2019年度高一数学竞赛试题(含答案)
【竞赛试题】2019年全国和高中数学联赛试卷及答案
![【竞赛试题】2019年全国和高中数学联赛试卷及答案](https://img.taocdn.com/s3/m/10e3dd70580216fc700afda8.png)
æ 4ö 【竞赛试题】2019 年全高中数学联合竞赛一试(B 卷) 参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 已知实数集合{1, 2, 3, x } 的最大元素等于该集合的所有元素之和,则 x 的 值为 .答案:-3 .解:条件等价于1, 2, 3, x 中除最大数以外的另三个数之和为 0 .显然 x < 0 , 从而1 + 2 + x = 0 ,得 x = -3 .2. 若平面向量 a = (2m , -1) 与 b = (2m -1, 2m +1) 垂直,其中 m 为实数,则 a 的 模为 . 答案: 10 . 解:令 2m = t ,则 t > 0 .条件等价于 t ⋅ (t -1) + (-1) ⋅ 2t = 0 ,解得 t = 3 .因此 a 的模为 32 + (-1)2 = 10 .3. 设a , b Î (0, p ) ,cos a , cos b 是方程5x 2 -3x -1 = 0 的两根,则sin a sin b 的 值为. 答案:7 .5解:由条件知 cos a + cos b = 3 , cos a cos b = - 1,从而5 5(s i n a sin b )2 = (1- c os 2 a )(1- c os 2 b ) = 1- cos 2 a - cos 2 b + cos 2 a cos 2 b2 2= (1+ cos a cos b )2 - (cos a + cos b )2 = ÷ æ 3ö - = 7 . ç ÷ ç ÷ çè 5 ø çè5ø 25又由a , b Î (0, p ) 知sin a sin b > 0 ,从而sin a sin b = 7.54. 设三棱锥 P - ABC 满足 PA = PB = 3, AB = BC = CA = 2 ,则该三棱锥的 体积的最大值为 .答案: 2 6 .3解:设三棱锥 P - ABC 的高为 h .取M 为棱 AB 的中点,则h £ PM = 32 -12 = 2 2 .当平面 PAB 垂直于平面 ABC 时, h 取到最大值 2 2 .此时三棱锥 P - ABC 的体r n -rnn积取到最大值 1S⋅= 1 ⋅ = 2 6 .3 D ABC3 35. 将 5 个数 2, 0, 1, 9, 2019 按任意次序排成一行,拼成一个 8 位数(首位不为 0),则产生的不同的 8 位数的个数为 . 答案:95 . 解:易知 2, 0, 1, 9, 2019 的所有不以 0 为开头的排列共有 4´ 4! = 96 个.其中, 除了 (2, 0, 1, 9, 2019) 和 (2019, 2, 0, 1, 9) 这两种排列对应同一个数 20192019 ,其余 的数互不相等.因此满足条件的 8 位数的个数为96 -1 = 95 .6. 设整数 n > 4 ,( x + 2 的值为. 答案:51. y -1)n 的展开式中x n -4 与 xy 两项的系数相等,则 nn解:注意到 ( x + 2 y -1)n= år =0C n x (2 y -1)r . 其中 x n -4 项仅出现在求和指标 r = 4 时的展开式 C 4 x n -4 (2 y -1)4中,其 x n -4 项系数为 (-1)4 C 4 = n (n -1)(n - 2)(n -3) .n24而 xy 项仅出现在求和指标 r = n -1 时的展开式 C n -1x ⋅ (2y -1)n -1 中,其 xy 项系数为 n -1 2 n -3 n -3C n C n -1 4⋅ (-1) = (-1) 2n (n -1)(n - 2) .因此有 n (n -1)(n - 2)(n - 3)= (-1)n -3 2n (n -1)(n - 2) .注意到 n > 4 ,化简得24n - 3 = (-1)n -3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51 .7. 在平面直角坐标系中,若以 (r +1, 0) 为圆心、 r 为半径的圆上存在一点 (a , b ) 满足b 2 ³ 4a ,则 r 的最小值为.答案: 4 .解:由条件知 (a - r -1)2 + b 2 = r 2 ,故4a £ b 2 = r 2 - (a - r -1)2 = 2r (a -1) - (a -1)2 . 即 a 2 - 2(r -1)a + 2r +1 £ 0 . 上述关于 a 的一元二次不等式有解,故判别式(2(r -1))2 - 4(2r +1) = 4r (r - 4) ³ 0 ,解得 r ³ 4 .经检验,当 r = 4 时, (a , b ) = (3, 2 3) 满足条件.因此 r 的最小值为 4 .8. 