连接体问题分析策略及解决方法
4连接体问题及解题方法
4连接体问题及处理方法一、连接体问题1.连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统.2.连接体题型(1)系统内所有物体相对静止,即运动情况相同,a 也相同------相对静止问题(2)系统内物体相对运动,运动情况不同,a 也不同------相对运动问题二、处理方法1整体法分析系统受力时只分析外力不必分析内力;在用隔离法解题时要注意判明隔离体的运动方向和加速度方向,同时为了方便解题,一般我们隔离受力个数少的物体.2.相对静止类:程。
(整体与隔离结合使用)例1.A 、B 两物体靠在一起,放在光滑水平面上,m B =6Kg ,今用水平力F A =6N 推A ,用水平力F B =3N 拉B ,A 、B 有多大?3.相对运动问题:例2.如图所示,光滑水平面上静止放着长L =1.6 m 、质量为M =3 kg 的木板.一个质量为m =1 kg 的小木块放在木板的最右端,m 与M 之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F ,若2s 时两者脱离,则F 为多大?4.判断相对静止还是相对运动:以最容易达到最大加速度的物体作为切入点,进入分析例3.如图所示,m 1=40 kg 的木板放在无摩擦的地板上,木板上又放m 2=10 kg 的石块,石块与木板间的动摩擦因数μ=0.6,试问(1)当水平力F =50 N 时,石块与木板间有无相对滑动?(2)当水平力F =100 N 时,石块与木板间有无相对滑动?(g =10 m/s 2)此时m 2的加速度为多大?5.方法总结①.当它们具有共同加速度时,一般是先整体列牛顿第二定律方程,再隔离受力个数少的物体分析列牛顿第二定律方程.②.当它们的加速度不同且涉及到相对运动问题,一般采用隔离法分别分析两个物体的运动情况,再找它们运动或受力的联系点列辅助条件方程.练习题1.两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( )A .211m m m + FB .212m m m + FC .FD .21m m F 2.上题若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则A 对B 作用力等于为( )3.如图所示,光滑平面上以水平恒力F 拉动小车和木块,一起做无相对滑动的加速运动,若小车质量为M ,木块质量为m ,加速度大小为a ,木块和小车间的动摩擦因数为μ,对于这个过程某同学用以下四个式子来表示木块受到的摩擦力大小,正确的是() A.F-Ma B.μma C.μmg D.Ma4.如图所示,物体P置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A.a1>a2B.a1=a2C.a1<a2D.条件不足,无法判断5.如图所示,质量分别为M、m的滑块A、B叠放在固定的、倾角为θ的斜面上,A与斜面间、A与B之间的动摩擦因数分别为μ1,μ2,当A、B从静止开始以相同的加速度下滑时,B受到摩擦力()A.等于零B.方向平行于斜面向上C.大小为μ1mgcosθD.大小为μ2mgcosθ6.相同材料的物块m和M用轻绳连接,在M上施加恒力F,使两物块作匀加速直线运动,求在下列各种情况下绳中张力。
专题16 连接体问题 (原稿版)
得
隔离T-F1-μm1g=m1a
得
三、板块连接体模型归纳
整体:a=F/(m1+m2)
隔离m1:f=m1a
得f=m1F/(m1+m2)
整体:a=g(sinθ-μ2cosθ)
方向沿斜面向下
隔离m1:m1gsinθ-f=m1a
得f=μ2m1gcosθ
方向沿斜面向上
若μ2=0则f=0
绳子平行于倾角为α的斜面,A物块恰好能静止在斜面上,不考虑两物块与斜面之间的摩擦。若互换两物块
位置,按图乙放置,然后释放物块,斜面仍保持静止。则下列说法正确的是( )
A.轻绳的拉力等于Mg
B.轻绳的拉力小于mg
C.A物块运动的加速度大小为(1﹣sinα)g
D.A物块运动的加速度大小为
1.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量均为m,2、4质量均为m0,两个系统均置于水平放置的光滑木板上,并处于静止状态。现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4。重力加速度大小为g,则有( )
