霍尔效应实验数据及B—X曲线
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应实验报告(共8篇)
篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。
3、学习利用霍尔效应测量磁感应强度b及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。
由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。
随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。
这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。
设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。
同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。
霍尔效应
霍尔效应实验实验目的:1、观察霍耳效应。
2、了解应用霍耳效应进行简单的相关测量的方法。
实验内容:1、测量霍尔电压,研究US —IS图。
2、研究B—Im。
3、利用霍尔效应测定螺线管轴线上磁场强度分布作B—x曲线图。
实验原理:1、实验仪器:本实验仪由电磁铁、二维移动标尺、三个换向闸刀开关、霍尔元件组成。
C 型电磁铁,给它通以电流产生磁场。
二维移动标尺及霍尔元件;霍尔元件是由N 型半导体材料制成的,将其固定在二维移动标尺上,将霍尔元件放入磁铁的缝隙之中,使霍尔元件垂直放置在磁场之中,在霍尔元件上通以电流,如果这个电流是垂直于磁场方向的话,则在垂直于电流和磁场方向上导体两侧会产生一个电势差。
三个双刀双掷闸刀开关分别对励磁电流,工作电流霍尔电压进行通断和换向控制。
右边闸刀控制励磁电流的通断换向。
左边闸刀开关控制工作电流的通断换向。
中间闸刀固定不变即指向一侧。
2.测试仪测试仪有两组独立的恒流源,即“输出”为0~10mA给霍尔元件提供工作电流的电流源,“输出”为0~1A为电磁铁提供电流的励磁电流源。
两组电流源相互独立。
两路输出电流大小均连续可调,其值可通过“测量选择”键由同一数字电流表进行测量,向里按“测量选择”测,放出键来测。
电流源上有Is调节旋钮和Im调节旋钮。
直流数字电压表用于测量霍尔电压,本实验只读霍尔电压、所以将中间闸刀开关拨向上面即可。
当显示屏上的数字前出现“—”号时,表示被测电压极性为负值。
3、实验的基本构思和原理霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。
由于带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚集,从而形成附加的横向电场,即霍尔电场。
然而在产生霍尔效应的同时,因伴着多种副效应,以致实验测得的两极之间的电压并不等于真的值,而是包含着各种副效应引起的附加电压,因此必须设法消除。
根据副效应产生的机理可知,采用电流和磁场换向的所谓对称测量法,基本上能够把副效应的影响从测量的结果中消除。
霍尔效应测磁场实验报告记录
霍尔效应测磁场实验报告记录————————————————————————————————作者:————————————————————————————————日期:实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HHKI U B =(3)算出磁感应强度B 。
图1 霍耳效应示意图 图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
实验报告霍尔效应
系别___________ 班号____________ 姓名______________ 同组姓名 __________实验日期_________________________ 教师评定______________实验名称:用霍尔效应测磁场目的要求:1.了解霍尔效应的基本原理2.学习用霍尔效应测量磁场仪器用具:霍尔效应仪,问刘电源,稳压电源,安培表,毫安表,功率函数发生器(没用到),特斯拉计,数字万用表,电阻箱,导线实验原理:1.霍尔效应通电流的导体置于磁场B中,磁场方向垂直于电流I H方向,则导体中会产生垂直于电流方向和磁场方向的电位差U H,这就是所谓霍尔效应。
我们有U H = K H I H B比例系数K H = R H / d=1 / pqd2.用霍尔效应法测量电磁铁的磁场用霍尔效应制成的特斯拉计,能简便、直观、快速的测量磁场中各点的磁感应强度。
由于载流子的类型不同,U H的正负也有不同。
2.消除霍尔元件副效应的影响实际测量过程中,还会伴随一些热磁副效应,会使测得的电压不止是U H,还会附加另外一些电压,给测量带来误差。
通常的方法是分别改变I H和B的方向(就是I M的方向),测量的到四组数据,取它们的绝对值的平均。
这样容易证明:()U1+U2+U3+U44=U H+U EU E是所谓温差电动势,非常小,可以忽略不计。
系别___________ 班号____________ 姓名______________ 同组姓名 __________实验日期_________________________ 教师评定______________实验内容:1.测量霍尔电流I H与霍尔电压U H的关系将霍尔片置于电磁铁中心处,励磁电流I M=0.6A,测量多组U H和I H,并且每次消除副效应,交换励磁电流和霍尔电压的电极,重复测量,作图。
2.测量K H霍尔电流保持I H=10mA,测量B和U H,计算K H3.测量磁化曲线霍尔电流保持在I H=10mA,变化励磁电流,测量霍尔电压,计算磁场,作图。