设等差数列{a n } 的各项均为整数,首项 a 1 = 2019 ,且对任意正整数 n ,总 存在正整数 m ,使得 a 1+ a 2 ++ a n = a m .这样的数列{a n } 的个数为.答案:5 .解:设{a n } 的公差为 d .由条件知 a 1 + a 2 = a k ( k 是某个正整数),则2a 1 + d = a 1 + (k -1)d ,a 1即 (k - 2)d = a 1 ,因此必有 k ¹ 2 ,且d =k - 2.这样就有 a = a + (n -1)d = a + n -1a , n 1 1 k - 2 1í而此时对任意正整数 n ,a +a++ a = a n + n (n -1) d = a + (n -1)a + n (n -1) d 1 2 n 1 2 1 12æ n (n -1) ö = a + (n -1)(k - 2) + d ,确实为{a n } 中的一项.ç 1 çè 2 ø 因此,仅需考虑使 k - 2| a 1 成立的正整数 k 的个数.注意到 2019 为两个素数3 与 673 之积,易知 k - 2 可取-1, 1, 3, 673, 2019 这5 个值,对应得到5 个满足条 件的等差数列.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)在椭圆G 中, F 为一个焦点, A , B 为两个顶点.若 FA = 3, FB = 2 ,求 AB 的所有可能值.解:不妨设平面直角坐标系中椭圆 G 的标准方程为 x2y 2+= 1 (a > b > 0) ,并记 c = a 2 b 2a 2 -b 2 .由对称性,可设 F 为 G 的右焦点. 易知 F 到 G 的左顶点的距离为 a +c ,到右顶点的距离为 a - c ,到上、下顶点的距离均为 a .分以下情况讨论:(1) A , B 分别为左、右顶点.此时a + c = 3, a - c = 2 ,故 AB = 2a = 5 (相应地,b 2= (a + c )(a - c ) = 6 ,G 的方程为4 x 2y 2+ = 1 ). …………………4 分25 6(2) A 为左顶点,B 为上顶点或下顶点.此时 a + c = 3, a = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 3 ,所以 AB =a 2 +b 2= 7(相应的 G 的方程为 x + y = 1 ).4 3…………………8 分(3) A 为上顶点或下顶点, B 为右顶点.此时 a = 3, a - c = 2 ,故 c = 1 ,进2 2而 b 2 = a 2 - c 2 = 8 ,所以 AB =a 2 +b 2 = 17(相应的 G 的方程为 x + y= 1 ).9 8…………………12 分综上可知, AB 的所有可能值为5, 7, 17 . …………………16 分10. (本题满分 20 分)设 a , b , c 均大于 1,满足ìïlg a + log b c = 3, ïîlg b + log a c = 4. 求 lg a ⋅ lg c 的最大值.解:设lg a = x , lg b = y , lg c = z ,由 a , b , c >1可知 x , y , z > 0 . 由条件及换底公式知 x + z = 3, y + z= 4 ,即xy + z = 3y = 4x . y x…………………5 分。
2019年度高一数学奥林匹克竞赛决赛试题及答案解析
![2019年度高一数学奥林匹克竞赛决赛试题及答案解析](https://img.taocdn.com/s3/m/a43f1f1969eae009581bec97.png)
2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M =},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。
个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。
2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准
![2019年全国高中数学联赛A卷一试(含附加)参考答案与评分标准](https://img.taocdn.com/s3/m/bc091a70ed630b1c58eeb53a.png)
为 0),则产生的不同的 8 位数的个数为
.
答案: 498 .
解:将 2, 0, 1, 9, 20, 19 的首位不为 0 的排列的全体记为 A .
一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.
1. 已知正实数 a 满足 aa = (9a)8a ,则 loga (3a) 的值为
.
答案: 9 . 16
1
解:由条件知 9a = a8 ,故 3a =
9a ⋅a
=
9
a 16
,所以 loga (3a)
=
9 16
.
