第一章习题带答案.pdf
高等数学课后习题答案--第一章
《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。
1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。
3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。
4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。
第一章 习题答案
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1-1 所示。
1-2 题1-2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电解 c u 增高,偏差电压 r 。
此时,-=r e u u 使c u 过程:系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。
系统方框图见图解1-3。
1-4 题1-4图是控制导弹发射架方位的电位器式随动系统原理图。
图中电位器1P 、2P 并联后跨接到同一电源0E 的两端,其滑臂分别与输入轴和输出轴相联结,组成方位角的给定元件和测量反馈元件。
输入轴由手轮操纵;输出轴则由直流电动机经减速后带动,电动机采用电枢控制的方式工作。
试分析系统的工作原理,指出系统的被控对象、被控量和给定量,画出系统的方框图。
题1-4图 导弹发射架方位角控制系统原理图解 当导弹发射架的方位角与输入轴方位角一致时,系统处于相对静止状态。
当摇动手轮使电位器1P 的滑臂转过一个输入角i θ的瞬间,由于输出轴的转角i o θθ≠,于是出现一个误差角o i e θθθ-=,该误差角通过电位器1P 、2P 转换成偏差电压o i e u u u -=,e u 经放大后驱动电动机转动,在驱动导弹发射架转动的同时,通过输出轴带动电位器2P 的滑臂转过一定的角度o θ,直至i o θθ=时,o i u u =,偏差电压0=e u ,电动机停止转动。
这时,导弹发射架停留在相应的方位角上。
只要o i θθ≠,偏差就会产生调节作用,控制的结果是消除偏差e θ,使输出量o θ严格地跟随输入量i θ的变化而变化。
《现代控制理论》课后习题全部答案(最完整打印版)
第一章习题答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。
解:系统的模拟结构图如下:系统的状态方程如下:阿令,则所以,系统的状态空间表达式及输出方程表达式为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。
解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。
解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。
解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式(1)画出其模拟结构图(2)求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4用三种方法计算以下矩阵指数函数。
(2)A=解:第一种方法:令则,即。
求解得到,当时,特征矢量由,得即,可令当时,特征矢量由,得即,可令则,第二种方法,即拉氏反变换法:第三种方法,即凯莱—哈密顿定理由第一种方法可知,2-5下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A阵。
第一章机械运动习题答案
习题(一)一、选择题1. 一质点在xy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。
当运动质点的运动方向与x 轴成45º角时,它的速率为[ B ]。
A .a ;B .a 2;C .2c ;D .224c a +。
2. 一质点以匀速率在xy 平面内运动,如图1-11所示。
则经轨道上的a 、b 、c 、d 四点时,质点的加速度最大的点是[ B ]。
A .aB .bC .cD .d3. 下列说法中正确的是( D )A . 加速度恒定不变时,物体的运动方向也不变;B .平均速率等于平均速度的大小;C. 当物体的速度为零时,加速度必定为零;D .质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度。
4. 设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的 曲线(如图1-99所示)是[ D ]。
二、填空题1. 一质点沿x 轴运动,其运动方程为225t t x -+=(SI )。
质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为-2m/s 2。
2. 质点作直线运动,其速度与时间的关系曲线如图1-100所示。
图中过A 点的一切线AC 的斜率表示 t 1 时刻加速度 ,割线AB 的斜率表示 t 1 时刻到t 2时刻的平均加速度 ,曲线下的面积()⎰21t t dt t v 表示 从t 1时刻到t 2时刻质点的位移 。
三、计算题1. 已知质点的运动方程为t x 2=,24t y -=(SI )。
试求:(1)试导出质点的轨道方程,并图示质点的运动轨迹;(2)计算t=1s 和t=2s 时质点的位置矢量,并计算1s 到2s 之间质点的平均速度和位移;(3)计算质点在第2秒末时的速度和加速度,并说明质点作何种运动?答:(1)由2x t =得2xt = ,代入22y t =-224x =-即为轨道方程。
大学物理习题答案解析第一章
第一章 质点运动学1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故tst ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x .下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);tsd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v =(B) 匀减速运动,θcos 0v v = (C) 变加速运动,θcos 0v v =(D) 变减速运动,θcos 0v v = (E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θlh l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗? 1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后4.0 s 内的位移的大小; (2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t =4.0 s 时质点速度和加速度可用tx d d 和22d d t x两式计算.