谐波的产生及其危害介绍11

合集下载

什么是谐波及谐波的危害

什么是谐波及谐波的危害

什么是谐波?谐波的危害一、谐波1. 何为谐波?在电力系统中谐波产生的根本原因是由于非线性负载所致。

当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。

谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。

谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。

谐波可以区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为l00Hz,3次谐波则是150Hz。

一般地讲,奇次谐波引起的危害比偶次谐波更多更大。

在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。

“谐波”一词起源于声学。

有关谐波的数学分析在18世纪和19世纪已经奠定了良好的基础。

傅里叶等人提出的谐波分析方法至今仍被广泛应用。

电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。

当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。

1945年发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。

到了50年代和60年代,由于高压直流输电技术的发展,发表了有关变流器引起电力系统谐波问题的大量论文。

70年代以来,由于电力电子技术的飞速发展,各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,谐波所造成的危害也日趋严重。

世界各国都对谐波问题予以充分和关注。

国际上召开了多次有关谐波问题的学术会议,不少国家和国际学术组织都制定了限制电力系统谐波和用电设备谐波的标准和规定。

谐波研究的意义,道德是因为谐波的危害十分严重。

谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。

1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。

这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。

用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。

(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。

其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。

这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。

2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。

3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。

谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。

谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。

谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。

设备过热会导致设备寿命缩短,甚至发生火灾等危险。

2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。

例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。

3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。

例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。

4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。

谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。

谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。

这些设备通常包括整流器、变频器、电弧炉、放电灯等。

非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。

2. 电源:电源本身也可能产生谐波。

例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。

3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。

4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。

为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。

2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。

谐波的产生原因危害与治理

谐波的产生原因危害与治理

谐波的产生原因危害与治理谐波是指信号在传输过程中产生的频率是原有信号频率的整数倍的现象。

谐波一般是由于信号源产生幅度非线性特性、信号传输线路的不完美特性以及外界干扰等多种因素共同作用所导致的。

1.非线性特性:当信号源的输入电压超过其线性范围时,信号源会产生非线性失真。

这种非线性特性会使得原信号分解成包含各种谐波成分的信号,即产生谐波。

2.传输线路的不完美:在电力传输和通信线路中,由于电导率不一致、绝缘材料的不均匀性以及线路的接地等因素,会引起谐波的产生。

这些因素使得线路对于不同频率的信号具有不同的传输特性,从而造成信号的失真和谐波的产生。

3.外界干扰:外界电磁辐射的干扰也会引起谐波的产生。

当外界电磁波与系统内的信号相互作用时,可能会产生共振现象,从而导致谐波信号的产生。

谐波的存在会带来一系列的危害,包括以下几个方面:1.信号失真:谐波信号会改变原信号的波形和频谱特性,导致信号失真。

这会影响到电力传输系统和通信系统中的信号传输质量,降低系统的可靠性和稳定性。

2.设备损坏:谐波会导致电流和电压的波形变形,产生大量的电磁干扰。

这些干扰会对设备的正常工作造成影响,甚至会导致设备损坏和故障。

谐波还可能引起设备内部电子元件的过热现象,加速设备老化和损坏。

3.电力系统能源浪费:谐波会引起电力系统中电流和电压的非功率信号,造成能量损耗。

这不仅会浪费能源,还会导致电力系统的效率降低。

为了治理谐波对系统的危害,可以采取以下几种方法:1.模拟电路设计中采用线性器件:选择线性器件作为信号源和信号传输线路中的关键部件,减少非线性特性对信号的影响。

2.使用滤波器:在信号源和负载之间加入合适的滤波器,可以有效地滤除谐波成分,保证原信号的传输质量。

3.优化供电系统:针对供电系统中频繁出现谐波问题的设备,进行电源选择、接线方式和接地设计的优化,减少谐波产生。

4.电源质量改进:加强对供电设备的质量管理,采用高质量的电源设备,减少谐波对电力系统的影响。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。

虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。

一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。

2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。

3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。

4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。

二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。

2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。

3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。

4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。

为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。

2.配置滤波器装置,用于消除电力系统中的谐波信号。

3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。

4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。

谐波分析产生原因,危害,解决方法【精选文档】

谐波分析产生原因,危害,解决方法【精选文档】

谐波分析一、谐波的相关概述谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。

谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性.由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。

当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。

电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波.因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。

(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。

(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。

二、谐波的危害谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率.(2)谐波影响各种电气设备的正常工作。

(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故.(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。

(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。

三、谐波的分析由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害.我国对于谐波相关工作的研究大致起源于20世纪80年代。

我国国家技术监督局于93年颁布了国家标准《电能质量-—公用电网谐波》(GB/T 14549—1993)。

该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。

在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

谐波对电力设备的损坏是谐波危害的主要方面之一。

谐波会引起设备的绝缘老化、过热、机械振动等问题。

尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。

此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。

谐波对电能质量的恶化也是谐波危害的重要方面之一。

谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。

这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。

谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。

谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。

谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。

尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。

此外,谐波还会导致电能的浪费,增加用户的用电成本。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

非线性负载是产生谐波的主要原因之一。

非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。

此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。

而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。

为了减少谐波的危害,需要采取一系列的措施。

首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。

其次,可以采用滤波器等设备对谐波进行抑制和补偿。

谐波产生的原因及危害性?

谐波产生的原因及危害性?
谐波对旋转电机的危害主要是产生附加的损耗和转矩。由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增加。在供电系统中,用户的电动机负荷约占整个负荷的85%左右。因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。由于电动机的出力一般不能按发热情况进行调整,由谐波引起电动机的发热效应是按它能承受的谐波电压折算成等值的基波负序电压来考虑的。试验表明,在额定出力下持续承受为3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。
供电系统中的谐波危害主要表现在以下几个方面。
1、增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。
由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。
(2)对变压器的影响
谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点按地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时,可能形成3次谐波谐振,使变压器附加损耗增加。
(3)对输电线路的影响
由于输电线路阻抗的频率特性,线路电阻随着频率的升高而增加。在集肤效应的作用下,谐波电流使输电线路的附加损耗增加。在供应电网的损耗中,变压器和输电线路的损耗占了大部分,所以谐波使电网网损增大。谐波还使三相供电系统中的中性线的电流增大,导致中性线过载。输电线路存在着分布的线路电感和对地电容,它们与产生谐波的设备组成串联回路或并联回路时,在一定的参数配合条件下,会发生串联谐振或并联谐振。一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。当注入电网的谐波的频率位于在网络谐振点附近的谐振区内时,会激励电感、电容产生部分谐振,形成谐波放大。在这种情况下,谐波电压升高、谐波电流增大将会引起继电保护装置出现误动,以至损坏设备,与此同时还可产生相当大的谐波网损。对于电力电缆线路,由于电缆的对地电容比架空线路约大10-20倍,而感抗约为架空线路的1/2-1/3,因此更容易激励出较大的谐波谐振和谐波放大,造成绝缘击穿的事故。

