(完整版)2012-2013《概率论与随机过程试题》期末考试试题答案

合集下载

(完整word版)随机过程试题及答案(word文档良心出品)

(完整word版)随机过程试题及答案(word文档良心出品)

一.填空题(每空2分,共20分)1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1)eλ。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2ωω。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从Γ分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为(n)n P P =。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)ji ij i Ip (n)p p ∈=⋅∑。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若ii f 1<,称状态i 为非常返的。

9.非周期的正常返状态称为遍历态。

10.状态i 常返的充要条件为(n)iin=0p∞=∑∞。

二.证明题(每题6分,共24分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

证明:左边=P(ABC)P(ABC)P(AB)P(C AB)P(B A )P(A)P(AB)P(A)===右边2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

6、解:首先确定 f (x, y)
1[
1 x dy]dx
6,0 x 1, x2
y x;
0 x2
E(X)=
1[
0
x x2
x
6dy]dx
1 2
;E(X
2
)=
1[
0
x x2
x2
6dy]dx
3 10
;E(Y)=
1[
0
y
y y 6dx]dy
2 5
E(Y 2 )=
1[
0
y
y
(
1 2
x)(
1 2
y)
f
(x,
y), 所以X ,Y不独立;
(3)1[ 1h(x y) f (x, y)dy]dx 1[ x1 h(z)(x x z)dz]dx
00
0x
0 [ z1 h(z)(2x z)dx]dz 1 1 h(z)(2x z)dx]dz
1 0
0z
0 h(z)(z2 z 1)dz 1 h(z)(1 z2 z)dz
Z 0 1234
P
1 131 1
(Z) 16 4 8 4 16
武汉大学2011-2012 第一学期《概率论与数理统 计》期末试题及参考答案
一、解:(1)P(A+B)=P(A)+P(B)-P(A)P(B)=0.5+0.4-0.5×0.4=0.7
(2)P((A-B)|(A+B))=P((A-B)∩(A+B))/P(A+B)=[P(A)-P(A)P(B)]/P(A+B)=0.3/0.7=3/7 二、解:
y
2
6dx]dy
3 14
;E(XY)=

(完整版)12-13随机过程试题B卷答案

(完整版)12-13随机过程试题B卷答案

专业:
院(系):
= E[X (t )X (t)]E[Y (t )Y (t)] = RX ( )RY ( ) , 与 t 无关。
E | Z (t) |2 = RZ (0) = RX (0)RY (0) < 因此 Z (t) 是平稳过程。
7 设 N(t) 为 Poisson 过程,对 s t ,证明在t 时刻到达 k 次的条件下 s 时刻达到次数的概率,即
N (t)
N (t)
E(W (t)) E{ (t k )} E{E[ (t k ) | N(t)]}
k 1
k 1
N (t)
n
E[ (t k ) | N(t) n] nt E[k | N(t) n]
k 1
k 1
由定理在 N(t)=n 条件下 n 个k 的联合分布等价与[0,t]上 n 个相互独立服从均匀分布的随机变量
(s) s 1 1 s 1 s2 , 解得消亡概率为 s 1 42 4
得分 评阅人
四、综合题:(共 2 题,每题 12 分)
12.叙述马氏链状态的划分(5 分!)。应用相关理论讨论下例的各个状态。
设 {X n , n 0} 是马氏链,其状态空间 E {0,1, 2,L },转移概率为
p0,0
p0,0
1 2
0, 从而
0
是非周期的,因此
0
是遍历的。因为整个状态空间 E
是连通的,所以,
对任意的状态i ,它都是遍历的。
13.用数学语言描述布朗运动的主要性质,并对一维布朗运动 Bt 计算 E(Bt Bs ) , E(Bt4 ) ,
解:布朗运动有很多好性质比如 布朗运动是时齐的独立增量过程,也是时齐的马氏过程。
h0
lim

随机过程期末试题及答案(2)

随机过程期末试题及答案(2)

{N(t),t ≥ 0} 独立,令 X(t)=∑X(t)] = λ tE {Y1} 。
k=1
N(t)
2
证明:由条件期望的性质 E [X(t) ] = E E ⎡ ⎣ X(t) N(t) ⎤ ⎦ ,而 E ⎡ ⎣ X(t) N(t) = n ⎤ ⎦ = E⎢
P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n X(t1 )-X(0)=x1 , X(t 2 )-X(0)=x 2 , X(t n )-X(0)=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,又因为 P(X(t) ≤ x X(t n )=x n )= P(X(t)-X(t n ) ≤ x-x n X(t n )=x n ) = P(X(t)-X(t n ) ≤ x-x n ) ,故 P(X(t) ≤ x X(t1 )=x1 , X(t 2 )=x 2 , X(t n )=x n ) = P(X(t) ≤ x X(t n )=x n )
2 2
0 0 1 4 0
4 0
0⎤ ⎥ 0⎥ ⎥ 1 ⎥ 4⎥ 1⎥ ⎦
(2) p33 = 1, 而p30,p31,p32 均为零,所以状态 3 构成一个闭集,它是吸收态,记 C1 = {3} ;0, 1 两个状态互通,且它们不能到达其它状态,它们构成一个闭集,记 C2 = {0, 1},且它们都是正常返 非周期状态;由于状态 2 可达 C1,C 2 中的状态,而 C1,C 2 中的状态不可能达到它,故状态 2 为非 常返态,记 D= {2} 。 (3)状态空间 I 可分解为: E=D ∪ C1 ∪ C2 四.简答题(6 分)简述指数分布的无记忆性与马尔科夫链的无后效性的关系。 答: (略)

(完整版)随机过程习题答案

(完整版)随机过程习题答案

(完整版)随机过程习题答案随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的⼀维概率密度、均值和相关函数。

解因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的⼀维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的⼀维概率密度及),(),(21t t R t EX X 。