解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB AB AB t t a v v (匀加速直线运动)0=BC a (匀速直线运动)2s m 10-⋅-=--=CD CD CD t t a v v (匀减速直线运动)根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有2021t t x x ++=v由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求: (1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r*(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为m 91.5d 4d 42=+==⎰⎰x x s s Q P1 -9 质点的运动方程为23010t t x +-= 22015t t y -=式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1 -10 一升降机以加速度1.22 m·s-2上升,当上升速度为2.44 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距2.74 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht (2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht (2) 由于升降机在t 时间内上升的高度为2021at t h +='v则 m 716.0='-=h h d1 -11 一质点P 沿半径R =3.0 m 的圆周作匀速率运动,运动一周所需时间为20.0s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t Tθπ2=,则质点P 的参数方程为t T R x π2sin=', t T R y π2cos -='坐标变换后,在O x y 坐标系中有t TR x x π2sin='=, R t TR y y y +-=+'=π2cos0 则质点P 的位矢方程为j i r ⎪⎭⎫ ⎝⎛+-+=R t T R t T R π2cos π2sinj i )]π1.0(cos 1[3)π1.0(sin 3t t -+=(2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t vi j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高20.0 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至20.0 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为132s m 1094.1cos d d --⋅⨯===tωωh t s v 当杆长等于影长时,即s =h ,则s 606034πarctan 1⨯⨯===ωh s ωt 即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有⎰⎰=tt a 0d d 0vv v得 03314v v +-=t t (1)由⎰⎰=txx t x 0d d 0v得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0=0.75 m .于是可得质点运动方程为75.0121242+-=t t x 1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y 1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==ttt t 0)d 46(d d j i a vvj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 ⎰⎰⎰+==tt r r t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值. 解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故θΔcos 2Δ212221v v v v -+=v)Δcos 1(2θ-=v而vv θR s t ΔΔΔ==所以θR θt a Δ)cos Δ1(2ΔΔ2v -==v (2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r =2.0t i +(19.0 -2.0t 2 )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1=1.0s 到t 2 =2.0s 时间内的平均速度;(3) t 1 =1.0s时的速度及切向和法向加速度;(4) t =1.0s 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即t ΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ.解 (1) 由参数方程x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 222220.4d d d d )(-⋅-=+=s m ty t x t 则t 1 =1.00s时的速度v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t t tt e e e a 222s 1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出2.0s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gy x v(2) 视线和水平线的夹角为 o 5.12arctan==x y θ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gt αx yarctan arctan == 取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t 2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a n 1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得)cos(cos sin 2)sin sin cos (cos cos sin 2220220βααg ββαβααg βx OP +=-==v v 解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有βgt αt βαsin 212πsin 2πsin 20=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--v r 从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得αβsin 21tan = 由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 g h ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为22221ωgh R R x r +=+= (2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为gR 2sin 0v = 为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前25.0 m 处以20.0 m·s-1 的初速率罚任意球,已知球门高为3.44 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程 222)tan 1(2tan x θg θx y +-=v以x =25.0 m,v =20.0 m·s-1 及3.44 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <18.89°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取71.11°与18.89°之间的任何值.