谐波的产生及危害

谐波的产生及危害

谐波是怎么产生的?电网谐波来自于3个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。

它的大小与磁路的结构形式、铁心的饱和程度有关。

铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。

三是用电设备产生的谐波:晶闸管整流设备。

由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。

我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。

如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。

如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。

经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频装置。

变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。

电弧炉、电石炉。

由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。

谐波产生的原因和危害

谐波产生的原因和危害

谐波产生的原因和危害
在电能的生产、传输、转换和使用的各个环节都会产生谐波。

在供配电系统中,谐波产生的主要缘由是系统中存在具有非线性特性的电气设备,主要有:
具有铁磁饱和特性的铁心设备,如变压器、电抗器等。

以具有剧烈非线性特性的电弧为工作介质的设备,如气体放电灯、沟通弧焊机、炼钢电弧炉等。

以电力电子元器件为基础的开关电源设备或装置。

在电力电子装置普及前,变压器是主要谐波源,目前各种电力电子装置已成为主要谐波源。

谐波的危害
谐波会大大增加供配电系统发生谐波的可能,从而造成很高的过电流或过电压而引发事故的危急性。

谐波电压可使变压器的磁滞及涡流损耗增加,使绝缘材料承受的电气应力增大,而谐波电流使变压器的铜耗增加,从而使铁芯过热,加速绝缘老化,缩短变压器的使用寿命。

谐波电流可能使电容器过负荷和消失不允许的温升,可使线路电能损耗增加,还可能使供配电系统发生电压谐振,损坏设备绝缘。

谐波电流流过供配电线路时,可使其电能损耗增加,导致电缆过热损坏。

谐波电流可使电动机铁损明显增加,并使电动机转子消失振动现象,
严峻影响机械加工的产品质量。

谐波可使计费的感应式、电子式电能表的计量不准。

谐波影响设备正常工作,可使继电爱护和自动装置发生误动和拒动,可使计算机失控、电子设备误触发、电子元器件的测试无法进行。

谐波可干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析摘要:在电网运行中,不可避免地会产生谐波和谐振。

当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重事故。

本文就其定义、产生原因、危害及预防措施作以介绍,供参考。

1.定义谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。

通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。

谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。

谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。

2.产生的原因谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。

谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。

谐波也可产生谐振,由谐波源和系统中的某一设备或某几台设备可能构成某次谐波的谐振电路。

3.造成的危害3.1谐波的危害谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。

电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。

近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。

谐波对公用电网和其他系统的危害大致有以下几个方面。

(1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。

谐波的含义、产生的原因及危害

谐波的含义、产生的原因及危害

谐波的含义、产生的原因及危害一、谐波的含义频率为基波频率的整数倍的正弦波分量称为谐波。

由于谐波的频率是基波频率的整数倍,也常称它为高次谐波。

二、谐波产生的原因谐波产生的根本原因是由于电力系统中某些设备和负荷的非线性特性,即所加的电压与产生的电流不成线性(正比)关系而造成的波形畸变。

当电力系统向非线性设备及负荷供电时,这些设备或负荷在传递(如变压器)、变换(如交直流转换器)、吸收(如电弧炉)系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统倒送大量的谐波,使电力系统的正弦波形畸变,电能质量降低。

三、谐波的危害1、变压器对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。

与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。

须注意的是,这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。

而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因数,以确保变压器温升在允许的范围内。

还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(千瓦小时)反应在电费上,而且谐波也会导致变压器噪声增加。

2、电力电缆在导体中非正弦波电流产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波有较高的热量。

该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。

这两种效应如同增加导体交流电阻,进而导致I2RAC损耗增加。

3、电动机与发电机谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。

这些额外损失将导致电动机效率降低,并影响转矩。

当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。

例如:造纸业、人造纤维纺织业、塑料薄膜行业和一些金属加工业。

对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。

像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振荡。

谐波的危害与治(三篇)

谐波的危害与治(三篇)

谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。

谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。

尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。

因此,对谐波进行合理治理和控制是至关重要的。

本文将探讨谐波的危害以及治理范本。

一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。

谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。

并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。

2.能源浪费和降效谐波电流会导致能源的浪费。

谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。

此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。

3.电网负面影响谐波电流会对电网产生负面影响。

大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。

在严重的情况下,甚至会导致电网的故障和瘫痪。

4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。

长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。

并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。

二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。

可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。

2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。

通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。

谐波产生的原因及危害

谐波产生的原因及危害

谐波产生的原因及危害一、谐波的概念1、谐波非正弦波实际上由很多不同频率,不同幅值的正弦波构成。

非正弦交流可通过数学分析,分解成很多频率不同、幅值不同的正弦波。

这些大于基波频率整数倍的不同频率、不同幅值的正弦波称为谐波。

2、矩形波和三角形波中包含的谐波依据数学分析,矩形波与三角形波可分别用以下两式表示:矩形波u=4Um/(sint+1/3sin3t+1/5sin5t+)三角形波u=8Um/(sint+1/9sin3t+1/25sin5t+)4Um/sint、8Um/sint部分称为基波,其角频率为,其幅值分别为4Um/、8Um/;4Um/3sin3t、8Um/9sin3t部分称为三次谐波,其角频率是基波角频率的三倍(3),其幅值分别为4Um/3、8Um/9;4Um/5sin5t、8Um/25sin5t部分称为五次谐波,其角频率是基波角频率的五倍(5),其幅值分别为4Um/5、8Um/25。

除上述几个谐波重量外,还有很多频率更高的谐波重量。

这些谐波重量的特点是其幅值随角频率的增高而减小,且与非正弦波的波形形状有关。

二、谐波的产生1、发电系统产生的谐波由于发电机三相绕组在制造过程中很难做到完全对称,铁芯也很难做到肯定均匀一致等原因,发电时多少会产生一些谐波,总体来说数量较小。

2、变电系统产生的谐波由于电力变压器铁芯饱和,磁化曲线的非线性,加上设计时要考虑经济性,其工作磁密选择在磁化曲线上接近于饱和段,就使磁化电流呈现尖顶波形,从而含有了奇次谐波。

其大小与磁路的结构形式、铁芯饱和度相关。

饱和度越高,变压器的工作点就会越远地偏离线性,造成的谐波电流越大。

3、供电系统产生的谐波由于供电系统中存在着非线性负荷,当电流流过和所加的电压不是线性关系时,就会发生非正弦电流,这就是谐波电流。

非线性负荷设备有开关电源、不间断电源、变频调速装置、电子荧光灯镇流器、包含磁性铁芯设备以及部分家用电器如电视机、计算机等。

1)半导体整流设备由于半导体广泛应用于开关电源、不间断电源等很多方面,由其产生的谐波给电网造成大量的电污染。

什么是谐波及谐波的危害

什么是谐波及谐波的危害

什么是谐波及谐波的危害谐波是什么在交流电中,电源发出的是正弦电流和正弦电压,而负载所需要的电流和电压的波形也应当是正弦波形,但是由于各种因素的影响,负载端所需要的电流和电压波形可能会发生畸变,也就是波形不再是正弦波形。

在波形发生畸变的情况下,会有一些波形的分量出现在电力系统中,这些波形分量即为谐波。

谐波的产生原因谐波是由于电力系统中存在非线性负载而产生的。

具体来说,可以将非线性负载分为两类。

第一类是导致电流畸变的负载,如电子器件、弧炉、电弧炉等;第二类是导致电压畸变的负载,如变压器、电动机、放电灯等。

这些负载在工作时,由于其特殊的电学特性,会使得所需电流或电压发生畸变,因此就会产生谐波。

谐波的危害1.使变压器过热谐波电流会使变压器铁核的铜损和铁损增加,从而使变压器温升过高。

在变压器内部,铁芯损功会对油温产生较大的影响,导致油温升高,最终使变压器过热。

如果过热程度严重,会导致变压器绝缘老化、绝缘击穿等。

2.影响电能计量由于谐波电流的存在,会使得电能计量的准确性受到影响。

在全功率电流表中,谐波电流与基波电流的叠加会导致表头转子偏转,造成电表误差。

在互感器中,谐波电流也会使得互感器的准确性受到影响。

3.增加电力系统的损耗谐波电流还会增加电力系统的损耗,如线路上的热损耗、变压器的铜损和铁损等。

由于谐波电流的存在,使得交流电路中的电能的总有效值增加了,从而增加了系统的损耗。

4.影响电源的能力谐波电流会影响电源的能力,使得电源的有效输出功率降低,从而影响设备的正常工作。

如果谐波电流较大,还会影响电源谐波抑制和电源噪声。

5.影响其他设备的正常工作谐波电流还会影响其他设备的正常工作。

由于谐波电流会使得电力系统中的电压波形失真,造成其他设备的故障,如电机的震动加剧、电容器容量下降、接触器碳化等。

虽然谐波在电力系统中存在的时间不长,但是其对电力系统的危害是不可忽视的,需要防范和治理谐波。

通过采用控制非线性负载电流、增加电源稳压器、加装滤波器等方法可以有效降低谐波水平,保障电力系统的正常运行。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中的谐波是指频率不同于基波频率的周期性电压或电流成分。