9.如图所示,m1=1kg,m2=2kg,m1和m2之间的动摩擦因数μ1=0.2,水平面光滑要使m1和m2之间不发生相对运动,则:F最大不得超过( )(设最大静摩擦力等于滑动摩擦力,取g=10m/s2)
A.2 NB.4NC.6ND.8N
10.(多选)如图所示,用力F拉着三个物体在光滑的水平面上一起运动,现在中间物体上加上一个小物体,在原拉力F不变的条件下四个物体仍一起运动,那么连接物体的绳子张力和未放小物体前相比( )
【典例2】
(多选)如图,倾角为θ的斜面体固定在水平地面上,现有一带支架的滑块正沿斜面加速下滑。支架上用细
3.3连接体问题
两物体在F 3、如图所示,在光滑的水平面上,有A、B两物体在F1和 如图所示,在光滑的水平面上, 的作用下运动,已知F F2的作用下运动,已知F1 > F2, 则( 的加速度一定增大; A、若撤去F1,B的加速度一定增大; 若撤去F B、若撤去F1,B对A的作用力一定增大; 若撤去F 的作用力一定增大; 的加速度一定增大; C、若撤去F2,A的加速度一定增大; 若撤去F D、若撤去F2,A对B的作用力一定增大。 的作用力一定增大。 若撤去F
M m
θ
F`=mF(cosθ- µ sinθ)/(M+m)
拉力F 例4、地面光滑,两物块质量分别为m1、m2,拉力F1和F2 地面光滑,两物块质量分别为m 方向相反,与轻线沿同一水平直线, 方向相反,与轻线沿同一水平直线,且F1> F2,试求两 个物块运动过程中轻线的拉力F 个物块运动过程中轻线的拉力FT。 F1 FT F2
F1 m1 F2 m2
•备选题 备选题 1、如图所示,在光滑的水平面上,一个斜面被两个固定 如图所示,在光滑的水平面上, 挡住,然后在斜面上放一个物体, 在地面上的小桩 a和b挡住,然后在斜面上放一个物体, 下列说法正确的是( 下列说法正确的是( ) b a A、若物体加速下滑,则b受到挤压 若物体加速下滑, B、若物体减速下滑,则b受挤压 若物体减速下滑, C、若物体匀速下滑,则a受挤压 若物体匀速下滑, D、若物体静止在斜面上,则a受挤压 若物体静止在斜面上,
F合=(m1+m2+m3+m4+……+mn)a
例1、跨过定滑轮的绳的一端挂一吊板,另一端被吊板 跨过定滑轮的绳的一端挂一吊板, 上的人拉住,如图所示,已知人的质量为70kg, 上的人拉住,如图所示,已知人的质量为70kg,吊板的 70kg 质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。 质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计。 10kg 取重力加速度g=10m/s 取重力加速度g=10m/s2。当人 g=10 以440N的力拉绳时,人与吊板 440N的力拉绳时, 的加速度α和人对吊板的压力 的加速度α F分别为多少? 分别为多少?
连接体问题
况由物体平衡条件得:
FNFfMg0 ② 由牛顿第三定律得:Ff Ff ③
联解得F :N(M m )g m aM g
由牛顿第三定律知,木箱对地面的
压力大小为F :N (M m )g m a M g
解法2:(整体法)
对于“一动一静”连接体,也可选取
整体为研究对象,根据牛顿第二定律得:
(M m )g F N M 0 m a
施于木板的摩擦力 应沿斜面向上,故人应加
速下跑,设人相对于斜面的加速度为 a 人 .现
分别对人和木板应用牛顿第二定律得:
对木板: M gsinf0
对人: mgsinf ma人
解得: a人Mmmgsin ,方向沿斜面向下.
(2)为了使人与斜面保持静止,必须满足人 在木板上所受合力为零,所以木板施于人的摩 擦力应沿斜面向上,故人相对木板向上跑,木 板相对斜面向下滑,但人对斜面静止不动.现 分别对人和木板应用牛顿第二定律,设木板对
解析:设绳上的拉力为T,由牛顿第二定律分
别对A、B列式得: TmAgmAa
①
联解得:
mBgTmBa
②
TmAmBgmAmBg1.4N
mAmB
〔拓展1〕 如图所示,质量为ml、m2的物体, 放在光滑水平面上,用仅能承受6N的拉力的线
相连.ml=2kg,m2=3kg.现用水平拉力F拉物体 ml或m2,要使系统得到最大加速度且不致把绳 拉断,则F的大小和方向应为(C )
了保持物块与斜面相对静止,可用一水平力
F推楔形木块,如图,求此水平力应等于多
少?
