辽宁省大连市大连金石滩实验学校2019-2020学年七年级上学期10月月考数学试题(word无答案)
2019-2020学年七年级数学上学期10月月考试卷新人教版.docx
2019-2020 学年七年级数学上学期 10 月月考试卷新人教版一、(本共12 ,每3分,共36分)1.如果收入300 元作 +300 元,那么支出180 元作().A. +180 元B.180 元C. +80 元D.80 元2.某市 4 月份某天的最高气温是5℃,最低气温是-3 ℃,那么天的温差(最高气温减最低气温)是().A. -2 ℃B.8℃C.-8℃D.2℃3.倒数是本身的数是().A. 1B.- 1C. 0D.14.把( +5)( +3) +( 2)( 7)写成省略括号的形式是().A. 5+3+7 2B.5 3 2 7C. 5 3 2+7D. 5+3 2 75.在 1, 2, 0,2 四个数中,最小的一个数是().A. 1B. 2C. 0D. 26.如,在数上点 A 表示的数可能是()A. 2B. -2.4C. -1.5D. 2.97.如果 |x-1|+|y+2|+|z-3|=0,( x+1)( y-2 )( z+3)的是()A. 48B. -48 C. 0D.xyz8.已知 A与 B 都在同一数上,点 A 表示 -2 ,而点 B 和点 A 相距 5 个位度,点 B 表示的数是() .A. 3B. -7C. 7 或 -3D.-7 或 39.察下列一数的排列:1,2,3, 4,3, 2 ,1,2, 3,4,3, 2 , 1,⋯,那么第 2006个数是()A. 1B. 2C.3D. 410.( 1)不存在最大的整数;( 3)若干个有理数相乘,如果因数的个数是奇数,乘一定是数;( 3)两个数的和一定大于每个加数;(4)已知 ab≠0,+的不可能 0.正确的是的个数有().A. 0 个B. 1 个C. 2 个D. 3 个11.下列计算正确的是: ().A . -15- ( -5 )= 20;B. 11( 1 1) 0 ;2 21 9 D.1.52 2 4 3.C . 9;7 1.52 15.2 227 712.如图,A 、B 两点在数轴上表示的数分别为 a 、b ,下列结论① a-b > 0;② a+b <0;③(b-1 )( a+1)< 0;④b1 0 其中结论正确的是:()a 1A .①②B .③④C .①③ D.①②④二、仔细填 - 填(本大题共 4 个小题,每小题 3 分,共 12 分)13.1 的相反数是_________ ,倒数是_________,绝对值是_________ .214.比较 - ( -2 )2 的大小(在横线上天上 " , , " 符号) .15.规定一种运算: a*b =ab ;则 2* (-3 )的值是 .a b16.若x =4 ,且 x+y=0,那么 y 的值是.三、解答题(共 9 题,满 72 分 , 解答时应写出文字说明、推理过程或演算步骤 . )17. 计算下列各式(本题 4 小题共 6 分)(1) 4.5 ﹣(﹣ 4.5 ) +(﹣ 6);( 2)﹣ 54×2 ÷(﹣ 4 )× + 1 ;2(3)﹣ 20(﹣ 10) |2 | ; ( 4) [11(31 3) 24] ( 5) .524 86 418. ( 本题 6 分)画出数轴,把下列各数0, 3, -4 ,1, +2 在数轴上表示出来,2并用“<”号把这些数连接起来.19.(本题 6 分)“羊村”的同学们正在争论这样一道题:“灰太狼在数轴上的位置表示的数为﹣ 6,喜羊羊在数轴上的位置表示的数为﹣2,求灰太狼与喜羊羊相距多远?”为了解决这个问题,懒羊羊,美羊羊,沸羊羊,暖羊羊,慢羊羊几位同学提出了以下几种计算方案:懒羊羊:较大数减去较小数,即(﹣ 2)﹣(﹣6)= 4沸羊羊:较小数减去较大数,即(﹣ 6)﹣(﹣2)=﹣ 4美羊羊:前数减去后数的差的绝对值,即| (﹣ 6)﹣(﹣ 2) | =| ﹣ 4| = 4暖羊羊:后数减去前数的差的绝对值,即| ﹣ 2﹣(﹣ 6) | = |4|=4慢羊羊:在数轴上数一数,即距离为4你认为谁的方案是不正确的,理由是什么?20.(本题 8 分) a 与 b 互为相反数, c 与 d 互为倒数, m= |1+m的值.| 求221.(本题 8 分)国庆“十一”长假期间为确保人民财产安全,巡警小王骑摩托车在一条南北大道上巡逻, 某天他从岗亭出发, 晚上停留在 A 处,规定向北方向为正, 当天行驶纪录如下(单位:千米)+10,- 9,+ 7,- 15,+ 6,- 14,+ 4,- 2( 1) A 在岗亭何方?距岗亭多远?( 2)若摩托车行驶 1 千米耗油 0.05 升,这一天共耗油多少升?22. (本题 8 分)阅读下面解题过程:计算: ( 15) (13 3)6.3 2解:原式 = ( 15)( 25 6) (第一步)6 = ( 15) ( 25) (第二步)3 =(第三步) .5回答:(1)上面解题过程中有两个错误,第一处是第几步,错误的原因是什么;第二处是第几步,错误的原因是什么?( 2)请求出正确答案 .23.(本题 8 分)某中学的小卖部最近进了一批计算器,每个16 元,今天共卖出20 个,实际卖出时以每个18 元为标准,超过的记为正,不足的记为负,记录如下:+3— 1+2+15 个 4 个6 个 5 个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天的计算器赚了多少元?24. (本题 10 分)在数 -5 ,1, -3 ,5,-2 中任取三个数相乘,其中最大的积是a,最小的积是b,(1)求 a, b 的值;(2)若 |x+a|+|y-b| = 0,求( x-y )÷y的值.25.(本题 12 分)如图,已知数轴上点 A 表示的数为 6,B 是数轴上一点,且AB=10.动点P 从点 A 出发,以每秒 6 个单位长度的速度沿数轴向左匀速运动,设运动时间为t ( t > 0)秒.(1)写出数轴上点 B 表示的数,点 P 表示的数( 用含 t 的代数式表示);(2)动点 R从点 B 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动,若点 P、R同时出发,问点 P 运动多少秒时追上点R?(3)若 M为 AP的中点, N 为 PB 的中点.点 P 在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;2012-2013 学年七年级(上)第一次月考数学试卷参考答案一.选择题1— 5 BBDCB ; 6— 10 BCCBA ;11— 12 DB ;二.填空题1 1; 15. 6 ; 16.4 ;13.,2, 14.>22三.解答题17.(1)3 ; (2)6.5 ; (3)-16 ;( 4) 15.2418. 略19.解:沸羊羊.理由是: 灰太狼与喜羊羊相距多远的问题, 实质是求数轴上两点之间的距离, 而距离是一个非负数,所以沸羊羊的方案不正确.20. 原式=8321. 解:( 1) +10-9+7-15+6-14+4-2 = -13 ,由此可得 A 在岗亭西方,距岗亭 13 千米;( 2) |+10|+|-9|+|-7|+|-15|+|+6|+|-14|+|+4|+|-2|= 10+9+7+15+6+14+4+2= 67.∴ 67×0.5 = 33.5 .答:这一天共耗油 33.5 升.22. 回答:( 1)上面解题过程中有两个错误,第一处是第 一步,错误的原因是在同级运算中, 没有按从左到右的顺序进行, 第二处是第二步, 错误的原因是 同号两数相除,结果为负(事实上结果应为正数);(2)正确的结果是108.523. ( 1) 19.4 元( 2)净赚 68 元24. 解:( 1)共有以下几种情况:( -5 )× 1×( -3 )= 15,( -5 )× 1×5= -25 , - 5×1×( -2 )= 10, - 5×( -3 )× 5= 75,- 5×( -3 )×( -2 )= -30 ,- 5×5×( -2 )= 50,1×( -3 )× 5= -15 ,1×( -3 )×( -2 ) =6,(-3 )× 5×( -2 )= 30,最大的积是 a = 75,最小的积是 b = -30 , (2) |x+75|+|y+30| = 0, ∴x+75 = 0, y+30= 0,∴x = -75 ,y = -30 ,∴( x-y )÷ y =( -75+30 )÷( -30 )= 1.5 . 25. 解:( 1)答案为 -4 , 6-6t ; (2)设点 P 运动 x 秒时,在点C 处追上点 R (如图)则 AC = 6x , BC = 4x , ∵AC-BC = AB ,∴ 6x-4x = 10, 解得: x = 5,∴点 P 运动 5 秒时,在点 C 处追上点 R .( 2)线段 MN 的长度不发生变化,都等于 5.理由如下:分两种情况:①当点 P 在点 A 、 B 两点之间运动时:MN = MP+NP = 1 AP+ 1 BP =1( AP+BP )= 1AB =52 2 2 2②当点 P 运动到点 B 的左侧时:MN = MP-NP = 1 AP- 1 BP =1( AP-BP )=1AB =522 2 2∴综上所述,线段MN 的长度不发生变化,其值为5.。
辽宁省大连市七年级上学期数学10月月考试卷
辽宁省大连市七年级上学期数学 10 月月考试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2019 七上·湖州月考) 下列四个数中,2019 的相反数是( )A . ﹣2019B.C.﹣ D . 20192. (2 分) (2019 七上·新昌月考) 某种零件,标明要求是 φ20(φ 表示直径,单位:毫米),则以下零件的直径合格的是( ) A . 19.50mm B . 20.2mm C . 19.95mm D . 20.05mm 3. (2 分) (2015 七上·永定期中) 预计下届世博会将吸引约 69 000 000 人次参观.将 69 000 000 用科学记数法表示正确的是( ) A . 0.69×108 B . 6.9×106 C . 6.9×107 D . 69×1064. (2 分) (2019 七下·路北期中) 实数 a、b 在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( )A . 2a+b B . -2a+b C.b D . 2a-b 5. (2 分) 下列说法中,(1)﹣a 一定是负数;(2)|﹣a|一定是正数;(3)倒数等于它本身的数是±1;(4) 绝对值等于它本身的数是 1.其中正确的个数是( )第 1 页 共 11 页A . 1个 B . 2个 C . 3个 D . 4个 6.(2 分)(2019 九上·开州月考) 按如图所示的运算程序运算,能使输出的结果为 7 的一组 x,y 的值是( )A . x=1,y=2 B . x=﹣2,y=1 C . x=2,y=1 D . x=﹣3,y=1 7. (2 分) (2017 七上·路北期中) 数轴上一个点到﹣5 所表示的点的距离为 4,那么这个点在数轴上所表示 的数是( ) A . ﹣2 或﹣8 B . ﹣1 或﹣9 C . ﹣9 D . ﹣1 8. (2 分) (2019 七上·萧山期末) 下列各数中,结果是负数的是( )A.B.C.D. 9. (2 分) (2019 七下·昭平期中) 若方程 x2﹣3x+2=0 较小的根为 p,方程 3x2﹣2x﹣1=0 较大的根为 q, 则 p+q 等于( )A. B.3 C.2 D.1第 2 页 共 11 页10. (2 分) (2018 七上·武昌期末) 在数轴上表示有理数 a , ﹣a , ﹣b-1 的点如图所示,则( )A . ﹣b<﹣aB.<C. > D . b-1<a二、 填空题 (共 8 题;共 8 分)11. (1 分) (2016 七上·宁海期中) 已知代数式 x+2y 的值是﹣6,则代数式 3x+6y+1 的值是________12. (1 分) (2017 九下·东台期中) 的相反数是________. 13. (1 分) (2016 七上·崇仁期中) 在数轴上与﹣1 相距 3 个单位长度的点表示的有理数是________. 14. (1 分) (2019 七上·港口期中) 小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹 盖住部分的整数有________.15. (1 分) (2016 七上·山西期末) 已知方程是关于 x 的一元一次方程,则 a 的值为________。
