河北省保定市唐县2019-2020学年八年级下学期数学期末考试试卷及参考答案

合集下载

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。

2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题及答案

2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。

2019-2020年八年级下册期末考试数学试题含答案解析

2019-2020年八年级下册期末考试数学试题含答案解析

CBA2019-2020年八年级下册期末考试数学试题含答案解析学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C.6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CS t /平方米/小时16060421ODA FE CBDABCP第13题图 第14题图 8题图 第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( ) A .40平方米B .50平方米C .80平方米D .100平方米10.如右图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点 经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y , 则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.如图,点D ,E 分别为△ABC 的边AB ,BC 的中点,若DE =3cm ,则AC = cm .12.已知一次函数2()y m x m =++,若y 随x 的增大而增大,则m 的取值范围是 .13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ACD ∽△ABC (只填一个即可).14.如图,在□ABCD 中,BC =5,AB =3,BE 平分∠ABC 交AD 于点E ,交对角线AC 于点F ,则AEFCBF S S △△=.15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在D AB CFE D B C A EDABCEFCD AB第15题图BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F . (1)求证:△CDE ∽△CBF ;yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEDAFB C(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?25.已知正方形ABCD 中,点M 是边CB (或CB的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .y x (元)(度)400120240216B AOEDBAC图1 图2(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————石景山区2015—2016学年第二学期期末试卷初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分)ADB C MADBCM y x1A BHO题号 1 2 3 4 5 6 7 8 9 10 答案CABADBDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)OFECADB21FECADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=△(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.6 40021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥EDBACNADB CM∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形3)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分260m m +-3= 2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分654321EN AD B CMyx 33y = -x+3E D MN OP (m ,-m +3)图1② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+ ∴232mm m=-+- 260m m +-7=1261m m ==,经检验,1261m m ==,是方程232mm m=-+-的解∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =yxy = -x+3EDP (m ,-m +3)O yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1图2∴点P(6,-3)⋯⋯⋯⋯⋯6分综上所述,满足条件的点P的坐标为P(6,-3).。

2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学答案

2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。

河北省保定市2020版八年级下学期数学期末考试试卷(I)卷

河北省保定市2020版八年级下学期数学期末考试试卷(I)卷

河北省保定市2020版八年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题;每小题3分,共36分.) (共12题;共36分)1. (3分)(2018·十堰) 某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A . 24.5,24.5B . 24.5,24C . 24,24D . 23.5,242. (3分) (2019八下·嘉兴开学考) 下列二次根式中属于最简二次根式的是()A .B .C .D .3. (3分)下列根式中,与3是同类二次根式的是()A .B .C .D .4. (3分)我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2 的值为().A . 49B . 25C . 13D . 15. (3分) (2017八下·吉安期末) 如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A . AB=DCB . ∠1=∠2C . AB=ADD . ∠D=∠B6. (3分)用配方法解方程x2﹣8x+3=0,下列变形正确的是()A . (x+4)2=13B . (x﹣4)2=19C . (x﹣4)2=13D . (x+4)2=197. (3分)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是()A . 1.70,1.65B . 1.70,1.70C . 1.65,1.70D . 3,48. (3分)一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是()A . 有两个正根B . 有两个负根C . 有一正根一负根且正根绝对值大D . 有一正根一负根且负根绝对值大9. (3分)已知方程x2+x﹣3=0,则下列说法中,正确的是()A . 方程两根之和是1B . 方程两根之积是3C . 方程两根之平方和是7D . 方程两根倒数之和是310. (3分) (2020七下·建湖月考) 如图,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则与之间有始终不变的关系是()A . ∠A=∠1+∠2B . 2∠A=∠1+∠2C . 3∠A=∠1+∠2D . 3∠A=2(∠1+∠2)11. (3分) (2018八上·辽宁期末) 如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A 点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A . 点A处B . 点B处C . 点C处D . 点E处12. (3分)如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A .B .C .D .二、填空题(每小题3分,共18分) (共6题;共18分)13. (3分) (2016八上·镇江期末) 化简:=________;| ﹣2|=________.14. (3分)(2018·遵义模拟) 如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E,F分别在BC 和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的序号是_________.(把你认为正确的都填上)15. (3分) (2016八上·道真期末) 一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是________.16. (3分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x名学生,根据题意,列出方程为________17. (3分)已知一个样本1,2,3,x,5的平均数是3,则这个样本的方差是________ .18. (3分)如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的弧EF上.若∠BAD=120°,则弧BC的长度等于________.三、解答题(本大题共7小题,共46分.) (共7题;共45分)19. (5分) (2016九上·淅川期末) 计算题(1)计算:(﹣)﹣﹣| ﹣3|(2)计算:(﹣1)2014﹣sin45°+(π﹣3.14)0(3)解方程:2x2+x﹣6=0.20. (5分) (2020八上·海拉尔期末) 解方程:3x(x﹣1)=2﹣2x.21. (7分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.22. (7.0分) (2016八上·扬州期末) 如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有________个;(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标________.23. (7.0分) (2017八下·长春期末) 为了解某小区家庭用电情况,小明随机调查了该小区n户家庭2017年4月的用电量(用电量的数据都是整数),并将所得整数绘制成频数分布直方图如图①所示.(1)求n的值,(2)小明将所得数据按每户用电量x(度)大小分为三档,①低档:121≤x≤160,②中档:161≤x≤200,③高档:201≤x≤240,并绘制成扇形统计图如图②所示,请帮助他将扇形统计图补充完整.(3)该地区对居民用电实行“阶梯收费”,规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,根据以上调查结果,估计2017年4月该小区300户家庭仅按第一阶梯电价收费额户数.24. (7分)某学校为美化校园,准备在长35米,宽20米的长方形场地上,修建若干条宽度相同的道路,余下部分作草坪,并请全校学生参与方案设计,现有3位同学各设计了一种方案,图纸分别如图l、图2和图3所示(阴影部分为草坪).请你根据这一问题,在每种方案中都只列出方程不解.①甲方案设计图纸为图l,设计草坪的总面积为600平方米.②乙方案设计图纸为图2,设计草坪的总面积为600平方米.③丙方案设计图纸为图3,设计草坪的总面积为540平方米.25. (7.0分)(2014·湖州) 如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c >0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.(1)若点A的坐标是(﹣4,4).①求b,c的值;②试判断四边形AOBD的形状,并说明理由;(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12小题;每小题3分,共36分.) (共12题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(每小题3分,共18分) (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题共7小题,共46分.) (共7题;共45分)19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、25-2、第11 页共11 页。

2020年河北省保定市八年级第二学期期末学业质量监测数学试题含解析

2020年河北省保定市八年级第二学期期末学业质量监测数学试题含解析

2020年河北省保定市八年级第二学期期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.如图,在ABC ∆中,D 是BC 边的中点,AE 是BAC ∠的角平分线,AE CE ⊥于点E ,连接DE ,若7AB =,1DE =,则AC 的长度是( )A .5B .4C .3D .22.如图,四边形ABCD 中,对角线相交于点O ,E 、F 、G 、H 分别是AD 、BD 、BC 、AC 的中点,要使四边形EFGH 是矩形,则四边形ABCD 需要满足的条件是( )A .AB CD = B .AB CD ⊥C .AB AD ⊥ D .AC BD =3.一个纳米粒子的直径是 1 纳米(1 纳米= 0.000 000 001米),则该纳米粒子的直径 1 纳米用科学记数法可表示为( )A .0.1⨯10-8米B .1⨯109米C .10 ⨯10-10米D .1⨯10-9米4.使1x +有意义的x 的取值范围是( ▲ )A .x >-1B .x≥-1C .x≠-1D .x≤-15.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BF DE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④62,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A .15B .25C .35D .457.(2016山西省)宽与长的比是512-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH8.点(﹣5,1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )A .7和4.5B .4和6C .7和4D .7和5 10.若分式12x x ++的值为0,则x 的值为( ) A .0B .-1C .1D .2 二、填空题11.如图,在ABC 中,AB AC =,30A ∠=︒,AB 的垂直平分线交AC 于点D ,交AB 于点E ,则DBC ∠的度数是__________.12.写一个图象经过点(﹣1,2)且y 随x 的增大而减小的一次函数解析式_____.13.直角ABC 中,90BAC ∠=︒,D 、E 、F 分别为AB 、BC 、AC 的中点,已知3DF =,则AE =________.14.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ ∆的周长最小值是__________.15.平行四边形ABCD的面积等于210cm,两对角线的交点为O,过点O的直线分别交平行四边形一组对边AB、CD于点E、F,则四边形AEFD的面积等于________。