解对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的⼀维概率密度xtt x f t x f Y 1)ln ();(-=,0>t)(][)]([)(dy y f e eE t X E t m yt tY X相关函数+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X 2.3 若从0=t 开始每隔21秒抛掷⼀枚均匀的硬币做实验,定义随机过程=时刻抛得反⾯时刻抛得正⾯t t t t t X ,2),cos()(π试求:(1))(t X 的⼀维分布函数),1(),21(x F x F 和;(2))(t X 的⼆维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,⽅差 )1(),(22X Xt σσ。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

《概率论与随机过程》概率论部分习题答案

《概率论与随机过程》概率论部分习题答案

《概率论与随机过程》概率论部分习题解答参考一、ABC BC A C B A C AB C B A C B A .3;.2;.1C B A C B A C B A C B A .4 二、填空1.(1)0.2, (2)52; 2.1 0.4 3.P (A )+P (B )-P (AB ) , 1-P (A );4.3213211,)1)(1)(1(1p p p p p p ----- ;5.)002.0028.0()3.0()7.0()3.0(,)135.0()7.0()3.0(55514452335++或或C C C ; 6.3125864)6.0()4.0(,6,,2,1,0,)6.0()4.0(333666或C k C k k k =- ; 7.1 , 4,+∞<<∞---∞-⎰x dt et x,2218)1(2π ;8.0.7612 ; 9.1 ; 10.3 ; 11.3ln 21; 12.1 ;13.σπ2; 14.91,92 ; 15. 2, 0。

三、单项选择题1.C 2.B 3.B 4.C 5.D 6.D 四、计算题1. 解:设A 1、A 2表示第一、二次取出的为合格品{}{}{}{}{}72960495119532321)()(1)(1132121=⎪⎭⎫ ⎝⎛-=-==⨯-=-=-=-==三批全拒收收三批中至少有一批被接接收接收拒收P P A P A P A A P P P P2. 解:(1)22535523,51288883=⨯⨯⎪⎪⎭⎫⎝⎛===⨯⨯=ΩA N N44.0512225)(===ΩN N A P A(2)1802334523,336678131538=⎪⎪⎭⎫ ⎝⎛=⨯⨯⎪⎪⎭⎫ ⎝⎛===⨯⨯=ΩA A N A N A 54.05630381325)(54.0336180)(==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛====ΩA P N N A P A 或3. 解:令{}个盒子各有一球恰有n A =,!!()nA nnN N N N N N N n n N n n P A N Ω⎛⎫=⋅== ⎪⎝⎭⎛⎫ ⎪⎝⎭=因此4. 解:令{}{}有效系统有效系统b B a A ==829.093.01862.092.0)(1)()()(1)()()()()2(988.0862.093.092.0)(862.085.0)92.01(93.0)()()()()()()()()()()()1(85.0)(93.0)(92.0)(=--=--=--===-+==--=-=-=-=-+====B P AB P A P B P AB A P B P B A P B A P B A P A B P A P B P A B P B P A B B P AB P AB P B P A P B A P A B P B P A P 所以其中5. 解:设A 1、A 2、A 3分别为甲、乙、丙的产品,B 表示产品是次品,显然12312311(),()()24()()2%()4%P A P A P A P B A P B A P B A ====== 1111(1)()()()2%1%2P A B P B A P A ==⨯=由乘法公式 025.041%441%221%2)()()()2(31=⨯+⨯+⨯==∑=i i i A P A B P B P 由全概率公式(3)由Bayes 公式 4.0025.021%2)()()()()(31111=⨯==∑=i ii A P A B P A P A B P B A P 6. 解:设A 表示原为正品 )(A P =96% )(A P =4% 设B 表示简易验收法认为是正品 )(A B P =98% )(A B P =5% 所求概率为998.004.005.096.098.098.096.0)()()()()()()()()(≈⨯+⨯⨯=+==A P AB P A P A B P A B P A P B P AB P B A P7. 解:设A ={机器调整良好} B ={合格品})(A P =75% )(A P =25% )(A B P =90% )(A B P =30% 因此 )(B A P =)()()()()()()()(A B P A P A B P A P A B P A P B P AB P +=%90%30%25%90%75%90%75=⨯+⨯⨯=8. 解:设A 1、A 2分别表示第一次取到有次品产品的事件和无次品产品的事件,B 为第一次取出的合格品,显然有1)(,43)(,21)()(2121====A B P A B P A P A P由Bayes 公式111112213()()324()131()()()()71242P A P B A P A B P A P B A P A P B A ⨯===+⨯+⨯ 设C 表示第二次取出次品的事件2834173)(=⨯=C P9. 解:设A ={甲出现雨天},B ={乙出现雨天}由题意可知 )(A P =0.2, )(B P =0.18, )(A B P =0.6所求概率为P (A ∪B )=P (A )+P (B )-P (AB )=P (A )+(B )-P (A )P (B ︱A ) =0.2+0.18-0.2×0.6=0.26 10. 解:令{},3,2,1==i i A i 次取出为正品第所求概率为0084.0989099910010)()()()()()(21312121321321=⨯⨯===A A A P A A P A P A A A P A A P A A A P11. 解:设{}3,2,1==i i A i 人能译出第 A ={密码被译出},则123A A A A =123123()()1()P A P A A A P A A A ==- 1234231()()()10.6534P A P A P A =-=-⨯⨯= 12. 解:设X 表示卖出的一包产品中的次品数(1)X ~B (10,0.01)于是 P {卖出的一包被退回} =P {X >1}=1-P {X ≤1}=1-P {X =0}-P {X =1}=004.0)99.0()01.0(99.0()01.0(191110100010≈--C C )(2)X ~B (20,0.01)P {卖出的一包被退回} =P {X >2}=1-P {X ≤2} =1-P {X =0}-P {X =1}-P {X =2}=001.0)99.0()01.0()99.0()01.0(99.0()01.0(1182220191120200020≈---C C C )13. 解:先研究一人负责维修20台设备的情况。