2019-2020学年上学期初中数学七年级10月第一次月考数学试卷带答案解析
2019-2020学年上学期初中数学七年级10月第一次月考数学试卷带答案解析一、选择题1、下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 ( ) A .B .C .D .2、-3的相反数是( )A .B .-3C .D .33、计算(-2)﹢(-3)的结果是( )A .-1B .1C .-5D .5 4、地球半径约为6400000米,用科学记数法表示为( ) A .B .C .D .5、下列说法不正确的是( )A .0既不是正数,也不是负数B .绝对值最小的数是0C .相反数等于它本身的数是0D .0的倒数是0 6、下列运算结果为负值的是( )A .(-7)×(-6)B .0×(-2)(-3)C .(-6)+(-4)D .(-7)-(-15) 7、在,12,,0 ,(-3) 2,中,负数的个数有( )A .1个B .2 个C .3 个D .4 个8、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第( )次后可拉出64根细面条.A .5;B .6;C .7;D .8.二、填空题9、如果向北走10米记为是+10米,那么向南走30米记为 。
10、一个数的绝对值是4,则这个数是_____。
11、已知点P 是表示数轴上的点,,把点P 点向左移动3个单位后再向右移4个单位长度,那么点P 表示的数是___。
※内…………○12、平方得9的数是____。
13、直接写出计算结果:(1) (-3)-(+2)=________; (2)+=_________;(3)(-8)×(-5)=________; (4)(+6)÷(-2)=_______。
14、计算(-2)的结果是___。
15、写出一个有理数,使它们满足:①是负数;②是整数;③能被2和3整除.答:___。
2019-2020学年第一学期七年级数学10月月考数学试卷及答案有解析
_________………2019-2020学年第一学期七年级数学10月月考试卷及答案有解析一、选择题1、下列说法正确的是( )①0是绝对值最小的有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为;④两个数比较,绝对值大的反而小。
A .①②B .①③C .①②③D .①②③④2、的倒数是( )A .B .C .D .3、下列实数是无理数的是( )A .B .0.121121112C .D .4、徐州市某条地铁线路的里程约为,将用科学记数法表示为( )A .0.397B .3.97C .D .5、下列各数中,不相等的是( ) A .(-3)2和-32B .(-3)3和C .(-2)3和-23D .|-2|3和|(-2)3|6、若x 为3,|y|=5,则x-y 的值为( )A .-2B .8C .-2或8D .2或-87、其中正确的有( )A .4个B .3个C .2个D .1个8、数轴上表示整数的点成为整点,某数轴的单位长度为1cm ,若在这个数轴上随意画出一条长2017cm 的线段AB ,则线段AB 盖住的整点有( ) A .2016个 B .2017个C .2016个或2017个D .2017个或2018个二、填空题9、绝对值小于5的所有负整数的和是________。
10、平方得9的数是____。
11、向东行驶3km 记作+3km ,向西行驶2km 记作________________。
12、徐州市去年12月份某一天,最高气温为5℃,最低气温为-2℃,这一天本市的温差为___________。
13、计算:3-2²=_____________。
14、比较大小:_____15、在数轴上,到1这个点的距离是3的点所表示的数是_________________。
16、小亮有6张卡片,上面分别写有-5,-3,-1,0,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为________.17、已知________18、_________19、将下列各数填在相应的大括号里:、-(-12)、-2、-0.2、 、0、、、、0.010010001….负数集合:{ };分数集合:{ } 无理数集合:{ };负整数集合:{ }20、在数轴上表示下列各数,并用“<”将它们连接起来。
辽宁省大连金普新区2024-2025学年上学期10月月考七年级数学卷
辽宁省大连金普新区2024-2025学年上学期10月月考七年级数学卷一、单选题1.下列四个数中,是正整数的是( ) A .2-B .0C .12D .32.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为( )A .425.310⨯B .42.5310⨯C .52.5310⨯D .60.25310⨯3.比1-大5的数是( ) A .6-B .4-C .6D .44.如图,数轴上有A 、B 、C 、D 四个点,其中表示互为相反数的点是( )A .点A 与点DB .点A 与点CC .点B 与点CD .点B 与点D5.七年一班数学第一单元检测的平均成绩是103分,小亮得了110分,记作7+分,小英的成绩记作2-分,表示小英得了( ) A .98分B .101分C .105分D .108分6.下列运算错误的是() A .()527--= B .1362⎛⎫-÷-= ⎪⎝⎭C .()()538-++=-D .11133⎛⎫-⨯-= ⎪⎝⎭7.如果a b =,那么a 与b 的关系是( ) A .相等B .互为相反数C .都是零D .相等或互为相反数8.下列各组数中,运算结果相等的是( ) A .24-和()42-B .35-和()35-C .20241-和()20241-D .323⎛⎫ ⎪⎝⎭和232⎛⎫ ⎪⎝⎭9.下列说法正确的是( ) A .任何数都不等于它的相反数 B .零减一个数一定是负数C .互为相反数的两个数的同一正偶数次幂相等D .如果a b >,那么11a b< 10.若x =3,6y =,且x >y ,则x +y 的值是( )A .3-和9-B .3和6-C .3-和9D .9- 和3二、填空题11.用四舍五入法将8.589精确到0.1,所得的近似数为. 12.比较大小:2-137-. 13.点A 在数轴上表示的数是3-,从点A 出发,沿数轴向右移动10个单位长度到达点B ,则点B 表示的数是.14.已知2202.440965.76=,则22024=.15.按一定规律排列的一列数为13-,43,3-,163,325-,12,…,则第11个数为.三、解答题 16.计算:(1)()()1218715--+--;(2)()()3143 3.579+-⨯--÷.17.某校七年二班学生在劳动课上采摘成熟的油桃,一共采摘了10箱,以每箱20千克为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:(1)以每箱20千克为标准,这10箱油桃总计超过或不足多少千克?(2)若油桃每千克售价5元,则售出这10箱油桃可得多少元?18.某公路养护小组乘车沿一条南北向公路巡视养护.某天早晨他们从A 地出发,晚上最终到达B 地,约定向北为正方向,当天汽车的行驶记录(单位:km )如下:10342816212+-+--+-+,,,,,,,. 假设汽车在同一行驶记录下是单向行驶. (1)B 地在A 地哪个方向?它们相距多少千米?(2)如果他们所乘坐的汽车行驶1km 平均耗油0.08升,那么这天汽车共耗油多少升? 19.有理数a 、b 、c 在数轴上的位置如图所示,其中a 与c 互为相反数. (1)填空:a c +=______,ac=______;(2)用“>”或“<”填空:b a -______0,a b +______0,ab ______0;(3)在数轴上标出a b --,,比较a a b b --,,,的大小(按从小到大的顺序排列).20.【问题初探】在数学活动课上,李老师给出如下问题:计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.①小明写出如下解题过程:原式121123036105⎡⎤⎛⎫⎛⎫⎛⎫=-÷++-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1511111330623033010⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-÷+-=-÷=-⨯=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.②小强写出如下解题过程:原式的倒数为211213106530⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭()2112302035121031065⎛⎫=-+-⨯-=-+-+=- ⎪⎝⎭. 则原式110=-. 【类比分析】(1)请你选择一名同学的方法,计算:1524542739⎛⎫ ⎪⎝-+-⎭÷. 【学以致用】(2)计算:25105525101136966369⎛⎫⎛⎫⎛⎫⎛⎫--÷-+-÷-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.21.观察下面三行数:2 4 8 16 32---,,,,,64,…;①1-,5,7-,17,31-,65,…;②4-,8,16-,32,64-,128,….③(1)第①行第8个数为______;(2)用含n (n 为正整数)的式子表示第①②③行中第n 个数; (3)设x ,y ,z 分别为第①②③行的第2024个数,求x y z +-的值.22.三阶幻方又叫九宫格,它是由九个数字组成的一个三行三列的矩阵.三阶幻方有“和幻方”和“积幻方”.其每一横行、每一竖列、每条斜对角线上的三个数字之和均相等的,我们称为“和幻方”;其每一横行、每一竖列、每条斜对角线上的三个数字之积均相等的,我们称为“积幻方”.(1)如图1是一个“和幻方”,则a =______,b =______; (2)如图2是一个“积幻方”,求n m 的值; (3)如图3是一个“和幻方”,求x 的值. 23.综合与实践 阅读下列材料:进位制是人们为了记数和运算方便而约定的记数系统,约定逢十进一就是十进制,逢二进一就是二进制.也就是说,“逢几进一”就是几进制,几进制的基数就是几.为了区分不同的进位制,常在数的右下角标明基数.例如:()21101就是二进制数1101的简单写法,十进制数一般不标注基数,()n abc 表示这个n 进制数从右起,第一位上的数字为c ,第二位上的数字为b ,第三位上的数字为a .一个数可以表示成各数位上的数字与基数的幂的乘积之和的形式.例如十进制数32105678510610710810=⨯+⨯+⨯+⨯(当0a ≠时,01a =).同理,二进制数()21101转换为十进制数为:32101212021213⨯+⨯+⨯+⨯=.一个十进制数转换为n 进制数时,把十进制数表示成0,1,2,…,1n -与基数n 的幂的乘积之和的形式.例如,将十进制数46转换为三进制数,因为274681<<,即343463<<,则32104613230313=⨯+⨯+⨯+⨯,所以46转换为三进制数为()31201.根据上述材料,解答下列问题.(1)①把二进制数()21011转换为十进制数; ②把十进制数29转换为二进制数. (2)把十进制数63转换为五进制数;(3)若一个三进制数转换为十进制数为m ,一个四进制数转换为十进制数为n ,当99m n +=时,称这个三进制数与这个四进制数互为“久久数”.①判断()31201与()4303是否互为“久久数”,并说明理由; ②若()301ab 与()43a b 互为“久久数”,求a ,b 的值.。
