第五章离心分离技术..
离心机
5.1.3 沉降离心机液体动力学基本方程
及沉降分离过程
5.1.3.1 基本方程 离心力场中流体流动的特性与规律可用一般 流体力学的原理和方程求解。不同之处在于 必须引入离心力场的特性。联系到离心机转 鼓内流体流动的特点,采用随动圆柱坐标系 ( r 、φ 、 Z)来表示各参变数间的关系。
Exit
r Z
Exit
同时该元素的质量变化为: 1 rdrd dZ
二者应相等,将等式除以 rdrd dZ 后得到连 续性方程式如下
1 1u1r 1u r 1uZ 0 t r r r Z
t
对于不可压缩流体以及无限小的微体元素, 可以认为是一常数,因此上式可写成:
(1)连续方程 连续方程式是根据质量守恒的一般原理推导 出来的,它说明一个系统内的质量不随时间 而改变,或系统内质量如有改变,其值必然 等于流进和流出该系统的质量之差。现取离 心机的内部流场中圆柱坐标系中三对相邻坐 标面所接触的液体体积一微元作为研究系统。 如图5-6所示。该元素的体积为 dV rdrd dZ 流经该元素的液体的流进和流出的液体质量 之差为: 1u1r 1u r 1uZ drd dZ
Exit
(4)哥氏力
当研究回转运动的特性时,除了离心力,必 须注意到可能出现的哥氏力。哥氏加速度是 哥氏力的来源,哥氏加速度是出于质点不仅 作圆周运动,而且也作径向运动或周向运动 所产生的。 由理论力学可知,当牵连运动为匀角速度定 轴运动时,哥氏力加速度的大小为
ak 2u
式中 u为质点相对于转鼓的径向速度或周向 速度。
以下两种情况 ①液体相对于转鼓无周向滞后现象:
Exit
设若转鼓进料口处有加速装置,可以认为液 体角速度与转鼓相同,无滞后现象,则 而可 由基本方程加边界条件得到
食品分离技术(5) 离心技术
(三).等密度离心法
1原理 预先配制介质的密度梯度(包含了被分离样品中所有
粒子的密度),样品铺在梯度液顶上或混合,离心开始后, 梯度液受离心力的作用逐渐形成底浓而管顶稀的密度梯度, 与此同时原来分布均匀的样品粒子也发生重新分布。各种 颗粒移动到与它们各自密度恰好相等的位置上形成区带。
特点: (1)与样品粒子的密度有关 (2)与样品粒子的大小和其他参数无关 (3)转速、温度不变,则延长离心时间也 不改变这些=0 S=0 粒子平衡
ρp-ρm>0 即ρp>ρm V>0 S>0 粒子沉降
ρp-ρm<0 即ρp<ρm V<0 S<0 粒子逆着离心方向上浮
12
二、离心设备分类
离心机
转子 主机 附件
13
分类标准多种多样: (一)根据转速分类:低速、高速、超速
项目 转数(rpm) 离心力(rcf)
2、转子桶内装有十字形隔板,把桶内分隔成多个扇形小室, 隔板内有导管;
3、区带转头的“管壁效应”极小,分离效果好,转速高, 容量大,回收容易;
缺点:
区带转头的样品及介质与转头直接接触,要求转子耐腐蚀, 并且操作复杂。
30
31
5、连续转头:
32
自动排出沉渣的离心澄清机
33
分批自动排出沉渣的离心澄清机
4
离心力
离心力(F):当离心机转子以一定的角速度ω(弧度/秒) 旋转,颗粒的旋转半径为r(厘米)时,颗粒所受的向外的 力即离心力。
F ma m2r
ω: 旋转角速度 r:旋转体离旋转轴的距离
2 n rad / sec
60
5
相对离心力
相对离心力(RCF):又称分离因数,是衡量离心程度的 参数,是指在离心力场中,作用于颗粒的离心力相当于地 球 引 力 的 倍 数 , 单 位 是 重 力 加 速 度 g ( 980cm/ 秒 2 ) 。 RCF=ω2r/980 = 4π2n2r/3600*980 = 1.119*10-5n2r
离心机离心分离的几种方法及特点
离心机离心分离的几种方法及特点2009-07-10文字选择:制备型超高速离心机的几种分离方法:A.差速离心:逐次增加离心力,每次可沉降样品溶液中的一些组份。
差速离心是一种最常用的方法。
在这种方法中,离心管在开始时装满了均一的样品溶液。
通过在一定速度下一定时间的离心后,就可得到两个部份:沉淀和上清液。
通常在第一次离心时把大部分不需要的大粒子沉降去掉。
这时所需的组份大部分仍留在上清液中。
然后将收集到的上清液以更高速度离心,把所需的粒子沉积下来。
离心的时间要选择得当,使大部份不需要的更小的粒子仍留在上清液中。
对于得到的沉淀和上清液可以进行进一步的离心,直到达到所需要的分离纯度为止。
差速离心的特点是操作简单,但分离纯度不高。
B.密度梯度离心法:可以同时使样品中几个或全部组份分离,具有很好的分辨率。
1)速率区带法(rate zonal):根据样品中不同粒子所具有的不同的尺寸大小及沉降速度(S)。
大致步骤如下:在离心管中装入密度梯度溶液,溶液的密度从离心管顶部至底部逐渐增加(正梯度)。
将所需分离的样品小心地加至密度梯度溶液的顶部。
样品在梯度溶液表面形成一负梯度。
由于不同大小的粒子在离心力作用下,在梯度中移动的速度不一样,所以经过离心后会形成几条分开的样品区带。
注意:样品粒子的密度必须大于梯度液注中任一点的密度。
离心过程必须在区带到达管子底部前停止。
2)等密度离心法(isopycnic):根据粒子的不同密度来分离。
离心过程中,粒子会移至与它本身密度相同的地方形成区带。
密度样度的选择要使梯度的范围包括所有待分离粒子的密度。
样品可以在密度梯度液粒上面或均匀分布在密度梯度中。
经离心后,样品粒子达到它们的平衡点。
注意:平衡后粒子的分离完全由其密度决定,与时间无关,此时再改变离心转速,只能改变区带的相对位置。
2.密度梯度分析法1)梯度介质性质与选择:A、应具备的性质:梯度物质的选择原则是满足分离方法的基本要求,一个理想的密度材料标准它应是:? 所形成的溶液密度应包括所需要的密度范围。
生物化学实验技术(6)离心技术
使用及应用