概率论期末考试题及答案

概率论期末考试题及答案

概率论期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个事件是必然事件?A. 抛硬币正面朝上B. 抛硬币反面朝上C. 抛硬币出现正面或反面D. 抛硬币出现正面和反面2. 假设随机变量X服从正态分布N(μ, σ²),以下哪个选项是正确的?A. μ是X的期望值B. σ²是X的方差C. μ是X的中位数D. σ²是X的期望值3. 假设随机变量X和Y相互独立,以下哪个选项是正确的?A. P(X∩Y) = P(X)P(Y)B. P(X∪Y) = P(X) + P(Y)C. P(X∩Y) = P(X) + P(Y)D. P(X∪Y) = P(X)P(Y)4. 假设随机变量X服从二项分布B(n, p),以下哪个选项是正确的?A. X的期望值是npB. X的方差是np(1-p)C. X的期望值是nD. X的方差是p(1-p)二、填空题(每题5分,共20分)1. 如果随机变量X服从泊松分布,其概率质量函数为P(X=k) =________,其中λ > 0,k = 0, 1, 2, ...2. 假设随机变量X服从均匀分布U(a, b),其概率密度函数为f(x) = ________,其中a < x < b。

3. 假设随机变量X和Y相互独立,且X服从正态分布N(μ, σ²),Y 服从正态分布N(ν, τ²),则Z = X + Y服从正态分布N(μ+ν,________)。

4. 假设随机变量X服从二项分布B(n, p),其期望值E(X) = np,方差Var(X) = ________。

三、解答题(每题30分,共40分)1. 假设随机变量X服从正态分布N(0, 1),求P(-1 < X < 2)。

2. 假设随机变量X服从二项分布B(10, 0.3),求P(X ≥ 5)。

答案:一、选择题1. C2. A3. A4. A二、填空题1. λ^k * e^(-λ) / k!2. 1/(b-a)3. σ² + τ²4. np(1-p)三、解答题1. 根据标准正态分布表,P(-1 < X < 2) = Φ(2) - Φ(-1) =0.9772 - 0.1587 = 0.8185。

中国石油大学2012-2013(2) 概率论与随机过程-A期末考试试题及答案

中国石油大学2012-2013(2) 概率论与随机过程-A期末考试试题及答案

2012—2013学年第二学期《概率论与随机过程》期末试卷答案及评分标准专业班级姓名学号开课系室应用数学系考试日期 2013年6月 29日注意事项:1.封面及试卷背面为草稿纸,附加页为答题纸,背面答题一律无效;2.答案必须写在该题下方空白处,不得写在草稿纸上,否则该题答案无效;3.本试卷正文共5页,满分100分;4. 必须保持试卷本完整,拆页的作废。

一.填空题(每空3分,共18分)1. 设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == ,则()P AB = 0.2 .2. 设随机变量X (服从参数为λ的泊松分布,且已知[(1)(2)]1E X X --=,则λ= 1 .3. 已知随机变量X 的分布列:则: DX = 0.61 .4. 设随机过程2(),0,X t Y t t =>其中Y 是在区间(0,)a 上服从均匀分布的随机变量, 则()X t 的均值函数为 2/3a t ,自相关函数为 4/5a ts .5. 设随机变量X 的方差为1,则根据切比雪夫不等式有估计{2}P X EX -<≥ 3/4 .二.选择题(每题3分,共12分)1. 设X 的概率分布为f x Ax x ()=<<⎧⎨⎩,,其它010,则A = ____D______.(A ) 1 (B ) -1 (C ) 2 (D )21 2. 设X 与Y 相互独立且同分布:{1}{1}1/2P X P Y =-==-=,P X P Y {}{}/====1112,则下列各式中成立的是____A_____.(){}A P X Y ==12(){}B P X Y ==1 (){}/C P X Y +==014 (){}D P XY ==1143. 设X 与Y 独立同分布,记U X Y =-,V X Y =+,则U V 、必然_____C_____.(A )不独立 (B )独立 (C )相关系数为零 (D )相关系数不为零 设随机变量X 和Y 相互独立,且分别服从)2,1(2N 和)1,1(N ,则______C____.(A ) 2/1}1{=≤+Y X P (B ) 2/1}0{=≤+Y X P(C ) 2/1}0{=≤-Y X P (D ) 2/1}1{=≤-Y X P三.计算和综合题(共8个小题70分)1.(6分) 已知()1/3,()1/5,()1/2P A P B A P A B ===,求()P A B . 解:因为 111()()(|)3515P A B P A P B A ==⨯= ……………………….2分所以 1/152()()/(|)1/215P B P A B P A B === ……………………….. 4分1212()()(()+315153P A B P A P B P A B=+-=-= ) ……………………….. 6分 2. (6分)设随机变量~(10,0.5)X B (二项分布),~(1/4)Y e (指数分布).求(32)E X Y -和22()E X Y -解:由常用分布知5,4EX EY ==; 2.5,16DX DY ==; ……………………….2分所以 (32)1587E X Y -=-=; ……………………….3分22()27.5EX DX EX =+=; ……………………….4分 22()32EY DY EY =+=; ……………………….5分 22()27.532 4.5E X Y -=-=- ……………………….6分3. (8分) 设随机变量X 的概率密度为[1,8],();0,x f x ∈=⎩若其他求(1)X 的分布函数)(x F ;(2)随机变量()Y F X =的分布函数.解: 易见,当1x <时,()F x =0; 当8x ≥时,()F x =1。