辽宁省大连市七年级上学期数学10月月考试卷
辽宁省大连市七年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·九龙坡期中) 下列数中:负分数有()个?A . 2B . 3C . 4D . 52. (2分) (2018七上·和平期末) 用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱. ()A . ①②③④B . ①③④C . ①④D . ①②3. (2分) (2019七上·福田期末) 下列各对数中互为相反数的是()A . 与B . 与C . 与D . 与4. (2分)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A . (2,4)B . (1,5)C . (1,-3)D . (-5,5)5. (2分) (2018七上·南京期中) 四个数轴上的点A都表示数a,其中,一定满足︱a︱>2的是().A . ①③B . ②③C . ①④D . ②④6. (2分)-2的绝对值为()A . -2B . 2C .D .7. (2分) (2020七上·溧水期末) 如图,数轴的单位长度为1,如果点A表示的数为-2,那么点B表示的数是()A . 3B . 2C . 0D . -18. (2分) (2016七上·单县期末) 如图,在数轴上点A,B对应的实数分别为a,b,则有()A . a+b>0B . a﹣b>0C . ab>0D . >09. (2分) (2016高一下·天津期中) 设a是最小的自然数,b是最大负整数的相反数,c是绝对值最小的有理数,则a、b、c三数之和为()A . -1B . 0C . 1D . 210. (2分)计算-3+2的结果是()A . 1B . -1C . 5D . -5二、填空题 (共10题;共14分)11. (2分) (2017七上·抚顺期中) 阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书________本.12. (3分)比较下列各组效的大小.(1)-8与-7(2)-与-(3)-0.618与-6.18(4) 0.5与︱-8︱(5)-1 与-l(6)-︱-0.1︱与-13. (1分) (2019七上·孝南月考) -2.5的相反数、倒数、绝对值分别为 ________、________、________。
辽宁省大连市金普新区2023-2024学年七年级上学期10月月考数学试题
C.1
D.2
5.下列说法正确的是( )
A.整数就是正整数和负整数
B.负整数的相反数就是非负整数
C.有理数不是负数就是正数
D.零是自然数,但不是正整数
6.我市某天早晨气温是﹣3℃,到中午升高了 7℃,晚上又降低了 3℃,到午夜又降低
了 6℃,午夜时温度为( )
A.19℃
B.1℃
C.﹣5℃
D.﹣2℃
7.已知 a 1, b 是 2 的相反数,则 a b 的值为( )
辽宁省大连市金普新区 2023-2024 学年七年级上学期 10 月月 考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.向东行进–30 米表示的意义是( )
A.向东行进 30 米
B.向东行进–30 米
C.向西行进 30 米
(25 0.3) kg 的字样,从中任意拿出两袋,它们的质量最多相差( )
A.0.8 kg
B.0.6 kg
C.0.5 kg
10.如果 ab≠0,那么
a a
b b
的值不可能是(
)
D.0.4 kg
试卷第 1页,共 3页
A.0
B.1
C.2
D.-2
二、填空题
11.化简: 3 .
12.在 3 ,2,0, 1.04 , 22 ,8 , 100 , 1 中,负分数有
D.向西行进–30 米
2.有理数 1,0, 5 ,3 四个数中,最小的是( )
A. 1
B.0
C. 5
D.3
3.下列运算错误的是( ).
A. 2 2 0
B. 2 ( 2) 0
辽宁省大连市七年级上学期数学10月月考试卷
辽宁省大连市七年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·昭通期末) 下列几何图形属于立体图形的是()A . 长方形B . 三角形C . 圆柱D . 正方形2. (2分)如果向东走2m记为+2m,则向西走3m可记为()A . +3mB . +2mC . ﹣3mD . ﹣2m3. (2分)下列几何体中,截面不可能是三角形的是()A . 长方体B . 正方体C . 圆柱D . 圆锥4. (2分) (2016七上·阳信期中) ﹣2015的绝对值是()A . ﹣2015B . 2015C .D . ﹣5. (2分) (2019七上·凤翔期中) 是()A . 整数B . 正分数C . 分数D . 正数6. (2分) (2017八下·临沧期末) 下列运算正确的是()A . (a+b)(a﹣b)=a2﹣b2B . (2a2)3=6a6C . a6÷a2=a3D . ﹣1﹣1=07. (2分)下列图形中可以作为一个三棱柱的展开图的是()A .B .C .D .8. (2分) 2007﹣[2007﹣(2006﹣2007)]的值为()A . ﹣1B . ﹣2007C . ﹣2D . 20069. (2分)在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A . 当a<5时,点B在⊙A内B . 当1<a<5时,点B在⊙A内C . 当a<1时,点B在⊙A外D . 当a>5时,点B在⊙A外10. (2分) (2019七上·栾川期末) 几个相同的正方体叠合在一起,该组合体的主视图和俯视图如图所示,那么组合体中正方体的个数至少有几个?至多有几个?()A . 5,6B . 6,7C . 7,8D . 8,10二、填空题 (共10题;共16分)11. (5分)下列物体呈现的是哪一种几何图形?大头针的尖端是________,桌子的边缘是________,桌面是________ .12. (1分)如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?________ ________________ ________13. (1分) (2019七上·施秉月考) 如图是一个正方体的平面展开图,在这个正方体中相对的面上的数字互为相反数,那么m所表示的数应是________.14. (1分) (2017七上·柯桥期中) “早穿皮袄午穿纱”这句民谣形象地描绘了我国新疆奇妙的气温变化现象。
辽宁省大连市七年级上学期数学10月月考试卷
辽宁省大连市七年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·哈尔滨月考) 某市元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A . -10℃B . -6℃C . 6℃D . 10℃2. (2分)下列说法错误的是()A . 如果,那么B . 如果是正数,那么是负数C . 如果是大于1的数,那么是小于-1的数D . 一个数的相反数不是正数就是负数3. (2分) (2019七上·路北期中) 下列各整式中,次数为5次的单项式是()A . xy5B . x+y5C . x+y4D . xy44. (2分)(2013·绍兴) 地球半径约为6400000米,则此数用科学记数法表示为()A . 0.64×109B . 6.4×106C . 6.4×104D . 64×1035. (2分) (2019七下·电白期末) 数学课上老师给出了下面的数据,请问哪一个数据是精确的()A . 2003年美国发动的伊拉克战争每月耗费约40亿美元B . 地球上煤储量为5万亿吨左右C . 人的大脑约有1×1010个细胞D . 某次期中考试中小颖的数学成绩是98分6. (2分) (2019七上·澄海期末) 下列各数中,绝对值最小的数是()A . 0B . 1C . -3D .7. (2分) (2019七上·海南期末) 在代数式中,整式的个数是()A . 2B . 3C . 4D . 58. (2分) (2019七上·富阳期中) 已知,则的值是A . 0B . 2C . 5D . 89. (2分)将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图6-1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A . 6B . 5C . 3D . 210. (2分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A . 13B . 14C . 15D . 16二、填空题 (共8题;共8分)11. (1分) (2019七上·南通月考) 在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,可记做+0.23米,那么小东跳出了3.75米,记作________.12. (1分)(2017·秦淮模拟) ﹣2的倒数是________;﹣2的相反数是________.13. (1分) (2018七上·新洲期中) 计算:(-1)+2=________.14. (1分) (2017七·南通期末) 近似数4.70亿,它精确到的数位是________.15. (1分) (2018七上·满城期末) 用四舍五入法对2.885取近似数,2.885≈________(精确到0.01).16. (1分) (2018七上·江阴期中) 多项式的次数是________,常数项是________.17. (1分) (2016七上·蕲春期中) 的相反数是________,绝对值是________,倒数是________.18. (1分)若|x﹣3|+(3y+4)2=0,则xy=________.三、解答题 (共5题;共55分)19. (5分) (2019七上·南湖月考) 把下列各数填在相应的大括号里.+2019,-3.14,-4,- ,6%,0,32( 1 )正整数:{________}( 2 )整数:{________}( 3 )正分数:{________}( 4 )负分数:{________}20. (10分) (2020七上·德州月考) 有理数a , b , c在数轴上的位置如图所示:(1)判断:b-a________0,a-c________0,b+c________0;(用“>”“<”或“=”填空)(2)化简:|c|-|a|+|-b|+|-a|.21. (15分) (2019七上·扶沟期中) 计算(1)﹣(﹣)﹣|0﹣5 |﹣|﹣4 |﹣(﹣9 )(2)(﹣10)3+[42﹣(1﹣32)×2]22. (10分) (2019七上·郑州月考) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有出入。