2019-2020学年河北省八年级(下)期末数学试卷

2019-2020学年河北省八年级(下)期末数学试卷

2019-2020学年河北省八年级(下)期末数学试卷一、选择题(本大题有16个小题,共42分,1-10小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)下列各曲线表示的y与x之间的关系中,y不是x的函数()A.B.C.D.3.(3分)若直角三角形的一条直角边和斜边的比为1:2,另一条直角边长为,则直角三角形的斜边长为()A.3B.6C.D.4.(3分)体育课上五名同学一分钟跳绳个数如下:126,130,132,134,130.则这组数据的众数和中位数是()A.130,130B.130,131C.134,132D.131,1305.(3分)如图,在平行四边形ABCD中,AB⊥AC,若AB=8,AC=12,则BD的长是()A.22B.16C.18D.206.(3分)如图,在平面直角坐标系中,点P为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣2.5和﹣3之间B.﹣3和﹣3.5之间C.﹣3.5和﹣4之间D.﹣4和﹣4.5 之间7.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3),D(2,﹣1)四点在直线y=kx+4的图象上,且x1>x2>x3,则y1,y2,y3的大小关系为()A.y1>y2>2y3B.y3>y2>y1C.y3<y1<y2D.y1<y3<y28.(3分)若1≤x≤4,则化简的结果为()A.2x﹣5B.3C.3﹣2x D.﹣39.(3分)某学习小组有15人参加捐款,其中小明的捐款数比15人捐款的平均数多2元,据此可知,下列说法错误的是()A.小明的捐款数不可能最少B.小明的捐款数可能最多C.将捐款数按从少到多排列,小明的捐款数一定比第8名多D.将捐款数按从少到多排列,小明的捐款数可能排在第14位10.(3分)如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm11.(2分)某公司市场营销部的个人收入y(元)与其每月的销售量x(万件)成一次函数关系,其图象如图所示,营销人员没有销售量时最低收入是()A.1000B.2000C.3000D.400012.(2分)如图,O是矩形ABCD的对角线AC的中点,M是CD边的中点.若AB=12,OM=,则线段OB的长为()A.7B.8C.D.13.(2分)若直线y=k1x+2与直线y=k2x﹣4的交点在x轴上,则的值为()A.2B.﹣2C.D.14.(2分)若a=,b=2+,则的值为()A.B.C.D.15.(2分)5名同学的身高分别为165,172,168,170,175(单位:厘米),增加1名身高为170cm的同学后,现在6名同学的身高的平均数与方差与原来相比()A.平均数不变,方差变小B.平均数变大,方差不变C.平均数不变,方差变大D.平均数变小,方差不变16.(2分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500m C.400m D.300m二、填空题(本大题有3个小题,共11分.17小题3分;18-19小题各有2个空,每空2分,把答案写在题中横线上)17.(3分)一组数据3,2,1,4,x的平均数为3,则x为.18.(4分)如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成,若长方形ABCD的面积为6,则三角形ABE的面积为,正方形EFGH的面积为.19.(4分)沿河岸有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,匀速驶向C港,最终到达C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(km),y1,y2与x的函数关系如图所示.则:①从A港到C港全程为km;②如果两船相距小于10km能够相互望见,那么在甲船到达C港前甲、乙两船可以相互望见时,x的取值范围是.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)计算下列各题:(1);(2).21.(9分)已知关于x的函数y=(3m+1)x+m﹣3.(1)若函数是正比例函数,求m的值;(2)若函数图象与y轴的交点的纵坐标为﹣4,求m的值;(3)若函数的图象可以经由直线y=﹣5x﹣6平移得到,求m的值.22.(9分)某校八年级80名同学参加数学竞赛,根据成绩情况绘制出统计图表.其中一班参加人数为30人,二班参加人数为25人,三班参加人数为25人.班级平均数中位数众数一班75.2m82二班71.26879三班72.87575(1)表格中的m落在组(填序号);①40≤x<50,②50≤x<60,③60≤x<70,④70≤x<80,⑤80≤x<90,⑥90≤x≤100.(2)求这80名同学的平均成绩;(3)在本次竞赛中,二班明明同学的成绩是73分,三班东东同学的成绩是72分,这两位同学的成绩在自己所在班级的排名,谁更靠前?请简要说明理由.23.(9分)观察下列各式.根据上述规律回答下列问题.①;②;③;④……(1)接着完成第⑤个等式:;(2)请用含n(n≥1)的式子写出你发现的规律;(3)证明(2)中的结论.24.(10分)如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”.(1)如图,在△ABC中,AB=AC=,BC=4,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=,若△ABC是“美丽三角形”,求BC的长.25.(10分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=8,AB=9,求菱形ADCF的面积.26.(12分)甲、乙两家采摘园的草莓品质相同,销售价格都是每千克40元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过10千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x(x>10)千克,在甲采摘园所需总费用为y1元,在乙采摘园所需总费用为y2元.(1)求y1、y2关于x的函数解析式;(2)当采摘多少千克草莓时,在甲、乙两采摘园所需费用相同?如果你是游客你会如何选择采摘园?2019-2020学年河北省八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分;11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】B【解答】解:(A)原式=2,故A不是最简二次根式;(C)原式=2,故C不是最简二次根式;故选:B.2.【答案】C【解答】解:A、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故A不符合题意;B、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故B不符合题意;C、对于x的每一个取值,y有不唯一的值,y不是x的函数,故C符合题意;D、对于x的每一个取值,y都有唯一确定的值,y是x的函数,故D不符合题意;故选:C.3.【答案】B【解答】解:设一条直角边为x,斜边为2x,依题意有x2+(3)2=(2x)2,则5x=6.故选:B.4.【答案】A【解答】解:把已知数据按从小到大排序后为:126,130,130,132,134,这组数据中130出现的次数最多,故众数是130,故选:A.5.【答案】D【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OA=AC=6,BD=2OB,∴OB==10,6.【答案】C【解答】解:∵点P坐标为(﹣2,3),∴OP==,∴OA=OP=,∴3.5<<4.∴点A的横坐标介于﹣4和﹣3.5之间.故选:C.7.【答案】B【解答】解:∵点D(2,﹣1)在直线y=kx+4的图象上,∴﹣1=2k+4,∵k<0,∵x5>x2>x3,故选:B.8.【答案】A【解答】解:∵1≤x≤4,∴原式=|1﹣x|﹣|x﹣4|=x﹣1﹣8+x故选:A.9.【答案】C【解答】解:∵小明的捐款数比15人捐款的平均数多2元,∴小明的捐款数不可能最少,故选项A正确;将捐款数按从少到多排列,小明的捐款数不一定比第8名多,故选项C错误;故选:C.10.【答案】D【解答】解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF的长,即AF+BF=延长BG,过A'作A'D⊥BG于D,∴BD=16cm,∴则该圆柱底面周长为24cm.故选:D.11.【答案】B【解答】解:设y与x的函数关系为y=kx+b,由题意得:,∴y=5000x+2000,y=5000×0+2000=2000,故选:B.12.【答案】C【解答】解:∵O是矩形ABCD的对角线AC的中点,M是CD边的中点,∴OM是△ADC的中位线,∵四边形ABCD是矩形,AB=12,∴Rt△ACD中,AC==15,故选:C.13.【答案】C【解答】解:令y=0,则k1x+2=0,解得x=﹣,解得x=,∴﹣=,故选:C.14.【答案】B【解答】解:a=•=.∴.故选:B.15.【答案】A【解答】解:原数据的平均数:×(165+170+175+168+172)=170(cm),方差:×[(165﹣170)2+(170﹣170)7+(175﹣170)2+(168﹣170)2+(172﹣170)2]=(cm2),方差:×[(165﹣170)2+5×(170﹣170)2+(175﹣170)2+(168﹣170)2+(172﹣170)2]==(cm2),故选:A.16.【答案】B【解答】解:如右图所示,∵BC∥AD,又∵BC⊥AB,DE⊥AC,又∵AB=DE=400m,∴EA=BC=300m,∴CE=AC﹣AE=200,∴最近的路程是500m.故选:B.二、填空题(本大题有3个小题,共11分.17小题3分;18-19小题各有2个空,每空2分,把答案写在题中横线上)17.【答案】见试题解答内容【解答】解:根据题意,得:=2,解得:x=5,故答案为:5.18.【答案】2;.【解答】解:设EH=x,∵四边形EFGH是正方形,∵△ABE、△EHD、△CGD、△BCF是等腰直角三角形,∴HD=x,∴FB=CF=3x,∴2x•3x=6,解得:x=±(负值舍去),∴EF=,FB=,∴AB=BE=2,故答案为:4;.19.【答案】见试题解答内容【解答】解:①从A港到C港全程为120km,故答案为:120;②甲船的速度为20÷0.5=40km/h,乙船的速度为100÷4=25km/h,甲、乙两船第二次相距10km的时间为(20+10)÷(40﹣25)=2(小时),故答案为:.三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【答案】(1)﹣;(2)8.【解答】解:(1)原式=3﹣2×(3﹣1)=3﹣4(8)原式=3×3+×5﹣4×=3.21.【答案】(1)m=3;(2)m=﹣1;(3)m=﹣2.【解答】解:(1)将(0,0)代入y=(3m+1)x+m﹣2得:m﹣3=0,解得:m=3;(2)将(0,﹣4)代入y=(7m+1)x+m﹣3得:m﹣3=﹣4,解得:m=﹣1;(3)根据题意,6m+1=﹣5,解得:m=﹣2;22.【答案】(1)④;(2)73.2分;(3)明明同学的排名更靠前.【解答】解:(1)把一班的学生成绩从小到大排列,则中位数在m落在70≤x<80之间,即④组;故答案为:④;(3)二班明明同学的排名更靠前,∴明明同学的成绩73分>68分,东东同学的成绩是72分<75分,∴明明同学的排名更靠前.23.【答案】(1);(2);(3)见解答过程.【解答】解:(1);(2);故答案为:(1).24.【答案】(1)证明过程见解答;(2)6或8.【解答】(1)证明:过点A作AD⊥BC于D,∵AB=AC,AD⊥BC,由勾股定理得,AD==2,(2)解:当AC边上的中线BD等于AC时,如图6,当BC边上的中线AE等于BC时,解得BC=8.综上所述,BC的长是6或8.25.【答案】(1)证明过程请看解答;(2)36.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∴AE=DE,∴△AFE≌△DBE(AAS);∵AD为BC边上的中线∴AF=CD.∴四边形ADCF是平行四边形,∴AD=BC=CD,(2)解:连接DF,如图所示:∴四边形ABDF是平行四边形,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×8×9=36.26.【答案】(1)y1关于x的函数解析式是y1=24x+50,y2关于x的函数解析式是y2=20x+200;(2)当采摘量等于37.5千克时,在甲、乙两采摘园所需费用相同;当采摘量超过37.5千克时,选择乙采摘园;当采摘量超过10千克且少于37.5千克时,选择甲采摘园.【解答】解:(1)由题意可得,y1=50+40x×0.6=24x+50,即y7关于x的函数解析式是y1=24x+50,y2关于x的函数解析式是y2=20x+200;当24x+50>20x+200时,得x>37.5,即当采摘量超过37.5千克时,选择乙采摘园;由上可得,当采摘量等于37.5千克时,在甲、乙两采摘园所需费用相同;当采摘量超过37.8千克时,选择乙采摘园;当采摘量超过10千克且少于37.5千克时,选择甲采摘园.。