离心时,转鼓滤布内装入待过滤的悬浮液。 离心时,转鼓滤布内装入待过滤的悬浮液。当转速逐渐加快而高速运转 鼓内悬浮液受离心力作用,液体穿过滤布被甩出转鼓外。 时 , 鼓内悬浮液受离心力作用 , 液体穿过滤布被甩出转鼓外 。 滤液经外壳 下部排出.固体则留在布袋内,从而达到固液分离目的。 下部排出.固体则留在布袋内,从而达到固液分离目的。 这类采用间歇式人工卸料的离心机结构及操作均较简单,性能良好。 这类采用间歇式人工卸料的离心机结构及操作均较简单 , 性能良好 。 其缺点是取出滤饼费力、耗时,而且由于驱动和制动装置设在转鼓下面, 其缺点是取出滤饼费力 、 耗时 , 而且由于驱动和制动装置设在转鼓下面 , 容易引起液体渗漏腐蚀及带来维修保养的不便。为了克服以上缺点, 容易引起液体渗漏腐蚀及带来维修保养的不便 。 为了克服以上缺点 , 人们 设计了上悬式离心机,这种离心机的传动系统安装在转鼓上方,具有稳定、 设计了上悬式离心机 , 这种离心机的传动系统安装在转鼓上方 , 具有稳定 、 卸料较快、固体颗粒破碎少和不受液体腐蚀的优点。 卸料较快、固体颗粒破碎少和不受液体腐蚀的优点。 在生化、微生物工业中,过滤式离心机已用于味精、柠檬酸、 在生化 、 微生物工业中 , 过滤式离心机已用于味精 、 柠檬酸 、 抗菌 素及某些生化药物和酶制剂等结晶或较大固体颗粒的过滤,脱水效率很高。 素及某些生化药物和酶制剂等结晶或较大固体颗粒的过滤 , 脱水效率很高 。
二、沉降式离心机
这类离心机品种较多.根据其结构又可分为管式、钵式、 这类离心机品种较多.根据其结构又可分为管式、钵式、碟片式 和倾析式。它们的卸料方式也很多,如人工、离心力、刮刀、螺旋、 和倾析式。它们的卸料方式也很多,如人工、离心力、刮刀、螺旋、 喷嘴、自动卸料等。 喷嘴、自动卸料等。 1.台式或地面式普通离心机 这是一类结构最简单的实验室常用的 . 中速离心机,转速在3, 低、中速离心机,转速在 ,000~6,000rpm 。其转子一般用角式 , 或外摆式,多用交流整流子电动机驱动, 或外摆式,多用交流整流子电动机驱动,但电动机的碳刷易磨损而 导致离心机损坏;转速是用电压调节器调节,起动电流大, 导致离心机损坏;转速是用电压调节器调节,起动电流大,速度升 降不够均匀。操作一般在室温下进行,但个别机种也配有冷却装置, 降不够均匀。操作一般在室温下进行,但个别机种也配有冷却装置, 如贝克曼公司的TJ 台式离心机的可调温度为0~20℃。 如贝克曼公司的 -6R台式离心机的可调温度为 台式离心机的可调温度为 ℃ 2. 高速冰冻离心机 这类实验室常用的离心机最高转速可达 , 这类实验室常用的离心机最高转速可达18, 000~25,000 rpm,因此需有冷却离心腔的致冷设备,并用热电偶 , ,因此需有冷却离心腔的致冷设备, 监测腔内的温度,一般温度控制在0~4℃。 其转动部分是各种角式 监测腔内的温度 , 一般温度控制在 ℃ 或外摆式转子,有的还配备区带转子、连续流动式转子或其它转子。 或外摆式转子,有的还配备区带转子、连续流动式转子或其它转子。 速度控制比台式离心机精密准确。 操作方式除间歇式外也有连续式。 速度控制比台式离心机精密准确。 操作方式除间歇式外也有连续式
第五章-离心技术
离心技术离心技术离心是利用旋转运动的离心力以z离心是利用旋转运动的离心力,以及物质的沉降系数或浮力密度的差别进行分离、浓缩和提纯的项操作技进行分离、浓缩和提纯的一项操作技术。
主要内容z离心的基本原理z离心设备的分类z离心机的选择z 离心技术应用实例一、离心的基本原理z 利用转子高速旋转时所产生的强大离心力,加快颗粒的沉降速度,把样品中不同沉降系数的或浮力密度差的物质分离开。
离心力)当离心机转子以一定的角速度z 离心力(F ):当离心机转子以一定的角速度ω(弧度/秒)旋转,颗粒的旋转半径为r (厘米)时,颗粒所受的向外的力即离心力力即离心力。
2==F ma m rωω:旋转角速度ω: 旋转角速度r:旋转体离旋转轴的距离()2/sec n rad πω=60相对离心力(RCF):又称分离因数,是衡量离心程度的相对离心力参数,是指在离心力场中,作用于颗粒的离心力相当于地球引力的倍数,单位是重力加速度g (980cm/秒2)。
RCF=ω2r/980=4π2n 2r/3600*980= 1.119*10-5n 2r222524 1.11910980r n r RCF n r ωπ−===×3600980×低速离心时常以每分钟的转数rpm (即n )来作为离心力单n:转子每分钟的转数(rpm)位;而高速离心则以g 表示。
Dole&Cotzias制作了转子速度和半径相对应的离心力列线图半径相对离心力转数Sedimentation coefficient (S)沉降系数Sedimentation coefficient (S)z 离心沉降和重力沉降只是对沉降的作用力不同,离心沉降的速度v 2v S r ω=z其中S 即为沉降系数。
z S 表示单位离心场中粒子的移动速度。
2303S −沉降速度212221log log 2.303()r r v r t t ωω===−单位离心力zr 1:离心前粒子距离转轴的距离z r :离心后粒子距离转轴的距离2在实际应用时常在1010-13秒左右,故把S在实际应用时常在Svedberg单位,单位,秒称为一个Svedberg沉降系数10沉降系数-1310秒称为一个。
生物分离工程第5章-初级分离
eg. 从血浆中通过5步沉淀生产纯度高达99%的免 疫球蛋白和96%~99%的白蛋白。
重新溶解的沉淀
血浆
乙醇法沉淀
沉淀物Ⅰ+Ⅱ+
Ⅲ
上清液
乙醇法沉淀 沉淀物Ⅰ+Ⅲ
乙醇法沉淀沉 淀物Ⅱ
废弃沉淀
层厚度(ζ 电位)降低蛋白质溶液的稳定性,实 现蛋白质的沉淀。
蛋白质可以看作是一个表面分布有正、负 电荷的球体,这种正、负电荷是由氨基和 羧基的离子化形成的,换句话说,该球体 是带有均衡电荷分布的胶体颗粒。因此, 蛋白质的沉淀,实际上与胶体颗粒的凝聚 和絮凝现象相似。
蛋白质粒子在水溶液中是带电的,带电的 原因主要是吸附溶液中的离子或自身基团 的电离。因溶液是电中性的,水中应有等 当量的反离子存在。蛋白质表面的电荷与 溶液中反离子的电荷构成双电层。
蛋白质沉淀方法
中性盐盐析法
等电点沉淀法
有机溶剂盐析法
非离子型聚合物沉淀法 聚电解质沉淀法 金属沉淀法