当倾角取值为27.92°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为bt ts -==0d d v v其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为R )(402222bt b a a a a t tn -+=+=v 其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n 20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v = (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为b s s s t 2200v =-= 因此质点运行的圈数为bRR s n π4π220v == 1 -23 一半径为0.50 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =2.0s 时测得轮缘一点的速度值为4.0 m·s-1.求:(1) 该轮在t′=0.5s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在2.0s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数322s rad 2-⋅===Rtt ωk v 所以 22)(t t ωω== 则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω2s rad 0.24d d -⋅='==t tωα 2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+= ()()2222s m 01.1-⋅=+=R ωR αa在2.0s内该点所转过的角度rad 33.532d 2d 203202200====-⎰⎰t t t t ωθθ 1 -24 一质点在半径为0.10 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =2.0s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到. 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n 2s 2s m 80.4d d -=⋅==t ωr a t t(2) 当22212/t n t a a a a +==时,有223n t a a =,即 ()()422212243t r rt = 得 3213=t此时刻的角位置为 rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt = t =0.55s1 -25 一无风的下雨天,一列火车以v 1=20.0 m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得 1o 12s m 36.575tan -⋅==v v 1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hlαarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有θθαcos sin arctan221v v v -= 而要使hlαarctan ≥,则 hl θθ≥-cos sin 221v v v ⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v 1 -27 一人能在静水中以1.10 m·s-1 的速度划船前进.今欲横渡一宽为1.00 ×103 m 、水流速度为0.55 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v '=u αarcsin ,则船到达正对岸所需时间为。
运筹学教程(第三版)习题答案(第一章)
b 3/2 1
c x1 0 1 0
d x2 1 0 0
0 x3 5/14
0 x4 -3/4
-2/14 10/35 -5/14d+2/14c 3/14d-10/14c
School of Management
运筹学教程
第一章习题解答
之间时最优解为图中的A点 当c/d在3/10到5/2之间时最优解为图中的 点 ; 当 在 到 之间时最优解为图中的 c/d大于 且c大于等于 时最优解为图中的 点;当c/d 大于5/2且 大于等于 时最优解为图中的B点 大于等于0时最优解为图中的 大于 小于3/10且 d大于 时最优解为图中的 点 ; 当 c/d大于 大于0时最优解为图中的 小于 且 大于 时最优解为图中的C点 大于 5/2且c小于等于 时或当 小于 小于等于0时或当 小于3/10且d小于 时最优解 小于0时最优解 且 小于等于 时或当c/d小于 且 小于 为图中的原点。 为图中的原点。
page 7 14 March 2012
School of Management
运筹学教程
第一章习题解答
对下述线性规划问题找出所有基解, 1.3 对下述线性规划问题找出所有基解,指出哪 些是基可行解,并确定最优解。 些是基可行解,并确定最优解。
max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ≥ 0( j = 1, L , 6) ,
School of Management
机械制造技术基础(第2版)第一章课后习题标准答案
《机械制造技术基础》部分习题参考解答第一章绪论1-1 什么是生产过程、工艺过程和工艺规程?答:生产过程——从原材料(或半成品)进厂,一直到把成品制造出来的各有关劳动过程的总称为该工厂的过程。
工艺过程——在生产过程中,凡属直接改变生产对象的尺寸、形状、物理化学性能以及相对位置关系的过程。
工艺规程——记录在给定条件下最合理的工艺过程的相关内容、并用来指导生产的文件。
1-2 什么是工序、工位、工步和走刀?试举例说明。
答:工序——一个工人或一组工人,在一个工作地对同一工件或同时对几个工件所连续完成的那一部分工艺过程。
工位——在工件的一次安装中,工件相对于机床(或刀具)每占据一个确切位置中所完成的那一部分工艺过程。
工步——在加工表面、切削刀具和切削用量(仅指机床主轴转速和进给量)都不变的情况下所完成的那一部分工艺过程。
走刀——在一个工步中,如果要切掉的金属层很厚,可分几次切,每切削一次,就称为一次走刀。
比如车削一阶梯轴,在车床上完成的车外圆、端面等为一个工序,其中,n, f, a p不变的为一工步,切削小直径外圆表面因余量较大要分为几次走刀。
1-3 什么是安装?什么是装夹?它们有什么区别?答:安装——工件经一次装夹后所完成的那一部分工艺过程。
装夹——特指工件在机床夹具上的定位和夹紧的过程。
安装包括一次装夹和装夹之后所完成的切削加工的工艺过程;装夹仅指定位和夹紧。
1-4 单件生产、成批生产、大量生产各有哪些工艺特征?答:单件生产零件互换性较差、毛坯制造精度低、加工余量大;采用通用机床、通用夹具和刀具,找正装夹,对工人技术水平要求较高;生产效率低。
大量生产零件互换性好、毛坯精度高、加工余量小;采用高效专用机床、专用夹具和刀具,夹具定位装夹,操作工人技术水平要求不高,生产效率高。
成批生产的毛坯精度、互换性、所以夹具和刀具等介于上述两者之间,机床采用通用机床或者数控机床,生产效率介于两者之间。
1-5 试为某车床厂丝杠生产线确定生产类型,生产条件如下:加工零件:卧式车床丝杠(长为1617mm ,直径为40mm ,丝杠精度等级为8级,材料为Y40Mn );年产量:5000台车床;备品率:5%;废品率:0.5%。
第一章 绪论 (部分习题答案)
