。
A.129B.130C.131D.13231、在抽样调查某企业工人生产定额完成情况时,从工人按姓氏笔划多少的顺序名单中进行每五人抽样。
在抽中的36人中,生产定额平均完成百分比为123,均方差8%,试以0.9545概率确定该企业全体工人生产定额平均完成百分比的置信区间。
A.123%士4%B.123%士1.3%C.123%士2.7%D.123%士9%二、多项选择1、影响抽样误差大小的因素有:A. 样本各单位标志值的差异程度B. 总体各单位标志值的差异程度C. 样本单位数D.抽样方法2、置信度、概率度和精确度关系表现在:A. 概率度增大,估计的可靠性也增大B. 概率度增大,估计的精确度下降C. 概率度缩小,估计的精确度也缩小D. 概率度缩小,估计的置信度也缩小3、下面哪些是影响必要样本容量的因素?A. 总体各单位标志变异程度B. 允许的极限误差大小C. 推断的可靠程度D. 抽样方法和抽样组织方式4、对在建工程的400份调查记录(2%的抽样)进行资料整理时,确定有疵病的工作量在已完成工作量中的比重,砌砖方面为0.2,混凝土作业为0.1。
砌砖疵病比重抽样平均误差为:A.0.025B.0.008混凝土作业疵病比重的抽样平均误差为: C.0.015 D.0.0215、根据抽样资料,不发芽的种籽占4%,抽样平均误差为1%。
当'概率保证程度为0.997时,有根据说不发芽的种籽占全及总体的比重等于8%A.有B.无等于2% C.有 D.无6、调查一批机械零件合格率。
根据过去的资料,合格率曾有过99%、97%、95%三种情况,现在要求误差不超过1%,估计把握程度为95%,问需要抽出多少个零件? A.1825 B.381 如果允许误差增加到2%,估计的把握程度不变,应抽出多少零件? C.457 D.967、类型抽样是对组内进行抽样,所以A.只存在组内抽样误差,不存在组间抽样误差。
B.只存在组间抽样误差,不存在组内抽样误差。
整群抽样是对中选群进行全面调查,所以C.只存在群间抽样误差,不存在群内抽样误差。
D.只存在群内抽样误差,不存在群间抽样误差。
8、等距抽样误差实质上取决于A.总方差B.组内方差等距抽样误差可以采用简单随机抽样误差公式来近似反映,而且十分接近简单随机抽样误差,是在:C.用来排队的标志是无关标志,而且是在随机起点取样的条件下。
D.用来排队的标志是有关标志,而且是在随机起点取样的条件下。
9、根据抽样调查某工厂工人的资料,青年工人参加大专自考学习的占10%,参加大专函授学习的占20%,抽样是按他们名册顺序抽取每第五个工人,抽中225人,试以0.9545概率确定:大专自考学习的青年工人比重的抽样误差: A.4% B.3.6%参加大专函授学习的青年工人比重的抽样误差: C.4.8% D.5.3%。
10、对100亩水稻田运用等距抽样方式,抽取样本单位构成抽样总体。
每个样本单位为10平方市尺。
测定结果为:每10平方市尺的平均收获的0.4公斤,平均收获量的均方差为0.125公斤。
根据以上资料:假定用68.27%的可靠性来推断时,则这100水稻每10平方市尺的平均亩产量应是多少公斤?A.0.3875——0.4125公斤B.0.275——0.525公斤如果把估计的可靠程度提高到95.45%,则其平均亩产量应是多少公斤?C.不超过255公斤D.高于255公斤三、简答1、什么是抽样估计,抽样估计的基本方法有哪些?2、在抽样估计中,为什么说准确性的要求和可靠性的要求是一对矛盾,在实际估计中又如何解决这对矛盾?3、抽样估计的优良标准是什么?4、什么是抽样平均误差、抽样极限误差,两者在抽样估计中发挥什么作用?5、类型抽样中的分组和整群抽样中的分群有什么不同意义和不同要求?6、为什么说对总体指标的区间估计只能是一种可能范围估算,而不是绝对范围估算?四、计算1要求:(1)试以95.45%的概率保证程度估计定期存款的范围。
(2)以同样的概率保证程度估计定期存款3万元以上的比重。
2要求:(1)假如概率保证程度为95.45%,极限误差不大于2%,确定不重复抽样的必要单位数。
(2)样本单位数按地区分配的比例。
3、对某市个体商户的月零售额进行抽样调查,由于个体户之间的零售额差别很大,故按申报的资试以95.45%的概率保证程度估计个体户的平均零售额区间。