河北省保定市2019-2020学年初二下期末教学质量检测数学试题含解析

河北省保定市2019-2020学年初二下期末教学质量检测数学试题含解析

河北省保定市2019-2020学年初二下期末教学质量检测数学试题一、选择题(每题只有一个答案正确)1.下列事件中,属于随机事件的是( )A .抛出的篮球往下落B .在只有白球的袋子里摸出一个红球C .购买10张彩票,中一等奖D .地球绕太阳公转2.下列函数中,图像不经过第二象限的是( )A .35y x =+B .35y x =-C .35y x =-+D .35y x =-- 3.要使分式12x x --有意义,则x 的取值应满足( ) A .x ≠2 B .x =2 C .x =1 D .x ≠14.一个大矩形按如图方式分割成6个小矩形,且只有标号为②,④的两个小矩形为正方形,若要求出△ABC 的面积,则需要知道下列哪个条件? ( )A .⑥的面积B .③的面积C .⑤的面积D .⑤的周长5.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD 是菱形,则这个条件是( ) A .AC ⊥BD B .AD=CD C .AB=BC D .AC=BD6.已知直角三角形的两直角边长分别为3和4,则斜边上的高为( )A .5B .3C .1.2D .2.47.菱形的对角线不一定具有的性质是( )A .互相平分B .互相垂直C .每一条对角线平分一组对角D .相等8.如图,ABC 中,AB AC 16==,AD 平分BAC ∠,点E 为AC 的中点,连接DE ,若CDE 的周长为26,则BC 的长为( )A .20B .16C .10D .89.用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是( )A .90°B .60°C .45°D .30°10.如图,ABC ∆中,6,8,AB AC BC AE BC ===⊥于点E ,点D 为AB 的中点,连接DE ,则BDE ∆的周长是( )A .4+25B .7+5C .12D .10二、填空题 11.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).12.学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.13.若直角三角形两边的长分别为a 、b 且满足21025a a -++|b -4|=0,则第三边的长是 _________. 14.如图,在ABC ∆中,BF 平分ABC ∠,AG BF ⊥,垂足为点D ,交BC 于点G ,E 为AC 的中点,连结DE , 2.5DE cm =,4AB cm =,则BC 的长为_____cm .15.如图,四边形ABCD 是平行四边形,AE 平分∠BAD 交CD 于点E ,AE 的垂直平分线交AB 于点G ,交AE 于点F .若AD =4cm ,BG =1cm ,则AB =_____cm .16.在▱ABCD 中,若∠A+∠C =270˚,则∠B =_____.17.古语说:“春眠不觉晓”,每到初春时分,想必有不少人变得嗜睡,而且睡醒后精神不佳.我们可以在饮食方面进行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山药、麦片.春天即将来临时,某商人抓住商机,购进甲、乙、丙三种麦片,已知销售每袋甲种麦片的利润率为10%,每袋乙种麦片的利润率为20%,每袋丙种麦片的利润率为30%,当售出的甲、乙、丙三种麦片的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙三种变片的袋数之比为3:2:1时,商人得到的总利润率为20%:那么当售出的甲、乙、丙三种麦片的袋数之比为2:3;4时,这个商人得到的总利润率为_____(用百分号表最终结果).三、解答题18.如图,在矩形ABCD 中AD=12,AB=9,E 为AD 的中点,G 是DC 上一点,连接BE ,BG ,GE ,并延长GE 交BA 的延长线于点F ,GC=5(1)求BG 的长度;(2)求证:BEG ∆是直角三角形(3)求证:BGF DGF ∠=∠19.(6分)计算: (1)56÷2-313+212; (2)1273a -a 23a +3a 3a 20.(6分)如图,在平面直角坐标系中,已知点()5,0A 和点()0,4B .(1)求直线AB 所对应的函数表达式;(2)设直线y x =与直线AB 相交于点C ,求AOC ∆的面积.21.(6分)如图,在ABCD 中,经过A ,C 两点分别作AE ⊥BD ,CF ⊥BD ,E ,F 为垂足.(1)求证:△AED ≌△CFB ;(2)求证:四边形AFCE 是平行四边形.22.(8分)如图,AB=12cm ,AC ⊥AB ,BD ⊥AB ,AC=BD=9cm ,点P 在线段AB 上以3 cm/s 的速度,由A 向B 运动,同时点Q 在线段BD 上由B 向D 运动.(1)若点Q 的运动速度与点P 的运动速度相等,当运动时间t=1(s ),△ACP 与△BPQ 是否全等?说明理由,并直接判断此时线段PC 和线段PQ 的位置关系;(2)将 “AC ⊥AB ,BD ⊥AB ”改为“∠CAB=∠DBA ”,其他条件不变.若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能使△ACP 与△BPQ 全等.(3)在图2的基础上延长AC ,BD 交于点E ,使C ,D 分别是AE ,BE 中点,若点Q 以(2)中的运动速度从点B 出发,点P 以原来速度从点A 同时出发,都逆时针沿△ABE 三边运动,求出经过多长时间点P 与点Q 第一次相遇.23.(8分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;(2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.24.(10分)如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF ⊥DE 交BC 的延长线于点F .求证:DE=DF .25.(10分)如图,在矩形ABCD 中,点E 为AD 上一点,连接BE 、CE,45ABE ∠=︒ .(1)如图1,若32,4,BE BC DE ==求 ;(2)如图2,点P 是EC 的中点,连接BP 并延长交CD 于点F ,H 为AD 上一点,连接HF,且DHF CBF ∠=∠ ,求证:BP PF FH =+.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】随机事件就是可能发生,也可能不发生的事件,根据定义即可判断.【详解】A. 抛出的篮球会落下是必然事件,故本选项错误;B. 从装有白球的袋里摸出红球,是不可能事件,故本选项错误;C.购买10张彩票,中一等奖是随机事件,故本选正确。