第1周部分作业答案4. (1) 已知近似值*x 有5位有效数字,试求其相对误差限.(2) 已知近似值*x 的相对误差限是0.03%,问*x 至少有几位有效数字?解 设*x 是x 近似值,且*120.10mn x a a a =±⨯ ,其中n a a a ,,,21 是0到9之间的自然数,11a ≥,m 为整数。
(1) 因为*x 有5位有效数字,所以由定理1.2.1 (1) 知:*5144*1111111010100.005%222x x a a x-+---≤⨯=⨯⨯≤⨯=,即*x 的相对误差限为0.005%.(2) 因为*121210.100.100.(1)10m m m n n x a a a a a a a =±⨯=⨯<+⨯ ,且*x 的相对误差限为0.03%,所以***3311*0.03%0.(1)100.30.(1)100.510mm m x x x xx a a x----=⨯<⨯+⨯=⨯+⨯<⨯,故由定义1.2.3知:即*x 至少有3位有效数字。
3. (1) Suppose the approximation *x has 5 significant digits, try to find therelative error bound of *x .(2) Determine the minimal number of significant digits of the approximation *xsuch that the relative error bound of *x is 0.03%.Solution. Suppose*1210.10,19,09,2,3,,mn i x a a a a a i n=±⨯≤≤≤≤= ,is the approximation to x .(1) Since *x has 5 significant digits, part (1) of Theorem 1.2.1 gives*5144*1111111010100.005%222x x a a x-+---≤⨯=⨯⨯≤⨯=,that is, the relative error bound of *x is 0.005% from Definition 1.2.3.(2) Since*121210.100.100.(1)10mmmn n x a a a a a a a =±⨯=⨯<+⨯ ,and the relative error bound of *x is 0.03%, we have***3311*0.03%0.(1)100.30.(1)100.510mm m x x x xx a a x----=⨯<⨯+⨯=⨯+⨯<⨯,that is, *x retains at least 3 significant digits from Definition 1.2.5.。
第一章物联网习题及答案
第一章习题及答案1、中国对物联网是怎样定义的?答:我国信息技术标准化技术委员会所属传感器网络标准工作组的2009年9月的工作文件,对传感器网络的定义是:传感器网络(Sensor Network)以对物理世界的数据采集和信息处理为主要任务,以网络为信息传递载体,实现物与物、物与人、人与物之间信息交互,提供信息服务的智能网络信息系统。
我国工信部和江苏省联合向国务院上报的《关于支持无锡建设国家传感网创新示范区(国家传感信息中心)情况的报告》中传感网的定义是:传感网(Sensing Network),是以感知为目的,实现人与人、人与物、物与物全面互联的网络。
其突出特征是通过传感器等方式获取物理世界的各种信息,结合互联网、移动通信网等网络进行信息的传送与交互,采用智能计算技术对信息进行分析处理,从而提升对物质世界的感知能力,实现智能化的决策和控制。
2、说明物联网、传感网与泛在网之间的关系。
答:传感网是物联网的组成部分,物联网是互联网的延伸,泛在网是物联网发展的愿景。
传感器网络、物联网和泛在网之间的关系如图所示。
3、说明物联网的体系架构及各层次的功能。
答:物联网通常被公认为有3个层次,从下到上依次是感知层、网络层和应用层。
物联网的感知层主要完成信息的采集、转换和收集;网络层主要完成信息传递和处理;应用层主要完成数据的管理和数据的处理,并将这些数据与各行业应用的结合。
4、说明物联网的技术体系架构及各层次的关键技术。
答:物联网的技术体系框架包括感知层技术、网络层技术、应用层技术和公共技术。
感知层是物联网发展和应用的基础,包括传感器等数据采集设备,是数据接入到网关前的传感器网络RFID技术、传感控制技术、短距离无线通讯技术是感知层涉及的主要技术。
物联网的网络层一般建立在现有的移动通讯网或互联网的基础之上。
实现更加广泛的互联功能。
关键技术:包含了现有的通信技术,如移动通信技术、有线宽带技术、公共交换电话网(PSTN)技术、Wi-Fi通信技术等,也包含了终端技术,如实现传感网与通信网结合的网桥设备、为各种行业终端提供通信能力的通信模块等。
化工原理第四版第一章课后习题答案
第一章 流体的压力【1-1】容器A 中的气体表压为60kPa ,容器B 中的气体真空度为.⨯41210Pa 。
试分别求出A 、B 二容器中气体的绝对压力为若干帕,该处环境的大气压力等于标准大气压力。
解 标准大气压力为101.325kPa容器A 的绝对压力 ..p kPa ==A 101325+60161325 容器B 的绝对压力 ..B p kPa =-=1013251289325【1-2】某设备进、出口的表压分别为-12kPa 和157kPa ,当地大气压力为101.3kPa 。
试求此设备的进、出口的绝对压力及进、出的压力差各为多少帕。
解 进口绝对压力 ..进101312893 =-=p kPa出口绝对压力 ..出101 31572583 =+=p kPa 进、出口的压力差..p kPa p kPa ∆=--=+=∆=-=157(12)15712169 或 258 389 3169流体的密度【1-3】正庚烷和正辛烷混合液中,正庚烷的摩尔分数为0.4,试求该混合液在20℃下的密度。
解 正庚烷的摩尔质量为/kg kmol 100,正辛烷的摩尔质量为/kg kmol 114。
将摩尔分数换算为质量分数 正庚烷的质量分数 (104100)03690410006114ω⨯==⨯+⨯正辛烷的质量分数 ..2103690631ω=-=从附录四查得20℃下正庚烷的密度/kg m ρ=31684,正辛烷的密度为/kg m ρ=32703 混合液的密度 /..3169603690631684703ρ==+m kg m【1-4】温度20℃,苯与甲苯按4:6的体积比进行混合,求其混合液的密度。
解 20℃时,苯的密度为/3879kg m ,甲苯的密度为/3867kg m 。
混合液密度 ../3879048670.68718 ρ=⨯+⨯=m kg m 【1-5】有一气柜,满装时可装36000m 混合气体,已知混合气体各组分的体积分数为2224H N COCO CH .04 0.2 0.32 0.07 0.01操作压力的表压为5.5kPa ,温度为40℃。
第一章 习题与答案
第一章习题与答案一、单选题1、理想与空想的区别在于()。
①是否具有主观能动性②是否是自然形成的③是否符合客观规律性④是否是创新思维的结果3、人的理想确立的关键时期是()。
①中年②童年③老年④青年4、追求崇高的理想需要()信念。
①基本的②坚定的③彻底的④一贯的7. 人们的世界观、人生观和价值观在奋斗目标上的集中体现是()①理想②信念③成才目标④道德品质8. 大学生中的共产党员和先进分子应树立的远大理想()① 共产主义的远大理想② 建设中国特色社会主义社会③实现中华民族的伟大复兴④ 提高中国的国际地位9 、现阶段我国各族人民的共同理想是()①实现各尽所能按需分配的共产主义社会。
②建设中国特色社会主义,实现中华民族伟大复兴。
③实现按劳分配的社会主义社会。
④人民生活达到温饱水平。
10 、一个人如果没有崇高理想或者缺乏理想,就会像一艘没有舵的船,随波逐流,难以顺利到达彼岸。
这主要说明了理想是()①人生的指路明灯②人们的主观意志和想当然③人们对未来缺乏客观根据的想象④ 人们对某种思想理论所抱的坚定不移的观念和真诚信服的态度11.“樱桃好吃树难栽,不下功夫花不开。