2019-2020学年七年级上学期数学10月月考试卷
2019-2020学年七年级上学期数学10月月考试卷一、单选题 (共10题;共20分)1. (2分)下列方程属于一元一次方程的是()A . =4B . 3x-2y=1C . 1-x2=0D . 3x=42. (2分)下列不是一元一次方程的()A . 5x+3=3x﹣7B . 1+2x=3C .D . x﹣7=03. (2分)图中和是对顶角的是()A .B .C .D .4. (2分)下列各命题中,属于假命题的是()A . 若a-b=0,则a=b=0B . 若a-b>0,则a>bC . 若a-b<0,则a<bD . 若a-b≠0,则a≠b5. (2分)如果关于x的方程(a+1)x+1=0有负根,则a的取值范围是()A . a>﹣1B . a<﹣1C . a≥﹣1D . a≤﹣16. (2分)对于实数a、b,规定a⊕b=a﹣2b,若4⊕(x﹣3)=2,则x的值为()A . ﹣2B . ﹣C .D . 47. (2分)小聪按如图所示的程序输入一个正数x,最后输出的结果为853,则满足条件的x的不同值最多有()A . 4个B . 5个C . 6个D . 无数个8. (2分)某商品的进价为200元,标价为300元,打x折销售时后仍获利,则x为A . 7B . 6C . 5D . 49. (2分)下列变形中,属于移项的是()A . 由5x=3x﹣2,得5x﹣3x=﹣2B . 由 =4,得2x+1=12C . 由y﹣(1﹣2y)=5得y﹣1+2y=5D . 由8x=7得x=10. (2分)下列等式变形正确的是()A . 由a=b,得 =B . 由﹣3x=﹣3y,得x=﹣yC . 由 =1,得x=D . 由x=y,得 =二、填空题 (共10题;共10分)11. (1分)(x+y)2可以解释为________。
12. (1分)下列四个方程x-1=0 ,a+b=0, 2x=0 ,1y=1中,是一元一次方程的有________和________。
2019-2020学年七年级(上)第一次月考数学试卷 (10)-0723(含答案解析)
2019-2020学年七年级(上)第一次月考数学试卷 (10)一、选择题(本大题共6小题,共18.0分)1.单项式−4ab2的次数是()A. 4B. −4C. 3D. 22.当x=3,y=2时,代数式2x−3y的值为()3A. 1B. 2C. 3D. 03.把多项式−2ab+a2−5a3b+7按字母a的降幂排列正确的是()A. −5a3b、a2、−2ab、7B. −5a3b+a2−2ab+7C. 5a3b+a2−2ab+7D. −5a3b−2ab+a2+74.下列各组中的两个单项式能合并的是()A. 4和4xB. 3x2y3和−y2x3C. 2ab2和100ab2cD. m和m25.若(a m b n)2=a8b12,则()A. m=6,n=10B. m=4,n=6C. m=6,n=4D. m=10,n=66.计算(−x n−1)3等于()A. x3n−1B. −x3n−1C. x3n−3D. −x3n−3二、填空题(本大题共12小题,共36.0分)7.计算:(a2b)3=______.8.若a x=2,a y=5,则a x+y=______ .9.若2x3y n与−5x m y2是同类项,则m=______,n=______.10.对于多项式(n−1)x m+2−3x2+2x(其中m是大于−2的整数).若n=2,且该多项式是关于x的三次三项式,则m的值为______.11.x(2x2−3x+1)=_____________.12.若x2−5x+m=(x−2)(x−n),则m+n=______ .13.已知长方形的周长为4a+2b,其一边长为a−b,则另一边长为__________.14.笔记本每本m元,圆珠笔每支n元,买5本笔记本和7支圆珠笔共需______ 元.15.已知关于x、y的多项式mx3+3nxy2−2x3+xy2+2x−y不含三次项,那么n m=______.16.已知x2+3x+1=0,则代数式(x−1)(x+4)的值为_______17.若规定一种运算:a∗b=(a+b)−(a−b),其中a,b为有理数,则a∗b+(b−a)∗b等于______.18.观察下列单项式:−a,2a2,−3a3,4a4,−5a5,…可以得到第2016个单项式是______ ;第n个单项式是______ .三、计算题(本大题共1小题,共5.0分)19.先化简,再求值:(−x2+1)−2(1−x2),其中x=−1.四、解答题(本大题共8小题,共41.0分)20.化简:(x2+9x−5)−(4−7x2+x).21.计算(2x2)3−2x2⋅x3+2x522.16.解不等式:3(2x−1)+1≥x+3.23.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.24.设n为正整数,且x2n=5,求(2x3n)2−3(x2)2n的值.25.如图,用6块相同的长方形拼成一个宽为9cm大长方形,求每块小长方形的长和宽.26.四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF(阴影部分)的面积.(结果要求化成最简)27.甲、乙二人共同计算2(x+a)(x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为2x2+4x−30;由于乙漏抄了2,得到的结果为x2+8x+15.(1)求a,b的值;(2)求出正确的结果.-------- 答案与解析 --------1.答案:C解析:解:单项式−4ab2的次数是:3.故选:C.直接利用单项式的次数的确定方法分析得出答案.此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.2.答案:D=0,解析:解:当x=3,y=2时,原式=6−63故选:D.把x与y的值代入原式计算即可得到结果.本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.3.答案:B解析:【分析】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.先把多项式2ab2−5a2b−7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【解答】解:把多项式−2ab+a2−5a3b+7按字母a的降幂排列:−5a3b+a2−2ab+7.故选B.4.答案:D解析:【分析】本题考查同类项的定义,属于基础题,注意掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,还要注意同类项与字母的顺序无关,与系数无关.根据所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关可判断出正确答案.【解答】解:A.两者所含字母不同,故本选项错误;B.两者所含的相同字母的指数不同,故本选项错误;C.两者所含字母不同,故本选项错误;D.两者符合同类项的定义,故本选项正确.故选D.5.答案:B解析:【分析】本题考查了积的乘方的运算性质,解题关键是掌握积的乘方的运算性质:积的乘方等于把积中的各个因式分别乘方.解题时,先根据积的乘方和幂的乘方的性质把原式变形为a2m b2n,再由已知条件可得a2m b2n=a8b12,即可得出答案.【解答】解:(a m b n)2=(a m)2⋅(b n)2=a2m b2n=a8b12,所以2m=8,2n=12,所以m=4,n=6.故选B.6.答案:D解析:解:(−x n−1)3=−x3n−3,故选:D.根据幂的乘方的运算法则计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是掌握幂的乘方与积的乘方的运算法则.7.答案:a6b3解析:解:(a2b)3=(a2)3b3=a6b3.故答案为:a6b3.根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.本题主要考查积的乘方的性质,幂的乘方的性质,熟练掌握运算性质是解题的关键.8.答案:10解析:解:∵a x=2,a y=5,∴a x+y=a x⋅a y=2×5=10,故答案为:10原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.9.答案:3 2解析:解:由同类项的定义可知m=3,n=2.根据同类项的定义(所含字母相同,相同字母的指数相同)可得:m=3,n=2.同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.10.答案:1解析:解:∵n=2时,多项式是关于x的三次三项式,∴m+2=3,解得,m=1,故答案为:1.根据多项式中次数最高的项的次数叫做多项式的次数解答.本题考查的是多项式的概念,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键.11.答案:2x3−3x2+x解析:【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则去括号得出即可.【解答】解:x(2x 2−3x +1),=2x 3−3x 2+x .故答案为2x 3−3x 2+x .12.答案:9解析:【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.等式右边利用多项式乘多项式法则计算,然后利用多项式相等的条件求出m 与n 的值,即可确定出m +n 的值.【解答】解:∵x 2−5x +m =(x −2)(x −n)=x 2−(n +2)x +2n ,∴n +2=5,m =2n ,解得:m =6,n =3,则m +n =9.故答案为9.13.答案:a +2b解析:【分析】本题考查了长方形的周长计算公式及整式的加减,掌握长方形的周长=2(长+宽)是解题的关键.根据长方形的周长=2(长+宽)列出关系式,即可得到结果.【解答】解:∵长方形的周长为4a +2b ,宽为a −b ,∴长为12(4a +2b)−(a −b)=2a +b −a +b =a +2b ,故答案为:a +2b .14.答案:(5m +7n)解析:解:笔记本每本m 元,圆珠笔每支n 元,买5本笔记本和7支圆珠笔共需(5m +7n)元. 故答案为:(5m +7n).先求出买5本笔记本的钱数和买7支圆珠笔的钱数,再把两者相加即可.此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.15.答案:19解析:解:∵mx 3+3nxy 2−2x 3+xy 2+2x −y =(m −2)x 3+(3n +1)xy 2+2x −y ,且多项式不含三次项,∴m −2=0且3n +1=0,解得:m =2,n =−13,则n m =(−13)2=19,故答案为:1.9将多项式合并后,令三次项系数为0,求出m与n的值,即可求出n m的值.此题主要考查了多项式的定义与合并同类项,利用多项式不含三次项得出三次项系数和为0,进而求出m,n是解题关键.16.答案:−5解析:【分析】此题考查了代数式求值和整式的乘法,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.