其他沉淀法
一、中性盐盐析法
当中性盐加入蛋白质分散体系时可能出现以下两 种情况:
(1)“盐溶”现象(salting-in) ——低盐浓度下,蛋白质溶解度增大。
(2)“盐析”现象(salting-out) ——高盐浓度下,蛋白质溶解度随之下降。
Ks—盐析常数,与蛋白质和无机盐的种类有 关,与温度、pH值无关。
常数Ks代表图中直线的斜率;β 代表截距, 即当离子强度为零,也就是纯水中的假想
溶解度的对数。从一些实验结果表明,Ks与温度 和pH无关,但和蛋白质与盐的种类有关。
但这种变化不是很大,例如以硫酸铵作为沉淀剂 时,Ks值对不同的蛋白质来说,其变化不会超过 1倍。组成相近的蛋白质,分子量越大,沉淀所需 盐的量越少;蛋白质分子不对称性越大,也越易 沉淀。
离心技术
五、离心机使用注意事项 使用前应将负荷平衡, 1. 使用前应将负荷平衡 , 重量误差越小 越好 严禁空转, 2. 严禁空转,启动时转速由低至高逐步 调节,严格高速启动。 调节,严格高速启动。 选择合适的转头,控制转速。 3. 选择合适的转头,控制转速。 保护转头,防止碰撞、擦伤、 4. 保护转头,防止碰撞、擦伤、防止异 污垢进入、用毕立即清洁。 物、污垢进入、用毕立即清洁。 低温离心样品时, 5. 低温离心样品时 , 先将空转头预冷一 定时间。温度± 定时间。温度±0℃。 发现异常如噪声,应立即停机检查。 6. 发现异常如噪声,应立即停机检查。 离心机结构及使用方法——实习 六、离心机结构及使用方法 实习 离心机的应用——自学 七、离心机的应用 自学
2、离心机的分类 :按离心机应用范围分为四类: 、 离心机的分类:按离心机应用范围分为四类: 普通离心机、专用离心机、制备离心机和分析用离心机, 普通离心机、专用离心机、制备离心机和分析用离心机, 按离心速度即离心机转速分为: 按离心速度即离心机转速分为: 普通离心机:转速小于5000转/min,在室温下运 ① 普通离心机:转速小于 转 , 主要用于红细胞,微生物细胞,粗大沉淀物, 行,主要用于红细胞,微生物细胞,粗大沉淀物,细胞 细胞膜等的沉淀分离。 核、细胞膜等的沉淀分离。 高速离心机:转速为5000~20000转/min,通常 ② 高速离心机:转速为 ~ 转 , 备有致冷和温控装置。适用于各种生物细胞、病毒、 备有致冷和温控装置。适用于各种生物细胞、病毒、血 清蛋白等有机物、无机物溶液, 清蛋白等有机物、无机物溶液,悬浮液及胶体溶液等样 品的分离,浓缩、提取制备工作。 品的分离,浓缩、提取制备工作。它是细胞和分子生物 水平研究的基本工具。 水平研究的基本工具。 ③ 超 速 离 心 机 : 转 速 为 20000 ~ 90000 转 /min 。 Ultrcentrifuge因它能产生超强的离心力场而达到独特的 因它能产生超强的离心力场而达到独特的 分离纯化目的。它是分离、纯化、分析、 分离纯化目的。它是分离、纯化、分析、鉴定生物大分 子的重要技术手段 。 如 DNA/RNA 杂交分子的分离 , HDL的分离。 的分离。 的分离
离心现象及其应用教学教案
离心现象及其应用教学教案第一章:离心现象的引入1.1 教学目标了解离心现象的定义和产生条件掌握离心现象在日常生活中和工业中的应用培养学生的观察能力和思考能力1.2 教学内容离心现象的定义和产生条件离心现象在日常生活中的应用实例离心现象在工业中的应用实例1.3 教学方法采用问题导入法,引导学生思考离心现象的产生原因和应用场景通过图片和视频资料,展示离心现象在日常生活中的应用实例通过案例分析,让学生了解离心现象在工业中的应用实例1.4 教学评估课堂问答,检查学生对离心现象的定义和产生条件的理解程度小组讨论,让学生分享自己对离心现象应用的思考和发现第二章:离心现象的原理2.1 教学目标掌握离心现象的原理和数学描述理解离心力与向心力的关系培养学生的数学思维能力2.2 教学内容离心现象的原理和数学描述离心力与向心力的关系离心现象的数学计算方法2.3 教学方法通过示例和数学推导,让学生理解离心现象的原理和数学描述采用问题解决法,引导学生思考离心力与向心力的关系通过练习题,巩固学生对离心现象数学计算方法的理解2.4 教学评估课堂问答,检查学生对离心现象原理和数学描述的理解程度习题练习,评估学生对离心力与向心力的关系的掌握程度第三章:离心现象在日常生活中的应用3.1 教学目标了解离心现象在日常生活中的应用实例掌握离心泵、洗衣机和果汁机等设备的原理和工作方式培养学生的实际应用能力3.2 教学内容离心泵的原理和工作方式洗衣机的离心干燥原理果汁机的离心分离原理3.3 教学方法通过图片和实物展示,让学生了解离心现象在日常生活中的应用实例采用案例分析法,引导学生理解离心泵、洗衣机和果汁机等设备的原理和工作方式进行小实验,让学生亲身体验离心现象的应用3.4 教学评估课堂问答,检查学生对离心现象在日常生活中应用实例的理解程度小组讨论,让学生分享自己对离心泵、洗衣机和果汁机等设备原理和工作方式的认识第四章:离心现象在工业中的应用4.1 教学目标了解离心现象在工业中的应用实例掌握离心分离、离心压缩和离心干燥等工艺原理培养学生的工业应用能力4.2 教学内容离心分离的原理和应用离心压缩的原理和应用离心干燥的原理和应用4.3 教学方法通过图片和视频资料,展示离心现象在工业中的应用实例采用案例分析法,引导学生理解离心分离、离心压缩和离心干燥等工艺原理进行小实验,让学生亲身体验离心现象在工业中的应用4.4 教学评估课堂问答,检查学生对离心现象在工业中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心压缩和离心干燥等工艺原理和应用的认识第五章:离心现象的综合应用5.1 教学目标了解离心现象在不同领域的综合应用掌握离心现象在不同行业中的具体应用实例培养学生的综合应用能力5.2 教学内容离心现象在交通工程中的应用离心现象在环境工程中的应用离心现象在生物工程中的应用5.3 教学方法通过图片和视频资料,展示离心现象在不同领域的综合应用实例采用案例分析法,引导学生理解离心现象在不同行业中的具体应用实例进行小组讨论,让学生分享自己对离心现象综合应用的认识和思考5.4 