谐波是由非线性负载引起的,诸如电力电子装置(如变频器、整流装置、电弧炉)等。

它们产生的谐波电流会通过电力系统的线路和设备传播,对电力系统和相关设备产生一定的危害。

下面将详细讨论谐波的危害和产生原因。

首先,谐波对电力系统的主要危害包括以下几个方面:1. 电力质量损害:谐波会导致电网电压波形失真,破坏电网电压的纯度和稳定性。

谐波电流进入电网后,会导致电网频率响应下降,严重时会引发电网失供故障。

2. 线路过载:谐波电流会导致电力系统中的导线和变压器等设备过载。

这是因为谐波电流具有较高的频率,使得设备的额定电流在该频率范围内有效值变大。

3. 电磁干扰:谐波产生的电磁场会对电力系统周围的通讯设备、调控系统和其他敏感设备产生干扰。

这些干扰可能导致设备的误操作或数据传输错误。

4. 电力设备损坏:谐波会引起电力设备内部的电场和磁场分布不均匀,导致绝缘损坏和局部热点。

同时,谐波还会产生机械振动和声音,对设备的机械结构造成损害。

其次,谐波的产生主要源于以下几个因素:1. 非线性负载:非线性电子元器件和负载(如电力电子装置)是主要的谐波源。

它们的工作原理要求电流和电压之间的关系不是线性的,这就会产生非基波的电流和电压成分。

2. 不平衡负载:不平衡电网或不平衡负载会引入谐波电流。

此类条件下的非对称性会产生额外的谐波电流成分。

3. 非线性磁性元件:磁性元件(如变压器和电感器)的饱和和非线性特性也会导致谐波的产生。

这是因为在这些元件中,电流和磁场之间的关系不是线性的。

4. 电力电子装置的开关操作:电力电子装置的开关(如IGBT 和MOSFET)引起了电流和电压瞬时变化,从而引入谐波电流和电压。

为了减轻谐波对电力系统的危害,可以采取以下措施:1. 选择低谐波负载和电力电子设备:在设计和采购阶段选择低谐波负载和电力电子设备,这将减少谐波电流和电压的产生。

谐波的产生及危害

谐波的产生及危害

谐波的产生及危害一、谐波的产生及危害电力谐波对电力网(包括用户)危害是十分严重的,它是一种电力污染,一种人们看不见、嗅不到、摸不着的污染。

所以往往不被人们注意。

对于电力系统,谐波是个很要命的问题!1、谐波的危害的产生主要表现在:当电网中的电压或电流波形非理想的正弦波时,即说明其中含有频率高于50Hz的电压或电流成分,我们将频率高于50Hz的电流或电压成分称之为谐波。