实验报告霍尔效应及霍尔元件基本参数的测量
霍尔效应及霍尔元件基本参数的测量一、实验目的1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。
2.掌握常温情况下测量霍尔系数的方法。
3.判断样品的导电类型,计算霍尔系数、载流子浓度、电导率、霍尔迁移率。
4.用霍尔元件测量铁电磁铁气隙中磁感应强度B沿X方向的分布曲线及电磁铁的励磁曲线。
二、实验原理1.霍尔效应和霍尔系数图1霍尔效应示意图如图1所示,在半导体的x方向有均匀的电流I x通过,同时在z方向上加有磁场B z,那么在这块半导体的y方向会出现一个横向电势差U H,这种现象叫做“霍尔效应”,U H称为“霍尔电压”,对应的y轴的电场称为“霍尔电场”。
半导体的长、宽、高分别为L、a、b,p(n)型半导体的载流子为空穴(电子),在沿x方向电场的作用下,以平均漂移速度v x运动,形成电流I x,由于在z轴方向有磁场B z,载流子受到洛伦兹力的作用F q v B⋅⨯=()P型半导体中空穴带正电,由右手定则可知:受到的洛伦兹力沿着y轴负向,那么空穴向着y轴负向运动,在y轴方向形成沿着y轴正向的电场—霍尔电场,当该电场对空穴的作用力qE y与洛伦兹力F达到平衡时,空穴不再沿着y轴偏离,达到稳态,只有沿着x方向的电流。
同理,n型半导体中电子带负电,电子的速度方向为x轴负向,电荷为-q,那么根据右手定则可知:受到的洛伦兹力沿着y轴负向,那么电子向着y轴负向运动,在y 轴方向形成沿着y 轴负向的电场—霍尔电场,当该电场对电子的作用力qE y 与洛伦兹力F 达到平衡时,电子不再沿着y 轴偏离,达到稳态,只有沿着x 方向的电流。
因此,在给定电流方向以及外加磁场方向时,根据霍尔电场的方向便可以判断半导体是n 型还是p 型。
下面推导霍尔系数的表达式。
在稳态下,载流子受到的电场力与洛伦兹力达到平衡,即为Hx z H U qv B E q q a==,H H x z E R J B =(其中R H 即为霍尔系数) 而根据半导体中电流公式:x x x I nqv S nqv ab ==可知:H H x zU bR I B =(3/m C ) (1) 2. 霍尔效应中的副效应及消除办法在霍尔系数的测量中,会伴随一些热磁副效应、电极不对称等因素引起的附加电压叠加在霍尔电压上,主要有爱廷豪森效应、能斯脱效应、里纪—勒杜克效应、电极位置不对称、温度梯度存在等副效应。
工作报告之霍尔效应的实验报告
霍尔效应的实验报告【篇一:霍尔效应实验报告】实验数据is 1 1.5 2 2.5 3 3.5 4v1 -4.85 -7.27 -9.73 -12.11 -14.47 -16.92 -19.34 v1 -4.9 -6.58 -8.24 -9.92 -11.6 -13.27v2 5.13 7.66 10.18 12.79 15.29 17.83 20.56 v2 5.16 6.84 8.52 10.19 11.89 13.58v3 -5.13 -7.7 -10.19 -12.79 -15.29 -17.83 -20.56 v3 -5.19 -6.84 -8.54 -10.2 -11.91 -13.54v4 4.86 7.28 9.66 12.1 14.5 16.93 19.33 v4 4.9 6.6 8.26 9.98 11.62 13.28vh -4.9925 -7.4775 -9.94 -12.4475 -14.8875 -17.3775 -19.9475 vh -5.0375 -6.715 -8.39 -10.0725 -11.755 -13.4175rh -8667.53 -8654.51 -8628.47 -8644.1 -8615.45 -8619.79 -8657.77 rh -5830.44 -5828.99 -5826.39 -5828.99 -5830.85 -5823.57im 0.3 0.4 0.5 0.6 0.7 0.8思考题1. 本实验是采用什么方法消除各种负效应的?1.由不等电位差引起的误差;应尽量使样品的霍尔电压测试点处于同一等位线上2.爱延豪森效应;使样品通入交流电流3.里纪-勒杜克效应;改变磁场方向4.能斯脱效应;使样品通过磁场方向v度.rhi,其中,v为载流子的迁移率,rh为电导率,i为电流 l 为导体板宽度,d 为板的厚ld【篇二:霍尔效应的应用实验报告】一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的vh—is,vh—im曲线,了解霍尔电势差vh与霍尔元件工作电流is,磁场应强度b及励磁电流im之间的关系。
用霍尔效应法测磁场分布
用霍尔效应法测磁场分布实验十四用霍尔效应法测磁场分布测量磁场有许多方法,如霍尔效应法、感应法、冲击法和核磁共振法等。
选用什么方法取决于被测磁场的类型和强弱。
本实验主要介绍霍尔效应法。
它具有测量原理和方法简单、探头体积小、测量敏捷,并能直接连续读数等优点。
利用霍尔效应还可制成测量磁场的特斯拉计(又称高斯计),可测量半导体材料参数等。
[实验目的]1. 了解利用霍尔效应法测量磁场的原理以及有关霍尔器件对材料要求的知识。
2. 学习用"对称测量法"消除副效应的影响,测试霍尔器件的和曲线。
3. 测试螺线管内部的B-X(水平磁场分布)曲线。
[实验原理]1.霍尔效应将通有电流的半导体薄片置于匀强磁场中,如图14-1所示。
如果电流I沿X方向,磁场B沿Z方向,则在y方向上的两截面(M,N)间就会有电位差出现,这种现象是霍尔在1879年发现的,故称霍尔效应。
横向电位差VH称为霍尔电压。
该半导体薄片称为霍尔元件。
霍尔效应是运动载流子(电子或空穴)在磁场中受到洛仑兹力的作用而产生的。