河北省2019-2020年八年级下学期期末考试数学试卷

河北省2019-2020年八年级下学期期末考试数学试卷

河北省2019-2020年八年级下学期期末考试数学试卷一、选择题(1-6小题,每小题2分,7-12小题,每小题三分,共30分)1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>2.已知分式的值为0,则x的值为()A.2B.﹣2 C.3D.﹣33.下列图形中,不是中心对称图形的是()A.B.C.D.4.下列分式是最简分式的是()A.B.C.D.5.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.A C=AD B.A B=AB C.∠ABC=∠ABD D.∠BAC=∠BAD6.把多项式x2﹣x分解因式,得到的因式是()A.只有x B.x2和x C.x2和﹣x D.x和x﹣17.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.12cm B.9cm C.6cm D.3cm8.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.19.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>010.△ABC中,AB=AC,在△ABC内求作一点O,使点O到三边的距离相等.甲同学的作法如图1所示,乙同学的作法如图2所示,对于两人的作法,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.乙对,甲不对11.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D. x<﹣512.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为()A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°二、填空题(每小题3分,共18分)13.若x2+kx+4是一个完全平方式,则常数k的值为.14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.15.在数轴上有A、B两点,其中点A所对应的数是a,点B所对应的数是1.己知A、B 两点的距离小于3,请写出a所满足的不等式.16.若解分式方程产生增根,则m=.17.如图,ABCD是一块长方形场地,AB=42米,AD=25米,从A、B两处入口的小路都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.18.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.三、解答题(本题共8小题,共72分)19.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.20.先化简(1﹣)÷,再从﹣2,﹣1,0中选一个合适的数代入并求值.21.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.如图,在▱ABCD中,点E、F分别是对角线BD上两点,且BF=DE,连接AF、CE.求证:四边形AFCE是平行四边形.24.如图,MA⊥AB于A,NB⊥AB于B,点O是AB的中点,点D是BN上一点,且BD=AO,点C是AM上一点,∠COD=α.(1)如图1,若AC=AO,则OC与OD的数量关系为,α=;(2)在(1)的条件下,若点P为BN上一点,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°,得到线段OQ,连接CQ,在图2中补全图形.请猜想CQ与DP的数量关系,并证明你的结论.(3)在(2)的条件下,若∠OQC=30°,OC=,则CQ=(用含α的代数式表示).25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?26.【问题背景】如图1,图2,过平行四边形一组对角的顶点画直线,或者过一组对边的中点画直线,可以把此四边形分割成面积相等的两部分.如图3,图4,分别过两组对角的顶点画直线,或者分别过两组对边的中点画直线,可以把该平行四边形分割成面积相等的四部分.【探究发现】(1)如图5,点E为▱ABCD内任意一点,过点E画一条直线,将▱ABCD分成面积相等的两部分,简述画法并说明画法的正确性.(2)请在图6中画出两条直线,将▱ABCD分割成四部分,且使含有平行四边形一组对角的两部分面积相等.要求:其中一条直线经过点E(不必叙述画法)回答:有多少种方法?它们有怎样的共同特点?(3)如图7,已知▱ABCD中,BD平分∠ABC,点P为BC边上任意一点.请在图中画出两条直线,将该平行四边形分成面积相等的四部分.要求其中一条直线经过点P.简要叙述画法.【延伸提升】(1)如图8,▱ABCD,两邻边的长度之比AB:BC=1:2,点Q为BC边上任意一点.请用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.要求:画出图形并简要叙述画图方法.(2)对于任意▱ABCD,两邻边的长度之比AB:BC=a:b,点Q为BC边上任意一点.如果用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.请简要叙述画图方法.八年级下学期期末数学试卷一、选择题(1-6小题,每小题2分,7-12小题,每小题三分,共30分)1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C.﹣3x>﹣3y D.>考点:不等式的性质.分析:根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.解答:解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号方向不变,故B正确;C、不等式的两边都乘﹣3,不等号的方向改变,故C错误;D、不等式的两边都除以3,不等号的方向改变,故D正确;故选:C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知分式的值为0,则x的值为()A.2B.﹣2 C.3D.﹣3考点:分式的值为零的条件.分析:根据分式的分子为零,分母不为零,分式的值为零,可得答案.解答:解:由分式的值为0,得,解得x=2,故选:A.点评:本题考查了分式值为零的条件,分式的分子为零,分母不为零,分式的值为零,注意不要遗漏分母不为零.3.下列图形中,不是中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误;故选C.点评:本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列分式是最简分式的是()A.B.C.D.考点:最简分式.分析:要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.解答:解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.点评:此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.5.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.A C=AD B.A B=AB C.∠ABC=∠ABD D.∠BAC=∠BAD考点:直角三角形全等的判定.分析:由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.解答:解:需要添加的条件为BC=BD或AC=AD,理由为:若添加的条件为BC=BD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL);若添加的条件为AC=AD,在Rt△ABC与Rt△ABD中,∵,∴Rt△ABC≌Rt△ABD(HL).故选A.点评:此题考查了直角三角形全等的判定,知道“HL”即为斜边及一直角边对应相等的两直角三角形全等是解题的关键.6.把多项式x2﹣x分解因式,得到的因式是()A.只有x B.x2和x C.x2和﹣x D.x和x﹣1考点:因式分解-提公因式法.专题:计算题.分析:原式提取x分解得到结果,即可做出判断.解答:解:原式=x(x﹣1),故选D.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.7.如图,▱ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB 的长为()A.12cm B.9cm C.6cm D.3cm考点:三角形中位线定理;平行四边形的性质.分析:首先根据平行四边形的对角线互相平分,可得点O是AC的中点,然后根据点E 是BC的中点,可得OE是△ABC的中位线,据此求出AB的长为多少即可.解答:解:∵对角线AC,BD交于点O,∴点O是AC的中点,∵点E是BC的中点,∴OE是△ABC的中位线,∴AB=2OE=2×3=6(cm),即AB的长为6cm.故选:C.点评:(1)此题主要考查了三角形中位线定理,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了平行四边形的性质的应用,要熟练掌握,解答此题的关键是要明确平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.8.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.1考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算;解答:解:原式==a+b.故选B.点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.9.以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>0考点:命题与定理.分析:根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.解答:解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.10.△ABC中,AB=AC,在△ABC内求作一点O,使点O到三边的距离相等.甲同学的作法如图1所示,乙同学的作法如图2所示,对于两人的作法,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.乙对,甲不对考点:作图—复杂作图;角平分线的性质.专题:作图题.分析:根据等腰三角形的性质得到BC的垂直平分线平分∠BAC,根据角平分线的性质可判断甲同学的作法正确;同时也可判断乙同学的作法正确.解答:解:甲同学作了∠ABC的平分线和底边BC的垂直平分线,因为AB=AC,所以BC的垂直平分线平分∠BAC,则点O为△ABC内角的平分线,点O到三边的距离相等,所以甲同学的作法正确;乙同学作了∠ABC和∠ACB的平分线,则点O到三边的距离相等,所以乙同学的作法正确.故选A.点评:本题考查了作图:复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和角平分线的性质.11.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax ﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣5考点:一次函数与一元一次不等式.分析:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax﹣3的图象上面.解答:解:从图象得到,当x>﹣2时,y=3x+b的图象对应的点在函数y=ax﹣3的图象上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故选A.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.12.如果将一图形沿北偏东30°的方向平移3厘米,再沿某方向平移3厘米,所得的图形与将原图形向正东方向平移3厘米所得的图形重合,则这一方向应为()A.北偏东60°B.北偏东30°C.南偏东60°D.南偏东30°考点:平移的性质;方向角;等边三角形的判定与性质.分析:根据方位角的概念,画图正确表示出方位角,利用等边三角形的判定与性质即可求解.解答:解:从图中可发现移动形成的三角形ABC中,AB=AC=3,∠BAC=90°﹣30°=60°,故△ABC是等边三角形.∴∠ACB=60°,∴∠2=90°﹣60°=30°.所以本题的答案为南偏东30°.故选D.点评:解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.二、填空题(每小题3分,共18分)13.若x2+kx+4是一个完全平方式,则常数k的值为±4.考点:完全平方式.专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.解答:解:∵x2+kx+4=x2+kx+22,∴kx=±2×2x,解得k=±4.故答案为:±4.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.14.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:360÷40=9,即这个多边形的边数是9.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.15.在数轴上有A、B两点,其中点A所对应的数是a,点B所对应的数是1.己知A、B 两点的距离小于3,请写出a所满足的不等式﹣2<a<4.考点:由实际问题抽象出一元一次不等式;数轴.分析:根据题意列出不等式组a﹣1<3和1﹣a<3解答即可.解答:解:由题意可得:a﹣1<3和1﹣a<3,解得:﹣2<a<4.故答案为:﹣2<a<4.点评:此题考查不等式的应用,关键是根据题意列出不等式组a﹣1<3和1﹣a<3.16.若解分式方程产生增根,则m=﹣5.考点:分式方程的增根.专题:计算题.分析:分式方程去分母后转化为整式方程,由分式方程无解得到x=﹣4,代入整式方程即可求出m的值.解答:解:方程去分母得:x﹣1=m,由题意将x=﹣4代入方程得:﹣4﹣1=m,解得:m=﹣5.故答案为:﹣5.点评:此题考查了分式方程的增根,分式方程的增根即为最简公分母为0时x的值.17.如图,ABCD是一块长方形场地,AB=42米,AD=25米,从A、B两处入口的小路都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为960米2.考点:生活中的平移现象.分析:根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.解答:解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(42﹣2)米,宽为(25﹣1)米.所以草坪的面积应该是长×宽=(42﹣2)(25﹣1)=960(米2).故答案为960.点评:此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.18.如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.考点:等边三角形的性质.专题:压轴题;规律型.分析:由于点B1是△OBA两条中线的交点,则点B1是△OBA的重心,而△OBA是等边三角形,所以点B1也是△OBA的内心,∠BOB1=30°,∠A1OB=90°,由于每构造一次三角形,OB i 边与OB边的夹角增加30°,所以还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA的边OB第一次重合;又因为任意两个等边三角形都相似,根据相似三角形的面积比等于相似比的平方,由△OB1A1与△OBA的面积比为,求得构造出的最后一个三角形的面积.解答:解:∵点B1是面积为1的等边△OBA的两条中线的交点,∴点B1是△OBA的重心,也是内心,∴∠BOB1=30°,∵△OB1A1是等边三角形,∴∠A1OB=60°+30°=90°,∵每构造一次三角形,OB i 边与OB边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n的边OA n与等边△OBA 的边OB第一次重合,∴构造出的最后一个三角形为等边△OB10A10.如图,过点B1作B1M⊥OB于点M,∵cos∠B1OM=cos30°==,∴===,即=,∴=()2=,即S△OB1A1=S△OBA=,同理,可得=()2=,即S△OB2A2=S△OB1A1=()2=,…,∴S△OB10A10=S△OB9A9=()10=,即构造出的最后一个三角形的面积是.故答案为.点评:本题考查了等边三角形的性质,三角函数的定义,相似三角形的判定与性质等知识,有一定难度.根据条件判断构造出的最后一个三角形为等边△OB10A10及利用相似三角形的面积比等于相似比的平方,得出△OB1A1与△OBA的面积比为,进而总结出规律是解题的关键.三、解答题(本题共8小题,共72分)19.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可.解答:解:∵解不等式①得:x>﹣,解不等式②得:x<1,∴不等式组的解集为﹣<x<1,在数轴上表示不等式组的解集为:,∴不等式组的整数解为﹣1,0.点评:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.20.先化简(1﹣)÷,再从﹣2,﹣1,0中选一个合适的数代入并求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.解答:解:原式=•=,当x=0时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图,在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8cm,r=1.6cm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的方法帮助小刚计算吗?请写出求解的过程(π取3).考点:因式分解的应用.分析:用大圆的面积减去4个小圆的面积即可得到剩余阴影部分的面积,分解因式然后把R和r的值代入计算出对应的代数式的值.解答:解:阴影部分面积=πR2﹣4πr2=π(R2﹣4r2)=π(R﹣2r)(R+2r)=3×﹙6.8+2×1.6﹚×﹙6.8﹣2×1.6﹚=108.点评:此题考查因式分解的运用,看清题意利用圆的面积计算公式列出代数式,进一步利用提取公因式法和平方差公式因式分解解决问题.22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.解答:解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).点评:此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.23.如图,在▱ABCD中,点E、F分别是对角线BD上两点,且BF=DE,连接AF、CE.求证:四边形AFCE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:可连接对角线AC,通过对角线互相平分得出结论.解答:证明:连接AC交BD于O,∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形.点评:本题考查了平行四边形的判定和性质,熟练掌握平行四边形的判定和性质定理是解题的关键.24.如图,MA⊥AB于A,NB⊥AB于B,点O是AB的中点,点D是BN上一点,且BD=AO,点C是AM上一点,∠COD=α.(1)如图1,若AC=AO,则OC与OD的数量关系为OC=OD,α=90°;(2)在(1)的条件下,若点P为BN上一点,连接OP,将线段OP以点O为旋转中心,逆时针旋转90°,得到线段OQ,连接CQ,在图2中补全图形.请猜想CQ与DP的数量关系,并证明你的结论.(3)在(2)的条件下,若∠OQC=30°,OC=,则CQ=(﹣1)a(用含α的代数式表示).考点:几何变换综合题.分析:(1)根据题意和三角形全等的判定证明△CAO≌△DBO,根据全等三角形的性质得到答案;(2)证明△QOC≌△POD,即可得到CQ=DP;(3)根据△QOC≌△POD,求出PD的长,即可得到CQ的长.解答:解:(1)∵点O是AB的中点,∴AO=BO,又∵BD=AO,∴BD=BO,∴∠DOB=∠BDO=45°,又∵AC=AO,∴AC=BD,在△CAO和△DBO中,,∴△CAO≌△DBO,∴OC=OD,∠COA=∠BOD=45°,∴∠COD=α=90°;(2)如图2,∵∠COD=∠POQ=90°,∴∠QOC=∠POD,在△QOC和△POD中,,∴△QOC≌△POD,∴CQ=DP;(3)∵OD=OC=,△BOD是等腰直角三角形,∴BD=OB=a,∵∠OPD=∠OQC=30°,∴BP=a,则PD=a﹣a,∴CQ=PD=(﹣1)a.点评:本题考查的是旋转变换的性质、全等三角形的判定和性质,理解旋转方向、旋转角和旋转中心的概念、掌握全等三角形的判定定理和性质定理是解题的关键.25.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?考点:分式方程的应用;一元一次不等式的应用.专题:工程问题.分析:(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.解答:解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.26.【问题背景】如图1,图2,过平行四边形一组对角的顶点画直线,或者过一组对边的中点画直线,可以把此四边形分割成面积相等的两部分.如图3,图4,分别过两组对角的顶点画直线,或者分别过两组对边的中点画直线,可以把该平行四边形分割成面积相等的四部分.【探究发现】(1)如图5,点E为▱ABCD内任意一点,过点E画一条直线,将▱ABCD分成面积相等的两部分,简述画法并说明画法的正确性.(2)请在图6中画出两条直线,将▱ABCD分割成四部分,且使含有平行四边形一组对角的两部分面积相等.要求:其中一条直线经过点E(不必叙述画法)回答:有多少种方法?它们有怎样的共同特点?(3)如图7,已知▱ABCD中,BD平分∠ABC,点P为BC边上任意一点.请在图中画出两条直线,将该平行四边形分成面积相等的四部分.要求其中一条直线经过点P.简要叙述画法.【延伸提升】(1)如图8,▱ABCD,两邻边的长度之比AB:BC=1:2,点Q为BC边上任意一点.请用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.要求:画出图形并简要叙述画图方法.(2)对于任意▱ABCD,两邻边的长度之比AB:BC=a:b,点Q为BC边上任意一点.如果用两条直线把该平行四边形分成面积相等的四部分,且其中一条直线经过点Q.请简要叙述画图方法.考点:四边形综合题.分析:【探究发现】(1)利用平行四边形的性质,对角线互相平分,可得△AON≌△COF,由S△ABC=S▱ABCD,可得S四边形ABFN=S▱ABCD;(2)由平行四边形性质可得全等三角形,利用全等三角形面积相等可得结论;(3)连接AC,交BD于点O,过点O,P作直线OP,在AB上取一点M,使BM=CP,过点M,O作直线MO,由平行四边形的性质和对角线的性质可得结论;【延伸提升】(1)由两邻边的长度之比AB:BC=1:2,根据三角形的面积一定,底边和高成反比例,可得结论;(2)由(1)三角形的面积一定,底边和高成反比例,可得结论.。