2. 若实数集合{1, 2, 3, x} 的最大元素与最小元素之差等于该集合的所有元素
所以 EPF
为直角,进而 SDPEF
=
1⋅ 2
PE
⋅
PF
=1.
5. 在1, 2, 3, , 10 中随机选出一个数 a ,在-1, - 2, -3, , -10 中随机选出一
个数 b ,则 a2 + b 被 3 整除的概率为
.
答案:
37 100
.
解:数组 (a, b) 共有102 =100 种等概率的选法.
台.不妨设正方体棱长为 1,则正方体体积为 1,结合条件知棱台 ABC - KFL 的
体积V = 1 .
4
P
设
PF
=
h
,则
KF AB
=
FL BC
=
PF PB
=
h
h +1
.注意到
PB,
PF
E
H K
G L
分别是棱锥 P - ABC 与棱锥 P - KFL 的高,于是
2019年全国高中数学联赛A卷一试试题与解答
![2019年全国高中数学联赛A卷一试试题与解答](https://img.taocdn.com/s3/m/796032c96bec0975f465e27a.png)
9
9
及
y
+¥
时
f
( y)
均可任意大,故②在 æççççè0,
2
3 3
öø÷÷÷÷
及
æççççè
2
3
3
,
+ ¥ö÷÷÷÷ø 上均有解,与解的
唯一性矛盾.
综上,仅有
r
=
43 9
满足条件(此时 æççççè 13
,
2
3 3
ö÷÷÷÷ø
是
W
与
G 的唯一公共点).
…………………20 分
11. (本题满分 20 分)称一个复数数列{zn} 为“有趣的”,若 z1 = 1,且对
x2 a2
+
y2 b2
= 1 (a
>
b>
0) .
根据条件得 2a = AB = 4, a a2 -b2 = AF = 2 + 3 ,可知 a = 2, b =1,且
EF = 2 a2 -b2 = 2 3 .
由椭圆定义知 PE + PF = 2a = 4 ,结合 PE ⋅ PF = 2 得
PE 2 + PF 2 = ( PE + PF )2 - 2 PE ⋅ PF = 12 = EF 2 ,
0
<
M[0, a]
=
sin
a
£
M[a, 2>
p 2
,此时
M[0,
a]
=
1,故
M[a,
2a]
=
1 2
.于是存在非负整数
k
,使得
2kp + 5 p £ a < 2a £ 2kp + 13 p ,
2019年高中数学竞赛试题及答案及答案
![2019年高中数学竞赛试题及答案及答案](https://img.taocdn.com/s3/m/f296375502020740bf1e9b0c.png)
高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。
2019年全国高中数学联赛试题及答案详解(B卷)
![2019年全国高中数学联赛试题及答案详解(B卷)](https://img.taocdn.com/s3/m/ace4da1b02d276a201292e74.png)
2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。
2019年4月北京市高中数学竞赛高一初赛试题答案
![2019年4月北京市高中数学竞赛高一初赛试题答案](https://img.taocdn.com/s3/m/7b56b0050b4c2e3f57276379.png)
4.整数 a,b,c 满足 a+b+c=2,且 S=(2a+bc)(2b+ca)(2c+ab)>200,那么 S 的最小值 是________.
答:256. 解:因为 a+b+c=2,所以 S=(bc−2b−2c+4)(ca−2c−2a+4)(ab−2a−2b+4)
=[(b−2)(c−2)]·[(c−2)(a−2)]·[(a−2)(b−2)] =(a−2)2(b−2)2(c−2)2 是个平方数.
( 1, 2),(3,4,5),(6,7,8,9),(10,11,12,13,14) ,…
第1组 第2组
第3组
第4组
则 2019 在第________组中.
答:63.
解:易知第 n 组的最后一个数为 n(n 1) n ,当 n=62 时,62 63 62 2015.可见,
D
因此,三棱锥 B-AMN 的全表面积等于正方形 BB1C1C 的面积, C M
即为 64 cm2.
3.函数 f (x)满足 f (1)=1,且 f (n)=
f
(n
1)
1 n(n 1)
,其中
n≥2,
C1
nN+,那么 f (2019)= ________. 答: 4037 . 2019
解:因为
外切于点 A.两圆的一条外公切线切⊙B 于点 D,切⊙C 于点 E, −4 过 A 作 DE 的垂线与 BC 的中垂线交于点 F,H 是 BC 的中点.则△AHF 的面积等于
(A) 11 .(B) 13 .(C) 15 .(D) 17 .