根据题意求出x2+3x的值,把代数式(x−1)(x+4)展开后,将x2+3x的值代入计算即可求出值.【解答】解:∵x2+3x+1=0,∴x2+3x=−1(x−1)(x+4)=x2+3x−4=−1−4=−5.故答案为:−5.17.答案:4b解析:解:a∗b+(b−a)∗b=(a+b)−(a−b)+(b−a+b)−(b−a−b)=a+b−a+b+2b−a+a=4b.故答案为4b.先根据新定义展开,再去括号合并同类项即可.本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.18.答案:2016a2016;(−1)n na n解析:解:由前几项的规律可得:第2016个单项式为:2016a2016;第n个单项式的系数为:n×(−1)n,次数为n,故第n个单项式为:(−1)n na n.故答案为::2016a2016;(−1)n na n.通过观察题意可得:每一项都是单项式,其中系数为n×(−1)n,字母是a,x的指数为n的值.由此可解出本题.此题考查了找规律的单项式题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.19.答案:解:原式=−x2+1−2+2x2=x2−1,当x=−1时,原式=1−1=0.解析:原式去括号合并得到最简结果,把x的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.20.答案:解:原式=x2+9x−5−4+7x2−x=8x2+8x−9.解析:首先去括号,进而合并同类项即可得出答案.此题主要考查了整式的加减运算,正确去括号是解题关键.21.答案:解:(2x2)3−2x2⋅x3+2x5=8x6−2x5+2x5=8x6.解析:直接利用积的乘方运算法则结合单项式乘以单项式运算法则分别化简得出答案.此题主要考查了积的乘方运算和单项式乘以单项式运算,正确掌握相关运算法则是解题关键.22.答案:x≥1解析:【分析】根据解不等式的方法可以解答本题.【详解】解:3(2x−1)+1≥x+3去括号,得6x−3+1≥x+3移项及合并同类项,得5x≥5系数化为1,得x≥1,∴原不等式的解集为x≥1.【点睛】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.23.答案:解:(1)10m+n=10m⋅10n=5×4=20;(2)3a×27b=3a×33b=3a+3b=34=81.解析:根据同底数幂的乘法,可得答案.本题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.24.答案:解:(2x3n)2−3(x2)2n=4x6n−3x4n=4(x2n)3−3(x2n)2=4×53−3×52=425.解析:此题主要考查了幂的乘方和积的乘方,关键是幂的乘方法则:底数不变,指数相乘.(a m)n= a mn(m,n是正整数);积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数).首先计算积的乘方可得4x 6n −3x 4n ,再根据幂的乘方进行变形,把底数变为x 2n ,然后代入求值即可.25.答案:解:设小长方形的长为xcm ,宽为ycm ,根据题意得:{x +y =9x =2y, 解得{x =6y =3. 答:小长方形的长为6cm ,宽为3cm .解析:此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.设小长方形的长为xcm ,宽为ycm ,根据图示可得①长+宽=9cm ;②长=宽的2倍,根据等量关系列出方程组,再解即可.26.答案:解:如图,如图,S △BFD =S △BCD +S 梯形CEFD −S △BEF =12a 2+12(a +b)×b −12(a +b)b =12a 2.解析:可利用S △BDF =S △BCD +S 梯形EFDC −S △BFE ,把a 、b 代入,化简即可求出△BDF 的面积. 本题利用了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割,从而利用面积和进行解答.27.答案:解:(1)由甲得2(x −a)(x +b)=2x 2+2(−a +b)x −2ab =2x 2+4x −30, ∴2(−a +b)=4,即−a +b =2①,由乙得(x +a)(x +b)=x 2+(a +b)x +ab =x 2+8x +15,∴a +b =8②,由①,②得{−a +b =2a +b =8解得:a =3,b =5;(2)∴2(a +x)(b +x)=2(3+x)(5+x)=2x 2+16x +30.解析:本题考查多项式的乘法法则与解二元一次方程组.(1)由甲的运算得出−a+b=2①,由乙的运算得出a+b=8②,由①,②组成方程组求出a、b 值;(2)把a、b值代入原式计算即可.。
2019-2020学年七年级数学10月月考试题(含解析)
2019-2020学年七年级数学10月月考试题一、精心选一选(每题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作+500元,那么支出400元应记作( ) A.﹣500元B.﹣400元C.500元D.400元2.3的相反数是( )A.﹣3 B.+3 C.0.3 D.|﹣3|3.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A.3℃B.15℃ C.﹣10℃D.﹣1℃4.下列各式正确的是( )A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣35.下列各式中,正确的是( )A.﹣4﹣2=﹣2 B.10+(﹣8)=﹣2 C.5﹣(﹣5)=0 D.﹣5﹣3﹣(﹣3)=﹣56.下列说法中,正确的是( )A.任何有理数的绝对值都是正数B.如果两个数不相等,那么这两个数的绝对值也不相等C.任何一个有理数的绝对值都不是负数D.只有负数的绝对值是它的相反数7.数轴上的点A到原点的距离是5,则点A表示的数为( )A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.58.下列说法错误的是( )A.任何有理数都有倒数B.互为倒数的两数的积等于1C.互为倒数的两数符号相同D.1和其本身互为倒数9.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是( )A.a+b>0 B.a>b C.ab<0 D.b﹣a>010.若|a|=5,|b|=2,a<b,则a,b分别为( )A.5,﹣2 B.﹣5,﹣2 C.﹣5,2 D.﹣5,﹣2或﹣5,2二、填空题(每空2分,共26分.把答案直接填在横线上)11.如果规定向东走为正,那么“﹣5米”表示:__________.12.在数轴上表示的两个数中,__________的数总比__________的数大.13.某地中午气温为10℃,到半夜又下降12℃,则半夜的气温为__________℃.14.﹣1的绝对值是__________;的倒数是__________.15.比较大小:﹣0.3__________.16.从﹣3,﹣2,0,5中取出两个数,所得的最大乘积是__________.17.测某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球,是__________18.绝对值小于2.5的整数有__________个,它们的和是__________.19.如图所示是计算机程序计算,若开始输入x=﹣1输出的结果是__________.20.已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…由此规律知,第⑤个等式是__________.三、解答题(共44分)21.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)23.(18分)计算:(1)﹣3﹣5+4(2)7﹣(﹣4)+(﹣5)(3)﹣4﹣28﹣(﹣19)+(﹣24)(4)(﹣32)÷4×(﹣8)(5)(6)12﹣7×(﹣4)+8÷(﹣2)24.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+7,﹣9,+7,﹣5,﹣3,+11,﹣6,+5.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?32,那么这四个数是__________.(2)小亮也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是__________.(3)小红也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是__________.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是__________号.2019-2020学年七年级数学10月月考试题一、精心选一选(每题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作+500元,那么支出400元应记作( ) A.﹣500元B.﹣400元C.500元D.400元【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,收入记为正,可得答案.【解答】解:收入500元记作+500元,那么支出400元应记作﹣400元,故选:B.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.2.3的相反数是( )A.﹣3 B.+3 C.0.3 D.|﹣3|【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:3的相反数为﹣3.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A.3℃B.15℃ C.﹣10℃D.﹣1℃【考点】有理数大小比较.【分析】根据有理数比较大小的法则比较出各数的大小即可.【解答】解:∵3,15是正数,∴3>0,15>0.∵﹣10,﹣1是负数,∴﹣10<0,﹣1<0.∵|﹣10|=10,|﹣1|=1,10>1,∴﹣10<﹣1<0,∴其中平均气温最低的是﹣10℃.故选C.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.4.下列各式正确的是( )A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣3【考点】相反数.【分析】根据相反数的定义和绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、﹣|﹣3|=﹣3,故本选项错误;B、+(﹣3)=﹣3,故本选项错误;C、﹣(﹣3)=3,故本选项正确;D、﹣(﹣3)=3,故本选项错误.故选C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.5.下列各式中,正确的是( )A.﹣4﹣2=﹣2 B.10+(﹣8)=﹣2 C.5﹣(﹣5)=0 D.﹣5﹣3﹣(﹣3)=﹣5 【考点】有理数的减法;有理数的加法.【分析】根据有理数的减法,即可解答.【解答】解:A、﹣4﹣2=﹣6,故错误;B、10+(﹣8)=2,故错误;C、5﹣(﹣5)=5+5=10,故错误;D、﹣5﹣3﹣(﹣3)=﹣5,正确;故选:D.