m
F
θ
M
μ
解析:由于物块与斜面相对静止,所以二者
的加速度大小相等,方向均为水平向左的方
动力学的连接体问题
连接体问题可以看作是单个物体的由小变大此时用整体法和由单个变多个此时用隔离法的动力学问题,解决此类问题时应注意以下三点:①整体法与隔离法的优点和使用条件。
②两物体分离或相对滑动的条件。
③用滑轮连接的连接体的处理方法。
建议对本考点重点攻坚一、整体法与隔离法的选用原则1 •当连接体中各物体具有共同的加速度时,一般采用整体法;当系统内各物体的加速度不同时,一般采用隔离法。
2 •求连接体内各物体间的相互作用力时必须用隔离法。
二、三类连接体问题的解题结论1. 通过滑轮连接的两个物体:加速度相同,但轻绳的拉力不等于悬挂物体的重力。
[例1](多选)(2016湖北八校联考)质量分别为M和m的物块形状大小均相同,将它们通过轻绳跨过光滑定滑轮连接,如图甲所示,绳子平行于倾角为a的斜面,M恰好能静止在斜面上,不考虑M、m与斜面之间的摩擦。
若互换两物块位置,按图乙放置,然后A .轻绳的拉力等于MgB .轻绳的拉力等于mgC. M运动的加速度大小为(1 —sin a gM —mD. M运动的加速度大小为~^^g[解析]互换位置前,M静止在斜面上,则有:Mgsin a= mg,互换位置后,对M有Mg —F T= Ma,对m 有:F T' —mgs in a= ma,又F T= F T',解得:a = (1 —sin o)g, F T= mg, 故A、D错,B、C对。
[答案]BC2. 叠加体类连接体:两物体间刚要发生相对滑动时物体间的静摩擦力达到最大值。
如诊断卷第8题,A、B间刚要发生相对滑动时,A、B间的静摩擦力为ym g; & [考查整体法、隔离法与图像的综合应用]释放M,斜面仍保持静止。
则下列说法正确的是侈选)如图甲所示,在光滑水平面上叠放着A、B两物体,现对A施加水平向右的拉力F,通过传感器可测得物体A的加速度a随拉力F变化的关系如图乙所示。
已知重力加速度为g= 10 m/s2,由图线可知()A .物体B .物体C .物体 甲 A 的质量m A = 2 kg A 的质量m A = 6 kg A 、B 间的动摩擦因数 尸0.2 A 、B 间的动摩擦因数 卩=0.6 解析:选BC a-F 图线的斜率等于质量的倒数,由图可知,拉力D .物体 F>48 N 后,图线斜率 变大,表明研究对象质量减小,物体 A 、B 间发生相对滑动,故 m A + m B =右=8 kg , m A =£k 1 k 2=6 kg 。
高中物理连接体问题
牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统 二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则隔离法三、连接体题型:1【例1】A 、B 平力N F A 6=推A ,用水平力N F B 3=拉B ,A 、B【练1】如图所示,质量为M 的斜面A 在水平向左的推力F 作用下,A 与B 物体B 的质量为m ,则它们的加速度a A. ()(,sin μθ++==g m M F g a B. θθcos )(,cos g m M F g a +==C. ()(,tan μθ++==g m M F g a D. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2滑定滑轮连接质量为1m 的物体,与物体1A. 车厢的加速度为θsin gB. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m2、连接体整体内部各部分有不同的加速度:【例2有一个环,箱和杆的总质量为M ,环的质量为m 加速度大小为a 时(a <g A. Mg + mg B. Mg —【练3】如图所示,一只质量为m 杆下降的加速度为( )A. gB. g M mC. g M m M +【练4个重4 N 的读数是(A.4 NB.23 NC.0 N【练5】如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态。
当用火柴烧断O 处的细线瞬间,木块A 的加速度a A 多大?木块B 对盘C 的压力F BC 多大?(g 取10m/s 2)连接体作业1、如图所示,小车质量均为M ,光滑小球P 的质量为m ,绳的质量不计,水平地面光滑。
要使小球P 随车一起匀加速运动(相对位置如图所示),则施于小车的水平拉力F 各是多少?(θ已知)A BO球刚好离开斜面 球刚好离开槽底F= F= F= F=2、如图所示,A 、B 质量分别为m1,m2,它们在水平力F 的作用下均一起加速运动,甲、乙中水平面光滑,两物体间动摩擦因数为μ,丙中水平面光滑,丁中两物体与水平面间的动摩擦因数均为μ,求A 、B 间的摩擦力和弹力。
连接体问题
A
练习2:如图,质量为m的木块在质量为M的长木 板上向右滑行,木块受到向右的拉力F的作用, 长木板处于静止状态,已知木块与长木板间的动 摩擦因数为μ1,长木板与地面间的动摩擦因数为 μ2,则 A.长木板受到地面的摩擦力的大小一定是μ1mg B.长木板受到地面的摩擦力的大小一定是μ2(m +M)g C.当F>μ2(m+M)g时,长木板便会开始运动 D.无论怎样改变F的大小,长木板都不可能运动
一、连接体问题
1、连接体
由相互作用的两个或两个以上的物体组成的系统。
2、连接体解题方法 整体法和隔离法交叉使用 3、解题步骤: ①求内力:先整体求a,再隔离求内力 ②求外力:先隔离求a,再整体求外力
例1:下图中所有摩擦不计、A中轻绳下挂一 质量为m的物体,B中用大小为mg拉轻绳,求A、 B两物体的加速度 A B
M B
变式:如图,一质量为m1的楔形木块放在水平桌 面上,两底角为α和β;a、b为两个位于斜面上 质量分别为m2和m3的小木块。已知两斜面都是光 滑的。现发现a、b沿斜面下滑,而楔形木块静止 不动,这时楔形木块对水平桌面的压力等于多少? 地面对斜面体的摩擦力为多大,方向怎样?