教学评估课堂问答,检查学生对离心现象在不同领域综合应用实例的理解程度小组讨论,让学生分享自己对离心现象在不同行业中具体应用实例的认识第六章:离心现象在航天工程中的应用6.1 教学目标了解离心现象在航天工程中的重要应用掌握离心训练、离心模拟等关键技术培养学生的创新意识和科学精神6.2 教学内容离心现象在航天工程中的应用实例离心训练的原理和应用离心模拟在航天器设计中的作用6.3 教学方法通过图片和视频资料,展示离心现象在航天工程中的应用实例采用案例分析法,引导学生理解离心训练、离心模拟等关键技术进行小组讨论,让学生分享自己对离心现象在航天工程中应用的认识和思考6.4 教学评估课堂问答,检查学生对离心现象在航天工程中应用实例的理解程度小组讨论,让学生分享自己对离心训练、离心模拟等关键技术的认识第七章:离心现象在医疗领域的应用7.1 教学目标了解离心现象在医疗领域的重要应用掌握离心分离、离心诊断等关键技术培养学生的关爱生命、关注健康的意识7.2 教学内容离心现象在医疗领域中的应用实例离心分离在血液学中的应用离心诊断在临床检验中的作用7.3 教学方法通过图片和视频资料,展示离心现象在医疗领域中的应用实例采用案例分析法,引导学生理解离心分离、离心诊断等关键技术进行小组讨论,让学生分享自己对离心现象在医疗领域中应用的认识和思考7.4 教学评估课堂问答,检查学生对离心现象在医疗领域中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心诊断等关键技术的认识第八章:离心现象在材料科学中的应用8.1 教学目标了解离心现象在材料科学中的重要应用掌握离心力对材料结构和性能的影响培养学生的创新意识和实践能力8.2 教学内容离心现象在材料科学中的应用实例离心力对材料结构和性能的影响离心技术在材料制备和处理中的应用8.3 教学方法通过图片和视频资料,展示离心现象在材料科学中的应用实例采用案例分析法,引导学生理解离心力对材料结构和性能的影响进行小组讨论,让学生分享自己对离心现象在材料科学中应用的认识和思考8.4 教学评估课堂问答,检查学生对离心现象在材料科学中应用实例的理解程度小组讨论,让学生分享自己对离心力对材料结构和性能的影响的认识第九章:离心现象在环境保护中的应用9.1 教学目标了解离心现象在环境保护中的重要应用掌握离心分离、离心净化等关键技术培养学生的环保意识和可持续发展观念9.2 教学内容离心现象在环境保护中的应用实例离心分离在废水处理中的应用离心净化在空气污染控制中的作用9.3 教学方法通过图片和视频资料,展示离心现象在环境保护中的应用实例采用案例分析法,引导学生理解离心分离、离心净化等关键技术进行小组讨论,让学生分享自己对离心现象在环境保护中应用的认识和思考9.4 教学评估课堂问答,检查学生对离心现象在环境保护中应用实例的理解程度小组讨论,让学生分享自己对离心分离、离心净化等关键技术的认识第十章:离心现象的拓展研究10.1 教学目标了解离心现象在其他领域的拓展应用掌握离心现象在其他领域的具体应用实例培养学生的创新意识和科学精神10.2 教学内容离心现象在其他领域的拓展应用实例离心现象在其他领域的具体应用技术离心现象在未来的发展趋势10.3 教学方法通过图片和视频资料,展示离心现象在其他领域的拓展应用实例采用案例分析法,引导学生理解离心现象在其他领域的具体应用技术进行小组讨论,让学生分享自己对离心现象在其他领域中应用的认识和思考10.4 教学评估课堂问答,检查学生对离心现象在其他领域拓展应用实例的理解程度小组讨论,让学生分享自己对离心现象在其他领域具体应用技术的认识重点和难点解析第一章:离心现象的引入重点和难点解析:离心现象的定义和产生条件是本章节的核心内容,需要通过实例和实际操作来帮助学生理解。
环保行业工业废水的处理与回用技术创新方案
环保行业工业废水的处理与回用技术创新方案第一章工业废水处理概述 (3)1.1 工业废水处理现状 (3)1.2 工业废水处理的重要性 (3)1.3 工业废水处理发展趋势 (4)第二章物理法处理技术 (4)2.1 格栅与筛网过滤技术 (4)2.2 沉淀与澄清技术 (4)2.3 离心分离技术 (5)第三章化学法处理技术 (5)3.1 中和法 (5)3.1.1 中和剂的选取 (5)3.1.2 中和法的工艺流程 (5)3.2 氧化还原法 (6)3.2.1 氧化剂的选择 (6)3.2.2 还原剂的选择 (6)3.2.3 氧化还原法的工艺流程 (6)3.3 絮凝法 (6)3.3.1 絮凝剂的选择 (6)3.3.2 絮凝法的工艺流程 (7)3.4 吸附法 (7)3.4.1 吸附剂的选择 (7)3.4.2 吸附法的工艺流程 (7)第四章生物法处理技术 (7)4.1 活性污泥法 (7)4.2 生物膜法 (8)4.3 厌氧生物处理技术 (8)4.4 生物脱氮除磷技术 (8)第五章混合法处理技术 (9)5.1 物化生化组合工艺 (9)5.2 化学絮凝生物处理组合工艺 (9)5.3 电磁处理技术 (9)第六章工业废水回用技术 (10)6.1 物理法回用技术 (10)6.1.1 概述 (10)6.1.2 过滤技术 (10)6.1.3 沉淀技术 (10)6.1.4 离心技术 (10)6.1.5 膜分离技术 (10)6.2 化学法回用技术 (10)6.2.2 氧化还原技术 (10)6.2.3 中和技术 (10)6.2.4 絮凝技术 (10)6.2.5 离子交换技术 (11)6.3 生物法回用技术 (11)6.3.1 概述 (11)6.3.2 好氧生物处理 (11)6.3.3 厌氧生物处理 (11)6.4 混合法回用技术 (11)6.4.1 概述 (11)6.4.2 物理化学法 (11)6.4.3 生物化学法 (11)6.4.4 物理生物法 (11)第七章工业废水处理设备与工艺优化 (11)7.1 废水处理设备选型与设计 (12)7.1.1 设备选型原则 (12)7.1.2 设备选型方法 (12)7.1.3 设备设计要点 (12)7.2 工艺参数优化 (12)7.2.1 