什么是单片机最小系统

合集下载

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。

它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。

所以说,一片单片机芯片就具有了组成计算机的全部功能。

由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。

然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。

单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。

不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。

这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。

软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。

开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。

要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。

单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。

单片机最小系统

单片机最小系统
千里之行始于足 下, 百丈高台起于垒 土。
什么是最小系统 什么是最小系统
单片机最小系统,或者称为最小应用系统,是 指用最少的元件组成的单片机可以工作的系 统.
最小系统
单片机
晶振电路
复位电路
电源
晶振电路
• 单片机系统正常工作的保证,如果振荡器 不起振,系统将会不能工作;假如振荡器 运行不规律,系统执行程序的时候就会出 现时间上的误差,这在通信中会体现的很 明显:电路将无法通信。他是由一个晶振 和两个瓷片电容组成的,x1和x2分别接单 片机的x1和x2,晶振和瓷片电容是没有正 负的,注意两个瓷片电容相连的那端一定 要接地。
最小系统的应用
有了最小系统后,就能够自己做东西了, 可以利用P0,P1,P2,P3.等管脚对外围模块 进行控制,例如,液晶,数码管,键盘, 点击等等。
ห้องสมุดไป่ตู้
晶振
• 产生原始的时钟频率,放大或缩小后成为 总线频率。 • 机电器件,加电产生振动,加力产生电流。 • 性能稳定,热膨胀系数较小。
复位电路
• 给单片机一个复位信号(一个一定时间的 低电平)使程序从头开始执行;一般有两 种复位方式:上电复位,在系统一上电时 利用电容两端电压不能突变的原理给系统 一个短时的低电平;手动复位,通过按钮 接通低电平给系统复位,