E
2
2
2
2
D
高一数学2019年12月竞赛试题附答案
![高一数学2019年12月竞赛试题附答案](https://img.taocdn.com/s3/m/ad6610231a37f111f1855ba1.png)
实验中学2019-2020年上学期高一数学竞赛试题命题人: 审题人:一、选择题(共12小题,每题5分。
每题有且仅有一个正确答案) 1、集合A ={﹣1,1},B ={x|mx =1},且B A ,则实数m 的值为()A.1B.﹣1C.1或﹣1D.1或﹣1或0 2、已知集合,则下列不表示从到的函数的是( )A.B. D.3、用二分法求函数=xx 2ln -的零点时,初始的区间大致可选在( ) A.(1,2)B.(2,3)C.(3,4)D.(e, +∞)4.某几何体的三视图如图所示,当时, 这个几何体的体积为( )A . 1B .C .D .5、已知直线013:1=++y ax l 与直线01)1(2:2=+++y a x l 互相平行,则实数a 的值为( )A .﹣3B .53- C .2 D .﹣3或26、如图,在四面体中,若截面是正方形,则在下列命题中,不一定正确的是( ) A . B .截面 C .D .异面直线与所成的角为7、已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若,则; ②若则; ③若则;⊆{}{}04,02A x x B y y =≤≤=≤≤A B 1:2f x y x →=1:3f x y x →=2:3f x y x →=:f x y x→=)(x f 4a b +=124323,m m αβ⊥⊥//αβ,,//,m n m n αβ⊂⊂//αβ,,αγβγ⊥⊥//αβ(2)4,1()4,1a x a xf x axx--<⎧⎪=⎨+≥⎪⎩④若m、n是异面直线,则其中真命题的个数是()A.1 B.2 C.3 D.4是上的增函数,则实数的取值范围是()8、已知函数A. B. C. D.9、函数 ( )A B C D10、过点P(1,1)作直线l,与两坐标轴相交,所得三角形面积为2,则这样的直线可以作条?A.1B.2C.3D.411、已知函数,若,,,则,,的大小关系是()A. B. C. D.12、已知是定义在R上的偶函数,对任意Rx∈,都有)(1)2(xfxf-=+,且当[]0,2-∈x时,1)21()(-=xxf,若在区间[]6,2-内方程)1(0)2(log)(>=+-axxfa有三个不同的实数根,则实数a的取值范围为()A.()2,1 B.),(∞+2 C.()3,41, D.()2,43二、填空题(共4小题,每题5分。
2019年全国高中数学联赛试题及解答
![2019年全国高中数学联赛试题及解答](https://img.taocdn.com/s3/m/7592f91eb307e87100f6960b.png)
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
2019年全国高中数学联赛试题及答案详解(B卷)
![2019年全国高中数学联赛试题及答案详解(B卷)](https://img.taocdn.com/s3/m/4358d244ff00bed5b9f31de4.png)
3 22 s-1
=
¥ k=s+1
3 22k-1
¥
=
k=s+1
z2k-1 + z2k
,
故
å å z1 + z2 ++ zm
£
æçççè
k
s =1
z2k-1 + z2k ÷ö÷÷ø+
z2 s+1
¥
<
k =1
z2k-1 + z2k
=
2
3 3
.
综上,结论获证.
…………………20 分
2019 年全国高中数学联合竞赛加试(B 卷) 参考答案及评分标准
3. 设 a, b Î (0, p) ,cosa, cosb 是方程 5x2 -3x -1= 0 的两根,则 sin asin b 的
值为
.
答案:
7 5
.
解:由条件知 cosa + cosb = 3 , cosa cos b = -1 ,从而
5
5
(sin a sin b)2 = (1-cos2a)(1- cos2 b) = 1- cos2a - cos2 b + cos2a cos2 b
=
(-1)n-32n(n -1)(n
- 2)
.
因此有
n(n
-1)(n 24
2)(n
-
3)
=
(-1)n-3
2n(n
-1)(n
-
2)
.注意到
n
>
4
,化简得
n -3 = (-1)n-3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51.