”理想是美好的,令人向往的,但理想不能自动实现。
把理想变为现实的根本途径是()①勇于实践、艰苦奋斗②认真学习科学理论③逐步确立坚定信念④大胆畅想美好未来13、当教师,要当一个模范教师;当科学家,要当一个对国家有突出贡献的科学家;当解放军战士,要当一个最英勇的解放军战士;当工人,要当一个新时代的劳动模范;当农民,要当一个对改变农村面貌有贡献的农民。
这些都是人生理想中()①生活理想的表现②社会理想的表现③道德理想的表现④职业理想的表现二、多选题1、理想的特征有①超前性②阶级性③科学性④主观性⑤时代性2、理想从对象上划分()。
①个人理想②道德理想③生活理想④ 社会理想⑤长远理想4、对于理想的错误认识有()。
①理想理想,有利就想②人的理想和信念是人生的精神支柱③没有理想的人一样生活的很开心④理想是明天的,只要今天过的好就可以了⑤凡是理想自然都可以实现5、无数事实证明,人有了明确的理想,才能在人生的追求上不断去攀登,最大限度地实现人生价值;人若没有明确的理想,就会像没有舵的小船,在生活的大海中迷失方向,甚至搁浅触礁。
高等数学1册(上海大学)第一章答案
《高等数学教程》习题答案第一章 习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2 ±±=+≠k k x ππ(5)),2,1,0()352,32( ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++3.0,22,22,215.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数 6.(1)是周期函数,π2=T (2)是周期函数,4=T(3)是周期函数,4=T (4)不是周期函数7.(1)acx b dx y-+-=(2)2arcsin31x y=(3)21-=-x e y (4)xxy -=1log2(5)2xx ee y --=8.(1)2,xa u u y-==(2)2,xue y u ==(3)cos ,lg ==u u y (4)xv tgv u u y 6,,2===(5)21,,cos ,xw e v v u arctgu yw-====(6)22,ln ,ln ,xw w v v uu y ====9.(1)]1,1[- (2) zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a,则=D Ф.10.4)]([xx =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ.11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h rh V <<-=π14.πααπααππ20,4)2(242223<<--=rV15.),2(,])[(32232+∞--=r r r h hr Vπ16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx xx f x x f3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123xx ++8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0(3)2+n n ,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n ,21(6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim==+-→→x f x f x x ,1)(lim 0=→x f x1)(lim-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim 习题1-4 (B)3.x x ycos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大.5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103;(5)231aa -; (6)23x ; (7)34; (8)1-.2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)nm ; (4)0;(5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a(5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ;(6)2π; (7)1; (8)2; (9)1; (10)x .2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0;(5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+.习题1-7 (A)1. 当0→x 时,34xx -比32xx +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α4.m =α6.(1)23;(2)⎪⎩⎪⎨⎧>∞=<n m n m n m ,,1,0; (3)21;(4)21; (5)ba ; (6)41.习题1-7 (B)1.(1)32; (2)2e; (3)21; (4)0;(5)1; (6)41-; (7)∞; (8)1.5.xx x x p 32)(23++=.6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点(4)0=x 为第二类间断点. 4.(1)1=x为可去间断点,补充32)1(=f ; (2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点.(5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a4.),2,1,0(22 ±±=-=n n a ππ5. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x.习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞21)(lim 0=→x f x ,58)(lim3-=-→x f x ,∞=→)(lim2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1;(9) ab; (10) 5e; (11) -1; (12) 2.4. 1=a5.1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点;(5)无间断点. 2.1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0; (5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D 二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f 2.]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7. 21 8. b a =9.5610. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα3.1lim =∞→n n x4. 45. 