单片机最小系统原理

单片机最小系统原理

单片机最小系统原理在现代电子技术领域,单片机(Microcontroller Unit)起到了至关重要的作用。

而单片机最小系统又是构成单片机的基础。

本文将为您详细介绍单片机最小系统的原理。

一、什么是单片机最小系统单片机最小系统是指由单片机、外围电路和一些外设组成的一个基本电子系统。

它是单片机的工作环境,相当于单片机的基础设施。

单片机最小系统中的外围电路主要包括晶振、电源、复位电路和扩展器件等。

二、晶振晶振是单片机最小系统中的重要组成部分。

它可以提供准确的时钟信号,使单片机能够按照既定的频率运行。

晶振的频率越高,单片机处理数据的能力越强。

常用的晶振频率有4MHz、8MHz等,选择适当的晶振频率取决于具体的应用需求。

同时,在连接晶振时,需要注意晶振的引脚连接正确,以免影响系统正常运行。

三、电源电源是单片机最小系统的核心部分。

单片机需要一个稳定的电源来供电。

一般情况下,单片机最小系统使用5V直流电源。

同时,考虑到电源的稳定性和噪声问题,可以使用稳压电路或滤波电路来提供干净的电源给单片机。

四、复位电路复位电路是单片机最小系统中的重要组成部分。

当单片机上电或者发生异常情况时,复位电路能够将单片机复位,使其重新回到初始状态,确保系统正常运行。

复位电路一般由电容、电阻和去反器等元件组成。

在设计复位电路时,需要注意其稳定性和可靠性。

五、扩展器件单片机最小系统中的扩展器件是为了满足不同应用需求而添加的。

常见的扩展器件有LED显示屏、数码管、按键、继电器等。

这些扩展器件可以通过引脚与单片机进行连接,实现外围设备与单片机之间的数据交互。

六、最小系统的搭建步骤搭建单片机最小系统需要遵循一定的步骤,以确保系统的正常运行。

1. 准备所需材料和工具,包括单片机、晶振、电容、电阻、电源等元件,以及焊接工具、测试仪器等。

2. 制定最小系统的设计方案,包括电路图和器件连接方式等。

3. 根据设计方案进行电路的焊接和连接,注意焊接的质量和器件的正确连接。

第六章_单片机最小系统

第六章_单片机最小系统

2. 键盘的查询与中断
3. 键盘管理中的键输入与键操作
7.2.3 并行I/O口扩展的LED显示电路 1. LED 显示器及显示原理 (1)LED显示器结构 (2) 显示器原理与显示段码 2. LED显示器显示方式
7.3 并行总线外围扩展技术 7.3.1 并行总线扩展基本问题 1. 并行总线扩展电路设计
80C51单片机最小系统
1、最小系统概念 最小系统概念
单片机最小系统,或者称为最小应用系统 是指用最少的元 单片机最小系统 或者称为最小应用系统,是指用最少的元 或者称为最小应用系统 件组成的单片机可以工作的系统.最小系统结构与单片机的 件组成的单片机可以工作的系统 最小系统结构与单片机的 类型有关。 类型有关。 对51系列单片机来说 最小系统一般应该包括 单片机、晶 系列单片机来说,最小系统一般应该包括 单片机、 系列单片机来说 最小系统一般应该包括:单片机 振电路、复位电路、按键输入、显示输出等。 振电路、复位电路、按键输入、显示输出等。
外部时钟 XTAL1 XTAL2
XTAL2
15~45pf× 15~45pf×2
1~12MHz(MCS-51) 12MHz(MCS-51) 24MHz(Atmel-89C) 0~24MHz(Atmel-89C)
(1)片内时钟振荡器与外部谐振电路 片内振荡器与外部谐振叫路构成了一个并联谐振的时钟 振荡电路。PD端可由内部软件编程来控制振荡电路的 启停。
(4) 电源监测复位 4. 应用系统中多复位要求的处理
第7章
• 单片机的并行扩展技术
7.1 并行外围扩展方式 有I/O方式和总线方式 7.1.1 并行I/O口与并行扩展总线 1. 两种扩展方式
2. 扩展方式选择 主要由所选择的外围器件决定。 3. 并行总线的I/O虚拟 通过I/O口虚拟总线时序及操作控制方式来扩展并 行总线接口。 7.1.2 并行I/O的扩展特性 输出锁存、握手交互、指令控制实现的时序协议 7.1.3 并行总线扩展特性 三态输出、时序交互、总线协议的CPU的时序自 动运行

单片机最小系统定义及其组成部分

单片机最小系统定义及其组成部分

单片机最小系统定义及其组成部分单片机最小系统是指由单片机、外部晶体振荡器、复位电路和供电系统组成的一个基本的硬件电路。

它是单片机正常工作所必需的最基本的硬件环境,也是单片机应用开发的起点。

本文将对单片机最小系统的定义及其组成部分进行详细介绍。

一、单片机最小系统的定义单片机最小系统是指由单片机芯片、与之配套的外围器件及电路组成的一个基本硬件电路系统。

它是单片机正常工作所必需的最基本硬件环境。

单片机最小系统的设计合理与否,直接关系到单片机的正常工作以及应用的可靠性。

二、单片机最小系统的组成部分1.单片机芯片单片机芯片是单片机最基本的核心部件,其内部集成了中央处理器(CPU)、存储器(RAM和ROM)、输入输出口(IO口)、定时器/计数器、串行通信接口等功能模块。