随机过程期末试题及答案

随机过程期末试题及答案

随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。

B. 具有随机变量。

C. 具有时间集合。

D. 具有马尔可夫性质。

答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。

B. 布朗运动。

C. 维纳过程。

D. 马尔可夫链。

答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。

B. 随机过程的均值不随时间变化。

C. 随机过程的方差不随时间变化。

D. 随机过程的偏度不随时间变化。

答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。

B. 指数分布过程。

C. 广义强度过程。

D. 随机驱动过程。

答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。

2. 在某一区间内,随机过程的均值是时间的(函数)。

3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。

4. 利用(随机过程)可以模拟无记忆的随机现象。

三、解答题1. 试述随机过程的定义及其要素。

随机过程是描述随机现象随时间演化的数学模型。

它由两个基本要素组成:时间集合和取值集合。

时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。

取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。

2. 什么是时间齐次随机过程?请举例说明。

时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。

即随机过程在任意两个时间点上的特性是相同的。

例如,离散时间的随机游走就是一个时间齐次随机过程。

在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。

3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。

马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

概率论期末试题答案

概率论期末试题答案

概率论期末试题答案1. (a) 解:根据题意,已知事件A和事件B相互独立,可以得到以下关系式:P(A | B) = P(A) (由事件A和事件B相互独立可得)P(B | A) = P(B) (由事件A和事件B相互独立可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) = P(B | A) * P(A) / P(B)(b) 解:根据题意,已知事件A和事件B相互依赖,可以得到以下关系式:P(A | B) ≠ P(A) (由事件A和事件B相互依赖可得)P(B | A) ≠ P(B) (由事件A和事件B相互依赖可得)又根据贝叶斯定理,可以得到以下关系式:P(A | B) = P(B | A) * P(A) / P(B)将以上两个关系式结合在一起,即可得到答案:P(A) ≠ P(B | A) * P(A) / P(B)2. 此题为条件概率的计算。

根据题意,已知P(A) = 0.4,P(B) = 0.6,P(A | B) = 0.5,求P(A ∪ B)。

解:根据概率公式,可以得知:P(A ∪ B) = P(A) + P(B) - P(A | B)将已知的数值代入上述公式,即可求解:P(A ∪ B) = 0.4 + 0.6 - 0.5 = 0.5所以,P(A ∪ B) = 0.5。

3. 解:根据题意,已知事件A和事件B相互独立,且P(A) = 0.2,P(B) = 0.3,求P(A' ∪ B')。

首先,我们可以得到以下关系式:P(A' ∪ B') = 1 - P((A' ∪ B')') (根据全概率公式)= 1 - P((A ∩ B)') (德摩根定律)= 1 - (1 - P(A ∩ B)) (补集的概率为1减去该集合的概率)= P(A ∩ B)由于事件A和事件B相互独立,可以得到以下关系式:P(A ∩ B) = P(A) * P(B)将已知的数值代入上述关系式,即可求解:P(A' ∪ B') = P(A ∩ B) = P(A) * P(B) = 0.2 * 0.3 = 0.06所以,P(A' ∪ B') = 0.06。

(word版)概率论期末考试复习题及答案

(word版)概率论期末考试复习题及答案

第一章1.设P 〔A〕=1,P〔A∪B〕=1,且A与B互不相容,那么P〔B〕=____1_______.3262.设P〔A〕=1,P〔A∪B〕=1,且A与B相互独立,那么P〔B〕=______1_____.324 3.设事件 A与B互不相容,P〔A〕,P〔B〕,那么P〔A B〕=___0.5_____.4.P〔A〕=1/2,P〔B〕=1/3,且A,B相互独立,那么P〔AB〕=________1/3________.A与B相互独立5.设P〔A〕,P〔AB〕,那么P〔B|A〕=___0.2________.6.设A,B为随机事件,且,,,那么P(A|B)=__________.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,那么这两只恰为一红一黑的概率是________________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,假设连取两次,那么第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,那么第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:〔1〕从该厂生产的产品中任取1件,它是次品的概率;3.5%〔2〕该件次品是由甲车间生产的概率.1835第二章1.设随机变量X~N〔2,22〕,那么P{X≤0}=___0.1587____.〔附:Φ〔1〕〕设随机变量X~N〔2,22〕,那么P{X≤0}=〔P{(X-2)/2≤-1}=Φ〔-1〕=1-Φ〔1〕1 e3x, x0;2.设连续型随机变量X的分布函数为F(x)0,x0,那么当x>0时,X的概率密度f(x)=___3e3x_____.3.设随机变量X的分布函数为F〔x〕=a e2x,x 0;那么常数a=____1____.0,x0,4.设随机变量X~N〔1,4〕,标准正态分布函数值Φ〔1〕,为使,那么常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为31X,那么P{X≥1}=____________.32表示4次独立重复射击命中目标的次数,每次命中目标的概率为,那么X~_B(4,0.5)____7.设随机变量X服从区间[0,5]上的均匀分布,那么PX 3=____0.6_______.X-11 2 8.随机量X 的分布律3 1 ,且Y=X 2,随机1 7 P816168量Y 的分布函数 F Y 〔y 〕,F Y 〔3〕=_____9/16____________. 9.随机量 X 的分布律 P{X=k}=a/N , k=1,2,⋯,N , 确定常数 a.110.随机量 X 的密度函数f(x)=Ae|x|∞<x<+ ∞,,求:〔1〕A ;〔2〕P{0<X<1};(3) F(x).111 1e xx 0)F(x)22(1-e12xx 0e211.随机量X 分布函数F 〔x 〕=ABe xt ,x0,(0),0,x 0.1〕求常数A ,B ;2〕求P{X ≤2},P{X >3};3〕求分布密度f 〔x 〕.A=1 B=-1P{X ≤2}=1e2P{X >3}=e3f(x)e xxx12.随机量 X 的概率密度x,0 x 1, f 〔x 〕=2x,1 x2,0,其他.求X 的分布函数 F 〔x 〕.0 x1x 20 x 1 F(x)21x 22x 11 x 221x 213.随机量X 的分布律X2 1 0 13 P k1/51/61/51/1511/30求〔1〕X 的分布函数,〔2〕Y=X 2的分布律.0 x 21 /52 x111 /30 1 x 0F(x)/30 0 x 1 17 19 /301 x 31 x3Y14 9 P k1/57/301/511/30( 14.设随机变量 X~U 〔0,1〕,试求: (1〕Y=e X 的分布函数及密度函数;( 2〕Z=2lnX 的分布函数及密度函数.1ye1e f Y (y)1 f Z (z)yothers2第三章z20others(xy),x0,y0; 1.设二维随机变量〔 X ,Y 〕的概率密度为f(x,y)e0, 其他,〔1〕求边缘概率密度 f X (x)和f Y (y),〔2〕问X 与Y 是否相互独立,并说明理由.e x x 0 e y y0 f X (x)xf Y (y)y因为f(x,y)f X (x)f Y (y),所以X 与Y 相互独立2.设二维随机变量 (X,Y)~N( 1,2, 12, 22, ),且X 与Y 相互独立,那么=____0______.3.设X~N 〔-1,4〕,Y~N 〔1,9〕且X 与Y 相互独立,那么2X-Y~___N 〔-3,25〕____.4.设随机变量 X 和Y 相互独立,它们的分布律分别为X-10 1Y-1,,P1 3 5 P1 3 31212445那么PX Y 1 ____________.165.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域 D 是直线y=x ,x=1和x 轴所围成10 yx1. 的三角形区域,那么(X,Y)的概率密度f(x ,y)20 others6.设随机变量X 与Y 相互独立,且X ,Y 的分布律分别为X 0 1 Y 1 2P1 3 P2 34455试求:〔1〕二维随机变量〔 X ,Y 〕的分布律;〔2〕随机变量Z=XY 的分布律.X1Y 012Z12P7.设二维随机向量〔X ,Y 〕的联合分布列为X 12Y 012 a求:〔1〕a 的值;〔2〕〔X ,Y 〕分别关于X 和Y 的边缘分布列;〔3〕X 与Y 是否独立?为什么?〔4〕X+Y 的分布列.X 012Y 12PP因为P{X0,Y 1} P{X0}P{Y 1},所以X 与Y 不相互独立。