工艺参数调整原则 (12)7.2.2 工艺参数优化方法 (12)7.2.3 工艺参数优化内容 (13)7.3 自动化控制系统 (13)7.3.1 控制系统设计原则 (13)7.3.2 控制系统设计方法 (13)7.3.3 控制系统功能 (13)第八章工业废水处理工程案例分析 (13)8.1 某化工企业废水处理工程 (13)8.1.1 项目背景 (13)8.1.2 废水处理工艺 (13)8.1.3 工程效果 (14)8.2 某制药企业废水处理工程 (14)8.2.1 项目背景 (14)8.2.2 废水处理工艺 (14)8.2.3 工程效果 (14)8.3 某电镀企业废水处理工程 (14)8.3.1 项目背景 (14)8.3.2 废水处理工艺 (15)8.3.3 工程效果 (15)第九章工业废水处理行业政策与标准 (15)9.1 我国工业废水处理政策概述 (15)9.1.1 政策背景 (15)9.1.2 政策目标 (15)9.2 工业废水处理标准体系 (16)9.2.1 标准体系构成 (16)9.2.2 标准内容 (16)9.3 工业废水处理行业监管与处罚 (16)9.3.1 监管体系 (16)9.3.2 处罚措施 (16)第十章环保行业工业废水处理与回用技术创新展望 (17)10.1 工业废水处理技术创新趋势 (17)10.2 工业废水回用技术创新趋势 (17)10.3 环保行业工业废水处理与回用技术发展方向 (17)第一章工业废水处理概述1.1 工业废水处理现状我国经济的快速发展,工业生产规模不断扩大,工业废水排放量也随之增加。
离心技术
离心技术一.概念生物样品悬浮液在高速旋转下,由于巨大的离心力作用使悬浮的微小颗粒(细胞器、生物大分子的沉淀等)以一定的速度沉降,从而与溶液得以分离的一种技术。
沉降速度取决于颗粒的质量、大小和密度。
主要应用于各种生物样品的分离和制备。
二.基本原理1.离心力(F)F = m·a =m·ω2r2a:粒子旋转的加速度m:粒子的有效质量克为单位ω:粒子旋转的角速度弧度/秒为单位r:粒子的旋转半径cm为单位2.相对离心力(RCF)relative centrifuge force通常离心力常用地球的引力的倍数来表示,因而称为相对离心力(RCF)。
或者用数字×g 来表示,例如:13,000g,则表示相对离心力为13,000。
相对离心力指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度g(980cm/s2)。
RCF=ma/ mg= mω2r2/mg=ω2r2/gω=2π×rpm/60∴RCF=1.119×10-5×(rpm)2rrpm:revolutions per minute为每分钟转数由上式可知,只要给出旋转半径r,则RCF和rpm之间可以相互换算。
由于转头的形状及结构的差异,每台离心机的离心管从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算时规定旋转半径均用平均半径r av代替:rav=(r min+r max)/2低速离心时常以转速rpm来表示,高速离心时则以g表示。
报告离心条件时使用RCF 比rpm要科学,因为它可以真实地反映颗粒在离心管内不同位置的离心力及其动态变化。
三.离心机的主要构造和类型1.离心机的分类工业用离心机制备性离心机:分离各种生物材料、分离的样品量比较大实验用离心机分析性离心机:研究纯的生物大分子和颗粒的理化性质,一般有光学系统,可监测粒子在离心场中的行为,能推断物质的纯度、形状和分子量等,都是超速离心机制备性离心机分为:(1)普通离心机最大转速6000rpm左右,最大RCF接近6000g,容量为几十毫升至几升,分离形式是固液沉降分离,其转速不能严格控制,通常不带冷冻系统,室温操作,用于收集易沉淀的大颗粒物质,如:细胞等(2)高速冷冻离心机转速为2000-25000rpm,最大RCF为8900×g,最大容量可达3L,一般都有制冷系统,以消除高速旋转转头与空气之间摩擦而产生的热量,离心室的温度可以调节和维持在0℃-4℃,可以严格准确的控制转速温度和时间,并有指针或数字显示。
第五章_离心分离
5.5 螺旋卸料沉降离心机
沉降计算:
5.6 管式离心机
操作: 操作: 应用: 、 液分离 连续式),B、低固体含量 液分离(连续式 应用:A、液-液分离 连续式 、 (<1%)的固 液分离(间歇式 的固-液分离 间歇式)。 的固 液分离 间歇式 主要技术指标: 主要技术指标 : A、离心管直径40-150mm,长 径比4-8;B、离心强度8000—15000g;C、 处理能力100-400 L/h;D、适应的颗粒直径 适应的颗粒直径 0.01-100µm,固液密度差大于 µ , 固液密度差大于0.01g/cm3 ,固 体含量小于1% 体含量小于 优点: 优点:A、结构简单,价廉,B、分离效果好, 、分离效果好, 分离因子高8000—15000g 分离因子高 缺点: 缺点 :A、处理能力有限; B、低固体含量的悬 浮液(<1%)
5.2 离心分离原理
离心力: 离心力: Stock’s Force(粘滞吃力 : 粘滞吃力): 粘滞吃力 离心沉降速度: 离心沉降速度:
分离因子定义Fr: 分离因子定义 :离心力/重力加速度(g)的比值
Hale Waihona Puke 意义:衡量离心设备的离心程度的重要技术参数,用于离心 衡量离心设备的离心程度的重要技术参数, 衡量离心设备的离心程度的重要技术参数 机的分类
Questions
1
2 3 4 5
过滤技术难处理的发酵液如何处理 液液分离,并含少量固体颗粒 细胞器的分离 大分子物质分子量的测定 DNA半保留复制
1、何谓沉降 、
思考题
2、沉降与离心的异同 、 3、沉降与离心的速度方程 、 4、如何选择离心设备 、 5、常用的离心沉降设备有哪些 、 6、常用的离心过滤设备有哪些 、
3_离心分离