根据具体的应用需求选择合适的单片机型号。

2.外部晶体振荡器外部晶体振荡器是单片机工作的时钟源,负责提供稳定的时钟信号,使单片机按照特定的频率工作。

一般情况下,选择常用的晶体振荡器频率,如11.0592MHz、12MHz等。

3.复位电路复位电路是为了保证单片机的正常启动而设计的。

当单片机上电或外部复位信号到来时,复位电路能够将单片机复位至初始状态。

复位电路通常由电容、电阻和稳压芯片等元件组成,能够提供稳定的复位脉冲。

4.供电系统供电系统是保证单片机供电的基本电路。

单片机通常需要提供3.3V 或5V的直流电源,供电系统需要具备稳压、滤波和过流保护等功能。

供电系统可以采用降压芯片、稳压模块或者电源管理芯片等进行设计搭建。

除了以上四个基本组成部分外,根据实际需求,单片机最小系统还可以包括外设电路、通信电路、显示电路等其他功能电路。

这些电路可根据具体需求进行选择和扩展,以满足应用的多样化需求。

总结单片机最小系统是单片机正常工作的基础,也是单片机应用开发的起点。

它由单片机芯片、外部晶体振荡器、复位电路和供电系统组成。

单片机最小系统的设计需要合理选择电路元件,确保单片机的正常工作和应用的可靠性。

单片机最小系统的构成

单片机最小系统的构成

单片机最小系统的构成单片机最小系统是单片机工作的基础,拥有了最小系统,单片机才能被正常地使用。

最小系统的构成是由多种元器件组成的,包括单片机、晶振、电源、稳压电路、滤波电容和上拉电阻等。

首先,单片机是最小系统的核心,它是实现各种功能的基础。

不同型号的单片机的引脚数和功能不同,选择单片机时需要考虑应用场合和具体功能要求。

其次,晶振是单片机最小系统的另外一部分,用于提供给单片机系统所需要的时钟信号。

在单片机最小系统中,晶振可以采用百万分之二的石英晶体振荡器,常见的晶振有4M、8M等不同频率,具体的采用哪一个频率需要根据单片机的类型和工作需要来决定。

电源是单片机系统的重要组成部分,是为其提供工作所需的电能。

在使用单片机最小系统时,可以使用直流电源,使用5V电源,这可以通过从220V的交流电网上降压得到,也可以使用电池电源。

稳压电路是一个保障单片机系能正常运行的必要元件,主要起到稳压和过载保护作用。

当电压达到一定值时,该电路会自动调节电流,以保证单片机稳定工作。

最常用的稳压电路是7805稳压器,其稳压精度较高,稳定性好。

滤波电容和上拉电阻也是最小系统的组成部分之一。

滤波电容主要用于滤除干扰信号,上拉电阻则可以优化单片机输入输出的电平,使其更加稳定。

滤波电容一般采用0.1至10微法的陶瓷电容,上拉电阻则可以使用1K - 10K欧的电阻。

综上所述,单片机最小系统的构成包括单片机、晶振、电源、稳压电路、滤波电容和上拉电阻等元器件。

合理的搭配和选用不仅有利于提高单片机系统的稳定性和精度,也能保证其正常工作。

因此,在设计单片机应用时,充分考虑最小系统的构成和选配是非常重要的一个环节。

单片机最小系统制作

单片机最小系统制作

单片机最小系统制作单片机(Microcontroller)最小系统是指单片机与其必要外围电路的集成,能够实现单片机的正常工作。

单片机最小系统一般包括单片机芯片、时钟电路、复位电路和电源电路等。

1.选购单片机芯片:选择适合自己需求的单片机芯片,有多种型号和规格可以选择。

比较常见的单片机芯片有PIC、AVR、STM32等。

2.设计电源电路:为单片机提供正常工作的电源电压,一般为5V。

可以使用直流电源供电,也可以通过电池供电。

电源电路一般包括电源滤波和稳压电路。

3.设计时钟电路:单片机需要时钟信号来进行计时和同步操作。

时钟电路一般由晶体振荡器和相关电容电阻组成。

选择合适的晶体频率,一般常见的为4MHz或8MHz。

4.设计复位电路:复位电路用于在单片机上电时将其状态清零,进入一个初始状态。

一般采用电容与电阻并联的方式制作,保证在上电时产生足够的复位时间。

5.焊接和布线:将选购的单片机芯片和其他电子元件进行焊接和布线,连接相应的引脚。

注意焊接时要确保焊接点牢固,布线时要避免引起短路和接触不良等问题。

6.测试和调试:将制作好的单片机最小系统连接到计算机或开发板上,通过编程工具对单片机进行测试和调试。

可以使用编程工具(如IDE)编写简单的程序,通过编程上传到单片机进行验证。

7.功能扩展:根据需求可以对单片机最小系统进行功能扩展,如添加输入输出接口、外部存储器、显示屏等。

制作单片机最小系统的过程比较简单,但在实际操作中要细心和耐心,避免出现焊接不良、接触不良等问题。

制作好的最小系统可以为后续的单片机应用提供基础,可以用于各种项目的开发和实现。

总结起来,制作单片机最小系统需要选购单片机芯片,设计电源、时钟和复位电路,进行焊接和布线,并进行测试和调试。

掌握这些基本步骤可以帮助初学者更好地了解和掌握单片机的使用和应用。

单片机原理及应用与C51程序设计(第三版)第8章作业

单片机原理及应用与C51程序设计(第三版)第8章作业

单片机原理及应用与C51程序设计(第三版)第8章作业习题1. 什么是MCS-51单片机的最小系统?答:所谓最小系统,是指一个真正可用的单片机的最小配置系统。

对于单片机内部资源已能够满足系统需要的,可直接采用最小系统。

2. 简述半导体存储器的分类?答:半导体存储器按读写工作方式可分为两种:只读存储器ROM(Read Only Memory)和随机读写存储器RAM(Random Access Memory)。