当谐波频率为工频频率的整数倍时,我们将其称之为整数次谐波,这类谐波通常用次数来表示。

例如:将频率为工频频率5倍(250Hz)的谐波称之为5次谐波,将频率为工频频率7倍(350Hz)的谐波称之为7次谐波,依此类推。

当谐波频率不是工频频率的整数倍时,我们将其称之为分数谐波。

这类谐波通常直接使用谐波频率来表示。

例如:频率为1627Hz的谐波。

2、谐波产生的原因多种多样。

比较常见的有两类:第一类是由于非线性负荷而产生谐波,例如可控硅整流器、开关电源等,这一类负荷产生的谐波频率均为工频频率的整数倍。

例如三相六脉波整流器所产生的主要是5次和7次谐波,而三相12脉波整流器所产生的主要是11次和13次谐波。

第二类是由于逆变负荷而产生谐波,例如中频炉、变频器,这一类负荷不仅产生整数次谐波,还产生频率为逆变频率2倍的分数谐波。

例如:使用三相六脉波整流器而工作频率为820Hz的中频炉则不仅产生5次和7次谐波,还产生频率为1640Hz的分数谐波。

谐波在电网诞生的同时就是存在的,因为发电机和变压器都会产生少量的谐波。

但是由于产生大量谐波的用电设备不断增加,并且电网中大量使用的并联电容器所造成的谐波放大,使得谐波的影响越来越严重,从而逐渐引起人们的重视。

当电网中的谐波电流较大,以至于电压波形也产生畸变时,我们将其称之为电网被污染。

电网的污染程度用电压波形畸变率来表示,简称THDu。

按照国家标准GB/T14549-93《电能质量公用电网谐波》的规定:10KV 电网的THDu应小于4%,400V电网的THDu应小于5%。

谐波的形成及危害

谐波的形成及危害

谐波的来源及危害一)电网谐波来自于三个方面:一是发电源质量不高产生谐波;二是输配电系统产生谐波;三是用电设备产生的谐波,其中用电设备产生的谐波最多。

(A)发电设备:发电机由于三相绕组在制作上很难做到绝对对称,发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致,难做到绝对均匀一致,发电机的转子产生的磁场不可能是完善的正弦波。

(B)输配电系统中主要是电力变压器产生谐波。

在系统运行中,当变压器铁心呈饱和状态时,其磁化曲线则呈非线性,当变压器铁心呈饱和状态时,其磁化曲线则呈非线性,如当变压器电源侧电压超过额定电压10%以上时,10%以上时器电源侧电压超过额定电压10%以上时,会使二次侧电压的三次谐波明显增加。

波明显增加。

由于电网电压偏移在±由于电网电压偏移在±7%以下,所以发电、变电设备产生的以下,所以发电、谐波分量都比较小,比国家的考核标准低的多,因此发电、谐波分量都比较小,比国家的考核标准低的多,因此发电、变电设备不是影响电网电压波形方面质量的主要矛盾。

设备不是影响电网电压波形方面质量的主要矛盾。

影响电网电压波形质量的主要矛盾是非线性用电设备。

影响电网电压波形质量的主要矛盾是非线性用电设备。

(C)用电设备:非线性用电设备主要有以下四大类:A.电弧加热设备:如电弧炉、电焊机等。

电弧加热设备B.交流整流的直流用电设备:如电力机车、电解、电镀等。

交流整流的直流用电设备C.交流整流再逆变用电设备:如变频调速、变频空调等。

交流整流再逆变用电设备D.开关电源设备:如中频炉、彩色电视机、电脑、开关电源设备器等。

◆电弧加热设备:弧电流是非正弦波,造成电弧加热设备对电弧加热设备:弧电流是非正弦波,电网的谐波污染比较大。

◆交流整流的直流用电设备:整流设备有一个阀电压,在小于交流整流的直流用电设备:整流设备有一个阀电压,阀电压时,电流为零。

阀电压时,电流为零。

这类用电设备为了提供平稳的直流电在整流设备中加入了储能元件(电容和电感),),从而使源,在整流设备中加入了储能元件(电容和电感),从而使阀电压提高,加激了谐波的产生量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我厂谐波的情况及其技术分析
一、谐波概念
在交流电网中,由于有许多非线性电气设备投入运行,基电压、电流波形实际上不是完全的正弦波形,而是不同程度畸变的非正弦波。