m1
例3:如图,光滑水平面上静止放着长L=1 m,质 量为M=3 kg的木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩 擦因数μ=0.1,今对木板施加一水平向右的拉力 F.(g取10 m/s2) 4N (1)为使小物体不掉下去,F不能超过多少? (2)如果拉力F=10 N恒定不变,求小物体所能获得的 最大速率? 1m/s
m 2、结论:牵引力与质量成正比 T M m F
变式:
例2:光滑的水平面上,两物体叠放在一起,已知 两物体间的最大静摩擦力为fm,现在M上加一水 平恒力F,为使两者一起运动,求F的最大值
4.7《牛顿第二定律应用:连接体问题》
A. 两木块的加速度a 的大小为
B. 弹簧的形变量为
3
3
C. 两木块之间弹簧的弹力的大小为F
D.A 、B 两木块之间的距离为 0 +
AB
)
【作业2】(多选)如图所示, 5 块质量相同的木块并排放在水平地面上,它们
与地面间的动摩擦因数均相同, 当用力F 推第1 块木块使它们共同加速运动时,
【变式4】如图所示,质量分别为 mA、mB 的 A、B用弹簧相连 ,在恒
力 F 作用下 A B一起竖直向上 匀加速运动,求 A B 间的作用力。
【变式5】(多选)若将A、B 两物块用轻绳连接放在倾角为θ 的固定斜面上,用平
行于斜面向上的恒力F 拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因
A.a1<a2
B.a1=a2
C.a1>a2
D.无法判断
【练习5】如图所示,在光滑的水平桌面上有一物体A,通过绳子与物体B相连,假设
绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长.如果mB
=3mA,则绳子对物体A的拉力大小为( B )
A.mBg
C.3mAg
B.3mAg/4
D.3mBg /4
上的恒力F拉A,使它们沿斜面匀加速上升,A、B与斜面间的动摩擦因数均为μ,为
了增大AB间的作用力,可行的办法是(
)
AB
A. 增大A物块的质量
B. 减小B物块的质量
C. 增大倾角θ
D. 增大动摩擦因数μ
不管是光滑还是粗糙的水面、不管是水平面还是斜面、也不管是竖
直拉着连接体运动,只要推力F、MA、MB、µ(相同)一定,且A、
连接体问题专题详细讲解
连接体问题一, 连接体及隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
假如把其中某个物体隔离出来,该物体即为隔离体。
二, 外力和内力假如以物体系为探讨对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
假如把物体隔离出来作为探讨对象,则这些内力将转换为隔离体的外力。
三, 连接体问题的分析方法1.整体法连接体中的各物体假如加速度相同,求加速度时可以把连接体作为一个整体。
运用牛顿第二定律列方程求解。
2.隔离法假如要求连接体间的相互作用力,必需隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法及隔离法是相对统一,相辅相成的。
原来单用隔离法就可以解决的连接体问题,但假如这两种方法交叉运用,则处理问题就更加便利。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个探讨对象来分析(即当做一个质点来考虑)。
留意:此方法适用于系统中各部分物体的加速度大小方向相同状况。
解决这个问题的最好方法是假设法。
即假定,若斜面光滑,示为:a=g sinθ-μg cosθ,明显,若a, b两物体及斜面间的动摩擦因数μA=μB,则有a A=a B,杆仍旧不受力,若μA>μB,则a A<a B,A, B间的距离会缩短,搭上杆后,杆会受到压力,若μA<μB,则a A>a B杆便受到拉力。
〖答案〗(1)斜面光滑杆既不受拉力,也不受压力(2)斜面粗糙μA>μB杆不受拉力,受压力斜面粗糙μA<μB杆受拉力,不受压力类型二, “假设法”分析物体受力【例题2】在一正方形的小盒内装一圆球,盒及球一起沿倾角为θ的斜面下滑,如图所示,若不存在摩擦,当θ角增大时,下滑过程中圆球对方盒前壁压力T及对方盒底面的压力N将如何变化(提示:令T不为零,用整体法和隔离法分析)()A.N变小,T变大; B.N变小,T为零;C.N变小,T变小; D.N不变,T变大。
牛顿第二定律的连接体问题
牛顿第二定律的连接体问题:连接体问题是一种常见的物理问题,通常涉及到两个或多个物体之间的相互作用和相互影响。
在牛顿第二定律的连接体问题中,我们通常考虑两个或多个物体之间的力和加速度之间的关系。
解决连接体问题的一般步骤如下:
确定研究对象:首先需要确定我们要研究的物体,通常可以选择一个或多个物体作为研究对象。
隔离物体:将选定的研究对象从系统中隔离出来,不考虑其他物体对它的作用力。
分析受力情况:对隔离出来的物体进行受力分析,找出所有的力和加速度之间的关系。
建立方程:根据牛顿第二定律,建立力和加速度之间的方程,求解出加速度。
考虑连接体之间的相互作用:连接体之间通常会有相互作用力,需要考虑这些力对各自物体的影响。
解方程求出答案:解方程求出物体的加速度和其他物理量,得到问题的答案。
(典型、易错题的详细点评版本)连接体问题分析策略
难点2 连接体问题分析策略·整体法与隔离法导论:何为连接体?-----二者之间存在摩擦力、拉力、电磁力等内力,二者运动存在联动。