河北省保定市2020年八年级第二学期期末检测数学试题含解析

河北省保定市2020年八年级第二学期期末检测数学试题含解析

河北省保定市2020年八年级第二学期期末检测数学试题一、选择题(每题只有一个答案正确)1.下列计算中,正确的是( )A .336x x x +=B .623a a a ÷=C .3a 5b 8ab +=D .333(ab)a b -=-2.下面的两个三角形一定全等的是( )A .腰相等的两个等腰三角形B .一个角对应相等的两个等腰三角形C .斜边对应相等的两个直角三角形D .底边相等的两个等腰直角三角形3.化简182÷的结果是( )A .9B .3C .32D .234.某多边形的每个内角均为120°,则此多边形的边数为( ).A .5B .6C .7D .85.下列式子中一定是二次根式的是( )A .2B .32C .2-D .x6.下而给出四边形ABCD 中,,,A B C D ∠∠∠∠的度数之比,其中能判定四边形ABCD 为平行四边形的是( ). A .1:2:3:4 B .1:2:2:3 C .2:2:3:3 D .2:3:2:37.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是( )A .①B .②C .①②D .①③8.下列各组数中,以它们为边的三角形是直角三角形的是( )A .1,2,3B .9,16,25C .12,15,20D .1,2,59.坐标平面上,有一线性函数过(-3,4)和(-7,4)两点,则此函数的图象会过( )A .第一、二象限B .第一、四象限C .第二、三象限D .第二、四象限10.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC=2,∠ADC=30°,下列说法:①四边形ACED 是平行四边形,②△BCE 是等腰三角形,③四边形ACEB 的周长是10+213,④四边形ACEB 的面积是16.正确的个数是 ( )A .2个B .3个C .4个D .5个二、填空题 11.在英文单词 believe 中,字母“e”出现的频率是_______.12.如图,ABCD 的周长为20cm ,AC 与BD 相交于点O ,OE AC ⊥交AD 于E ,则CDE ∆的周长为__________cm .13.如图,在平面直角坐标系中,直线l :y=x+2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3,…在直线l 上,点B 1,B 2,B 3,…在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3,…,依次均为等腰直角三角形,直角顶点都在x 轴上,则第n 个等腰直角三角形A n B n ﹣1B n 顶点B n 的横坐标为________________.14.如图,四边形OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y 1=1k x 和y 2=2k x的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12k AM CN k = ②阴影部分面积是12(k 1﹣k 2)③当∠AOC =90°时,|k 1|=|k 2|;④若四边形OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是_____.15.分式a a b +与22b a b-的最简公分母是__________. 16.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP ′重合,若PB =2,则PP′=_______.17.已知一次函数y=2x 与y=-x+b 的交点为(1,a ),则方程组200x y x y b -=⎧⎨+-=⎩的解为______. 三、解答题18.如图,在ABC ∆中,2BC AC =,点D .E 分别是边AB 、BC 的中点,过点A 作AFBC 交ED 的延长线于点F ,连接BF 。

河北省名校2019-2020学年八年级第二学期期末统考数学试题含解析

河北省名校2019-2020学年八年级第二学期期末统考数学试题含解析
C.测量一组对角是否为直角
D.测量两组对边是否相等,再测量对角线是否相等
3.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是( )
A.b2﹣c2=a2B.a:b:c=3:4:5
C.∠A:∠B:∠C=9:12:15D.∠C=∠A﹣∠B
4.若代数式 在实数范围内有意义,则 的取值范围是
A.x<1B.x≤1C.x>1D.x≥1
5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x的增大而增大,则m=()
A.2B.-2C.4D.-4
6.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的是()
组别
成绩 (分)
频数(人数)
频率

2

10
0.2

12

0.4

6
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有__________名学生参加;
(2)直接写出表中: ___________ ____________
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
(1)求证:△ACM≌△BCN;
(2)求∠BDA的度数;
(3)若∠EAC=15°,∠ACM=60°,AC= +1,求线段AM的长.
22.(8分)“2018年某明星演唱会”于6月3日在某市奥体中心举办.小明去离家300的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有30分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小明骑车的时间比跑步的时间少用了5分钟,且骑车的平均速度是跑步的平均速度的1.5倍.

2020年河北省保定市初二下期末学业质量监测数学试题含解析

2020年河北省保定市初二下期末学业质量监测数学试题含解析

2020年河北省保定市初二下期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.平行四边形ABCD 的对角线相交于点0,且AD≠CD ,过点0作OM ⊥AC ,交AD 于点M .如果△CDM 的周长为6,那么平行四边形ABCD 的周长是( )A .8B .10C .12D .183.已知一次函数y =(k ﹣2)x+k+1的图象不过第三象限,则k 的取值范围是( )A .k >2B .k <2C .﹣1≤k≤2D .﹣1≤k <24.将直线y=-2x 向上平移5个单位,得到的直线的解析式为( )A .y=-2x-5B .y=-2x+5C .y=-2(x-5)D .y=-2(x+5)5.如图,矩形ABCD 的面积为10cm 2,它的两条对角线交于点O 1,以AB 、AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交于点O 2,同样以AB 、AO 2为两邻边作平行四边形ABC 2O 2,…,依此类推,则平行四边形ABC n O n 的面积为( )A .210n cm 2B .1102n -cm 2C .12n cm 2D .102n cm 2 6.已知关于x 的一元二次方程230x x a ++=有一个根是2-,那么a 的值是( )A .2-B .1-C .2D .107.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且BD =2CD ,BC =9cm ,则点D 到AB 的距离为( )A .3cmB .2cmC .1cmD .4.5cm8.如图,在R△ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设DPB S y =△,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为A .3B .4C .5D .69.下列二次根式中,能与2合并的是( )A .3B .8C .12D .2710.已知一次函数y = 2x +b ,其中b <0,函数图象可能是( )A .AB .BC .CD .D二、填空题11.若正比例函数(12)y m x =-的图象过点11(,)A x y 和点22(,)B x y ,当12x x <时,12y y >,则m 的取值范围为__________.12.等腰三角形的两条中位线分别为3和5,则等腰三角形的周长为_____.13.阅读下面材料:在数学课上,老师提出如下问题:已知:如图,及边的中点.求作:平行四边形.①连接并延长,在延长线上截取;②连接、.所以四边形就是所求作的平行四边形.老师说:“小敏的作法正确.请回答:小敏的作法正确的理由是__________.14.如图,ABC ∆为正三角形,AD 是ABC ∆的角平分线,ADE ∆也是正三角形,下列结论:①AD BC ⊥:②=EF FD :③BE BD =,其中正确的有________(填序号).15.已知点A (﹣2,y 1)、B (﹣3,y 2)都在反比例函数y =﹣的图象上,则y 1_____y 2(填“<”或“>”) 16.如图,在平面直角坐标系中,OA=AB ,点A 的坐标为(2,4),将△OAB 绕点B 旋转180°,得到△BCD,再将△B CD 绕点D 旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P (2017,b )是此折线上一点,则b 的值为_______________.17.从A 沿北偏东60︒的方向行驶到B ,再从B 沿南偏西20︒方向行驶到C ,则ABC ∠=______.三、解答题18.计算:(12(5)- (2)25-(3()23π- (42(0)9x x 19.(6分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 20.(6分)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .21.(6分)(1)计算:18243-÷.(2)解方程:(x+2)2=1.22.(8分)计算:﹣(π﹣2019)0+2﹣1.23.(8分)西蜀图书室近日购进甲、乙两种图书,每本甲图书的进价比每本乙图书的进价高20元,花780元购进甲图书的数量与花540元购进乙图书的数量相同.(1)求甲、乙两种图书每本的进价分别是多少元?(2)西蜀图书室计划购进甲、乙两种图书共70本,总购书费用不超过4000元,则最多购进甲种图书多少本?24.(10分)计算:48﹣327+212.25.(10分)为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:结合以上信息,回答问题:(1)a=______,b=______,c=______.(2)请你补全频数分布直方图.(3)试估计该年级女同学中身高在160~165cm的同学约有多少人?参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2.C【解析】试题分析:根据OM⊥AC,O为AC的中点可得AM=MC,根据△CDM的周长为6可得AD+DC=6,则四边形ABCD的周长为2×(AD+DC)=1.考点:平行四边形的性质.3.D【解析】【分析】若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.【详解】解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,∴k﹣2<1,k+1≥1解得:﹣1≤k<2,故选:D.【点睛】本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.4.B【解析】【分析】直接根据一次函数图象与几何变换的有关结论求解.【详解】y=-2x 向上平移5个单位,上加下减,可得到y=-2x+5故答案为:B【点睛】考查了一次函数图象与几何变换:一次函数y=kx+b (k 、b 为常数,k≠0)的图象为直线,当直线平移时k 不变,当向上平移m 个单位,则平移后直线的解析式为y=kx+b+m .5.D【解析】【分析】根据矩形的性质对角线互相平分可知O 1是AC 与DB 的中点,根据等底同高得到S △ABO1=14S 矩形,又ABC 1O 1为平行四边形,根据平行四边形的性质对角线互相平分,得到O 1O 2=BO 2,所以S △ABO2=18S 矩形,…,以此类推得到S △ABO5=132S 矩形,而S △ABO5等于平行四边形ABC 5O 5的面积的一半,根据矩形的面积即可求出平行四边形ABC 5O 5和平行四边形AB ∁n O n 的面积.【详解】解:∵设平行四边形ABC 1O 1的面积为S 1,∴S △ABO1=12S 1, 又∵S △ABO1=14S 矩形, ∴S 1=12S 矩形=5=052; 设ABC 2O 2为平行四边形为S 2,∴S △ABO2=12S 2, 又∵S △ABO2=18S 矩形, ∴S 2=14S 矩形=15522=; ,…,∴平行四边形AB ∁n O n 的面积为1511022n n -=⨯(cm 2). 故选D .【点睛】此题考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.6.C【解析】【分析】根据一元二次方程的解的定义,将x=-1代入关于x 的一元二次方程x 1+3x+a=0,列出关于a 的一元一次方程,通过解方程即可求得a 的值.【详解】根据题意知,x=-1是关于x 的一元二次方程x 1+3x+a=0的根,∴(-1)1+3×(-1)+a=0,即-1+a=0,解得,a=1.故选:C .【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解使方程的左右两边相等.7.A【解析】【分析】如图,过点D 作DE ⊥AB 于E ,则点D 到AB 的距离为DE 的长,根据已知条件易得DC=1. 利用角平分线性质可得到DE=DC=1。

2019-2020学年河北省八年级(下)期末数学试卷

2019-2020学年河北省八年级(下)期末数学试卷

2019・2020学年河北省八年级(下)期末数学试卷一、选择题(本大题有16个小题,共42分,小题各3分;11“6小题各2分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1.(3分)下列二次根式中,是最简二次根式的是()A. V4B. V6C. VsD.3.(3分)若直角三角形的一条直角边和斜边的比为1: 2,另一条直角边长为人耳,则直角三角形的斜边长为()A. 3B. 6C. 6A/3D. 6724.(3分)体育课上五名同学一分钟跳绳个数如下:126, 130, 132, 134, 130,则这组数据的众数和中位数是()A. 130, 130B. 130, 131C. 134, 132D. 13L 1305.(3分)如图,在平行四边形A8CO中,AB1AC,若A8=8, AC=12,则8。