非正弦波是周期性电气量,可分解成基波分量和具有基波频率整数倍的谐波分量。

非正弦波的电压或电流有效值等于基波和各次谐波电压或电流有效值和的平方根值。

基波频率为电网频率(工频50赫兹)。

谐波次数(n)是谐波频率与基波频率之比的整数倍。

均称为谐波电压和谐波电流。

二、谐波产生的原因
电力系统中谐波主要是冶金、电气化铁路及其他的换流设备产生的。

它们向公用电网注入谐波电流,在公用电网中产生谐波电压,这些用电设备称为谐波源。

其中尤为严重的谐波源是硅整流、可控硅整流的换流设备和电弧炉、电焊机等非线性设备。

我厂主要是中频感应加热炉和熔化炉。

三、谐波的危害
大量的谐波电流流入电网,在电网阻抗下产生谐波压降,叠加到电网基波上,引起电网电压波形畸变。

随着硅整流、可控硅整流的换流设备、电弧炉、电焊机等各种非线性负荷的增加,大量的谐波电流流入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备、用户用电设备、用电计量、继电保护带来危害,成为污染电网的公害。

谐波使电网中感性负载造成过电压、容性负载造成过电流,影响用电计量正确度,对安全运行带来危害。

例如,使继电保护误动,引起避雷器、断路器爆炸等;干预电子设备,使计算机误动作,电子设备误触发;使通讯回路、弱电回路产生杂音,甚至造成故障。

为了保证电网的电压波形质量,国家对波形质量标准作出规定,要求电网公共连接点电压正弦波畸变率和用户注入电网的谐波电流不得超过国家标准GB/T14549—93的规定。

四、谐波限值
为保障电网内设备及广大客户的安全、经济运行,在GB/T14549—93《电能质量—公用电网谐波》中规定了公用电网谐波电压限值,见下表所示。

电网电压的谐波电压(相电压)限值
用户注入电网的谐波电流允许值
经对我厂17个配电所工进线和主要的整流设备进行谐波的测量,发现存在很大的谐波分量,测量结果如下表。

从表中可以看出各个配电所都存在严重超标的谐波,有的谐波电流达35A,电压达20KV,造成极大的电能浪费和对电网的影响。

因此应对主要的超标谐波源采取措施,把影响降到最小,这样可以提高功率因数,降低电耗和提高电网的质量。

谐波抑制的主要方法:
将三相桥式电路的脉动数从6提高到12,可消除5,7次谐波。

将多个谐波源接于同一段母线,利用谐波的相互补偿作用也可降低电网谐波含量,当谐波量超出规程允许值或者电网在谐波范围内有谐振时,通常设置单调谐波滤波器吸收特征谐波。

对于13次及以上的谐波,可设置一个高通滤波器。

谐波管理
(1)贯彻“谁干扰,谁污染,谁治理”的原则,并要按要求治理合格。

(2)现有谐波源的管理:应建立和健全客户谐波源的技术档案,包括设备的容量、型式、参数、主接线,有关电容器或滤波器的参数,谐波设计计算值和实测值等。

当谐波源产生的谐波电流或使公共连接点的谐波电压超出标准规定的允许值时,应按就地治理的原则,限期采取措施,否则,供电企业可中止对其供电。

(3)新装或增容的谐波源管理:把好投运关,对具有谐波源的客户在申请用电时,应根据谐波源和系统公用电网参数,进行谐波预测计算,对于超出允许值的客户,需采取限制谐波的措施,与用电设备同时投运,也就是说,对客户工程同时设计、同时施工、同时接入使用。

新设备投运后,进行谐波实测复核,合格者才允
许正式接网运行。

(4)在日常工作中,对有谐波源的客户要定期测量、检查,加强管理力度。

(5)为提高电网电能质量和供电效率,查明电力谐波来源,为对谐波开展有效治理提供依据,有必要将基波电能与谐波电能分别计量,并区别出谐波情况,尽而通过对向电网注入谐波的客户采取惩罚性计费的方式,强制其尽快采取措施,以减小由其注入给电网的电力谐波量,从而保证电网的可靠运行和不损害线性负荷客户的利益。

电力车间 2009-5-7。

相关文档
最新文档