2.霍尔电压VH与外磁场B的关系(特斯拉计原理)若霍尔元件为宽l,厚h的N型半导体,如图14-1(a)所示。
设电子的电荷为e ,速度为v,它在磁场中受到的洛仑兹力Fm= - ev×B,并指向M面,造成电子流发生偏转,而有部分电子聚积于M面上,使M,N之间建立了电场E,该电场又对电子具有反方向的静电力Fe=eE,随着电子向M侧继续积累,该电场也逐渐增强。
直到Fe= - Fm,达到平衡,在M,N间形成稳定的霍尔电场EH。
于是在霍尔片M,N间产生一稳定的电位差VH,此即为霍尔电压。
这时:- eEH = Fe = - Fm = ev×BEH = -v×B当三者互相垂直时,霍尔电场为 EH = vB并指向y轴负向。
在M,N间产生的霍尔电压为VH = l EH = lv B设该片电子浓度为n,则有I = nevlh所以霍尔电压为 (14-1)式中称为霍尔系数,它决定于材料的性质(种类、截流子浓度等);称为霍尔灵敏度,它决定于材料的性质和几何尺寸,对于确定的霍尔片来说它是一个常数,现常用单位是mV/(mA·kGs),或mV/(mA·T)。
霍尔效应实验报告
大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。
3、学习利用霍尔效应测量磁感应强度B 及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流s I 相反的X 负向运动。
由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B 侧偏转,并使B 侧形成电子积累,而相对的A 侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。
随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。
这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。
设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。
用霍尔效应测量磁场
霍尔效应实验原始数据记录1、 霍尔效应测量亥姆霍兹线圈磁场霍尔片工作电流:2s I m A = , 亥姆霍兹线圈励磁电流:0.500m I A =注意:由于各霍尔器件之间参数存在差异,以上数据仅供参考。
用霍尔效应测量磁场实验目的1、 霍尔效应原理及霍尔元件有关参数的含义和作用2、学习利用霍尔效应测量磁感应强度B 及磁场分布。
3、学习用“对称交换测量法”消除负效应产生的系统误差。
实验仪器DH4501B 型 亥姆霍兹线圈磁场实验仪 一套实验原理1、霍尔效应霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场B 位于Z 的正向, 图(1)与之垂直的半导体薄片上沿X 正向通以电流S I (称为工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流S I 相反的X 负向运动。
由于洛仑兹力f L 作用,电子即向图中虚线箭头所指的位于Y 轴负方向偏转,并形成电子积累,而相对的Y 轴正方向形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力 f E 的作用。
随着电荷积累的增加,f E 增大,当两力大小相等(方向相反)时,L E f f =-,则电子积累便达到动态平衡。
这时在Y 方向两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电势H V 。
设电子按均一速度υ,向图示的X 负方向运动,在磁场B 作用下,所受洛仑兹力为:L f e B υ=- (1)式中 e 为电子电量,υ为电子漂移平均速度,B 为磁感应强度。
同时,电场作用于电子的力为: E H H f e E e V l =-=- (2) 式中E为霍尔电场强度,H V 为霍尔电势,l 为霍尔元件宽度。
当达到动态平衡时:L E f f =- H B V l υ=- (3)设霍尔元件宽度为l ,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为S I ne ld υ=- (4)由(3)、(4)两式可得:图(1)1S S H HI B I B V R ne dd== (5)即霍尔电压HV与S I ,B 的乘积成正比,与霍尔元件的厚度成反比,比例系数1H R ne=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。
霍尔效应测磁场实验报告(共7篇)
篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。
由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。
六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。
利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。
由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。
此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。
近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。
在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。