只读存储器ROM 有MROM-掩膜型ROM, PROM-可编程ROM, EPROM-可擦除的PROM, E2PROM -电擦除的PROM, Flash Memory-快擦型存储器; 随机读写存储器RAM有静态RAM-SRAM, 动态RAM-DRAM, 非易失性RAM-NVRAM。

3. 简述存储器扩展的一般方法。

答:存储器芯片与单片机扩展连接具有共同的规律。

即不论何种存储器芯片,其引脚都呈三总线结构,与单片机连接都是三总线对接。

另外,电源线接电源线,地线接地线。

4. 什么是部分译码法?什么是全译码法?它们各有什么特点?用于形成什么信号?答:部分译码就是存储器芯片的地址线与单片机系统的地址线顺次相接后,剩余的高位地址线仅用一部分参加译码。

部分译码使存储器芯片的地址空间有重叠,造成系统存储器空间的浪费。

全译码就是存储器芯片的地址线与单片机系统的地址线顺次相接后,剩余的高位地址线全部参加译码。

这种译码方法中存储器芯片的地址空间是唯一确定的,但译码电路要相对复杂。

译码形成存储器芯片的片选信号线CE。

5. 采用部分译码为什么会出现地址重叠情况,它对存储器容量有何影响?答:部分译码就是存储器芯片的地址线与单片机系统的地址线顺次相接后,剩余的高位地址线仅用一部分参加译码。

参加译码的地址线对于选中某一存储器芯片有一个确定的状态,而与不参加译码的地址线无关。

也可以说,只要参加译码的地址线处于对某一存储器芯片的选中状态,不参加译码的地址线的任意状态都可以选中该芯片。

单片机最小系统

单片机最小系统

单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。

它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。

下面将详细介绍单片机最小系统的构成和特点。

单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。

常用的单片机型号有AT89CPIC16F877A等。

电源:为单片机提供电能,一般采用直流电源,如5V、3V等。

时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。

复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。

常用的复位芯片有MAX811等。

程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。

结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。

功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。

可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。

成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。

单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。

随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。

在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。

本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。

单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。

在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。

单片机最小系统的架构设计应考虑应用需求和系统可靠性。

一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。

单片机最小系统讲解

单片机最小系统讲解

单片机最小系统讲解单片机(Microcontroller Unit,简称MCU)是指在一个芯片上集成了微处理器核心、存储器、输入输出接口和定时器等功能模块的专用集成电路。

单片机由于体积小、功耗低、成本低等优势,广泛应用于各种电子设备中。

而单片机的最小系统是指将单片机与必要的外部电路组合在一起,以实现单片机的基本功能。

本文将对单片机最小系统进行详细讲解。

一、单片机最小系统的组成单片机最小系统主要由单片机芯片、晶振、电源电路和复位电路等组成。

1. 单片机芯片单片机芯片是单片机最核心的部分,它集成了微处理器核心、存储器和各种外设接口等功能单元。

单片机芯片根据不同的应用需求,有不同的型号和规格可供选择。

2. 晶振晶振是单片机最小系统中的重要组成部分,它提供了单片机系统的时钟信号。

单片机通过时钟信号来同步各种操作,保证系统的正常运行。

3. 电源电路电源电路为单片机提供稳定的电源供电,保证单片机系统的正常工作。

一般情况下,单片机最小系统采用直流电源供电,可以是电池或者是稳压电源。

4. 复位电路复位电路是单片机最小系统中的另一个重要组成部分,它用于保证单片机系统在上电或者复位时,能够正常启动和初始化。

复位电路通常由电源复位电路和外部复位电路组成。

二、单片机最小系统的工作原理单片机最小系统的工作原理主要分为以下几个步骤:1. 上电初始化当单片机系统上电或者复位时,复位电路将在系统满足工作电压条件后,发送复位信号给单片机芯片。