密度梯度的制备可采用梯度混合器,也可将不同浓 度的蔗糖溶液,小心地一层层加入离心管中,越靠 管底,浓度越高,形成阶梯梯度。 离心前,把样品小心地铺放在预先制备好的密度梯 度溶液的表面。离心后,不同大小、不同形状、有 一定的沉降系数差异的颗粒在密度梯度溶液中形成 若干条界面清晰的不连续区带。各区带内的颗粒较 均一,分离效果较好。 在密度梯度离心过程中,区带的位置和宽度随 离心时间的不同而改变。随离心时间的加长,区带 会因颗粒扩散而越来越宽。为此,适当增大离心力 而缩短离心时间,可减少区带扩宽。
对于常速和高速离心机,由于所分离的颗粒大小和密 度相差较大,只要选择好离心速度和时间,就能达到 分离效果。 超速离心的离心方法有:差速离心、密度梯度离心和 等密度梯度离心。
6
按工作原理: 过滤式离心机 沉降式离心机
过滤式离心机
在过滤式离心机转鼓壁上有许多孔,转鼓内表 面覆盖过滤介质。加入转鼓的悬浮液随转鼓一同 旋转产生巨大的离心压力,在压力作用下悬浮液 中的液体流经过滤介质和转鼓壁上的孔甩出,固 体被截留在过滤介质表面,从而实现固体与液体 的分离。悬浮液在转鼓中产生的离心力为重力的 千百倍,使过滤过程得以强化,加快过滤速度, 获得含湿量较低的滤渣。固体颗粒大于0.01毫米 的悬浮液一般可用过滤离心机过滤。
20
碟片式离心机类型
人工间歇排渣的碟片离心机 碟片上不开孔,只有一个清液
排出口。沉积在转鼓内壁上的 沉渣,间歇排出。只适用于固 体颗粒含量很少的悬浮液。 自动间歇排渣:当固体颗粒含 量较多时,可采用具有喷嘴排 渣的碟式离心沉降机。 自动连续排渣
近年来开发的机型
21
按离心机的作用方式:
卸料;G-刮刀卸料;N-耐腐蚀;字母后面的数字,表示转 鼓直径,mm
生物工程下游技术-第五章_萃取技术
1896年Beijerinck观察到当把明胶与琼脂 或把明胶和可溶性淀粉的水溶液混合时, 先得到一混浊不透明的溶液,随后分成 两相,上相含有大部分明胶,下相含有 大部分琼脂(或可溶性淀粉)。
2.2%的葡聚糖水溶液与等体积的0.72%甲基 纤维素钠的水溶液相混合并静置后,可得到两 个粘稠的液层。
多级逆流萃取图
L1
L2
S
L3
混 分混 分混 分 合 离合 离合 离 器 器器 器器 器
F
第一级
第二级
R3 第三级
青霉素的多级逆流萃
取 第一级
第二级
第三级
含青霉素乙酸戊酯
青霉素滤液
废液 乙酸戊脂
青(霉含素产发品酵青过霉在三滤素级液)逆进混流入合萃取第 萃装一取置级,中用萃然乙取后酸罐流戊,入酯从在第澄此一清与级的发从分酵第离液二器中级分分离分成青离上霉器下素来层的,萃取相
第一级的萃余液进入第二级作为料液,并加 入新鲜萃取剂进行萃取;第二级的萃余液再 作为第三级的料液,以此类推。
此法特点在于每级中都加溶剂,故溶剂消耗 量大,而得到的萃取剂平均浓度较稀,但萃 取较完全。
多级错流萃取示意
图 轻
料
相 入
液重相入Leabharlann 轻相入入口
轻相出
第一级
第二级
轻相出
第三级 萃余液出口
轻相出 重相出
图9-5 转筒式离心萃取器
5.2 双水相萃取
➢ 双水相萃取技术又称水溶液两相分配技术,是近 年来出现的引人注目的、极具前途的新型分离技 术。已被广泛的应用于生物化学、细胞生物学和 生物化工领域。
➢ 用此种方法已提取的酶已达数十种,其分离也达 到了相当的规模,如甲酸脱氢酶的分离已达到了 几十公斤的湿细胞规模,半乳糖苷酶的提取已进 行了中试规模实验,该法具有广阔的应用前景。
离心技术
36
甩平式转头 36,000
5×5
55
垂直管转头 100,000 8×5
<2
近垂直管转头 78,000
8×5
4
效果 较好
好 较好
好
离心管
塑料离心管:聚乙烯(PE)管,纤维素(CAB) 管,聚碳酸酯(PC)管,聚丙二醇酯(PP)管 等。
不锈钢离心管
离心方法介绍及举例
沉淀离心 差速分级离心 密度梯度离心 淘洗离心 连续流离心
水
平
转
头
的
基
600 rpm
本
结
构
垂直转头(vertical tube rotor)
垂直转头:是指离心管与旋转轴成平行方向。当 转头旋转时,离心管中的液体层改变方向,与旋 转轴成垂直方向。当离心结束后,液层又随转速 的降低慢慢恢复原位。
承受的最大离心速度在100, 000 r/min左右,最大 离心力在700, 000g 。
近垂直管转头 超速 连续离心转头 低、高、超速
1989年,(日)Hitachi Koki;(美) Beckman公司
1965年,(英)MSE公司
角转头(angle rotor)
角转头:离心管放置的位置与转头的旋转轴之间 成一个固定角度,通常在14-40℃之间。 承受的最大离心速度在100,000 r/min,最大离心 力可达800,000 × g。 适用于差速离心,也可用于等密度离心。 特点:容量大,转头内容纳的离心管多。
1955年,Anderson发明了区带转头,并用区带离 心法首次证明了DNA双螺旋结构半保留复制的假说;
1955年以后,开始了超速、高速、低速大容量离 心机以及分析用超速离心机的商品化生产;
陈敏恒化工原理上册化工原理第五章概要
FD Fe
颗粒受力分析
du 合力: F Fe Fb FD ma m dt
(2)在重力场中颗粒在静止流体中的运动情况
Fb
初始时: u 0,
FD 0
F V g V g
p p p
FD Fe
颗粒运动的两个阶段:加速阶段、恒速阶段 ① 加速阶段:
p 时,Fg Fb,沿重力方向加速
颗粒受力分析
球形颗粒:ut
4d p g ( p ) 3
◆
影响沉降速度的因素 ① 颗粒直径
d p ,则ut
其它条件相同时,小颗粒后沉降。 ② 流体密度
,则ut
p ,则ut
其它条件相同时,颗粒在空气较在水中易沉降。
③ 颗粒密度
其它条件相同时,密度大的颗粒先沉降。
曳力 u,表面曳力为主
阿伦区:
A u0 B
0
85
C
发生边界层分离,使形体曳力增加
牛顿定律区:
曳力 u 2,曳力系数恒定,形体曳力为主
湍流边界层区:
A u0 B
140
0
C
转化为湍流边界层,形 体曳力
②
非球形颗粒的曳力系数
计算方法:
◇ Ap取颗粒的最大投影面积 ◇ ◇ 近似用球形颗粒公式,dp→deV; 实测ξ -Rep 关系。
设: p