的长是()6.(3分)如图,在平面直角坐标系中,点P为(-2, 3),以点。

为圆心,以。

尸的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()工3,则丫1,了2,的大小关系为( )8 . (3分)若 KW4,则|一x 卜优于化简的结果为(9 .(3分)某学习小组有15人参加捐款,其中小明的捐款数比15人捐款的平均数多2元,据此可知,下列说法错 误的是( )A .小明的捐款数不可能最少B.小明的捐款数可能最多C.将捐款数按从少到多排列,小明的捐款数一定比第8名多D.将捐款数按从少到多排列,小明的捐款数可能排在第14位10 .(3分)如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为分cm,在容器内壁离容器底部的点8处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4c 〃?的点A 处,若蚂蚁吃到蜂蜜需爬行的最短 路径为20c 〃?,则该圆柱底而周长为( )11 .(2分)某公司市场营销部的个人收入y (元)与其每月的销售量x (万件)成一次函数关系,其图象如图所示,A. -2.5和-3之间B. -3和-3.5之间C. -3.5和-4之间D. -4和-4.5之间 7.(3分)已知点A (xi » yi), B (如C (X3,丁3),D (2, -1)四点在直线)=h+4的图象上,且M>X2>A. yi>y2>2>3B. y3>V2>yiC. y^<y\<y2 D, y\<yi<y2 A. 2x - 5B. 3C. 3-2xD.-3B. \4crnC. 20cmD. 24。

2019-2020学年八年级下册第二学期期末考试数学试卷及参考答案(WORD版)

2019-2020学年八年级下册第二学期期末考试数学试卷及参考答案(WORD版)

2019-2020学年八年级下册第二学期期末考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1B.x≠﹣1 C.x=1 D.x=﹣1 2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.34.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.106.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4 7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a只“福娃”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前完成任务的天数是()A.acB.ab c+-abC.ab c+D.ab-ab c+9.在▱ABCD中,对角线AC,BD相交于点O,以点O为坐标原点建立平面直角坐标系,其中A(a,b),B(a﹣1,b+2),C(3,1),则点D的坐标是()A.(4,﹣1)B.(﹣3,﹣1)C.(2,3)D.(﹣4,1)10.如图,在5×5的方格纸中,A,B两点在格点上,线段AB绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .13.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.15.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .16.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.18.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () ().19.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a=2+2.20.(8分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC和它的一条中位线DE,在给出的图形上,请用尺规作出BC边上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.22.(10分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?23.(10分)如图,在△ABC中,∠C=90°,∠CAB=20°,BC=7;线段AD是由线段AC绕点A 按逆时针方向旋转110°得到,△EFG是由△ABC沿CB方向平移得到,且直线EF过点D(1)求∠DAE的大小.(2)求DE的长.24.(12分)在平面直角坐标系xOy中,一次函数y1=k1x+4m(m≠0)的图象l1经过点B(p,2m).(1)当m=1,k1=﹣1时,且正比例函数y2=k2x的图象l2经过点B.①若y1<y2,求x的取值范围;②若一次函数y3=k3x+1的图象为l3,且l1,l2,l3不能围成三角形,求k3的值;(2)若直线l1与x轴交于点C(n,0),且n+2p=4m,求m,n的数量关系.25.(14分)如图,在▱ABCD中,点O是对角线AC的中点,点E在BC上,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)求证:DF=BE;(2)若∠ACB=45°.①求证:∠BAG=∠BGA;②探索DF与CG的数量关系,并说明理由.参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1答案:A2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)答案:B3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.3答案:C4.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()答案:D5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.10答案:A6.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4答案:A7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A .20°B .35°C .40°D .70°答案:B 8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a 只“福娃”,原计划每天生产b 只,实际每天生产了(b +c )只,则该厂提前完成任务的天数是( )A .a cB .a b c +-a bC .a b c +D .a b -a b c+ 答案:D9.在▱ABCD 中,对角线AC ,BD 相交于点O ,以点O 为坐标原点建立平面直角坐标系,其中A (a ,b ),B (a ﹣1,b +2),C (3,1),则点D 的坐标是( )A .(4,﹣1)B .(﹣3,﹣1)C .(2,3)D .(﹣4,1)答案:A10.如图,在5×5的方格纸中,A ,B 两点在格点上,线段AB 绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°答案:C 二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 答案:13x12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .答案:1,2,313.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .答案:(﹣2,﹣1)14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.答案:54015.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .答案:616.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .答案:25三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.解:原式=222(2)()ab a ab b ab a b ++=+=3×52=7518.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () (). 解:由(1)得:x ≤4由(2)得:x >1,所以,原不等式组的解为:1<x ≤419.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a =2+2. 解:原式=21a a ++÷241a a -+ =21a a ++×1(2)(2)a a a ++- =12a - 当a =2+2时,原式=22 20.(8分)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等边三角形.解:因为DE ⊥AB ,DF ⊥BC ,且DE =DF ,又D 是AC 的中点,所以,AD =DC ,在Rt △AED 和Rt △CFD 中DE DF AD DC =⎧⎨=⎩, 所以,Rt △AED ≌Rt △CFD ,所以,∠A =∠C ,所以,BC =BA又AB =AC所以,AB =AC =BC所以,△ABC 是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC 和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF ,即可。

河北省保定市唐县2020-2021学年八年级下学期期末数学试题(含答案解析)

河北省保定市唐县2020-2021学年八年级下学期期末数学试题(含答案解析)