了解这一富有实用性的实验,对今后的工作将大有益处。
教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。
2. 掌握用霍尔元件测量磁场的原理和方法。
3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。
教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。
实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。
这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。
图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。
霍尔效应测量磁场实验报告
实
验
报
告
实验名称霍尔效应测量磁场
专业班级:组别:
姓名:学号:
合作者:日期:
B
图3.4-1N型半导体
图1N型半导体
图2励磁电流与磁感应强度的B-I曲线图
轴方向磁感应强度的分布
0.0 2.0 4.0 6.08.010.015.020.0-43-65-119-189-198-198-193-188图3电磁铁间隙内B-x 曲线图
电磁铁间隙内磁感应强度的y 方向分布(500=B
I mA ,S I =10.00mA
.电磁铁中心处磁感应强度为T 15.1=B 。
图4电磁铁间隙内B-y 曲线图
H eE evB
=霍尔电压H U 的大小为
1S S
H H H I B I B
U E b R ne d d
==
=H R 称为霍尔系数,令1H H R K d ned
=
=,则H H S U K I B
=(3)结合电路图可以判断工作电流流入霍尔元件的方向,通过判断螺线管的绕行方向和励磁电流的流向可以判断电磁铁中的磁感应强度方向,最后结合霍尔电压表头上读数的正负可判断半导体的类型。
(4)若霍尔元件与磁场方向不垂直,则测量出的磁感应强度值减小。
若稍微转动霍尔元件在磁场中的方向,若霍尔电压值变小,则说明霍尔元件表面与磁场方向垂直。
霍尔效应实验报告霍尔效应仿真实验报告
大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。
3、学习利用霍尔效应测量磁感应强度B 及磁场分布。
4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。
5、学习用“对称交换测量法”消除负效应产生的系统误差。
二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。
如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流s I 相反的X 负向运动。
由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B 侧偏转,并使B 侧形成电子积累,而相对的A 侧形成正电荷积累。
与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。
随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。
这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。
设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。
实验三 霍尔效应
实验三 霍尔效应【实验目的】1.观察霍尔现象。
2.了解应用霍尔元件测量磁场的原理和方法。
3.用电位差计测量霍尔电压及电流,进一步掌握电位差计的使用方法。
【实验原理】霍尔效应:1879年霍尔在研究载流导体在磁场中受力的性质时发现,当工作电流(额定控制电流)垂直于外磁场方向通过导电体时,在垂直于电流和磁场的方向的物体两侧产生电位差,称为霍尔电势差。
这一效应称为霍尔效应。
图3-1 带电粒子受力图这个效应对金属来说是不显著的,但对半导体却非常显著。
在半导体中利用这种效应可以做成具有广泛应用的霍尔元件,用于磁场测量、功率测量及作为模拟运算的乘法器,应用到非电量测量方面,可作为压力、位移和流量测量的传感器。
霍尔电势差产生原因:假设有一块宽为a ,厚为b ,长为l 0的N 型半导体(载流子为电子),电流I 沿y 轴方向通过,磁场B沿z 轴方向,电子电量为q 。
则样品中以平均漂移速度为v (沿y 方向)的载流子(电子)在磁场中受洛仑兹力f m 作用,f m 的大小为:f m =qvB (3-1)方向如图3-1(b )所示的-x 方向。
载流子(电子)在f m 的作用下沿x 轴负方向偏转,引起A 侧有电子的积累,B 侧正电荷的积累,在侧面电荷的积聚将在薄片样品中产生阻止电子继续向x 轴方向运动的电场E H ,使载流子又受到电场力f e =qE H (3-2)的作用。
电场力f e 的方向和洛仑兹力f m 方向恰好相反,它将阻碍电荷向侧面的继续积累,因此载流子在薄片侧面的积聚不会无限止地进行下去。
开始阶段,电场力f e 小于磁场力f m ,电荷将继续向侧面积聚。
随着积聚电荷的增加,电场不断增强,直到载流子受力f e = f m 时,达到一种平衡状态,载流子不再继续向侧面积聚,此时薄片中的横向(A 、B 两侧面之间)电场强度为 A U H E H E HU H IvB qf q f E m e H === 则横向电场在A 、B 两表面间产生的电势差—霍尔电势差U H 与E H 的关系为aU E H H =式中a 为样品宽度。
霍尔效应测磁场实验报告