整体法的好处?只有牛二定律整体法?各种整体方法使用条件?整体法、隔离的如何联立使用?何时必须使用隔离法的问题?●案例探究---一静一动连接体[例1](★★★★)如图2-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少? 解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法(不是必须!!!).!!!! 取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:mg -Ff =ma①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图2-5. 据物体平衡条件得:F N -F f ′-Mg =0② 且F f =F f ′③ 由①②③式得F N =22m M +g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22m M +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象!!!!!,依牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0故木箱所受支持力:F N =22m M +g ,由牛顿第三定律知: 图2—4 图2-5 图2-3木箱对地面压力F N ′=F N =22m M g . 我的点评: 对于一动一静连接体或两个加速度不同的不同连接体,可以列出F 1-f=m 1a 1 (1)F 2+f=m 2a 2 (2) 其中f 为二者之间的摩擦力,或绳子、弹簧的拉力.大小相等,方向相反。
注意原式应该为矢量式。
另外F1,F2都是外力,不是内力对(如:摩擦力对、拉力对)。
(1)+(2)得 F 1+F 2=m 2a 2+ m 1a 1 (3) ------ F 1,F 2,a 1,a 1为矢量,a1=a2=0是特殊情况。
连接体
(二)、整体法隔离法求连接体问题(1)整体法:把整个系统作为一个研究对象来分析的方法,不必考虑系统内力的影响,只考虑系统受到的外力当所求问题不涉及相互作用力时,可选整体为研究对象.(2)隔离法:把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法.此时系统的内力就有可能成为该研究对象的外力.当求物体间的相互作用力时,必须用隔离法.典例1.A、B两物体质量分别为m1、m2,如图5-7所示,静止在光滑水平面上,现用水平外力F推物体A,使A、B一起加速运动,求A对B的作用力.跟踪1.如图5-8所示,两个用细线相连的位于光滑水平面上的物块,质量分别为m1和m2.拉力F1和F2方向相反,与细线在同一水平直线上,且F1>F2.试求在两个物块运动过程中细线的拉力F T.跟踪2.一根质量为M的木棒,上端用细绳系在天花板上,棒上有一只质量为m的猴子,如图6所示,如果将细绳剪断,猴子沿木棒向上爬,但仍保持与地面间的高度不变。
求这时木棒下落的加速度?跟踪3(安徽)22.(14分)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚忍不拔的意志和自强不息的精神。
为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化。
一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图所示。
设运动员的质量为65kg ,吊椅的质量为15kg,不计定滑轮与绳子间的摩擦,重力加速度取g=10m/2s。
当运动员与吊椅一起正以加速度a=1 m/2s上升时,试求(1)运动员竖直向下拉绳的力;(2)运动员对吊椅的压力。
(四)、传送带问题1.传送带与水平面夹角37°,皮带以10m/s 的速率运动,皮带轮沿顺时针方向转动,如图6所示。
今在传送带上端A 处无初速地放上一个质量为m kg 05.的小物块,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16m ,g 取102m s /,则物体从A 运动到B 的时间为多少?2.如图7所示,传送带AB 段是水平的,长20 m ,传送带上各点相对地面的速度大小是2 m/s ,某物块与传送带间的动摩擦因数为0.1。
连接体问题的解题思路
连接体问题的求解思路【例题精选】【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B〔如图〕,它们的质量分别为m A、m B。
当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大?分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。
对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。
因此,这一道连接体的问题可以有解。
解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。
因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。
A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。