单片机芯片接收到复位信号后,将会执行初始化动作,包括清除寄存器和设置初始值等。

2. 系统时钟初始化在上电初始化完成后,单片机系统将会初始化系统时钟。

系统时钟一般由晶振提供,并通过时钟分频器对时钟信号进行分频处理,以产生单片机内部各个模块需要的时钟信号。

3. 程序执行经过上电初始化和系统时钟初始化后,单片机系统就进入了正常的工作状态。

此时,单片机将开始按照程序内存中的指令顺序执行各种操作。

程序由程序员编写,并存储在单片机的闪存或者RAM中。

单片机最小系统介绍 (2)

单片机最小系统介绍 (2)

单片机最小系统介绍什么是单片机最小系统单片机最小系统是指单片机芯片以及其必要的周边电路组成的一个完整的系统。

单片机芯片是一种集成电路,其中包含了处理器核心、存储器、I/O接口等基本功能。

而单片机最小系统则包含了单片机芯片外所需的电源、晶振、复位电路等必要的辅助元件。

单片机最小系统在嵌入式系统开发中起着至关重要的作用。

它可以提供稳定可靠的电源供应,为单片机芯片提供工作所需的电压和电流;晶振则提供了系统的时钟信号,为单片机的运行提供时序基准;复位电路可以确保系统在上电时能够正确地初始化。

单片机最小系统的组成一个典型的单片机最小系统由以下几个方面的组件构成:1.单片机芯片:单片机最小系统的核心部件,通常由一块集成电路芯片组成,包含处理器核心和各种外设接口。

2.电源电路:用于为单片机芯片提供电源电压和电流的电路。

电源电路通常由稳压电路和滤波电路组成,保证单片机工作时的电源稳定性和可靠性。

3.晶振电路:用于提供单片机系统的时钟信号的电路。

晶振电路通常由振荡器和晶振组成,产生稳定的时钟信号,为单片机的运行提供精确的时序基准。

4.复位电路:用于在单片机上电时进行初始化的电路。

复位电路通常由复位电路芯片和复位电路电源组成,确保单片机在上电时可以正确地初始化。

5.外设接口电路:用于与外部设备进行通信的接口电路。

外设接口电路通常包括串口、并口、GPIO等接口,可以连接各种外部设备,如键盘、显示器、传感器等。

单片机最小系统的工作原理单片机最小系统工作的基本原理是:电源电路为单片机芯片提供稳定的电源电压和电流;晶振电路提供稳定精确的时钟信号;复位电路控制芯片在上电时进行初始化;外设接口电路与外部设备进行通信。

单片机芯片通过电源电路获得工作所需的电源,电源电路通过稳压电路和滤波电路来保证电源的稳定性和可靠性。

晶振电路通过振荡器和晶振来产生稳定的时钟信号,提供系统的时序基准。

复位电路在单片机上电时发送复位信号,使单片机处于初始状态。

单片机最小系统简介

单片机最小系统简介
Single-Chip microcomputer
单片机最小系统
输入/输出
P0.0~P0.7(引脚号32~39):双向输入/输出端口。
P1.0~P1.7(引脚号1~8):双向输入/输出端口。
P2.0~P2.7(引脚号21~28):双向输入/输出端口。
P3.0~P3.7(引脚号10~17):双向输入/输出端口,当该端口不作为
单片机以晶振的振荡周期为最小的时序单位,单片机内部的所 有操作都以此周期为时序基准。单片机指令的基本执行时间为 一个机器周期,一个机器周期由6个状态周期组成,每个状态 周期又分成2个振荡周期。
Single-Chip microcomputer
单片机最小系统
复位及复位电路的设计
在单片机系统中,复位电路是不可缺少的。单片机在正常工 作(即执行指令)前,必须要进行复位操作,这样做的目的 是将CPU以及系统中其它部件都处于一个明确的初始状态, 便于系统启动。
输入/输出端口使用时,每一个引脚也可以有第二功能,如:
P3.0/RXD:串行输入口;
P3.1/TXD:串行输出口;
P3.2/INT0:外部中断0输入口;
P3.3/INT1:外部中断1输入口;
P3.4/T0:定时器/计数器0外部事件脉冲输入口;
P3.5/T1:定时器/计数器1外部 microcomputer
单片机最小系统
8051单片机的基本结构如图1-3所示,一个单片机芯片内包 括:
·中央处理器CPU; ·内部数据存储器RAM; ·内部程序存储器ROM(有的型号没有); ·4个8位并行I/O接口(P0、P1、P2、P3); ·2~3个可编程定时器/计数器; ·一个可编程串行接口; ·内部中断具有5个中断源,2个优先级的嵌套中断结构,可 实现二级中断嵌套; ·一个片内振荡器及时钟电路,振荡时钟频率可以高达 40MHz。