u 2 F合 mg mg AP 0 p 2
沉降(终端)速度: ut
Fb
2 g ( p )m
FD
Ap p
Fe
◆
球形颗粒的沉降速度 3 2 m dp p 因为:AP d p , 6 4 4d p g ( p ) 球形颗粒:ut 3
最新中药药剂学习题集与参考答案(名词解释):第五章提取、分离与精制药剂
第五章提取、分离与精制习题二、名词解释1.有效成分2.辅助成分3.无效成分4.提取5.浸润6.解吸作用7.精制8.浸提辅助剂9.煎煮法10.表面活性剂11.浸渍法12.渗漉法13.深层滤过14.离心分离法15.超滤16.透析法17.盐析法18.水提醇沉淀法19.非离子表面活性剂20.醇提水沉淀法三、填空题1.药材成分可分为有效成分、、无效成分和组织成分。
2.中药材的浸提过程,包括润湿与渗透、______及成分扩散等几个相互联系的阶段。
3.可用作超临界流体的气体很多,但只有______最常用。
4.透析法是利用______来使小分子物质与大分子物质分离的方法。
5.于溶液中加入大量的无机盐使所含蛋白质等高分子物质沉淀析出而与其他成分分离的方法,称______。
6.水蒸气蒸馏法可分为共水蒸馏法、通水蒸气蒸馏法及______。
7.可用于分子分离的滤过方法是______。
8.乙醇含量在50%~70%时,适于浸提______。
9.用碱作为浸提辅助剂时,应用最多的是______。
10.在所有浸提方法中,______法在提取过程中可保持最大的浓度梯度。
11.应用水提醇沉法精制中药提取液时,当药液中含醇量达到50%~60%时,主要可除去______杂质。
12.常用的助滤剂有______、______、______、______。
13.在浸提过程中,溶剂通过______进入细胞组织。
14.在浸提过程中常加入酸、碱的作用是为了增加有效成分的______。
15.扩散公式中dc/dx代表______。
16.丙酮既可作为______又可作为脱水剂。
17.在单渗漉法的操作中,慢漉流速为______ml/min,快漉流速为______ml /min。
18.渗漉法提取时,渗漉效果与渗漉柱高度成______,与柱直径成______。
19.分离因数是指物料所受______与重力之比值。
20.有效成分受热易被破坏的贵重药材、毒性药材宜采取的提取方法为______。
第五章离心机
第五章离心机5.1 概述用来转鼓旋转产生的离心力,来实现悬浮液、乳浊液及其他无聊的分离或浓缩的机器。
它具有结构紧凑、体积小、分离效率高、生产能力大及附属设备少等优点。
5.1.1离心分离过程1.离心过滤用来分离固体含量较多且颗粒较大的悬浊液。
转鼓由拦液板、鼓壁、和鼓底组成。
金属丝网作底、滤布覆盖在上面。
离心力远大于重力,所以主要是离心过滤。
2.离心沉降过程用于分离固体含量较少且粒度较细的悬浮液。
转鼓鼓壁上没有小孔,不设过滤介质。
当转鼓旋转时,悬浮液在离心力的作用下,固体颗粒因为密度大于液体密度而向鼓壁沉降,形成沉渣,而留在内层的澄清液体则经过转鼓上溢流口排出。
3.离心分离过程用于分离两种密度不同的液体所形成的乳浊液或含有极微量的固体颗粒的悬浮液。
在离心力的作用下,液体按照密度不同分为内外两层,密度大的在外企曾,密度小的在内层,通过一定的装置将它们分别引出;固相则沉于鼓壁上,间歇排出。
用于这种分离过程的离心机叫分离机,其转鼓也是没有孔的。
5.1.2分离因数物质在转鼓中作圆周运动,一定受到离心力的作用,离心力的大小与转股的直径、物料的密度、转速等有关系,可以表示为:离心机分离的效果如何取决于分离因数,分离因数经常用离心力与重力的比值来表示分离因数反映了离心机离心能力 的大小,数值越大,分离效果越好;对于固体颗粒小、液体粘度大和难分离的悬浮液用分离因数较大的离心机。
一般分离因数的数值在300~106之间,所以重力的因素在来考虑离心分离时,可以忽略不计。
但是,分离因数不可能无限制的增大,还要考虑结构和操作的方便。
5.1.3 离心机的型号分类及型号编制1.分类按分离过程分:过滤式离心机,如三足式离心机、上悬式离心机、卧式刮刀卸料式离心机; 沉降式离心机,如三足式沉降离心机、刮刀卸料沉降离心机和螺旋卸料式离心机; 分离机,如管式分离机、多室式离心机按照分离因数分类:常速分离机 ,分离因数小于3500,适用于含固体颗粒较大或颗粒中等及纤维状固体的悬浮液;高速离心机,分离因数在3500~50000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④碟式离心机
⑤螺旋卸料沉降离心机
1.瓶式离心机
外摆式
角式
固定式
离心管
离心管主要用塑料和不锈钢制成: 塑料离心管常用材料有聚乙烯(PE),聚碳酸酯(PC),
聚丙烯(PP)等,其中PP管性能较好。
塑料离心管都有管盖,离心前管盖必须盖严,倒置不漏 液。管盖有三种作用: ①防止样品外泄。用于有放射性或强腐蚀性的样品时, 这点尤其重要。 ②防止样品挥发。 ③支持离心管,防止离心管变形。
制备性离心机主要用于分离各种生物材料,每次分离的 样品容量比较大;
分析性离心机一般都带有光学系统,主要用于研究纯的 生物大分子和颗粒的理化性质,依据待测物质在离心场中的 行为(用离心机中的光学系统连续监测),能推断物质的纯
度、形状和相对分子质量等。分析性离心机都是超速离心机。
离心沉降设备
①瓶式离心机 ②管式离心机 ③多室式离心机
4.碟片式离心机
碟式离心机是立式离
心机的一种,转鼓装在
立轴上端,通过传动装 置由电动机驱动而高速
旋转。
转鼓内有一组锥顶角为60-100度的的互相套叠在一起的
碟形零件--碟片。碟片与碟片间的距离用附于碟片背面的具有 一定厚度的狭条来控制,碟片的距离为0.5~2.5mm。
当转鼓连同碟片以高速旋转时,碟
片间的悬浮液中的固体颗粒因其有较大
的质量,优先沉降于碟片的内腹面,并 连续向鼓壁方面沉降,澄清的液体则被
迫反方向移动而在转颈部进液管周围的
排液口排出。 沉渣沿碟片表面滑动而脱 离碟片并积聚在转鼓内直径最大的部位,
分离后的液体从出液口排出转鼓。
.