对两个物体分别列牛顿第二定律的方程:对m A满足 F-T= m A a ⑴对m B满足 T = m B a ⑵⑴+⑵得 F =〔m A+m B〕a ⑶经解得: a = F/〔m A+m B〕⑷将⑷式代入⑵式可得 T= Fm B/〔m A+m B〕小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。
如果此题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的内力和加速度无关,则我们就可以物体组为研究对象直接列出⑶式动力学方程求解。
假设要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。
②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规*的解法,也是最保险的方法,同学们必须掌握。
【例2】如下图,5个质量一样的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第5块木块之间的弹力。
解:〔1〕如下图,以5个木块整体为研究对象。
设每个木块质量为m ,则F ma a Fm=∴=55 将第3、4、5块木块隔离为一个研究对象,设第2块木块对第3块木块的弹力为N ,其受力分析〔如图〕,则 所以第2与第3木块之间弹力为35F 。
专题18 整体法与隔离法处理连接体问题(解析版)—2023届高三物理一轮复习重难点突破
专题18整体法与隔离法处理连接体问题1.连接体的类型1)直接接触的连接体2)通过弹簧或轻绳相连的连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等。
轻弹簧在发生形变的过程中,两端连接体的速度不一定相等;弹簧形变量最大时两端连接体速率相等。
2.处理连接体问题的方法1)整体法:如果连接体各物体的加速度相同,可以把系统内的所有物体看成一个整体,用牛顿第二定律对整体列方程求解。
隔离法:如果求系统内物体间的相互作用力,常把某个物体(一般选取受力简单的物体)从系统中隔离出来,用牛顿第二定律对隔离出来的物体列方程求解。
2)加速度大小相等,方向不同的连接体:如下图,跨过定滑轮的细绳相连的两个物体不在同一直线上运动,虽然加速度方向不同但加速度大小相等,这类问题也可采用整体法和隔离法求解.3)连接体问题一般采用先整体后隔离的方法,也可以采用分别隔离不同的物体再联立的方法。
考点一力的分配规律如下图三种情况,m 1和m 2在力F 作用下以大小相同的加速度一起运动,则两物体间的弹力根据质量大小分配,且F 弹=m 2m 1+m 2F .1.如图所示,质量为3的物块A 与水平地面间的动摩擦因数为,质量为m 的物块B 与地面的摩擦不计,在大小为F 的水平推力作用下,A、B 一起向右做加速运动,则A 和B 之间的作用力大小为()。
A.K3B4B.4C.K4B4D.B 4【答案】A 【解析】以A、B 整体为研究对象,由牛顿第二定律可得整体的加速度为=KH3B 3r=K3B 4以B 为研究对象,由牛顿第二定律可得A 对B 的作用力AB =B =K3B4A 正确,BCD 错误。
2.如图所示,质量分别为2m 和3m 的两个小球静止于光滑水平面上,且固定在劲度系数为k 的轻质弹簧的两端。
今在质量为2m 的小球上沿弹簧轴线方向施加大小为F 的水平拉力,使两球一起做匀加速直线运动,则稳定后弹簧的伸长量为()A.F 5kB.2F 5kC.3F 5kD.F k【答案】C 【解析】对整体分析,整体的加速度a =F5m,对质量为3m 的小球分析,根据牛顿第二定律有F 弹=kx =3ma ,可得x=3F5k,故A、B、D 错误,C 正确。
灵活运用整体、隔离法解决连接体问题
灵活使用整体、隔离法解决连接体问题〖问题背景〗:连接体问题是动力学问题中一类常见题型,因为涉及整体法和隔离法、正交分解法等方法的综合应用,考查综合分析水平,使很多学生感到困难,本文试图在这方面给学生一个清晰的思路。
一、连接体问题两个或两个以上物体相互连接参与运动的系统称为连接体。
以平衡态或非平衡态下连接体问题拟题屡次表现于高考卷面中,是考生备考的难点之一。
在分析和求解连接体命题时,首要问题就是研究对象的选择问题。
其方法有两种:一是隔离法;二是整体法。
1、隔离法(1)含义:所谓隔离(体)法就是将所研究的对象--包括物体、状态和某些过程,从系统或全过程中隔离出来实行研究的方法。
(2)使用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象。
原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少。
②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来。
③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图。
④寻找未知量与已知量之间的关系,选择恰当的物理规律列方程求解。
2、整体法(1)含义:所谓整体法就是将两个或两个以上物体组成的整个系统或整个过程作为研究对象实行分析研究的方法。
(2)使用整体法解题的基本步骤:①明确研究的系统或运动的全过程。
②画出系统的受力图和运动全过程的示意图。
③寻找未知量与已知量之间的关系,选择恰当的物理规律列方程求解。
【类型一】连接体中的弹力(拉力、支持力)分配问题例1.如图1在光滑水平面上,质量为5m和3m的A,B两个物体用轻绳连接在一起。