单片机最小系统

单片机最小系统

单⽚机最⼩系统
1、概念定义
单⽚机的最⼩系统就是让单⽚机能正常⼯作并发挥其功能时所必须的组成部分,也可理解为是⽤最少的元件组成的单⽚机可以⼯作的系统。

2、系统组成
对 51 系列单⽚机来说,单⽚机最⼩系统⼀般应该包括:单⽚机芯⽚、电源电路、时钟 / 晶振电路、复位电路⼏个部分。

注:⼀个可以⼯作的嵌⼊式最⼩系统其硬件还应包括:嵌⼊式微处理器、存储器、与 I / O 接⼝。

之所以单⽚机最⼩系统中没有提到,是因为这三者已经集成在 51 单⽚机芯⽚上。

2.1 电源
传统 51 单⽚机的供电电压在 4.7V - 5.2V 之间,超出此范围会烧毁单⽚机或者单⽚机不⼯作,⼀般是采⽤ 5V 供电。

2.2 晶振
晶振是⽯英晶体谐振器(quartz crystal oscillator)的简称,也称有源晶振,它能够产⽣中央处理器(CPU)执⾏指令所必须的时钟频率信号,
CPU ⼀切指令的执⾏都是建⽴在这个基础上的,时钟信号频率越⾼,通常 CPU 的运⾏速度也就越快。

只要是包含 CPU 的电⼦产品,都⾄少包含⼀个时钟源,就算外⾯看不到实际的振荡电路,也是在芯⽚内部被集成,它被称为电路系统的⼼脏。

2.3 复位电路
复位电路⽤于将单⽚机内部各电路的状态恢复到⼀个确定的初始值,并从这个状态开始⼯作。

单⽚机的复位条件:必须使其 RST 引脚上持续出现两个(或以上)机器周期的⾼电平。

2.4 传统 51 单⽚机最⼩系统。

单片机最小系统的设计

单片机最小系统的设计

真值表如下:
五、单片机系统的基本外设 RS232串行接口
术语解释:RS232接口是1970年由美国电子工业协 会(EIA)联合贝尔系统、调制解调器厂家及计算机 终端生产厂家共同制定的用于串行通讯的标准。它 的全名是“数据终端设备(DTE)和数据通讯设备 (DCE)之间串行二进制数据交换接口技术标准”。
了解了锁存器的功能以后,就知道如何操 作板载LED了,首先将JP1用跳线器短路, 确保为LED提供工作电压。其次将锁存器 的LE端设置为低电平,最后往锁存器数据 输入端口D1-D8输入电平数据就可以了。 由于本电路采用的是共阳结构,只有当锁 存器输出为低电平的时候LED方可点亮, 反之高电平熄灭,设计程序的时候需注意 这点。
我们使用的51单片机需要在+5V的直流电的坏境下,才能够 稳定的工作(并不是所有的单片机都是工作在+5V,有的低 电压单片机的工作电压为3.3V,有的甚至更低)。而在直流 电源中,一般会有正电源和地两根线。单片机的接+5V的引
脚为40引脚VCC,而接地引脚为20引脚GND。
二、单片机系统的基本外设 键盘电路
本系统板采用动态显示的原理设计,电路如下: 其中JP2为数码管电源跳线,使用数码管时,必 须用跳线帽将其短路。Q2-Q9为PNP型扩流三 极管,为每位数码管公共端提供约80mA的电源。 R4-R11为三极管的基极偏流电阻,当B0-B7 端电压低于4.3V时,PNP管导通,为数码管提 供公共电压。74HC573为锁存器,功能在上一 章已经说明,在此不再赘述。74HC138为3-8 译码器,当一个选通端(E3)为高电平,另两个 选通端(E1)和/(E2))为低电平时,可将地址 端(A0、A1、A2)的二进制编码在一个对应的 输出端以低电平译出。