随机过程期末考试题库及答案pdf

随机过程期末考试题库及答案pdf

随机过程期末考试题库及答案pdf1. 随机过程期末考试题库及答案pdf以下是随机过程期末考试的题库及答案,供同学们参考。

一、选择题1. 假设随机过程{X(t), t≥0}是独立增量过程,那么下列哪个说法是正确的?A. X(t)的增量是独立的B. X(t)的增量是平稳的C. X(t)的增量是独立且平稳的D. X(t)的增量是相关且非平稳的答案:C2. 马尔可夫链具有以下哪种性质?A. 无记忆性B. 有记忆性C. 有周期性D. 以上都不是答案:A二、填空题1. 如果随机过程{X(t), t≥0}的自相关函数R(τ)满足R(τ) = R(-τ),则该过程是__________的。

答案:对称2. 随机过程{X(t), t≥0}的均值函数为μ(t),若μ(t) = 0,则称该过程为__________。

答案:零均值三、简答题1. 简述什么是泊松过程,并给出其特征。

答案:泊松过程是一种计数过程,其特征包括:- 在任意不相交的时间间隔内发生事件是相互独立的。

- 在任意小的时间间隔内,事件的发生次数服从泊松分布。

- 事件的平均发生率是恒定的。

2. 描述布朗运动的基本性质。

答案:布朗运动的基本性质包括:- 连续性:样本路径是连续的。

- 无记忆性:未来的行为不依赖于过去。

- 独立增量:不同时间间隔的增量是相互独立的。

- 正态分布:任意时间间隔的增量服从以零为均值的正态分布。

四、计算题1. 假设随机过程{X(t), t≥0}是标准布朗运动,求X(t)的均值和方差。

答案:对于标准布朗运动,X(t)的均值为0,方差为t。

2. 给定马尔可夫链的状态转移矩阵P,求状态i在时间t+1时刻的概率。

答案:设状态i在时间t时刻的概率为pi(t),则状态i在时间t+1时刻的概率为pi(t+1) = Σ(pi(t) * Pij),其中Pij是状态i转移到状态j的概率。