用外力F拉A物体,则轻绳上的拉力为________(解析):常规解法如下:先用整体法建立牛顿定律方程F=8ma,令轻绳的拉力为T,再用隔离法隔离B物体建立牛顿定律方程T=3ma,两式联立得T= 38F作者分三步引导学生分析连接体中轻绳拉力的分配规律:第一步:光滑水平面上连接体中的拉力的分配规律首先分析质量相等的两个物体组成的连接体中拉力与外力F 的关系:如图2,先用整体法建立牛顿定律方程 F =2ma隔离B 物体建立牛顿定律方程 T = ma由以上两式可得T = 12F (小结1):把外力F 分成两个 12 F ,因为B 物体的质量只占连接体总质量的12,所以AB 之间绳的拉力要占外力F 的12。
高中物理 专题复习《模型构建——连接体问题》
01课堂探究评价
02课后课时作业
3.整体法、隔离法的选用 (1)整体法、隔离法的选取原则 当连接体内各物体具有相同的加速度(或运动情况一致)时,可以采用整 体法;当连接体内各物体加速度不相同(或运动情况不一致)时,采用隔离法。 一般来说,求整体的外力时优先采用整体法,整体法分析时不要考虑各物体 间的内力;求连接体内各物体间的内力时只能采用隔离法。 (2)整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可 以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿 第二定律求作用力,即“先整体求加速度,后隔离求内力”。
01课堂探究评价
02课后课时作业
解析
2. (多选)如图所示,在光滑水平地面上,水平外力 F 拉动小车和木块一
起做无相对滑动的加速运动。小车的质量为 M,木块的质量为 m,加速度大
小为 a,木块和小车之间的动摩擦因数为 μ,则在这个过程中,木块受到的
摩擦力大小为( )
A.μmg
mF B.M+m
C.μ(M+m)g D.ma
A.b 对 c 的摩擦力一定减小 B.b 对 c 的摩擦力方向可能平行斜面向上 C.地面对 c 的摩擦力方向一定向右 D.地面对 c 的摩擦力一定减小
答案 BD
01课堂探究评价
02课后课时作业
答案
解析 若有 mag>mbgsinθ,则 b 对 c 的摩擦力平行于斜面向上,且随沙 子缓慢流出,b 对 c 的摩擦力减小;若有 mag<mbgsinθ,则 b 对 c 的摩擦力平 行于斜面向下,且随沙子缓慢流出,b 对 c 的摩擦力增大,A 错误,B 正确; 以 b、c 为整体受力分析,应用平衡条件可得,地面对 c 的摩擦力方向一定水 平向左,且 Ff=magcosθ,随 ma 的减小而减小,C 错误,D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2 连接体问题分析策略及解决方法 广东 张彪
所谓连接体就是具有相互作用的几个物体的组合。
在每年的高考物理题中,都或多或少地涉及到有关连接体方面的考题,以考查受力分析、过程分析,特定状态分析为命题重点,将知识重点与思维方法统一起来,从中考查分析问题的能力和综合应变能力。
一、解决这类问题的一种基本方法——“隔离法”。
还可根据题目中所创设的物理环境,选取整体为对象,运用物理规律求解,这样能简化解题过程,提高答题速度和准确性。
【例1】如图1所示,一根轻质弹簧上端固定,下端挂一个质量为m 0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘,使弹簧再伸长∆l 后停止,然后松手,设弹簧总处在弹性限度内,则刚松手时盘对物体的支持力等于:
A .()1+∆l l mg
B .()()10++∆l l m m g
C .∆lmg l
D .∆l m m g l ()+0 分析:根据题意由盘及物体组成的系统先后经过了三个状态:(1)盘中放物,弹簧被伸长,系统处于平衡态,此时有kl g m m =+)(0,(2)手对盘有向下拉力F ,弹簧被再伸长了∆l ,系统仍平衡,即l k F l l k F g m m ∆=∆+=++,可得)()(0。
(3)撤去拉力F 的瞬间,系统失去平衡,盘及物体有向上的加速度,此时系统受合力的大小与撤去的力F 相等,方向与F 相反。
可用整体法求出此刻系统的加速度 ,用隔离法以物体为对象,求出盘对物体的支持力 。
答案:A
[点评] ①解题时首先明确研究对象。
如果题中只求物体组运动的加速度,则两物体间的作用力是物体组的内力,与加速度无关,就可以物体组为研究对象直接列出动力学方程求解加速度。
若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。
②也可以对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规范的解法,也是最保险的方法,但是较麻烦一些。
二、在有些问题中,相互作用的两个物体的加速度不同,则只有应用隔离法解决。
关键要正确地分别对物体受力分析,分别列方程,再结合两个物体运动的相关联系信息点(如位移关系、速度关系、时间关系、动量关系、能量关系等)联立解决。
【例2】 有一个质量M =4.0kg ,足够长的木板,在水平向
右F =8.0N 的外力作用下,以V 0=2.0m/S 的速度在地面上匀速运
图1
动。
某时刻将质量m =1.0kg 的铜块轻轻地放在长木板的最右端,如图2所示。
铜块与木板间的动摩擦因数和木板与地面间的动摩擦因数相同,g 取10m/S 2
,求木板经过多长时间停止运动?