河北省保定市唐县2020-2021学年八年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,是最简二次根式的是( )AB C D2.函数y =x 的取值范围是( ) A .x >3B .x ≠3C .x ≥3D .x ≥03.下列三条线段不能组成直角三角形的是( ) A .a =5,b =12,c =13 B .a =6,b =8,c =10C .a b c ==D .a :b :c =2:3:44.在ABCD 中,∠ABC 的平分线交AD 于E ,∠BED =140°,则∠A 的大小为( )A .140°B .130°C .120°D .100°5 ) A .8与9之间B .7与8之间C .6与7之间D .5与6之间6.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差7.已知点(-3,1y )、(4,2y )在函数21y x =-+图像上,则1y 与2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .无法确定8.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .B .C .D .9.实数a 、b b a -=( )A .-bB .-2b +aC .aD .2b -a10.如图,长为8cm 的橡皮筋放置在数轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 到D 点,则橡皮筋被拉长了( )A .3cmB .2cmC .4cmD .2.5cm11.如图,直线y ax b =-与直线1y mx =+交于点(2,3)A ,则方程组,1ax y b mx y -=⎧⎨-=-⎩解是( )A .3,2x y =⎧⎨=⎩B .2,3x y =⎧⎨=⎩C .3,2x y =-⎧⎨=-⎩D .2,3x y =-⎧⎨=-⎩12.关于一次函数y = -3x +4图像和性质的描述错误的是( ) A .y 随x 的增大而减小 B .直线与x 轴交点的坐标是( 0, 4 ) C .当x >0时,y <4D .直线经过第一、二、四象限13.如图,四边形ABCD 是矩形,连接AC .根据尺规作图痕迹,判断直线MN 与CB 的位置关系( )A .相交,夹角30°B .平行C .相交,夹角60°D .垂直14.某校在预防“新冠”期间,计划购买消毒液若干箱.已知,一次购买消毒液若不超过20箱,按定价80元付款;若超过20箱,超过部分按定价七折付款.设一次购买数量x (x >20)箱,付款金额为y 元,则y 与x 的函数式为( ) A .y =0.7×80xB .y =0.7x +80((x -10)C .y =0.7×80(x -20)+80×20D .y =0.7×80((x -10)15.如图所示,在正方形ABCD 中,点E 、F 分别在CD 、BC 上,且BF =CE ,连接BE 、AF 相交于点G ,则下列结论不正确的是( )A .BE =AFB .∠DAF =∠BEC C .AG ⊥BED .∠AFB +∠BEC =90°16.如图,△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且l 1、l 2之间的距离为1,l 2、l 3之间的距离为3,则AC 的长是( )A .4B .5C .D .10二、填空题17.化简:2)2)⋅ =____.18.将正比例函数2y x =-的图像向上平移4个单位,则平移后所得函数解析式是____. 19.定义新运算“☆”:对于任意实数a 和b ,规定:²a b a ab =-☆.例:2232232=-⨯=-☆.则2(1)x -=☆_____.20.如图A 1B 1C 1中,A 1B 1=8,B 1C 1=4,A 1C 1=6,依次连接A 1B 1C 1的三边中点,得到A 2B 2C 2;再依次连接A 2B 2C 2三边中点,得到A 3B 3C 3;….则666A B C △的周长是________.三、解答题 21.计算题(1)(2)(0122.作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为_________.(2)如下图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,分别画三条线段AB 、CD 、EF ,使AB CD =EF②在图2中,画三角形ABC ,使AB =3、BC =CA ③在图3中,画平行四边形ABCD ,使45A ∠=︒,且面积为6.23.某校举行了“珍爱生命,预防溺水”主题知识竞赛活动,八(1)、八(2)班各选取五名选手参赛.两班参赛选手成绩依次如下:(单位:分) 甲:8,8,7,8,9 乙:5,9,7,10,9学校根据两班的成绩绘制了如下不完整的统计图表:根据以上信息,请解答下面的问题:(1)a= ,b= ,c= ;(2)学校根据这些学生的成绩,确定八(1)班为获胜班级,请问学校评定的依据是什么?(3)若八(2)班又有一名学生参赛,考试成绩是8分,则八(2)班这6名选手成绩的平均数与5名选手成绩的平均数相比会.(选填“变大”“变小”或“不变”)24.如图,∠A=∠B=40°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:APM BPN;(2)当α等于多少度时,以A、M、B、N为顶点的四边形是菱形?25.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y万元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?26.如图,在平面直角坐标系中,矩形ABCD顶点A、B、C的坐标分别为(0,6)、(0,2)、(4,2),直线l:y=kx+5-3k(k>0).(1)点D的坐标是;(2)若直线l:y=kx+5-3k经过点D,求直线l的解析式;(3)在(2)的条件下,若直线l与BC、x轴分别交于点E、F,求CEF的面积;(4)在(2)的条件下,若点P(x,y)是第一象限内直线l上的一个动点,当点P运动过程中,是否存在CEP为等腰三角形?若存在直接写出满足条件的点P的个数.参考答案1.A【分析】根据最简二次根式的定义逐个判断即可.【详解】解:AB的被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;C=的被开方数中的因数不是整数,不是最简二次根式,故本选项不符合题意;D题意;故选:A.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键,注意:满足下列两个条件的二次根式,叫最简二次根式:①被开方数的因数是整数,因式是整式,②被开方数中不含有能开得尽方的因数或因式.2.C【分析】根据二次根式有意义的条件:被开方数大于或等于0,可以求出x的范围.【详解】由题意得:x-3≥0,解得:x≥3,故选C.【点睛】本题考查了求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.D【分析】先求出两小边的平方和,再求出最长边的平方,看看是否相等即可.【详解】解:A.∵52+122=132,∴以a、b、c为边能组成直角三角形,故本选项不符合题意;B.∵62+82=102,∴以a、b、c为边能组成直角三角形,故本选项不符合题意;C.∵)222,∴以a、b、c为边能组成直角三角形,故本选项不符合题意;D.∵22+32≠42,∴以a、b、c为边不能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两边a、b的平方和等于第三边c 的平方,那么这个三角形是直角三角形.4.D【分析】由平行四边形的性质得出∠AEB=∠CBE,由角平分线的定义和邻补角关系得出∠ABE=∠CBE=∠AEB=180°-∠BED=40°,再由三角形内角和定理即可得出∠A的度数.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=140°,∴∠ABE=∠CBE=∠AEB=180°-∠BED=40°,∴∠A=180°-∠ABE-∠AEB=100°.故选:D.【点睛】本题考查了平行四边形的性质、三角形内角和定理;熟练掌握平行四边形的性质,求出∠ABE=∠CBE=∠AEB是解决问题的关键.5.D 【分析】先根据二次根式的乘法运算以及二次根式的性质化简,即可求得3的范围. 【详解】3=+263536∴< 故选D 【点睛】本题考查了二次根式的乘法运算与二次根式的性质,无理数的估算,将已知式子化简是解题的关键. 6.B 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键. 7.A 【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解即可. 【详解】由一次函数21y x =-+可知,20k =-<, ∴y 随x 的增大而减小, ∵34-<,∴12y y >, 故选:A . 【点睛】本题考查一次函数的性质,熟知一次函数的增减性质是解题的关键. 8.D 【分析】先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可. 【详解】由题意知,函数关系为一次函数y=-2x+4,由k=-2<0可知,y 随x 的增大而减小,且当x=0时,y=4, 当y=0时,x=2. 故选D . 【点睛】本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-2x+4,然后根据一次函数的图象的性质求解. 9.C 【分析】由数轴可知a <0,b >0,所以b -a >0,化简即可解答. 【详解】解:由数轴可知a <0,b >0, ∴b -a >0,b a -()b b a =-- b b a =-+ a =,故选:C . 【点睛】本题主要考查了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.10.B【分析】根据勾股定理,可求出AD 、BD 的长,则AD +BD -AB 即为橡皮筋拉长的距离.【详解】解:Rt △ACD 中,AC =12AB =4cm ,CD =3cm ;根据勾股定理,得:AD cm );∴AD +BD -AB =2AD -AB =10-8=2cm ;故橡皮筋被拉长了2cm .故选:B .【点睛】本题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.11.B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线y ax b =-与直线1y mx =+交于点(2,3)A ,∴方程组1ax y b mx y -=⎧⎨-=-⎩即1y ax b y mx =-⎧⎨=+⎩的解是23x y =⎧⎨=⎩. 故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.12.B【分析】由系数k 可判断A 、D 选项;利用不等式可判断C 选项;令0y =可求得与x 轴的交点坐标,可判断B 选项,即可得出答案.【详解】∵一次函数34y x =-+中,30k =-<,∴y 随x 的增大而减小,故A 选项正确;又∵4b =,∴与y 轴的交点在x 轴的上方,∴直线经过第一、二、四象限,故D 选项正确;∵当0x =时,4y =,且y 随x 的增大而减小,∴当0x >时,4y <,故C 正确;在34y x =-+中令0y =, 解得:43x =, ∴直线与x 轴的交点坐标为(43,0), 故B 选项错误;故选:B .【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性、与坐标轴的交点坐标是解题的关键,注意与不等式相结合.13.A【分析】根据尺规作图的痕迹,MN 是AC 的垂直平分线、AM 是DAC ∠的平分线,再根据矩形的性质即可得到结论.【详解】解:根据尺规作图的痕迹,得:MN 是AC 的垂直平分线、AM 是DAC ∠的平分线,且交点M 在CD 上,∴AM =MC ,∠MCA =∠MAC =∠DAM .∵AB //CD ,∴∠MCA =∠CAB .∵四边形ABCD 是矩形,∴∠MCA =30°,∠CMN =60°.∴直线MN 与CB 相交,且夹角为30°.故选:A .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,角平分线的定义,熟记各图形的性质并准确识图是解题的关键.14.C【分析】因为购买数量超过20箱,所以总金额分为两部分,一部分是单价为80元,数量为20箱的金额,另一部分是()20x -箱,按定价七折计算的金额,由此列式即可.【详解】解:∵ 20x >∴y 与x 的函数式为:()0.780208020y x =⨯-+⨯故选:C【点睛】本题考查实际问题中列函数关系式,学会分析数量之间的关系是解题的重点.15.D【分析】分析图形,根据正方形及三角形性质找到各角边的关系即可求解.【详解】解:∵ABCD 是正方形∴∠ABF =∠C =90°,AB =BC∵BF =CE∴△ABF ≌△BCE∴AF =BE (A 正确)∵90BEC CBE ∠+∠=︒,∠BF A =∠BEC ,∴90AFB CBE ∠+∠=︒ ,∵CBE BEC ∠≠∠ ,∴90AFB BEC ∠+∠≠︒(D 错误)∵∠BAF +∠DAF =90°,∠BAF +∠BF A =90°∴∠DAF =∠BEC (B 正确)∵∠BAF =∠CBE ,∠BAF +∠AFB =90°∴∠CBE +∠AFB =90°∴AG ⊥BE (C 正确)故选D .【点睛】此题主要考查了学生对正方形的性质及全等三角形的判定的掌握情况.熟练掌握正方形的性质及全等三角形的判定是解题关键.16.C【分析】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G ,证明△ABE ≌△BCF ,得到BF =AE =3,CF =4,运用勾股定理计算即可.【详解】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G ,∵1l ∥2l ∥3l ,∴CG ⊥2l ,∴AE =3,CG =1,FG =3,∵∠ABC =90°,AB =BC ,∴∠ABE +∠CBF =90°,∠ABE +∠BAE =90°,∴∠CBF =∠BAE ,∴△ABE ≌△BCF ,∴BF =AE =3,CF =4,∴BC ,∴AC故选C .【点睛】本题考查了平行线间的距离,三角形的全等和性质,勾股定理,熟练掌握三角全等判定,灵活运用勾股定理是解题的关键.17.1【分析】直接运用平方差公式求解即可.【详解】解:原式222541=-=-=.故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解题关键.18.24y x =-+【分析】根据平移规律可得,平移后点的坐标变换规律是“上加下减,左减右加”,根据这一规律,求解即可.【详解】解:∵正比例函数y =−2x 经过原点(0,0),∴将正比例函数y =−2x 向上平移4个单位后,经过点(0,4),且k 值不变,∴将正比例函数y =−2x 向上平移4个单位后,解析式为y =−2x +4.故答案为y =−2x +4.【点睛】本题考查正比例函数与一次函数的图象和性质.一次函数通过平移后,k 值不变. 19.6-2x x +6【分析】根据新定义的运算法则计算即可.【详解】22(1)22(1)62x x x -=--=-☆,故答案是:6-2x .【点睛】本题考查新定义下的实数运算.理解题意掌握新定义的运算法则是解答本题的关键. 20.916## 【分析】 根据三角形的中位线的性质先求解22211119,2A B C A B C C C ==333222111211,22A B C A B C A B C C C C ⎛⎫== ⎪⎝⎭从而归纳得到:6665118,2A B C C⎛⎫=⨯ ⎪⎝⎭从而可得答案. 【详解】 解: A 1B 1=8,B 1C 1=4,A 1C 1=6,222,,A B C 分别是A 1B 1C 1的三边中点,2211221122111114,3,2,222A B A B A C AC B C B C ∴====== 22211119,2A B C A B C C C ∴==同理可得:333222111211,22A B C A B C A B C C C C ⎛⎫== ⎪⎝⎭ 从而可得:66651918.216A B C C ⎛⎫=⨯= ⎪⎝⎭ 故答案为:9.16【点睛】 本题考查的是三角形的中位线的性质,掌握“三角形的中位线等于第三边的一半”是解题的关键.21.(1)(2)-1【分析】(1)先化成最简二次根式,再进行合并计算;(2)根据零指数幂、二次根式除法法则计算.【详解】解:(1)==(2)0(1=1-2=-1.【点睛】本题考查零指数幂、二次根式的加减乘除运算法则,比较基础.22.(1(2)①见解析;②见解析;③见解析【分析】(1)根据勾股定理计算即可;(2)答案不唯一,根据勾股定理计算画出即可.【详解】(1)∵长方形的长为3,宽为2,∴(2)只要画图正确可(不唯一)①三条线段AB、CD、EF如图1所示:②三角形ABC如图2所示:③平行四边形ABCD如图3 所示:.【点睛】本题考查了勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定与性质是解题的关键.23.(1)8,8,9;(2)方差越小,越稳定;(3)不变【分析】(1)根据数据中平均数、众数和中位数的定义进行计算即可;(2)根据方差的意义:方差越小,数据越稳定,即可得出八(1)班获胜的判断理由;(3)分别计算5名学生和6名学生的平均成绩进行比较即可.【详解】解:(1)乙的平均数为:59710985a++++==;甲中出现次数最多的数为8,∴8b=;将乙进行排序后为:5 7 9 9 10,∴9c=;(2)根据图表中:0.4 3.2<,∴学校评定的依据为:方差越小,数据越稳定;(3)八(2)班五名学生的平均成绩为:59710985++++=;八(2)班六名学生的平均成绩为:597109886+++++=;∴两次平均成绩不变.【点睛】题目主要考查数据中平均数、中位数、众数的定义及方差的意义,准确理解各个数的定义时解题关键.24.(1)见解析;(2)90°【分析】(1)利用ASA判定定理进行证明即可;(2)根据(1)能得出对角线互相平分,得出是平行四边形,即当∠BPN=90°时,AB⊥MN,以A、M、B、N为顶点的四边形是菱形.【详解】(1)证明:P为AB中点,∴P A=PB,在△APM和△BPN中,APM BPN PA PBA B∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APM≅△BPN;(2)连接MB、NA,由(1)知△APM≅△BPN,∴PM =PN ,P A =PB ,∴四边形MBNA 为平行四边形,∴当∠BPN =90°时,AB ⊥MN ,∴四边形AMBN 为菱形.【点睛】本题考查了三角形全等的判定及性质、菱形的判定,解题的关键是掌握相关的判定定理. 25.(1)y =200x +12000;(2)该经销商有三种购进电脑的方案可供选择;(3)当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元【分析】(1)根据利润的计算公式,先求出A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,购进A 型电脑x 台,则购进B 型电脑为()30x -台,即可得出y 与x 的函数关系;(2)根据题意列出相应不等式组,求解,然后依据电脑台数为整数即可确定有几种方案; (3)根据(1)中一次函数性质,可得当x 取最大值22时,获利最大,代入即可求出最大利润.【详解】解(1)根据题意:购进A 型电脑x 台,则购进B 型电脑为()30x -台,A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,依据题意可得:y 与x 的函数关系式为:()()()480042004000360030?20012000y x x x =-+--=+, 即为:20012000y x =+;(2)由题意得:200120001600042003600(30)121200x x x +≥⎧⎨+-≤⎩ 解得2022x ≤≤,∵x 为整数 ,∴x 取20、21或22,即该经销商有三种购进电脑的方案可供选择;(3)由(1)知:20012000y x =+,∵2000>,∴y 随x 的增大而增大,即当x 取最大值22, 308x -=时,y 有最大值,y 最大=200×22+12000=16400(元)∴当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元.【点睛】题目主要考查一次函数的应用、不等式的应用,理解题意列出相应方程时解题关键. 26.(1)(4,6);(2)y =x +2;(3)4;(4)存在,满足条件的点P 的个数是3【分析】(1)根据题意,点D 的横坐标与点C 横坐标相等,点D 的纵坐标与点A 相等,据此解答; (2)把点D 的坐标代入解析式中,列方程解答;(3)令2y =求得E (0,2),得到E ,B 重合,再根据三角形面积公式求解;(4)分别以C 、E 为圆心,CE 的长为半径画弧,找到与直线l 在第一象限的交点为两个,再作CE 的垂直平分线,与直线l 在第一象限的交点为一个,共三个.【详解】解:(1)根据题意,可得D (4,6);(2)若直线y =kx +5-3k 经过点D ( 4,6),则:6=4k +5-3k解得:k =1,∴直线l 的解析式为y =x +2(3)由(2)得:直线l 的解析式为y =x +2,当y =2时,x =0,∴E (0,2)即E ,B 重合,又∵C (4,2) B (0,2) ,∴EC =4 ,OB =2,∴S △CEF =CE ×OB ×12=4(4)如图,存在;满足条件的点P 的个数是3【点睛】本题考查待定系数法求函数解析式、三角形面积公式、等腰三角形的判定、垂直平分线的性质,综合性较强,熟练掌握基础知识是关键.。