单片机最小系统原理

单片机最小系统原理

单片机最小系统原理单片机最小系统是指单片机芯片与外围器件组成的最基本的工作系统。

它包括单片机芯片、时钟电路、复位电路、电源电路和外围器件等几个部分。

下面我们将逐一介绍单片机最小系统的原理。

首先,单片机芯片是整个最小系统的核心部分。

单片机芯片是一种集成了微处理器、存储器、定时器、串行通信接口等功能于一体的芯片,它是整个系统的控制中心。

单片机芯片的选择应根据具体的应用需求来确定,不同的单片机芯片有着不同的指令集、存储容量和外设接口,因此在选择单片机芯片时需要充分考虑系统的功能需求和性能要求。

其次,时钟电路是单片机最小系统中不可或缺的部分。

时钟电路为单片机提供了基本的时序信号,使单片机能够按照一定的时序工作。

时钟电路一般由晶体振荡器和放大器组成,晶体振荡器产生稳定的振荡信号,放大器将振荡信号放大后送入单片机芯片,从而使单片机能够按照指定的时钟频率工作。

另外,复位电路也是单片机最小系统中至关重要的组成部分。

复位电路能够在系统上电或者复位信号出现时将单片机初始化,使其进入工作状态。

复位电路一般由复位芯片和相关的外围元器件组成,它能够确保单片机在上电或者复位时能够正常工作,避免因为系统状态不确定而导致的错误操作。

此外,电源电路是单片机最小系统中不可或缺的一部分。

电源电路为单片机提供稳定的工作电压,保证单片机能够正常工作。

电源电路一般由稳压芯片、滤波电容和电感等组成,它能够将输入的不稳定电压转换为稳定的工作电压,从而保证单片机的正常工作。

最后,外围器件也是单片机最小系统中必不可少的一部分。

外围器件包括与单片机芯片相连的外部元器件,如LED、按键、显示器、传感器等。

这些外围器件能够为单片机系统提供输入输出接口,使单片机能够与外部环境进行交互,实现具体的功能。

总的来说,单片机最小系统是由单片机芯片、时钟电路、复位电路、电源电路和外围器件等几个部分组成的。

它是单片机系统中最基本的工作系统,为单片机的正常工作提供了必要的支持。

单片机最小系统介绍

单片机最小系统介绍

单片机最小系统介绍什么是单片机最小系统单片机(Microcontroller Unit,简称MCU),是一种集成了微处理器核心、存储器、输入/输出接口和时钟等主要部件的微型计算机系统。