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.6.下列说法中,正确的是( )A.任何有理数的绝对值都是正数B.如果两个数不相等,那么这两个数的绝对值也不相等C.任何一个有理数的绝对值都不是负数D.只有负数的绝对值是它的相反数【考点】绝对值.【分析】根据绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、0的绝对值是0,0既不是正数也不是负数,所以,任何有理数的绝对值都是正数错误,故本选项错误;B、互为相反数的两个数的绝对值相等,所以,如果两个数不相等,那么这两个数的绝对值也不相等错误,故本选项错误;C、任何一个有理数的绝对值都不是负数正确,故本选项正确;D、零的绝对值是0,也是它的相反数,所以,只有负数的绝对值是它的相反数错误,故本选项错误.故选C.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.数轴上的点A到原点的距离是5,则点A表示的数为( )A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.5【考点】数轴.【分析】此题要全面考虑,原点两侧各有一个点到原点的距离为5,即表示5和﹣5的点.【解答】解:根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C.【点评】本题考查了数轴的知识,利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.8.下列说法错误的是( )A.任何有理数都有倒数B.互为倒数的两数的积等于1C.互为倒数的两数符号相同D.1和其本身互为倒数【考点】倒数.【分析】根据倒数的定义若两个数的乘积是1,我们就称这两个数互为倒数进行解答.【解答】解:A、0没有倒数,故本选项错误;B、互为倒数的两数之积为1,故本选项正确;C、互为倒数的两数符号相同,故本选项正确;D、1和其本身互为倒数,故本选项正确;综上可得只有A错误.故选A.【点评】本题考查倒数的知识,属于基础题,注意基本概念的掌握.9.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是( )A.a+b>0 B.a>b C.ab<0 D.b﹣a>0【考点】有理数大小比较;数轴.【分析】根据数轴可得b<a<0,|b|>|a|,再根据有理数的加法、乘法、有理数减法进行分析可得答案.【解答】解:由数轴可得b<a<0,|b|>|a|,则:a+b<0,a>b,ab>0,b﹣a<0,故B正确,故选:B.【点评】此题主要考查了有理数的加、减、乘法计算,关键是掌握计算法则,注意符号的判断.10.若|a|=5,|b|=2,a<b,则a,b分别为( )A.5,﹣2 B.﹣5,﹣2 C.﹣5,2 D.﹣5,﹣2或﹣5,2【考点】绝对值.【分析】根据绝对值的性质求出a、b的值,根据a<b和有理数的大小比较法则确定a、b 的值.【解答】解:∵|a|=5,∴a=±5,∵,|b|=2,∴b=±2,∵a<b,∴a=﹣5,b=±2,∴a,b分别为﹣5,﹣2或﹣5,2,故选:D.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.二、填空题(每空2分,共26分.把答案直接填在横线上)11.如果规定向东走为正,那么“﹣5米”表示:向西走5米.【考点】正数和负数.【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:规定向东走为正,那么“﹣5米”表示向西走5米,故答案为:向西走5米.【点评】本题考查了正数和负数,相反意义的量用正数和负数表示.12.在数轴上表示的两个数中,右边的数总比左边的数大.【考点】有理数大小比较;数轴.【专题】推理填空题.【分析】根据数轴的定义可知,规定了原点、正方向、单位长度的直线叫做数轴;由于一般取右方向为正方向,故数轴上右边的数总比左边的数大.【解答】解:∵数轴一般取右方向为正方向,∴右边的数总比左边的数大.故答案为:右边、左边.【点评】本题考查的是数轴的特点,即在数轴上表示的两个数中,右边的数总比左边的数大.13.某地中午气温为10℃,到半夜又下降12℃,则半夜的气温为﹣2℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:10﹣12=﹣2(℃).故答案为:﹣2.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.14.﹣1的绝对值是1;的倒数是﹣2.【考点】倒数;绝对值.【分析】倒数的定义:两个数的乘积是1,则它们互为倒数.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:﹣1的绝对值是1;的倒数是﹣2,故答案为:1,﹣2,【点评】考查了倒数以及绝对值,解题的关键是掌握倒数的定义以及绝对值的性质.15.比较大小:﹣0.3>.【考点】有理数大小比较.【分析】根据两个负数,绝对值大的反而小,比较两个数的绝对值大小即可.【解答】解:∵|﹣0.3|=0.3,|﹣|=,且0.3<,∴﹣0.3>﹣,故答案为:>.【点评】本题考查了有理数比较大小.明确两个负数比较大小的方法是解题的关键.16.从﹣3,﹣2,0,5中取出两个数,所得的最大乘积是6.【考点】有理数的乘法;有理数大小比较.【分析】最大的数一定是正数,根据正数的乘积只有一种情况,从而可得解.【解答】解:(﹣3)×(﹣2)=6.故答案为:6.【点评】本题考查有理数的乘法和有理数大小的比较等知识点,关键知道正数大于0,0大于负数.17.测某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量1号.【考点】正数和负数.【分析】先比较出超标情况的大小,再根据绝对值最小的越接近标准质量,即可得出答案.【解答】解:∵|﹣0.3|>|﹣0.23|>|﹣0.2|>|0.1|>|﹣0.02|,∴最接近标准质量是1号.故答案为:1.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.18.绝对值小于2.5的整数有5个,它们的和是0.【考点】有理数的加法;绝对值.【分析】绝对值小于2.5的所有整数,就是在数轴上到原点的距离小于2.5个单位长度的整数,再相加即可解决.【解答】解:绝对值小于2.5的所有整数是﹣2、﹣1、0、1、2,共5个;(﹣2)+(﹣1)+0+1+2=0.故答案为:5,0.【点评】本题主要考查了绝对值的定义和有理数的加法,是需要熟记的内容.19.如图所示是计算机程序计算,若开始输入x=﹣1输出的结果是﹣5.【考点】有理数的混合运算.【专题】图表型.【分析】按照给出的计算程序,代入数值求得答案即可.【解答】解:﹣输入x=﹣1输出的结果是(﹣1)×4﹣1=﹣4﹣1=﹣5.故答案为:﹣5.【点评】此题考查有理数的混合运算,理解规定的运算方法是解决问题的关键.20.已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…由此规律知,第⑤个等式是13+23+33+43+53=152.【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】13+23=(1+2)2=32,13+23+33=(1+2+3)2=62,13+23+33+43=(1+2+3+4)2=102,所以13+23+33+43+53=(1+2+3+4+5)2=152.【解答】解:13+23+33+43+53=(1+2+3+4+5)2=152.【点评】本题考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.根据题中所给的材料获取所需的信息和解题方法是需要掌握的基本技能.三、解答题(共44分)21.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.【考点】实数.【分析】(1)根据大于零的数是正数,可得答案;(2)根据小于零的数是负数,可得答案;(3)根据有理数是有限小数或无限不循环小数,可得答案;(4)根据无理数是无限不循环小数,可得答案.【解答】解:(1)正数集合:{π,0.12,|﹣6|};(2)负数集合:{﹣5,﹣2.626 626 662…,﹣};(3)有理数集合:{﹣5,0,﹣,0.12,|﹣6|};(4)无理数集合:{﹣2.626 626 662…,π };故答案为:π,0.12,|﹣6|;﹣5,﹣2.626 626 662…,﹣;﹣5,0,﹣,0.12,|﹣6|;﹣2.626 626 662…,π.【点评】本题考查了实数,大于零的数是正数,小于零的数是负数;有理数是有限小数或无限不循环小数,无理数是无限不循环小数.22.在数轴上把下列各数表示出来,并用“<”连接各数.2,﹣|﹣1|,1,0,﹣(﹣3.5)【考点】有理数大小比较;数轴.【分析】根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.【解答】解:﹣|﹣1|=﹣1,﹣(﹣3.5)=3.5,如图所示:用“<”连结为:﹣|﹣1|<0<1<2<﹣(﹣3.5).【点评】本题考查了有理数大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(18分)计算:(1)﹣3﹣5+4(2)7﹣(﹣4)+(﹣5)(3)﹣4﹣28﹣(﹣19)+(﹣24)(4)(﹣32)÷4×(﹣8)(5)(6)12﹣7×(﹣4)+8÷(﹣2)【考点】有理数的混合运算.【分析】(1)分类计算即可;(2)(3)先化简,再进一步分类计算即可;(4)先判定符号,再按运算顺序计算;(5)利用乘法分配律简算;(6)先算乘除,最后算加减.【解答】解:(1)原式=﹣8+4=﹣4(2)原式=7+4﹣5=6;(3)原式=﹣4﹣28+19﹣24=﹣56+19=﹣37;(4)原式=32÷4×8=64;(5)原式=×(﹣36)+×(﹣36)﹣×(﹣36)=﹣18﹣30+21=﹣27;(6)原式=12+28﹣4=36.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.24.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+7,﹣9,+7,﹣5,﹣3,+11,﹣6,+5.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.09升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)把行驶记录相加,然后根据正数和负数的意义解答;(2)求出所有行驶记录的绝对值的和,再乘以0.09计算即可得解.【解答】解:(1)(+7)+(﹣9)+(+7)+(﹣5)+(﹣3)+(+11)+(﹣6)+(+5),=7﹣9+7﹣5﹣3+11﹣6+5,=30﹣23,=7米,答:在出发点东侧,距出发点7米;(2)7+9+7+5+3+11+6+5=53米,53×0.09=4.77升,答:这次养护共耗油4.77升.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.32,那么这四个数是4,5,11,12.(2)小亮也在上面的日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是7,8,13,14.(3)小红也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是10.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是29号.【考点】一元一次方程的应用.【分析】(1)先根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;(2)先根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;(3)先根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;(4)先根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可.【解答】解:(1)设第一个数是x,其他的数为x+1,x+7,x+8,则x+x+1+x+7+x+8=32,解得x=4;所以这四个数是:4,5,11,12;故答案为:4,5,11,12;(2)设第一个数是x,其他的数为x+1,x+6,x+7,则x+x+1+x+6+x+7=42,解得x=7.x+1=8,x+6=13,x+7=14;故答案为:7,8,13,14;(3)设中间的数是x,则5x=50,解得x=10;故答案为:10;(4)设最后一个星期日是x,x﹣7,x﹣14,x﹣21,x﹣28,则x+x﹣7+x﹣14+x﹣21+x﹣28=75,解得x=29;故答案为:29.【点评】此题主要考查了一元一次方程的应用和基本的计算能力和找规律的能力,解答时可联系生活实际去解.。