2019-2020学年河北省保定市唐县八年级下学期期末数学试卷 (含部分答案)

2019-2020学年河北省保定市唐县八年级下学期期末数学试卷 (含部分答案)

2019-2020学年河北省保定市唐县八年级第二学期期末数学试卷一、选择题(共16小题).1.要使式子有意义,则x的取值范围是()A.x>0B.x≥﹣2C.x≥2D.x≤22.一次函数y=﹣2x+3的图象所经过的象限是第()象限A.一、二、三B.二、三、四C.一、三、四D.一、二、四3.下列各组数为边长,能构成直角三角形的是()A.2、3、4B.3、4、6C.5、12、13D.6、7、114.下列各式中,最简二次根式是()A.B.C.D.5.下列计算正确的是()A.B.C.=6D.=4 6.若把函数y=2x﹣3图象向上平移3个单位长度,得到图象对应的函数解析式为()A.y=2x B.y=2x﹣6C.y=4x﹣3D.y=﹣x﹣37.有一组统计数据:50、60、70、65、85、80、80.则对数据描述正确的是()A.中位数是65B.平均数80C.众数是80D.方差是858.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1B.2C.3D.49.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法错误的是()A.乙晚出发1小时B.乙出发3小时后追上甲C.甲的速度是4千米小时D.乙先到达B地10.一次函数y=2x﹣1的图象大致是()A.B.C.D.11.已知四边形ABCD是平行四边形,下列结论错误的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形12.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定13.如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为()A.(﹣5,4)B.(﹣5,5)C.(﹣4,4)D.(﹣4,3)14.如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2,则AC=()A.1B.2C.3D.415.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆.设直线AB左边阴影部分的面积为S1,直线AB右边阴影部分的面积和为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定16.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊中的四边形两对角线长度和为()A.29B.26C.24D.25二、填空题(本大题4个小题,每小题3分,共12分.把答案写在题中横线上)17.化简:=.18.若函数y=2x+(1﹣m)是正比例函数,则m的值是.19.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于.20.阅读下面材料:在数学课上,老师提出如下问题:已知:如图1,△ABC及AC边的中点O.求作:平行四边形ABCD.小敏的作法如下:①连接BO并延长,在延长线上截取OD=BO;②连接DA、DC.所以图2四边形ABCD就是所求作的平行四边形.老师说:“小敏的作法正确.”请回答:小敏的作法正确的理由是.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.计算题(1)(4﹣6)÷2;(2)(3﹣2)×2.22.如图网格是由边长为1的小正方形组成,点A、B、C位置如图所示,在网格中确定点D,使以A、B、C、D为顶点的四边形的所有内角都相等.(1)确定点D的位置,并画出以A、B、C、D为顶点的四边形,并说明理由.(2)求出(1)中所画出的四边形的周长和面积.23.已知:如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:AE=CF.24.疫情防控,人人有责,一方有难,八方支援.作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是.(2)求本次调查获取样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.25.如图,已知△ABC.以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE、CD.(1)请你完成图形(尺规作图,不写作法,保留作图痕迹);(2)证明:BE=CD.26.某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴18元月租费,然后每通话1分钟,再付话费0.15元;乙种使用者不缴月租费,每通话1分钟,付话费0.25元.若一个月内通话时间为x分钟,甲、乙两种的费用分别为y1、y2元,请解答下列问题:(1)试分别写出y1、y2与x之间的函数关系式.(2)在如图所示坐标系中,画出y1、y2的图象,并求通话时间多少分钟时,两种方式收费相同.(3)根据一个月通话时间,你认为选用哪种通信业务更合算?参考答案一、选择题1.D;2.D;3.C;4.D;5.A;6.A;7.C;8.B;9.B;10.B;11.A;12.C;13.A;14.B;15.A;16.B;二、填空题(本大题4个小题,每小题3分,共12分.把答案写在题中横线上)17.10;18.1;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 请你完成图形(尺规作图,不写作法,保留作图痕迹); (2) 证明:BE=CD。 26. 某电信公司开设了甲、乙两种市内移动通信业务。甲种使用者每月需缴18元月租费,然后每通话1分钟,再付话费 0.15元;乙种使用者不缴月租费,每通话1分钟,付话费0.25元。若一个月内通话时间为x分钟,甲、乙两种的费用分别为y 1、y2元,请解答下列问题:
A.
B.
C.
D.
11. 已知四边形ABCD是平行四边形,下列结论错误的是( ) A . 当AC=BD时,它是菱形 B . 当AC⊥BD时,它是菱形 C . 当∠ABC=90°时,它是矩形 D . 当AB=BC时,它是菱形 12. 如图,已知矩形ABCD中,R,P分别是DC、BC上的点,E,F分别是AP,RP的中点,当P在BC上从B向C移动而 R不动时,那么下列结论成立的是( )
A.1B.2C.3D.4 9. A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之 间的关系。下列说法错误的是( )
A . 乙晚出发1小时 B . 乙出发3小时后追上甲 C . 甲的速度是4千米/小时 D . 乙先到达B地 10. 一次函数y=2x-1的图象大致是( )
三 、 解 答 题 (本 大 题 共 6个 小 题 , 共 66分 . )
21. 计算题 (1) (2) 22. 如图网格是由边长为1的小正方形组成,点A、B、C位置如图所示,在网格中确定点D,使以A、B、C、D为顶点
的四边形的所有内角都相等。
(1) 确定点D的位置,并画出以A、B、C、D为顶点的四边形,并说明理由; (2) 求出(1)中所画出的四边形的周长和面积。 23. 已知:如图,E、F分别为 ABCD的边BC、AD上的点,且∠1=∠2。 求证:AE=CF。
A . 29 B . 26 C . 24 D . 25
二 、 填 空 题 (本 大 题 4个 小 题 , 每 小 题 3分 , 共 12分 。 )
17. 化简:
=________。
18. 若函数y=2x+(1-m)是正比例函数,则m的值是________。 19. 如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于_ _______。
A . 线段EF的长逐渐增大 B . 线段EF的长逐渐减小 C . 线段EF的长不改变 D . 线段EF的长不能确定
13. 如图,四边形ABCD是菱形,A(3,0),B(0,4),则点C的坐标为( )
A . (-5,4). B . (-5,5). C . (-4,4). D . (-4,3) 14. 如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )
河北省保定市唐县2019-2020学年八年级下学期数学期末考试试卷
一、选择题
1. 要使式子
有意义,则x的取值范围是( )
A . x>0 B . x≥-2 C . x≥2 D . x≤2 2. 一次函数y=-2x+3的图像所经过的象限是第( )象限。 A . 一、二、三 B . 二、三、四 C . 一、三、四 D . 一、二、四 3. 下列各组数为边长,能构成直角三角形的是( ) A . 2、3、4 B . 3、4、6 C . 5、12、13 D . 6、7、11 4. 下列各式中,最简二次根式是( ) A. B. C. D.
24. 疫情防控,人人有责,一方有难,八方支援。作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们 仍以自己的方式奉献一份爱心,因此学校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调
查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:
20. 阅读下面材料
在数学课上,老师提出如下问题:
已知:如图,△ABC及AC边的中点O。 求作:平行四边形ABCD。
小敏的作法如下:
①连接BO并延长,在延长线上截取OD=BO; ②连接DA、DC 所以四边形ABCD就是所求作的平行四边形。
老师说:“小敏的作法正确。” 请回答:小敏的作法正确的理由是________。
22.
23. 24. 25.
26.
A.1B.2C.3D.4 15. 如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆。设直线AB左边阴影部分的面积为1 , 直线AB 右边阴影部分的面积和为S2 , 则( )
A . S1=S2 B . S1<S2 C . S1>S2 D . 无法确定 16. 如图1,平行四边形纸片ABCD的面积为120,AD=20。今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三 角形纸片。若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示。则图形戊中的四边形两对角线长度和为( )
5. 下列计算正确的是( 若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( ) A . y=2x B . y=2x-6 C . y=4x-3 D . y=-x-3 7. 有一组统计数据:50、60、70、65、85、80、80。则对数据描述正确的是( ) A . 中位数是65 B . 平均数80 C . 众数是80 D . 方差是85 8. 如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为( )
(1) 本次接受随机抽样调查的学生人数为________人,图1中m的值是________。 (2) 求本次调查获取样本数据的平均数、众数和中位数; (3) 根据样本数据,估计该校本次活动捐款金额为10元的学生人数。 25. 如图,已知△ABC。以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE、CD。
(1) 试分别写出y1、y2与x之间的函数关系式。 (2) 在如图所示坐标系中,画出y1、y2的图像,并求通话时间多少分钟时,两种方式收费相同。 (3) 根据一个月通话时间,你认为选用哪种通信业务更合算? 参考答案 1. 2. 3. 4. 5. 6. 7. 8.
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
相关文档
最新文档