4e6. -507.aln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续.9.82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim时>=∞→a a nn 证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a nnn n n nn nh h h n n nh h a>++-++=+=∴ 22)1(1)1(εεan na h n><<<∴0 ∴取1][+=εaN ,当Nn >时,有ε<<=-na h a n n1,即1lim=∞→nn a(ⅱ)当1=a时,显然成立.(ⅲ)当10<<a 时,令11>=a b∴11limlim==∞→∞→nn nn ab∴1lim=∞→nn a综合(ⅰ),(ⅱ),(ⅲ),∴当0>a时,有1lim=∞→nn a .习题1-6 (B)3.设0,00>y x ,nn n y x x =+1,21nn n y x y+=+.证明:n n n n y x ∞→∞→=lim lim证明:2nn n n y x y x +≤),2,1,0(011 =≤≤∴++n y x n nnnn nn n n n n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0( =n由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛.设b y a x n n n n ==∞→∞→lim ,lim由21nn n y x y +=+,2limlimnn n n n y x y +=∴∞→∞→b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim.习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f ,试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.证明:令)1,0(,)()()(∈∀+-=l l x f x f x F)(x f在]1,0[上连续,)(l x f +在]1,[l l --上连续,)(x F ∴在]1,0[l -上连续. 又)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f0)1()0(≤-⋅∴l F F (ⅰ)若0)0(=F ,取0=x ,即)()0(l f f =(ⅱ)若0)1(=-l F ,取lx -=10,即)1()1(f l f =-(ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=.综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法)假设)(x f 在],[b a 变号,即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f)(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续.由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。
第一章练习题及答案
第⼀章练习题及答案第⼀章⼀、单项选择题(每⼩题1分)1.⼀维势箱解的量⼦化由来()a. ⼈为假定b. 求解微分⽅程的结果c. 由势能函数决定的d. 由微分⽅程的边界条件决定的。
答案:d.2.下列算符哪个是线性算符()a. expb. ▽2c. sind.答案:b.3.指出下列哪个是合格的波函数(粒⼦的运动空间为0→+∞)()a. sinxb. e-xc. 1/(x-1)d. f(x) = e x ( 0≤ x ≤ 1); f(x) = 1 ( x > 1)答案:b.4.基态氢原⼦径向分布函数D(r) ~ r 图表⽰() a. ⼏率随r 的变化b. ⼏率密度随r 的变化c. 单位厚度球壳内电⼦出现的⼏率随r 的变化d. 表⽰在给定⽅向⾓度上,波函数随r 的变化答案:c.5.⾸先提出微观粒⼦的运动满⾜测不准原理的科学家是()a.薛定谔b. 狄拉克c. 海森堡 c.波恩答案:c.6.⽴⽅势箱中22810ma h E <时有多少种状态()a. 11b. 3c. 7d. 2答案:c.7.⽴⽅势箱在22812mah E ≤的能量范围内,能级数和状态数为(),20 b. 6,6 c. 5,11 d. 6,17答案:c.8.下列函数哪个是22dxd 的本征函数()a. mx eb. sin 2xc. x 2+y 2d. (a-x)e -x答案:a.9.⽴⽅势箱中2287ma h E <时有多少种状态()a. 11b. 3c. 4d. 2 答案:c.10.⽴⽅势箱中2289ma h E <时有多少种状态()a. 11b. 3c. 4d. 2 答案:c.11.已知x e 2是算符x P的本征函数,相应的本征值为() a.ih 2 b.ih 4 c. 4ih d.πi h 答案:d.12.已知2e 2x 是算符xi ??-η的本征函数,相应的本征值为()a. -2b. -4i ηc. -4ihd. -ih/π答案:d.13.下列条件不是品优函数必备条件的是() a. 连续 b. 单值 c. 归⼀ d. 有限或平⽅可积答案:c. 16.氢原⼦基态电⼦⼏率密度最⼤的位置在r =()处a. 0b. a 0c. ∞d. 2 a 0答案:a.ψ的简并态有⼏个()17.类氢体系m43a. 16b. 9c. 7d. 3答案:a.18.对氢原⼦和类氢离⼦的量⼦数l,下列叙述不正确的是()a. 它的取值规定了m的取值范围b. 它的取值与体系能量⼤⼩有关c. 它的最⼤取值由解R⽅程决定d. 它的取值决定了轨道⾓动量M的⼤⼩答案:b.ψ的径向节⾯数为()321a. 4b. 1c. 2d. 0答案:d.ψ的径向节⾯数为()22.Li2+体系3pa. 4b. 1c. 2d. 0答案:b.的径向节⾯数为()23.类氢离⼦体系Ψ310a. 4b. 1c. 2d. 0答案:b.24.若l = 3 ,则物理量M z有多少个取值()a. 2b. 3c. 5d. 7答案:d.25.氢原⼦的第三激发态是⼏重简并的()a. 6b. 9c. 12d. 16答案:d.26.由类氢离⼦薛定谔⽅程到R,○H,Ф⽅程,未采⽤以下那种⼿段()b. 变量分离c. 核固定近似d. 线性变分法答案:d.27.电⼦⾃旋是()28.具有⼀种顺时针或逆时针的⾃转b. 具有⼀种类似地球⾃转的运动c. 具有⼀种⾮空间轨道运动的固有⾓动量d. 因实验⽆法测定,以上说法都不对。
天大物化第六版答案pdf
第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT,V=nRT/P求偏导:1.2气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg 的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT,n=PV/RT n=121600×300/8.314×300.13(mol)=14618.6molm=14618.6×62.5/1000(kg)=913.66kgt=972.138/90(hr)=10.15hr1.30℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT,PV=mRT/M w 甲烷在标准状况下的密度为=m/V=PM w/RT=101.325×16/8.314×273.15(kg/m3)=0.714kg/m31.4一抽成真空的球形容器,质量为25.0000g。
充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度按1g.cm-3计算。
解:球形容器的体积为V=(125-25)g/1g.cm-3=100cm3将某碳氢化合物看成理想气体:PV=nRT,PV=mRT/M wM w=mRT/PV=(25.0163-25.0000)×8.314×300.15/(13330×100×10-6)1M w=30.51(g/mol)1.5两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。