2019—2020年人教版七年级上学期数学10月份月考测试卷及答案解析(基础提分试卷).docx
第一学期学生学习能力测试七年级数学学科试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.下列叙述正确的是(▲)A.有理数中有最大的数B.零是整数中最小的数C.有理数中有绝对值最小的数D.任何数的绝对值一定是正数2.在下列数-56,+1,6.7,-14,0,722,-5 中,属于整数的有(▲)A.2个B.3个C.4个D.5个3.下列计算中,错误的是(▲)A.(+37)+(-67)=-37B.(-37)+(+67)=-97C.(-37)+(-67)=-97D.(+37)+(-37)=04.有理数357,,468---的大小顺序是…………………………………………(▲)A357468-<-<- B735846-<-<-C573684-<-<- D753864-<-<-5.室内温度10℃,室外温度是-3℃,那么室内温度比室外温度高(▲)CBA -1-2-3-4-5543210A -13℃ B -7℃ C 7℃ D 13℃6.已知两数相乘大于0,两数相加小于0,则这两数的符号为( ▲ ) A .同正B .同负C .一正一负D .无法确定7.已知a ,b ,c 在数轴上的位置如图所示,则( ▲ )A .│a │<│b │<│c │B .│a │>│b │>│c │C .│a │>│c │>│b │D .│c │>│a │>│b │8.若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( ▲ ) A .-6 B .-10 C .6 D .109.已知a 、b 表示两个非零的有理数,则b a a b+的值不可能是………………( ▲ ) A 2 B –2 C 1 D 010.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1;则翻转2013次后,点C 所对应的数是…………………………………………( ▲ )A 2012B 2013C 2011D 2014二、认真填一填(本题有6个小题,每小题4分,共24分)11.高度每增加1公里,气温大约降低4℃。
2019-2020学年辽宁省大连市名校联盟七年级(上)月考数学试卷(10月份)
2019-2020学年辽宁省大连市名校联盟七年级(上)月考数学试卷(10月份)一、选择题(本题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.﹣(﹣2)等于()A.﹣2B.2C.D.±22.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元3.已知a、b在数轴上的位置如图所示,那么下面结论正确的是()A.a﹣b<0B.a+b>0C.ab<0D.4.若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5B.﹣1C.1D.55.下列结论成立的是()A.若|a|=a,则a>0B.若|a|=|b|,则a=b或a=﹣bC.若|a|>a,则a≤0D.若|a|>|b|,则a>b6.比较﹣与﹣的大小正确的是()A.﹣<﹣B.﹣>﹣C.﹣≤﹣D.﹣≥﹣7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1B.0C.1D.不存在8.下列说法:①若=﹣1,则a、b互为相反数;②若a5=﹣|a|5,则a≤0;③若>0,则|a+b|=a+b;④若a、b为整数且a2+b2=1,则(a+b)2019=1,则正确的是()A.①②③④B.①②④C.②D.①②9.我们规定一种新运算“★”,其含义:对于有理数a,b,a★b=a2﹣ab﹣b,则计算(﹣3)★(﹣1)的结果是()A.﹣11B.5C.7D.1310.甲,乙,丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D.乙或丙二、填空题(共6小题,每小题3分,满分18分)11.2019年秋季,大连市共招收七年级新生52000,这里“5200”用科学记数法表示为.12.计算:(﹣99)÷9=.13.已知a与b互为倒数,m与n互为相反数,x的绝对值等于1,则2017(m+n)+2018x2﹣2019ab的值为.14.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.15.如果a、b、c是非零有理数,且a+b+c=0,那么的所有可能的值为.16.已知点M、N是数轴上的两个点,M、N之间的距离为m,点M与原点O的距离为n(n>m),则所有满足条件的点N与原点O的距离的和为(结果用含m或n的式子表示).三、解答题(共4小题,满分39分)17.将下列各数填在相应的集合里+6、﹣2、﹣0.9、1、、0、0.63、﹣4.95整数集合{…};分数集合{…};正数集合:{…};负数集合{…}.18.计算:(1)﹣14﹣8÷(﹣2)3+22×(﹣3);(2)[45﹣()×36]÷5.19.画一条数轴,并在数轴上表示:3.5和它的相反数,﹣和它的倒数,绝对值等于3的数,并把这些数由小到大用“<”号连接起来.20.出租车司机刘师傅某天从A地出发,沿东西方向的公路上行驶营业,下表是每次行驶的里程(km)(规定向东走为正,向西为负:×表示空载,0表示载有乘客).(1)刘师傅走完第14次里程后,他在A 地什么方向?离A 地有多少km ?(2)已知出租车每千米耗油约0.06升,刘师傅开始营运前油箱有9升油,请问刘师傅中途不加油是否可以? (3)已知载客时2km 以内收费10元,超过2km 后每千米收1.60元,问刘师傅这天送完第6名乘客后的营业额为多少元?四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数. 22.已知|a |=7,|b |=5,|a ﹣b |>a ﹣b ,求3a ﹣2b 的值.23.有20筐红萝卜,以每筐25千克为标准,超过记正不足记负来表示,记录如下:(1)20筐红萝卜中,最重的一筐比最轻的一筐重 千克 (2)与标准质量比较,20筐红萝卜总计超过或不足多少千克?(3)若该种红萝卜进价每千克为2元,售价每千克为3元.出售过程中,因天气炎热烂掉了12%.问这20筐红萝卜能否赚到钱?若能,可赚多少钱?五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分) 24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ,一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣2的两点之间的距离是3,那么a = .(2)若数轴上表示数a 的点位于﹣2与5之间,则|a +2|+|a ﹣5|的值为 .(3)若x表示一个有理数,且|x﹣1|+|x+3|>4,则有理数x的取值范围.(4)若将数轴折叠,使得1表示的点与﹣3表示的点重合,此时M、N两点也互相重合若数轴上M、N两点之间的距离为2017(M在N的左侧),则M、N两点表示的数分别是:M:,N:.25.观察下列,回答问题:第一行:2,﹣4,8,﹣16,32,﹣64,……第二行:4,﹣2,10,﹣14,34,﹣62,……第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为,第二行数的第8个数为,第三行数的第8个数为;(2)第一行的第n个数为;(n为正整数,用含n的式子表示)(3)第一行是否存在连续的三个数使得三个数的和是768?若存在求出这三个数,若不存在说明理由:(4)是否存在一列数,使得这一列的三个数的和为1282?若存在求出这三个数,若不存在说明理由.26.如图,在数轴上A点表示a,B点表示b,AB表示A点和B点之间的距离.若C到A、B两点间的距离相等,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动.若AP+BQ=2PQ,求时间t的值;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前,请探究BM与BP之间的数量关系,并说明理由.2019-2020学年辽宁省大连市名校联盟七年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.【解答】解:﹣(﹣2)=2,故选:B.2.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.3.【解答】解:根据点在数轴的位置,知:a>0,b<0,|a|<|b|,A、∵a>0,b<0,|a|<|b|,∴a﹣b>0,故本选项错误;B、∵a>0,b<0,|a|<|b|,∴a+b<0,故本选项错误;C、∵a>0,b<0,∴ab<0,故本选项正确;D、∵a>0,b<0,∴<0,故本选项错误.故选:C.4.【解答】解:因为3﹣(﹣2)=5故选:D.5.【解答】解:A.若|a|=a,则a为正数或0,故结论不成立;B.若|a|=|b|,则a与b互为相反数或相等,故结论成立;C.若|a|>a,则a为正数,故结论不成立;D.若|a|>|b|,若a,b均为负数,则a<b,故结论不成立;6.【解答】解:|﹣|=,|﹣|=,∵<,∴﹣>﹣,故选:B.7.【解答】解:∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1.故选:A.8.【解答】解:①∵=﹣1,∴a=﹣b,∴a+b=0,即a、b互为相反数,故①正确;②∵a5=﹣|a|5≤0,∴a≤0,故②正确;③若>0,当a<0,b<0时|a+b|=﹣(a+b),故③错误;④若a、b为整数且a2+b2=1,当a=﹣1,b=0时,(a+b)2019=(﹣1+0)2019=﹣1,故④错误.则正确的是①②.故选:D.9.【解答】解:(﹣3)★(﹣1)=(﹣3)2﹣(﹣3)×(﹣1)﹣(﹣1)=9﹣3+1=7.故选:C.10.