碟片的结构是: 1.碟片用薄的不锈钢冲成; 2.碟片呈圆台形; 3.在碟片上开有对称的孔。
碟式分离机转鼓内有一组碟片,把转鼓空间分成 许多薄层分离空间,从而大大缩短沉降距离,改善和 提高分离效果。 任何处于两碟片之间的极限颗粒若能在此路程段 中到达碟片内表面,则可以被分离出来。
颗粒在分离空间内的运动路线
卸渣方式 a.人工排渣的碟片离心机
§5.1 离心沉降
一、离心沉降原理
当悬浮液静止不动时,由于重力场的作用,较大的悬 浮颗粒会逐渐沉降,颗粒越重下沉越快,反之会上浮。但
很小的颗粒不仅沉降速度慢,而且扩散现象严重,很难或
根本无法沉降。这样就需离心的方法产生出离心力场,使 之产生沉降。
1、离心力(centrifugal force,Fc) 离心作用是根据在一定角度速度下作圆周运动的任何物 体都受到一个向外的离心力进行的。离心力(Fc)的大小等
第五章
离心分离技术
固液分离:第一选择为过滤,第二选择为离心分离。
应用:
A、难过滤的发酵液(d小、大、过滤v慢)、甚至不能过 滤的悬浮液,及忌用助滤剂、或助滤剂无效的悬浮液;
B、其他难分离的固液分离;
C、互不相溶的液—液分离,如液液萃取; D、不同密度固体或乳浊液的密度梯度分离,如超离心分离 缺点: A、分离得到的不是滤饼一样的半干物,而是浆状物; B、处理量小; C、设备复杂,价格贵,分离成本高。
2.管式离心机
3.多室式离心机
转鼓内有数个同心圆筒组成的 环隙状分离室。各分离室的流道串 联。操作时,悬浮液自中心进料管 加入转鼓中,由内向外顺序流经各 分离室。在逐渐增大的离心力作用 下,悬浮液中的粗颗粒沉积在内部 的分离室壁上,细颗粒沉积在外部 的分离室壁上。 缺点:出渣比较困难。
适用于处理直径大于0.1μm的颗粒,固相浓度小于5%的悬浮液, 常用于抗菌素液液萃取分离,果汁和酒类饮料的澄清等。
于离心加速度ω2X与颗粒质量m的乘积,即:
其中ω是旋转角速度,以弧度/秒为单位;X是颗粒离开旋转 中心的距离,以cm为单位;m是质量,以克为单位。
根据Fr(离心分离因素、离心力强度)对离心机分类:
常速离心机: Fr<3000g
中速离心机: 3000g> Fr <50000g 高速离心机: Fr >50000g 超高速离心机: Fr =20000-1000000g
沉降系数S与分子量M有对应关系:
数;υ——粒子的偏比容(粒子密度的倒数);ρ——溶剂密度。
4、沉降速度(sedimentation velocity) 沉降速度是指在强大离心力作用下,单位时间内物质运 动的距离。
式中r为球形粒子半径;d为球形粒子直径;η为流体介质的粘度;ρP为 粒子的密度;ρm为介质的密度。
在说明离心条件时,低
速离心通常以转子每分钟的
转数表示(r/min) ,如 4000 rpm ;
而在高速离心时,特别 是在超速离心时,往往用相 对离心力来表示,如65000g。
3、沉降系数(sedimentation coefficient,s) 根据1924年Svedberg对沉降系数下的定义:颗粒在单 位离心力场中粒子移动的速度。以Svedberg表示,简称S。
离心分离
离心是利用旋转运动的离心力以及物质的沉降系数或浮 力密度的差异进行分离、浓缩和提纯的一种方法。
离心沉降
利用固液两相的相 对密度差 利用离心力并通过 过滤介质
无孔转鼓或 管子 有孔转鼓 无孔转鼓或 管子
悬浮液 悬浮液 不同相对 密度液体
离心过滤
离心分离 和超离心
利用不同溶质颗粒 在溶液各部分分布 的差异
同一样品在不同的离心机上离心力不同
2、相对离心力(relative centrifugal force,RCF)
常用“相对离心力”或“数字×g”表示离心力,只要 RCF值不变,一个样品可以在不同的离心机上获得相同的结 果。 RCF就是实际离心场转化为重力加速度的倍数。
式中X为离心转子的半径距离,以cm为单位;g为地球重力 加速度(980cm/sec2);n为转子每分钟的转数(rpm)。
从上式可知,粒子的沉降速度与粒子直径的平方、粒子的 密度和介质密度之差成正比;离心力场增大,粒子的沉降速度 也增加 。
①当ρP>ρm,则S>0,粒子顺着离心方向沉降。 ②当ρP=ρm,则S=0,粒子到达某一位置后达到平衡。 ③当ρP<ρm,则S<0,粒子逆着离心方向上浮。
二、 离心沉降设备
离心机可分为工业用离心机和实验用离心机。 实验用离心机又分为制备性离心机和分析性离心机。