第一章习题解答及参考答案
∫
−∞
sin (ωx ) d x =1 πx x
又有
ω x ω sin π ( ω π x ) = ω sin c ω sin = π (ω π x ) π πx π π sin (ωx ) ∞ = ω →∞ πx 0 lim x=0 x≠0
∞
∞ ∞ x comb eiπx = ∑ δ ( x − m )eimπ = ∑ δ ( x − m )cos mπ 2 m = −∞ m = −∞
当 m = 奇数时, comb( x ) + comb( x )e
iπx
=0;
∞
当 m = 偶数时,令 m = 2n ,则 cos 2πx = 1 ,并且有:
1 2 1 − 2
dξ = 1 5 −x 2
3 5 ≤ x ≤ 时(见图(c)), 2 2
∫1Biblioteka 2 x−2dξ =④ 当x>
5 1 和 x < − 时,重叠面积等于零。 2 2
卷积后所得图形如附图 1-3 所示。
附图 1-3 习题[1-5](2)卷积结果的函数图形
[1-6]试用卷积定理计算下列各式。 (1) sinc ( x ) ∗ sinc ( x ) (2) F sinc ( x ) sinc ( 2 x )
∞ 1/ 2 x − ξ −1 x − ξ −1 x −1 dξ = ∫− ∞ rect(ξ ) rect dξ = ∫−1 / 2 rect 2 2 2
其中
x − ξ − 1 1 x − 2 ≤ ξ ≤ x rect = 2 其他 0 1 1 1 1 3 1 ≤ ξ ≤ ;当 ξ = − 时有 − ≤ x ≤ ,而当 ξ = 时有 2 2 2 2 2 2
第一章习题参考答案
习 题 参 考 答 案第一章 溶 液1. 温度、压力如何影响气体在水中的溶解度?2. 何谓亨利定律?何谓气体吸收系数?3. 亨利定律适应的范围是什么?4. 20℃,10.00mL 饱和NaCl 溶液的质量为12.003g ,将其蒸干后,得到NaCl 3.173g 。
求:(1)质量摩尔浓度;(2)物质的量浓度。
解:NaCl 的相对分子量为:58.5(1) 质量摩尔浓度:1A B B mol.kg 143.61000/)173.3003.12(5.58/173.3-=-==m n m (2) 物质的量浓度:1B B mol.L 424.51000/105.58/173.3-===V n c 5. 将8.4g NaHCO 3溶于水配成1000mL 溶液,计算该物质的量浓度。
解:NaHCO 3相对分子量为:84NaHCO 3的物质的量浓度:1B B mol.L 1.01000/100084/4.8-===V n c 6. 欲配制10.5mol ·L -1 H 2SO 4 500mL ,需质量分数为0.98的H 2SO 4(密度为1.84)多少毫升?解:H 2SO 4的相对分子量为:98设需质量分数为0.98的H 2SO 4V (mL ),则:1000/5005.109898.084.1⨯=⨯⨯V V =285.3mL7. 某病人需要补充钠(Na +)5g ,应补给生理盐水(0.154mol ·L -1)多少毫升? 解:Na +的式量为:23设需要生理盐水V mL ,则:0.154V /1000=5/23V =1412mL 。
8. 下列溶液是实验室常备溶液,试计算它们的物质的量浓度。
(1)浓盐酸(HCl )相对密度1.19,质量分数为0.38;(2)浓硝酸(HNO 3)相对密度1.42,质量分数为0.71;(3)浓硫酸(H 2SO 4)相对密度1.84,质量分数为0.98;(4)浓氨水(NH 3)相对密度0.89,质量分数为0.30。
第一章 部分习题参考答案-高建强
m1 / n
ρ
= uA ,定性温度 t = (t1 + t2 ) / 2 = (50 + 90) / 2 = 70 ℃
3
第 1 章 传热学基础
u=
m1 66.53 = = 1.3m / s nρA 231 × 977.8 × 3.14 × 0.00852 ud
Re =
ν
=
1.3 × 0.017 = 53253 0.415 × 10− 6
2
第 1 章 传热学基础
1-12 厂房外有一外径为 300mm 蒸汽管道,其外侧敷设有厚度为 30mm 的保温材料。若在某段 时间, 测得保温层外侧壁温为 40℃, 室外空气温度为 20℃, 风速为 3m/s (横向吹过该管道) 。 (1)试利用特征数关联式计算管道外侧对流换热的表面传热系数; (2)计算单位管长上外 侧的对流散热量。 附:空气横掠圆管对流换热实验关联式为 Nu = C Re Pr
2
式中 x 的单位为 m,平壁材料的导热系数为 0.5 W/(m⋅K)。计算通过平壁两侧的热流密度。 解:t1=200℃,t2=200-2000×0.32=20℃,Δt= t1- t2=180℃ 热流密度
q=
Δt 180 = = 300W / m 2 δ / λ 0.3 / 0.5
1-6 一炉子的炉墙厚 13cm,总面积 20m2,平均导热系数 1.04 W/(m·K),内、外壁温分别为 520℃和 50℃。试计算通过炉墙的热损失。如果所燃煤的发热值为 2.09×104kJ/kg,问每天因 热损失要用掉多少千克煤? 解:将炉墙可以看成是一个平板。 散热量:
4
1-7 有一根蒸汽管道,直径为 150mm,外敷设导热系数为 0.12 W/(m·K) 的蛭石保温材料。 若已知正常情况下,保温层内、外表面温度分别为 250℃、45℃。为使单位长度的热损失不 大于 160W/m,问蛭石层的厚度是多少才能满足要求? 解:保温层可以看成一个圆筒,则单位长度的热损失:
《保险学》课后习题答案.pdf
第一章风险与风险管理一、单选1-5ABCDD 6-10 ACCAD二、多选1ABC2 AD3ACD4AB5CD6ABCD7ABCD8ABC9ABCD10ABCD三、判断题对对对对错对错错错错第二章保险的基本理论一、单项选择题1.A2.D3.B4.A5.D6.B7.A8.A9.B 10.D二、多项选择题1.ABC2.BC3.ABCD4.ABCD5.ABCD6.ABCD7.ABCD8.ABCD9.AB 10.CD第三章保险产生与发展一、单选题CBBAC BABBB二、多选题CD BCDE ABCD ACDE ABCDE ABCDE ABD AD AB AB三、判断题X√X√√XXX√X第四章保险合同一、单选题DABDB BDCAA二、多选题ACD BD AB BC AC ABCD BD ABCD AD ABD三、判断题√XX√√√X√√√第五章保险的基本原则答案一、单选A B D D B B D B C A二、多选CD ACD ABC ACD BCD ABC AD AD BCD ABCD第六章一、单选1-5CBABB 6-10CCDDB二、多选1BC2ABCD3BD4BCD5ABD6ABCD7AB8AD9BC10BCD11AB12ABC第七章人身保险一、单选题ABABC DCCBD二、多选题ABCD AB ABC BC ABCD ABCD ABC AB ABCE ABD三、判断题XXX√X XX√√√第八章一、单选题1-5BDCBD 6-10AADBA二、多选题1ABCD2ABC3ABCD4ABC5ABC6ABCD7ABCD8AB9ABCD10ACD第十章一、单选1-5CCCDB 6-10ABCAD二、多选1ABCD2ABCD3ABC4ABC5AB6ABCD7ABCD8ABC9ABC10ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章税务会计概论
一、单项选择题
1、税务会计以(C)为依据。
A.会计制度
B.会计准则
C.国家各种税收法律、法规
D.会计法
2、根据《人民共和国刑法修正案(七)》规定,“纳税人采取欺骗、隐瞒手段进