【解答】解:降价后三家超市的售价是:甲为(1﹣20%)2m=0.64m,乙为(1﹣40%)m=0.6m,丙为(1﹣30%)(1﹣10%)m=0.63m,因为0.6m<0.63m<0.64m,所以此时顾客要购买这种商品最划算应到的超市是乙.二、填空题(共6小题,每小题3分,满分18分)11.【解答】解:5200用科学记数法可表示为5.2×103.故答案为:5.2×103.12.【解答】解:(﹣99)÷9=(﹣99﹣)×=﹣11﹣=﹣11.故答案为:﹣11.13.【解答】解:根据题意得:ab=1,m+n=0,x=1或x=﹣1,当x=1时,原式=0+2018﹣2019=﹣1;当x=﹣1时,原式=0+2018﹣2019=﹣1,故答案为:﹣1.14.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣315.【解答】解:∵a+b+c=0,且a,b,c是非零有理数,∴a,b,c中有一个为负数或两个为负数,当a,b,c中有一个为负数时,原式=1+1﹣1﹣1=0;当a,b,c中有两个为负数时,原式=1﹣1﹣1+1=0,故答案为:016.【解答】解:∵点M与原点O的距离为n,∴点M表示数n或﹣n.∵M,N两点之间的距离为m,∴当点M表示n时,|N﹣n|=m,解得N=m+n或N=n﹣m;当点M表示﹣n时,|N+n|=m,解得N=m﹣n或N=﹣m﹣n,∴所有满足条件的N与原点O的距离=m+n+|n﹣m|+|m﹣n|+|﹣m﹣n|=2m+2n+2|m﹣n|=2m+2n+2m﹣2n=4m.故答案是:4m.三、解答题(共4小题,满分39分)17.【解答】解:整数集合{+6、﹣2、1、0…};分数集合{﹣0.9、、0.63、﹣4.95…};正数集合:{+6、1、、0.63…};负数集合{﹣2、﹣0.9、﹣4.95…}.故答案为:{+6、﹣2、1、0…};{﹣0.9、、0.63、﹣4.95…};{+6、1、、0.63…};{﹣2、﹣0.9、﹣4.95…}.18.【解答】解:(1)原式=﹣1+1﹣12=﹣12;(2)原式=(45﹣28+33﹣30)÷5=4.19.【解答】解:3.5的相反数是﹣3.5,﹣的倒数是﹣2,绝对值等于3的数是±3.在数轴上表示为:,故﹣3.5<﹣3<﹣2<﹣<3<3.5.20.【解答】解:(1)﹣3+(﹣15)+(+19)+(﹣1)+(+5)+(﹣12)+(﹣6)+(+12)+(+9)+(﹣10)+(﹣5)+(+2)+(﹣18)+(+6)=﹣17∴刘师傅走完第14次里程后,他在A地的西边,离A地有17km.(2)|﹣3|+|﹣15|+|+19|+|﹣1|+|+5|+|﹣12|+|﹣6|+|+12|+|+9|+|﹣10|+|﹣5|+|+2|+|﹣18|+|+6|=123(千米)0.06×123=7.38(升)7.38<9∴刘师傅开始营运前油箱有9升油,中途不加油可以.(3)由题意得:10×6+[(15﹣2)+(19﹣2)+(5﹣2)+(12﹣2)+(12﹣2)]×1.60=60+(13+17+3+10+10)×1.60=60+84.8=144.8∴刘师傅这天送完第6名乘客后的营业额为144.8元.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.22.【解答】解:∵|a|=7,|b|=5,|a﹣b|>a﹣b,∴a=﹣7,b=5时,3a﹣2b=﹣21﹣10=﹣31;a=﹣7,b=﹣5时,3a﹣2b=﹣21+10=﹣11.综上所述,3a﹣2b的值为﹣31或﹣11.23.【解答】解:(1)20筐红萝卜中,最重的一筐比最轻的一筐重2.5﹣(﹣3)=5.5千克,故答案为:5.5;(2)﹣3×1+(﹣2)×4+(﹣1.5)×2+0×3+1×2+2.5×8=8千克,答:20筐红萝卜总计超过8千克,(3)(500+8)×(1﹣12%)×3﹣(500+8)×2=1341.12﹣1016=325.12元,答:赚,可赚325.12元.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.【解答】解:(1)|1﹣4|=3,|a﹣(﹣2)|=3,所以,a+2=3或a+2=﹣3,解得a=1或a=﹣5;(2)∵表示数a的点位于﹣5与2之间,∴a+5>0,a﹣2<0,∴|a+5|+|a﹣2|=(a+5)+[﹣(a﹣2)]=a+5﹣a+2=7;(3)当x>1时,原式=x﹣1+x+3=2x+2>4,解得,x>1;当x<﹣3时,原式=﹣x+1﹣x﹣3=﹣2x﹣2>4,解得,x<﹣3;当﹣3<x<1时,原式=﹣x+1+x+3=4,不符合题意,故舍去;∴有理数x的取值范围是:x>1或x<﹣3;(4))∵数轴上M、N两点之间的距离为2017,∴M、N两点间的距离为=1008.5,若沿数﹣1表示的点重合,则点M表示数﹣1﹣1008.5=﹣1009.5,点N表示数﹣1+1008.5=1007.5,故答案为:3,﹣5或1;7;x>1或x<﹣3;﹣1009.5,1007.5.25.【解答】解:(1)∵2,﹣4,8,﹣16,32,﹣64,…;①∴21=2,﹣4=﹣22,8=23,﹣16=﹣24,…∴第①行第8个数为:﹣28=﹣256;∵4,﹣2,10,﹣14,34,﹣62,…都比第一行对应数字大2,∴第②行第8个数为:﹣254;∵1,﹣2,4,﹣8,16,﹣32,….③∴第③行是第一行的,∴第③行第8个数为:﹣128;故答案为:﹣256,﹣254,﹣128,(2)第一行的数:2,﹣22,23,﹣24,25,﹣26……其偶数个时为负,因此第n个为:(﹣1)n+12n,故答案为:(﹣1)n+12n,(3)不存在.设第一行其中连续的三个数分别为x,﹣2x,4x,则x﹣2x+4x=768,解得x=256,∵256不在第一行,∴不存在;(4)存在.∵同一列的数符号相同,∴这三个数都是正数,∴这一列三个数的和为:2n+(2+2n)+×2n=1282,2n=512,n=9,∴存在这样的一列,分别是521,514,256,使得其中的三个数的和为1282.26.【解答】解:(1)∵|a+3|+(b+3a)2=0,∴a+3=0,b+3a=0,解得a=﹣3,b=9,∴=3,∴点C表示的数是3;(2)∵AB=9+3=12,点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的右边时,PQ=5t﹣12,方程变为2t+3t=2(5t﹣12),解得t=.故时间t的值为或;(3)∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=12,即2BM﹣BP=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省大连市大连金石滩实验学校2019-2020学年七年级上学期10
月月考数学试题(word无答案)
一、单选题
(★) 1 . ﹣3的相反数是()
A.B.C.D.
(★★) 2 . ()
A.-2B.2C.D.4
(★) 3 . 在1,0,2,-3这四个数中,最大的数是()
A.1B.0C.2D.-3
(★) 4 . 一个物体作左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()
A.-4m B.4m C.8m D.-8m
(★★) 5 . 下列等式中,正确的是()
A.(-2)3=(-2)×3B.86=68
C.(-2)3=-23D.(-4)2=-42
(★★) 6 . 在数轴上,点表示的数是,向左移动2个单位长度到达点,再向右移动5个单位长度到达点,则点表示的数为()
A.8B.2C.D.
(★) 7 . 如图,根据有理数在数轴上的位置,比较的大小关系是()
A.B.C.D.
(★) 8 . 在数轴上表示﹣1的点与表示2的点之间的距离是()
A.﹣2B.1C.2D.3
(★★) 9 . 有一家拉面馆,味道很美,你知道拉面是怎样做的吗?一根拉一次变成2根,再拉
一次变成4根,照这样做下去,那么拉上7次后,师傅手中的拉面有()根.
A.14B.64C.128D.216
(★★) 10 . 已知 | x | = 5, y 2 = 9,且,则 =()
A.B.2C.8或D.2或
二、填空题
(★★) 11 . 比较大小:______ (填“ ”“ ”或“ ”).
(★★) 12 . 某日,大连市最低气温,哈尔滨市最低气温,这一天大连市的最低气温比哈尔滨的最低气温高________ .
(★★) 13 . 在中,非负整数有______________.
(★★) 14 . 把写成省略号的形式为______.
(★★) 15 . 在数轴上,若点表示-3,则距点4个单位长的点表示的数是________.
(★★) 16 . 填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是________.
三、解答题
(★★) 17 . 画数轴,然后在数轴上表示下列各数,并用号将各数连接起来.
、、 1、 0、.
(★★) 18 . 计算题
(1)
(2)(﹣17)+23+(﹣53)+(+36)
(3)
(4) (5) (6) (7) (8)
(★) 19 . 一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚
测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?
(★★) 20 . 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米): +5,-4,+3,―7,―2,+3,―8,+7.
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?在出车地点的什么方向? (2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?
(★★) 21 . 自行车厂某周计划生产2100辆电动车,平均每天生产电动车300辆.由于各种原
因,实际每天的生产量与计划每天的生产量相比有出入,下表是该周的实际生产情况(超产记为正、减产记为负,单位:辆):
星期
一
二
三
四
五
六
日
减增
(
1
)
该
厂
星
期
一
生
产
电
动
车
________
辆
;
(2)生产量最多的一天比生产量最少的一天多生产电动车________辆; (3)该厂实行记件工资制,每生产一辆车可得60元,那么该厂工人这一周的工资总额是多少元?
(★★) 22 . 观察下列三行数,完成后面问题: ①-2,4,-8,16,…; ②1,-2,4,-8,…; ③0,-3,3,-9,…;
(1)思考第①行数的规律,写出第 n 个数字是 ; (2)第③行数和第②行数有什么关系?
(3)设 x 、 y 、 z 分别表示第①②③行数的第8个数字,求 x+y-z 的值.
(★★) 23 . 阅读材料:我们知道:点 A 、 B 在数轴上分别表示有理数 a 、 b , A 、 B 两点之间
的距离表示为 AB ,在数轴上 A 、 B 两点之间的距离 AB =| a ﹣ b|.所以式子| x ﹣3|的几何意义是数轴上表示有理数 x 的点与表示有理数3的点之间的距离;同理式子| x+2|的几何意义是数轴上表示有理数 x 的点与表示有理数-2的点之间的距离.试探索: (1)| x ﹣5|的几何意义是 . (2)若| x ﹣2|=5,则 x 的值是 .
(3)同理| x﹣5|+| x+3|=8表示数轴上有理数 x所对应的点到5和﹣3所对应的两点距离之和为8,则所有符合条件的整数 x是.
(4)由以上探索猜想,若点 P表示的数为 x,| x﹣3|+| x﹣6|最小值是.。