解析: 放铜块前,木板做匀速直线运动,设木板与地面间的动摩擦因数为μ,则有 F =μN =μMg ∴μ=F/Mg =0.20
放铜块后,由于铜块与木板间有摩擦,所以铜块相对木板向左滑,相对地面向右加速运动。
铜块与木板的加速度不同,分别隔离,
对m 有:μmg=ma 1 得a 1=2m/S
2 对M 有:F-μ(M+m )g-μmg=Ma 2 得a 2=-1m/S 2
当M 、m 速度相同时设速度为V ,经历的时间为t 1 ,则
对m 有: V =a 1t 1
对M 有: V= V 0+ a 2t 1 解得V= 34 m/S t 1=32s
由于木板运动的加速度小于铜块运动的最大加速度,木板与铜块将相对静止一起做匀减速运动,直至静止。
以木板和铜块为整体,摩擦力为:
f =μN '=μ(M+m )
g =10N 加速度的大小为: a =(f-F )/M =0.50m/S 2
根据匀变速直线运动公式:V =a t 2 解得:t 2 = 3
8 S
木板运动的总时间为:t= t 1 + t 2= 3
10 s=3.3s
点评:(1)对于本题会有一些同学想到应用动量守恒定律解决,仔细分析可以得到若将木板和铜块看做系统,系统所受到的合力是不为零的,所以动量不守恒。
(2)通过本题可知运用隔离法解题的基本步骤:
①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.
②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.对m 来说做出速度为零的匀加速直线运动,而M 做初速度为V 0的匀减速运动。
③对隔离出的研究对象、过程、状态分析研究,明确某状态下的受力图或某阶段的运动过程示意图.
④寻找未知量与已知量之间的关系及两个物体运动所含的共同信息,选择适当的物理规律列方程求解.
(3)对于整体法运用要注意:
①明确研究的系统或运动的全过程.
②画出系统的受力图和运动全过程的示意图.
③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则.
三、处理连接体问题,要关注使两个物体发生相互作用的原因,有绳、杆、弹簧、橡皮绳等实物连接,也有通过碰撞、场等产生作用,而这些发生作用的原因不同,也会使我们处理问题时选择的规律不同。
【例3】如图3所示,沿水平方向放置一条平直光滑槽,它垂直穿过开有小孔的两平行薄板,
图1
板相距3.5L 。
槽内有两个质量均为m 的小球A 和
B ,球A 带电量为+2q ,球B 带电量为-3q ,两球
由长为2L 的轻杆相连,组成一带电系统。
最初A
和B 分别静止于左板的两侧,离板的距离均为L 。
若视小球为质点,不计轻杆的质量,在两板间加
上与槽平行向右的匀强电场E 后(设槽和轻杆由
特殊绝缘材料制成,不影响电场的分布),求:
⑴球B 刚进入电场时,带电系统的速度大小; ⑵带电系统从开始运动到速度第一次为零所需的时间及球A 相对右板的位置。
解析:A 和B 通过轻杆相连,发生相互作用,因为杆而使两球的加速度相同而无需考虑两球之间的库仑力的相互作 用,在研究加速度时要将两球看为整体,但在研究两球在电场中受电场力的作用下的做功问题时,又要将两球隔离开来,又因为电场力做功的位移不同而分别研究。
对带电系统进行分析,假设球A 能达到右极板,电场力对系统做功为W 1,有:
0)5.13(5.221>⨯-+⨯=L qE L qE W
而且还能穿过小孔,离开右极板。
假设球B 能达到右极板,电场力对系统做功为W 2,有:
0)5.33(5.222<⨯-+⨯=L qE L qE W
综上所述,带电系统速度第一次为零时,球A 、B 应分别在右极板两侧。
⑴带电系统开始运动时,设加速度为a 1,对整体由牛顿第二定律:
m qE a 221==m
qE 球B 刚进入电场时,带电系统的速度为v 1,有: L a v 1212= 求得:m qEL v 21=
⑵设球B 从静止到刚进入电场的时间为t 1,则: 111a v t = 解得:qE mL t 21= 球B 进入电场后,带电系统的加速度为a 2,由牛顿第二定律:
m
qE m qE qE a 22232-=+-= 显然,带电系统做匀减速运动。
设球A 刚达到右极板时的速度为v 2,减速所需时间为t 2,则有: L a v v 5.1222122⨯=- 2
122a v v t -= 求得: qE
mL t m qEL v 2,22122== 球A 离电场后,带电系统继续做减速运动,设加速度为a 3, m qE a 233-=
设球A 从离开电场到静止所需的时间为t 3,运动的位移为x ,则有:
3230a v t -= x a v 3222=- 求得:1t = 6L x = 可知,带电系统从静止到速度第一次为零所需的时间为:
qE
mL t t t t 237321=++= 球A 相对右板的位置为:6L x = 点评:在本题的分析中,两球以杆为连接,通过电场发生作用,分为B 进入电场前、B 进入电场后到A 出电场前、A 出电场后三个过程,考查对这一连接体的运动过程,受力情况及做功情况的分析。
关键要根据不同的运动过程选择不同的受力分析的对象,结合牛顿运动定律及运动学公式加以解决。