以上是随机过程期末考试题库及答案的部分内容,希望对同学们的复习有所帮助。

2012-2013概率期末试题+答案

2012-2013概率期末试题+答案

2012-2013-1《概率论与数理统计》期末试卷(A)一、填空题(每小题4分,共28分)1.对一批次品率为p (0<p <1)的产品逐一检测, 则第二次或第二次后才检测到次品的概率为________.2.二维离散型随机变量),(Y X 的联合分布律为j i p , (i , j =1 , 2 ,……),关于X 及关于Y 的边缘分布律为p i •及p •j (i , j =1,2,……),则X 与Y 相互独立的充分必要条件是_________. 3.设样本),,,(21n X X X 抽自总体22, ). ,(~σμσμN X 均未知. 要对μ作假设检验,统计假设为,:00μμ=H (0μ已知), ,:01μμ≠H 则要用检验统计量为_________.4.若总体) ,(~2σμN X ,则~n Z σμ-X =__________其中n 为样本容量.5.设某种零件的寿命),(~2σμN Y ,其中μ未知. 现随机抽取5只,测得寿命(单位小时)为1502 , 1453 ,1367 , 1650,1498,则用矩估计可求得μˆ=________. 6.设某离散型随机变量ξ的分布律是{}⋅⋅⋅===,2,1,0,!k k Ck P kλξ,常数λ>0,则常数=C ________.7.设A ,B 是两个互不相容的随机事件,且知21)(,41)(==B P A P , 则=)(B A P ______. 二、单项选择题(每小题4分,共40分)1.对任意两个互不相容的事件A 与B ,必有_________.(A ) 如果0)(=A P ,则0)(=B P . (B ) 如果0)(=A P ,则1)(=B P .(C ) 如果1)(=A P ,则0)(=B P . (D ) 如果1)(=A P ,则1)(=B P .2.已知随机变量X 在]1,0[上服从均匀分布,记事件}5.00{≤≤=X A ,}75.025.0{≤≤=X B ,则_________.(A ) A 与B 互不相容. (B ) B 包含A . (C ) A 与B 对立. (D ) A 与B 相互独立. 3.6.0 ,1)( ,4)(===ξηρηξD D ,则=-)23(ηξD _________.(A) 40 (B) 34 (C) 25.6 (D) 17.64.任一个连续型的随机变量ξ的概率密度为)(x ϕ,则)(x ϕ必满足_________.(A) 1)(0<<x ϕ (B)()⎰+∞∞-=1dx x ϕ (C) 单调不减 (D)1)(lim =+∞→x x ϕ5.设两个随机变量X 与Y 相互独立且同分布,{1}{1}0.5P X P Y ====,{1}{1}0.5P X P Y =-==-=,则下列各式成立的是_________.(A){}0.5P X Y == (B) {}1P X Y == (C) {0}0.25P X Y +== (D) {1}0.25P XY == 6.若随机变量ξ和η相互独立,且方差21)(σξ=D 和22)(ση=D 2121,),0,0(k k >>σσ 是已知常数,则)(21ηξk k D -等于_________.(A )222211σσk k - (B )222211σσk k + (C )22222121σσk k - (D )22222121σσk k +7.设( X , Y )为二维随机变量,其概率密度函数为⎩⎨⎧≥≥=+-其他,0,0,),()(y x e y x f y x ,则下列各式正确的是_________.⎰⎰∞-∞-+-=x y y x dxdy e y x F A )(),()( ⎰∞+∞-+-=dy e x f B y x X )()()(dx e dy Y X P C y y x ⎰⎰-+-=≤+240)(2}42{)( ⎰⎰∞+∞-∞+∞-+-=dxdy xe X E D y x )()()(8.对总体的某个参数做检验,取显著性水平α,如果原假设正确,但由于样本的随机性做出拒绝原假设的决策,因而犯了错误,这类错误称第一类错误,也称“弃真错误”,犯这类错误的概率是_________.(A )α-1 (B) 21α-(C) α (D)α19.设n X X ,,1 是来自随机变量X 的样本∑=--=ni i X X n S 122)(11(样本方差),则下列结论正确的是_______. (A))()(2X D S E = (B) )(1)(2X D n nS E -=(C) )(1)(2X D nn S E -= (D) )()1()(22X D n nS E -= 10.采用包装机包装食盐,要求500g 装一袋. 已知标准差g 3=σ,要使食盐每袋平均重量的95%的置信区间长度不超过4.2g ,则样本容量n 至少为_______.(已知u 0.025=1.96)(A ) 4 (B) 6 (C) 8 (D) 10三、不同的两个小麦品种的种子混杂在一起,已知第一个品种的种子发芽率为90%,第二个品种的种子发芽率为96%,并且已知第一个品种的种子比第二个品种的种子多一倍,求:(1)从中任取一粒种子,它能发芽的概率;(2)如果取到的一粒种子能发芽,则它是第一个品种的概率是多少?(8分)四、设随机变量X 和Y 相互独立且)5,3(~N X , )19,3(~-N Y . 试求 Z =3X –2Y –15的概率密度. (8分)五、从一台车床加工的成批轴料中抽取15件,测量其椭圆度(设椭圆度服从正态分布),(2σμN ) ,计算得2s =0.025,问该批轴料的椭圆度的总体方差2σ与规定的方差 04.020=σ 有无显著差别?(最后结果保留3位小数),(α =0.05). (8分) (已知220.9750.025(14) 5.629,(14)26.119χχ==,220.9750.025(15) 6.262,(15)27.488χχ==)六、设某种零件长度X 服从正态分布),(2σμN ,现随机从该批零件中抽取10件,测得其样本均值)(05.10cm X =,样本标准差)(2415.0cm S =,求μ的置信度为95%的置信区间(最后结果保留3位小数). (8分) (已知2281.2)10(,2622.2)9(025.0025.0==t t ,2281.2)10(,8331.1)9(025.005.0==t t )答案:一、填空1.1-p ;2.j i j i p p p ••⨯=;3.,/0nS X t μ-= ;4.)1 ,0(N ;5.1494. 6.λ-e ;7. 21二、单项选择题 题号 12345678910答案C D C B A D C C A C三、A i (i =1,2)分别表示取到的一粒种子是第一,二品种的事件B =“取到的一粒种子能发芽”则()()%90,3211==A B P A P ,()()%96,3122==A B P A P 由全概率公式 ()()()2121230.90.960.92=3325i i i P B P A P B A ===⨯+⨯=∑由贝叶斯公式 ()()()()⎪⎭⎫⎝⎛≈===65.0231592.060.0111B P A B P A P B A P 四、因为)3,2(~N X , )6,3(~-N Y ,且X 与Y 独立,故X 和Y 的联合分布为正态分布,X 和Y 的任意线性组合是正态分布.即 Z ~N (E (Z ), D (Z ))015)(2)(3)(=--=Y E X E Z E 121)(4)(9)(=+=Y D X D Z D Z ~N (0, 112)则Z的概率密度函数为 2242(),()x f x x -=-∞<<+∞五、显著性水平 α = 0.05,检验假设04.0:;04.0:20212020=≠==σσσσH H22201140.0258.750.04n s χσ-⨯===()由于()22220.0250.97521(14) 5.6298.7526.119(14)n αχχχχ-==<=<=故接受H 0 即认为该批轴料的圆度的总体方差与定的方差0.04 无显著差别. 六、当2σ未知时,μ的置信度为0.95的置信区间为22(1),(1)X n X n αα⎛⎫-- ⎪⎝⎭10.05 2.2622,10.05 2.2622⎛⎫=+ ⎪⎝⎭(9.877,10.223)=。