实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理:(一)霍耳效应现象将一块半导体(或金属)薄片放在磁感应强度为B 的磁场中,并让薄片平面与磁场方向(如Y 方向)垂直。
如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。
如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。
霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即d BI RU H H =(1)式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。
因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有B KI U H H = (2)式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。
如果霍耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式HHKI U B =(3)算出磁感应强度B 。
图1 霍耳效应示意图 图2 霍耳效应解释(二)霍耳效应的解释现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。
当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为evB f B =方向沿Z 方向。
在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为H E eE f =方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。
当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为vbB U H = (4)通过的电流H I 可表示为nevbd I H -=式中n 是电子浓度,得nebd I v H-=(5)将式(5)代人式(4)可得nedBI U H H -= 可改写为B KI dBI RU H H H == 该式与式(1)和式(2)一致,neR 1-=就是霍耳系数。
计算机仿真实验霍尔效应测磁场小结,霍尔效应实验报告霍尔效应实验数据记录...
通电螺线管磁场分布数据 IS=3.00mA IM=0.500A 【实验遇到的问题及解决的方法】 无法一开始就知道通电螺线管的中心处处于哪个位置。需要自己移动霍尔片观测哪个位置的霍尔电压最大,来确定通电螺线管的中心位置。 三、实验小结 【体会或收获】 了解了霍尔效应测量磁场的方法,知道了在测量霍尔灵敏度时,有爱廷豪森效应等副效应及消除办法,同时亲自绘制了磁场分布图。 【实 验建议】 在利用霍尔效应测量磁场时,只配备了单双线圈,可以多配备其他线圈,丰富同学们对不同线圈磁场分布的认识。 四、参考文献 钱锋,潘人培. 大学物理实验(修订版)高等教育出版社,2006. 191-202 熊永红等主编,《大学物理实验》,华中科技大学出版社,2004 年 H.F.迈纳斯等主编,《普通物理实验》,科学出版社,1987年
ne (5) 即 RH ,测出 值即可求 。 电导率 可以通过在零磁场下,测量B、C电极间的电位差为VBC,由下式求得 。
IsLBC (6) VBCS 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A、A´之间的电压为VH与各副效应电压的叠加值,因此必须设法 消除。 (1)不等势电压降V0 如图2所示,由于测量霍尔电压的A、A´两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo可以通过改变Is的 方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压VE 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电 偶,这一温差产生温差电动势VE,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应 —热磁效应直接引起的附加电压VN 图 2 图3 在半导体试样上引出测量电极时,不可能做到接触电阻完全相同。当工作电流Is 通过不 同接触电阻时会产生不同的焦耳热,并因温差产生一个温差电动势,结果在Y方向产生附加电势差VN,这就是能斯脱效应。而VN的符号只与B 的方向有关,与Is的方向无关,因此可通过改变B的方向予以消除。 (4)里纪—勒杜克效应—热磁效应产生的温差引起的附加电压VRL 因载流子的速度统计分布,由能斯脱效应产生的X方向热扩散电热电流也有爱廷豪森效应,在Z的方向磁场B作用下,将在Y方向产生温度梯 度dT´,此温差在Y方向产生附加温 dy 差电动势VRL。VRL的符号只与B的方向有关,亦能消除。 ① 当(+IS、+B)时 V1 = VH +VO +VN +VRL +VE ② 当(+IS、-B)时 V2 =VH +VO -VN -VRL -VE ③ 当(-IS、-B) 时 V3 =VH -VO -VN -VRL +VE ④ 当(-IS、+B)时 V4 =-VH -VO +VN +VRL -VE 求以上四组 数据V1、V2、V3和V4可得 VH VE V1 V2 V3 V4 4 (7) 由于VE符号与IS和B两者方向关系和VH是相同的,故无法消除,但在非大电流,非强磁场下,VH>>VE,因此VE可略而不计,所以霍尔 电压为: 此方法称为“对称测量法”。 三、利用霍尔效应原理测量磁场 V1 V2 V3 V4