行虚假纳税申报或者不申报,逃避缴纳税款数额较大并且占应纳税额( A)的,处三年以下有期徒刑或者拘役,并处罚金。
A.偷税额占应纳税额 10%以上不满30%
B.偷税额占应纳税额 30%以上
C.偷税额占应纳税额 10%以下
D.偷税额占应纳税额 10%以下
3、纳税人若有特殊困难,不能按期缴纳税款时,可以申请延期缴纳税款,延长期最长不超过( C )个月。
A.1
B.2
C.3
D.6
4、下列哪一项不属于税收“三性”的内容( D )。
A.强制性B.无偿性
C.固定性D.合法性
5、根据《税收征收管理法》的规定,企业向税务机关申报办理税务登记的时间是( B)。
A.自领取营业执照之日起 15日内
B.自领取营业执照之日起 30日内
C.自领取营业执照之日起 45日内
D.自领取营业执照之日起 60日内
6、按照规定不需要在工商行政管理机关办理注销登记的纳税人,应当自有关机关批准或宣告终止之日起( B )内,向原税务登记机关申报办理注销税务登记。
A.10日
B.15日
C.20日
D.30日
7、我国现行已开证的税种中最典型的的价外税是( A)。
A.增值税
B.消费税
C.营业税
D.关税
8、以商品或劳务的流转额为征税对象的税种叫( A)。
A.流转税
B.所得税
C.财产税
D.资源税
9、从事生产经营的纳税人应自领取营业执照或发生纳税义务之日起( B)日内
设置账簿,根据合法、有效的会计凭证记账、核算。
A.30
B.15
C.20
D.60
10、税务会计的对象是指纳税人因纳税活动所引起的( B),即应纳税款的形
成、计算、申报、缴纳、退补和罚款等税务活动的货币现象。
A.资金运动
B.税务资金运动
C.税务活动
D.营运资金运动
二多项选择题
1、下列有关办理税务登记的做法,正确的有( ABE)。
A.纳税人遗失税务登记证件的,应当在 15日内书面报告主管税务机关,并登报
声明作废
B.纳税人税务登记的内容发生变化时,应自工商行政管理部门办理变更登记之日起30日内,向原税务登记机关申报办理变更税务登记
C.纳税人被工商行政管理机关吊销营业执照的,应自营业执照被吊销之日起30
日内,向原税务登记机关申报办理注销税务登记
D.纳税人在办理注销登记后,应当向税务机关结清应纳税款、滞纳金、罚款、
缴销发票和其他税务证件
E.纳税人因住所变动涉及改变主管税务登记机关的,应向原税务登记机关申报
办理注销税务登记,并在30日内向迁达地税务机关申请办理税务登记
2、违反纳税申报制度的行为有:( ABCD)
A.纳税人未按照规定的期限办理纳税申报和报送纳税资料
B.扣缴义务人未按照规定的期限向税务机关报送代扣代缴、代收代缴税款报
告表和有关资料
C.纳税人、扣缴义务人编造虚假计税依据
D.纳税人不进行纳税申报,不缴或者少缴应纳税款
3、违反帐簿管理制度的行为有:( ABCD)
A.纳税人未按照规定设置、保管账簿或者保管记账凭证和有关资料
B.纳税人未按照规定将财务、会计制度或财务会计处理办法和会计核算软件报送
税务机关备查
C.扣缴义务人未按照规定设置、保管代扣代缴、代收代缴税款账簿或者保管代
扣代缴、代收代缴税款记账凭证及有关资料
D.非法印制、转借、倒卖、变造或者伪造完税凭证
4、以下( ABD)妨碍税款征收违法行为,由税务机关追缴其不缴或者少缴的税款、滞纳金,并处不缴或者少缴的税款百分之五十以上五倍以下的罚款;构成犯罪的,
依法追究刑事责任。
A.纳税人伪造、变造、隐匿、擅自销毁账簿、记账凭证不缴或者少缴应纳税款
B.在账簿上多列支出或者不列、少列收入不缴或者少缴应纳税
C.不申报或不缴或者少缴应纳税款
D.纳税人欠缴应纳税款,采取转移或者隐匿财产的手段,妨碍税务机关追缴欠缴
税款的
5、以下( ABC)违反税务登记管理制度的行为,由税务机关责令限期改正,可以处2000元以下的罚款情节严重的,处2000元以上
10000元以下的罚款。
A.纳税人未按照规定的期限申报办理税务登记、变更或注销税务登记
B.纳税人未按照规定办理税务登记证件验证或者换证手续
C.纳税人未按照规定使用税务登记证件或者转借、涂改、损毁、买卖、伪造
税务登记证件
D.纳税人通过提供虚假的证明资料等手段,骗取税务登记证
6、根据《税收征管法》的规定,下列选项中属于税务机关可以采取的税收保全措施
有( CE)。
A.书面通知纳税人开户银行暂停支付纳税人的金额相当于应纳税款及滞纳金的
存款
B.书面通知纳税人开户银行从其银行存款中扣缴税款
C.扣押、查封纳税人的价值相当于应纳税款的商品、货物或者其他财产
D.扣押、查封、拍卖纳税人的价值相当于应纳税款的商品、货物或者其他财产,以拍卖所得抵缴税款。
E.书面通知纳税人的开户银行或者其他金融机构冻结纳税人的金额相当于应纳
税款的存款
7、税法规定的纳税人的两种最基本形式是( BC )。
A.居民纳税人
B.法人
C.自然人
D.居民企业
8、下列各项中具有间接税特征的是( ACD )。
A.增值税
B.企业所得税
C.消费税
D.营业税
9、纳税人办理下列事项应当出示税务登记证件(ABCD )。
A.开立银行账户
B.领购发票
C.申请减免退税
D.申请开具外出经营活动税收管理证明
10、我国现行税法规定适用的税率形式有(ACDE )。
A.比例税率
B.全额累进税率
C.超额累进税率
D.超率累进税率
E.定额税率
三、判断题
1、企业中凡能够用货币计量的涉税事项都是税务会计的对象。
(V)
2、纳税人超过应纳税额缴纳的税款,税务机关发现的,应当自发现之日起 10日内
办理退还手续。
(V)
3、如果纳税人在一个纳税年度的中间开业,或者由于改组、合并、破产等原因,使该纳税年度的实际经营期不足12个月,应当以实际经营期为一个纳税年度。
(V)
4、在任何情况下,财务会计主体一定是税务会计主体。
(X)
5、税务机关对纳税人等采取保全措施或强制执行措施应经省以上税务局(分局)局
长批准。
(V)
6、税务会计并不要求企业在财务会计的凭证、账簿、报表之外再另设一套会计账表,也不需要独立设置税务会计机构。
(V)
7、流转税主要对生产经营者的利润和个人的纯收入发挥调节作用。
(X)
8、有纳税义务的单位和个人,如果在纳税期内无应纳税款,可以不办理纳税申报。
(X)。
9、纳税人被工商行政管理部门吊销营业执照的,应向原税务登记机构办理注销税务
登记。
(V)
10、当会计制度规定与税法有差异时,税务会计的核算必须遵循税法的规定。
(V )
四、简答题
1、税务会计的概念
以国家现行税法为准绳,运用会计学的理论和方法,连续、系统、全
面地对税款的形成、计算和缴纳,即对企业涉税事项进行确认、计
量、记录和报告的一门专业会计。
2、税务会计与财务会计的差异
①在企业会计核算总目标一致的前提下,财务会计的目的在于真实反映企业的财务状况和经营成果;
而税务会计的目的则是正确、及时、完整地反映企业纳税情况,做到依法履行纳税义务,追求企业纳税效益。
②财务会计以会计法为准绳,以财务准则为依据处理各项经济业务;而税务会计则要以税法为准绳,
当税法与财务会计法规不一致时,只能以税法为依据而不是以财务会计法规为依据。
③财务会计核算与生产经营有关的一切业务(包括纳税情况);而税务会计仅核算与纳税有关的业务
3、偷税行为的概念
,有骗取出口退税行为的,由税务机关追缴其骗取的退税款,并处骗取税款一倍以上五倍以下的罚款;对骗取国家出口退税款的,税务机关可以在规定期间内停止为其办理出口退税。
构成犯罪的,依法追究刑事责任。
犯骗取出口退税罪的,处5年以下有期徒刑或者拘役,并处骗取税款一倍以上五倍以下罚金;骗取国家出口退税数额巨大或者有其他严重情节的,处5年以上10年以下有期徒刑,并处骗取税款一倍以上五倍以下罚金;数额特别巨大或者有其他特别严重情节的,处10年以上有期徒刑或者无期徒刑,并处骗取税款一倍以上五倍以下罚金或者没收财产。
纳税人缴纳税款后,骗取所缴纳的税款的,按照偷税(逃避缴纳税款)行为定罪处罚;骗取税款超过所缴纳的税款部分,依照骗取国家出口退税的规定处罚。
单位犯骗取出口退税罪的,对单位判处罚金,并对其直接负责的主管人员和其他直接责任人员依照自然人犯骗取出口退税罪处罚。