2012-2013公共基础《概率论》期末考试试卷参考答案

2012-2013公共基础《概率论》期末考试试卷参考答案

华南农业大学期末考试试卷(A 卷)2012-2013学年第 1 学期 考试科目: 概率论考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业5 小题,每小题 3 分,共 15 分) 1、设A 与B 互斥(互不相容),则下列结论肯定正确的是( D )。

(A) A 与B 不相容 (B) A 与B 必相容 (C) ()()()P AB P A P B = (D) ()()P A B P A -=2、设随机变量X 与Y 相互独立,其概率分布如下,则有( C )成立。

010.20.8X P 010.20.8Y P(A) ()0P X Y == (B) ()0.4P X Y ==(C) ()0.68P X Y == (D) ()1P X Y ==3、设随机变量ξ的概率密度为()x ϕ,η=12ξ,则η的分布密度为( A )。

(A)1122y ϕ-⎛⎫ ⎪⎝⎭; (B) 112y ϕ-⎛⎫- ⎪⎝⎭; (C) 12y ϕ-⎛⎫- ⎪⎝⎭; (D)2(12)y ϕ- 4、设随机变量ξ服从2λ=的泊松分布,则随机变量2ηξ=的方差为( A )。

(A) 8; (B) 4; (C) 2; (D) 16.5、设2~(0,1),~(,)N N a ξησ,则η与ξ之间的关系是( B )。

(A) a ξησ-=; (B) a ησξ=+; (C)2a ξησ-= ; (D)2a ησξ=+.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分)1、设样本空间Ω={1,2,10},事件A={2,3,4},B={3,4,5},C={5,6,7},则事件()A B C =__{1,2,5,6,7,8,9,10} ________。

2、抛一枚硬币三次,ξ和η分别表示出现正面的次数和出现反面的次数,则{}P ξη>=__12_______。

3、3、设随机变量X 的分布函数0,0.2,()0.9,1,F x ⎧⎪⎪=⎨⎪⎪⎩ 111122x x x x <--≤<≤<≥,则{03}P X ≤≤=_0.8_。

概率论期末考试题及答案pdf

概率论期末考试题及答案pdf

概率论期末考试题及答案pdf一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,则P(X<0)的值为()。

A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),则E(X)的值为()。

A. npB. n(1-p)C. pD. 1答案:A3. 两个随机变量X和Y相互独立,则P(X>1, Y>1)等于()。

A. P(X>1)P(Y>1)B. P(X>1) + P(Y>1)C. P(X>1) - P(Y>1)D. P(X>1) / P(Y>1)答案:A4. 随机变量X服从泊松分布,其参数为λ,则P(X=k)的值为()。

A. λ^k * e^(-λ) / k!B. λ^k * e^(-λ) * k!C. λ^k * e^(-λ) / (k-1)!D. λ^k * e^(-λ) * (k-1)!答案:A5. 随机变量X服从均匀分布U(a, b),则其期望E(X)的值为()。

A. (a+b)/2B. a+bC. 2a-bD. 2b-a答案:A6. 已知随机变量X服从正态分布N(μ, σ^2),则其方差Var(X)的值为()。

A. μB. σ^2C. 1/σ^2D. 1/μ答案:B7. 随机变量X服从指数分布,其参数为λ,则其期望E(X)的值为()。

A. 1/λB. λC. 1D. 0答案:A8. 随机变量X和Y相互独立,且都服从标准正态分布,则P(X+Y<0)的值为()。

A. 0.5B. 0.25C. 0.75D. 0.9答案:A9. 随机变量X服从二项分布B(n, p),则其方差Var(X)的值为()。

A. npB. np(1-p)C. pD. 1-p答案:B10. 随机变量X服从正态分布N(μ, σ^2),若P(X<μ)=0.5,则μ的值为()。

A. 0B. 1C. μD. σ^2答案:C二、填空题(每题4分,共20分)11. 随机变量X服从标准正态分布,若P(X<1.96)=0.975,则P(X>1.96)=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京邮电大学2012——2013学年第1学期《概率论与随机过程试题》期末考试试题答案考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。