在单片机中,最小系统是指最基本的电路配置,能够使单片机正常工作所需的最简单电路。

单片机最小系统的组成单片机最小系统主要由以下几个部分组成:1. 单片机单片机是整个系统的核心,它负责接收输入信号、进行数据处理并控制输出。

2. 晶振与时钟电路晶振和时钟电路为单片机提供稳定的时钟信号,使得单片机能够按照一定的时间间隔执行指令。

3. 复位电路复位电路用于对单片机进行复位操作,使其恢复到初始状态。

复位电路通常由电容、电阻和复位按钮等元件组成。

4. 电源电路电源电路提供单片机所需的电源电压,保证其稳定工作。

一般情况下,单片机最小系统采用直流电源供电。

5. 外部扩展电路外部扩展电路包括与单片机相连的输入/输出接口以及其他外设。

这些外设可以是LED灯、继电器、传感器等,用于与外界进行交互。

单片机最小系统的工作原理单片机最小系统的工作原理如下:1.当系统上电或复位时,复位电路会将单片机复位到初始状态。

2.外部晶振和时钟电路提供稳定的时钟信号,单片机根据时钟信号执行指令。

3.单片机根据输入信号对数据进行处理,并控制输出信号。

4.单片机通过输出接口与外部扩展电路连接,完成与外界的交互。

单片机最小系统的应用单片机最小系统广泛应用于各个领域,包括家电、汽车、工业自动化等。

以下是一些常见的应用场景:•家电控制:单片机最小系统可以用于家电产品的控制,例如智能灯控系统、空调控制系统等。

•汽车电子:单片机最小系统在汽车电子领域应用广泛,例如车载娱乐系统、车载导航系统等。

•工业控制:单片机最小系统在工业自动化中起着重要作用,例如工厂控制系统、自动化生产线等。

•仪器仪表:单片机最小系统可以用于各种仪器仪表的控制与数据处理,例如温度计、压力计等。

总结单片机最小系统是单片机正常工作所需的最简单电路配置。

单片机最小系统

单片机最小系统
特点
最小系统具有结构简单、功能完 善、易于扩展等特点,能够满足 单片机的基本应用需求。
最小系统的组成
电源电路
为单片机提供稳定的电 源,确保单片机正常工
作。
时钟电路
为单片机提供时钟信号 ,控制单片机的运行速
度。
复位电路
用于将单片机恢复到初 始状态,保证程序的正
确执行。
存储器电路
用于存储程序和数据, 提高单片机的运算速度
和远程控制。
02
单片机最小系统的硬件设计
单片机型号选择
01
02
03
通用型单片机
如AT89C51、AT89C52等 ,适用于简单的控制电路 。
专用型单片机
如PIC、AVR等,具有特 定的功能和优点,适用于 特定应用。
嵌入式系统单片机
如ARM、MIPS等,具有 强大的处理能力和丰富的 外设接口,适用于复杂的 控制系统。
和存储容3
04
智能家居
最小系统可以作为智能家居的 控制核心,实现家居设备的智
能化控制。
工业自动化
最小系统可以应用于工业自动 化领域,实现生产过程的自动
化控制。
医疗设备
最小系统可以应用于医疗设备 中,实现医疗设备的智能化和
远程控制。
智能仪表
最小系统可以作为智能仪表的 控制核心,实现仪表的智能化
单片机最小系统
汇报人: 日期:
目录
• 单片机最小系统概述 • 单片机最小系统的硬件设计 • 单片机最小系统的软件设计 • 单片机最小系统的调试与测试 • 单片机最小系统的优化与改进 • 单片机最小系统的应用案例分

01
单片机最小系统概述
定义与特点
定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么叫51单片机最小系统
单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统.对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路.
下面给出一个51单片机的最小系统电路图.
说明
复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.
晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)
单片机:一片AT89S51/52或其他51系列兼容单片机
特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始
执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.
复位电路:
一、复位电路的用途
单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。

单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。

单片机复位电路如下图:
二、复位电路的工作原理
在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?
在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位。

开机的时候为什么为复位
在电路图中,电容的的大小是10uF,电阻的大小是10k。

所以根据公式,可以算出电容充
电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。

也就是说在电脑启动的0.1S内,电容两端的电压时在0~3.5V增加。

这个时候10K电阻两端的电压为从5~1.5V减少(串联电路各处电压之和为总电压)。

所以在0.1S内,RST引脚所接收到的电压是5V~1.5V。

在5V正常工作的51单片机中小于1.5V的电压信号为低电平信号,而大于1.5V的电压信号为高电平信号。

所以在开机0.1S内,单片机系统自动复位(RST引脚接收到的高电平信号时间为0.1S左右)。

按键按下的时候为什么会复位
在单片机启动0.1S后,电容C两端的电压持续充电为5V,这是时候10K电阻两端的电压接近于0V,RST处于低电平所以系统正常工作。

当按键按下的时候,开关导通,这个时候电容两端形成了一个回路,电容被短路,所以在按键按下的这个过程中,电容开始释放之前充的电量。

随着时间的推移,电容的电压在0.1S内,从5V释放到变为了1.5V,甚至更小。

根据串联电路电压为各处之和,这个时候10K电阻两端的电压为3.5V,甚至更大,所以RST 引脚又接收到高电平。

单片机系统自动复位。

总结:
1、复位电路的原理是单片机RST引脚接收到2US以上的电平信号,只要保证电容的充放电时间大于2US,即可实现复位,所以电路中的电容值是可以改变的。

2、按键按下系统复位,是电容处于一个短路电路中,释放了所有的电能,电阻两端的电压增加引起的。

51单片机最小系统电路介绍
1.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。

2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。

3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好
4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。

设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。

计数值N乘以机器周期Tcy就是定时时间t。

设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。

在每个机器周期的S5P2期间采样T0、T1引脚电平。

当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。

由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。

当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。

相关文档
最新文档