在答题纸上写上你的班号和选课单上的学号,班内序号!一. 单项选择题和填空题:(每空3分,共30分)1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈⊂A,,则B ∈A ; (C )若12n A n =∈⋯A,,,,则1n n A ∞=∈A ;(D )若12n A n =∈⋯A,,,,且123A A A ⊃⊃⊃,则1n n A ∞=∈A .2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c(A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈⋯F,,,,,且123A A A ⊃⊃⊃,则1li ()()m n n n n P A A P ∞→∞==;(C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈⋯F,,,,,且,i j A i j A =∅∀=/,11()()n n n n P P A A ∞∞===∑.3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为1000()k A k f kI ω==∑,其中1000,,i j n n i j A A A ==∅∀=Ω/=,则fdP Ω=⎰ ;若已知100100!1!(100)()!2k k k P A -=,则2f dP Ω=⎰ . 0210(),25502525kk kP A =+=∑4. 设二维随机变量(,)X Y 的概率密度2,01,0,(,)0,x y x f x y <<<<⎧=⎨⎩其他, 则[[|]]E E X Y = .2/35. 设随机过程,}{()cos X t X t t ω-∞<<+∞=,其中随机变量X 服从参数为1的指数分布,(0,/2)ωπ∈为常数,则(1)(1)X 的概率密度(;1)f x = ;(2)20(())E X t dt π=⎰ .,0,(;1)01,xcos x e cos f x ωω-⎧>⎪=⎨⎪⎩其他,20(1())E X t dt πω=⎰ 6. 设{(),0}W t t ≥是参数为2()0σσ>的维纳过程,令1()()X t W t=,则相关函数2(1,2)2X R σ=.7. 设齐次马氏链的状态空间为{1,2,3}E =,一步转移概率为0.50.500.50.500.20.30.5P ⎛⎫ ⎪= ⎪ ⎪⎝⎭则(1)()11lim n n p→∞= ;(2)()33n n p ∞==∑ . 1/2,2 二. 概率题(共30分)1.(10分) 设(,)X Y 的概率密度为22122221(,)2x x f x y e σπσ+-=,令22,U X Y V Y =+=, (1)求(,)U V 的概率密度(,)g u v ;(2)求U 的边缘概率密度()U g u .解解.(1) 解方程22,,u x y v y ⎧=+⎨=⎩得|,,u x v y v ⎧⎪=⎨⎪⎩≤=所以雅可比行列式220Ju v ==-, 故2221||,(,)(,)||20,u e v u g u v f x y J σπσ-⎧≤⎪==⎨⎪⎩其他. ……5分(2)对0u >,2221(,))2(u u U ug u e g u v d v v σπσ-∞-∞-==⎰⎰22222222u uu ue e u u σσπσσ---==⎰,故222,0,()20,.uU eu u g u σσ-⎧>⎪=⎨⎪⎩其他……10分2.(10分)设(,)U V 的概率密度,0,0,(,)0,u e u v v g u v -⎧->>=⎨⎩其他,(1)求{1}|1()0V U E I >=,其中{1}{1,(}),10V V I ωω>∈>⎧=⎨⎩,其他,(2)(|)D V U .解 U 的边缘概率密度为00,0,,0,()(,)0,,0,,uu u u U e dv u e u u u v d u g v g --⎧⎧>>⎪===⎨⎨⎩⎪⎩⎰⎰其他其他 所以条件概率密度|1,0,(,)(|)()0,V U U v u g u v v u ug g u ⎧<<⎪==⎨⎪⎩其他. ……4分(1)101{1}|10111()(1|10).102|10(|10)V V U E I P V U U v u g dv dv >===>====⎰⎰……7分(2)因为21(|)2D V U u u ==,所以2(|)12D U U V =。

……10分3.(10分)设12,,,n X X X 独立同分布,均服从两点分布,即11{0},{1}=1-,(01)P X p P X p p ===<<,令12n X X X Y +++=,(1)求Y 的特征函数;(2)求3()E Y .解: (1)因为Y 服从二项分布(,)B n q ,所以Y 的特征函数()()it n t p qe φ=+……5分(2)132()()n n E E X Y X X ++=+231,1,,,1,()()nnniij i j k i i j j ii j k EX E X X E X X X ====/=++∑∑∑互不相等23(1)(1)(2)nq n n q n n n q =+-+--……10分三.随机过程题(共40分)1. (10分)设1()(0)X t t ≥是参数为(0)λ>的泊松过程,即满足: (1)1(0)0;X =(2)1()X t 为独立增量过程;(3)对,0,s t ∀≥有(){()()},0,1,!k tt e P X s t X s k k k λλ-+-===.2()(0)X t t ≥也是参数为(0)λ>的泊松过程,且与1()X t 独立,令12()()()Y t X t X t =+,(1)求()(,)Y Y t R s t μ和;(2)求{(1)1}P Y =.解:因为12()()()Y t X t X t =+是参数为2λ的泊松过程,所以(1)2()2(,),min{,}24Y Y t R s t s t st λμλλ==+……5分(2)2{(1)1}2eP Y λλ-==……10分2. (10分) 设{(),}t X t -∞<<∞是平稳过程,()f λ是其谱密度函数,(1)证明:对于任意的0h >,()()()Y t X t h X t =+-是平稳过程;(2)求()Y t 的谱密度.解 (1)0[()][()()]E Y t E X t h X t μμ+-=-==,[()()][()()][()()]E Y t Y t E X t h X t X t h X t τττ+=++-++- ()()(2)X X X h h R R R τττ-=+--与t 无关,则()()()Y t X t h X t =+-是平稳过程。

……5分(2)1()()()()]2[2X X X i h h d f e R R R λτηλττττπ+∞--∞=-+--⎰2()()()ih ih f e f e f λλλλλ-=-- 2()(1cosh )f λλ=-.……10分3. (10分)设齐次马氏链}0,{≥n X n 的状态空间为}2,1,0{=E ,一步转移概率矩阵为1/21/41/41/201/21/21/20P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 初始分布为0001{0}{1}{2}3P X P X P X ======, 求(1) 124 {1,1,2}P X X X ===和1240 {1,1,2|=0}P X X X X ===; (2) 2X 的分布律.解 (1) 21/21/41/41/23/81/81/21/83/8P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)(1)(2)011112124 {1,1,2}0}{i iP X i X p P X p p X ======∑1240011112 {1,1,2|=0}(2)0P X X X X p p p ===== ……6分(2) 21/21/41/4111(2)(0)1/23/81/8,2441/21/83/111,,,3338p p P ⎡⎤⎛⎫⎛⎫⎢⎥=== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦……10分4.(10分)齐次马氏链{,0}n X n ≥的状态空间为{1,2,3,},一步转移概率矩阵为110000000022110000000022110000000022000100000011110000004444120000000033120000000033120000000033120033P ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭确定该链的空间分解,状态分类,各状态的周期,并求平稳分布.解. (1)链可分, {1,4}{3}是不可分闭集, 状态空间{3}{1,{4}2,5,6,7,}E ⋃=⋃……2分(2) 周期()1,1,2,...d i i ==.……4分(3) 设平稳分布为12(,,)πππ=⋯,则,11,1,2,i i i P i ππππ==≥=⎧⎪⋯⎪⎨⎪⎪⎩∑解之得(,0,,,0,0,)p q p π=,其中0,0,21q p p q ≥≥+=. ……7分(4) 所以1,3,4正返态,其余都不是常返态,又因为42241111,1,1,6,7,243ii f f f i =<=<=<=⋯,所以2,4,6,7,⋯都为非常返态。

……10分。

相关文档
最新文档