2019年高一数学国际城市邀请赛团体赛试题与解答
![2019年高一数学国际城市邀请赛团体赛试题与解答](https://img.taocdn.com/s3/m/580ff939b84ae45c3b358c6a.png)
2019 Invitational World Youth Mathematics IntercityCompetition2019青少年高一数学竞赛试题及答案队名:___________________得分:__________________1. 老师说:“要在一个三边长为2,2,2x 的三角形内部放置一个尽可能大的圆,则正实数x 的值该是多少?”学生A 说:“我想x =1.”学生B 说:“我认为x =”学生C 说:“你们回答都不对!”他们三人谁的回答是正确的?为什么?解答:一方面三角形的面积=(2)r x +;另一方面,该三角形底边上的高为,所以三角形面积=可得2r x=+. 当1x =时,11.7r =<;当x =11.7r =<. 取43x =,则161271.7r =>,所以43x =是一个更好的选择.所以学生C 的回答正确.注:当1x =时,可取到r的最大值)5214. 2. 一个三角形可被剖分成两个等腰三角形,原三角形的一个内角为36˚,求原三角形最大内角的所有可能值.解答:不妨设B =36˚ .(1)若剖分线不过点B .不妨设剖分线为AD ,此时△BAD 是(36,36,108)或者(36,72,72)的三角形.若△BAD 是(36,36,108)的三角形,则△CAD 或者是(144,18,18)第一个图,或者是(72,54,54)第二个图,或者(36,72,72)第三、四个图.CD(2) 若剖分线过点B .不妨设为BE ,则△CBE 必定是(132,24,24),△ABE 是(144,12,12)的三角形.所以原三角形的最大内角可能是72,90,108,126,132︒︒.3. 四个单位正方形以边对边相连接而成,可以拼成如图五种不同的形状.用一片“L”形(图中第一个)分别与其余四个中的一片拼成轴对称图形,请绘出所有可能之组合.解答:4.一片骨牌是由两个单位正方形以边对边相连接而成,在每个正方形内标记上数字1、2、3、4或5,所以我们共可得标号为11,12,13,14,15,22,23,24,25,33,34,35,44,45,55的15片不同的骨牌.将这15片骨牌排成一个如图的5×6的长方形,每片骨牌的边界已经擦除,请试着把这些骨牌的边界重新画出来.解答:首先,注意到编号为55的骨牌一定是在矩形的中心,而编号22的骨牌只能是在右边界处.此时,右上角编号为3的骨牌必与右侧的2一起组成编号为23的骨牌..所以,右下角的2只能与5一起组成编号为25的骨牌,而这个2上面的3只能组成33骨牌..所以,可在图中,把剩下的33、23对之间用一条线分隔.第三行的3只能与其上的5组成35编号的骨牌.如左图.这时,第一行的5不能与其左侧的3组成35编号的骨牌,只能与其下的1组成编号为15的骨牌.这使得左侧只能为13、34编号的骨牌,这样,左上角的骨牌为11和24.在右下角,必须出现编号为12的骨牌,此时,其余的骨牌也就确定了.5.“幸运数”是指一个等于其各位数码(十进制) 和的19倍的正整数,求出所有的幸运数.解答:设10 a+b是一个至多两位数,方程10 a + b = 19 (a + b) 仅当a = b = 0时成立.所以,所有的幸运数至少是三位数.10m-,其数码和至多为9m,所以,假设一个幸运数有m位数,4m≥,则该数至少为11≥.m-17110m当m = 4时,6841000m≥,更不成立.因此,所有的幸运数都是三位数,≥不成立.而5由100a + 10b + c = 19a + 19b + 19c,知9a = b + 2c.当a = 1时,可得(b,c) = (1,4),(3,3),(5,2),(7,1),(9,0).当a = 2时,可得(b,c) = (0,9),(2,8),(4,7),(6,6),(8,5).当a = 3时,可得(b,c) = (9,9).当a > 3时,无解.所以共有11 个幸运数:114, 133, 152, 171, 190, 209, 228, 247, 266, 285 和399.6.甲和乙在一个n⨯n的方格表中做填数游戏,每次允许在一个方格中填入数字0或者1(每个方格中只能填入一个数字),由甲先填,然后轮流填数,直至表格中每个小方格内都填了数.如果每一行中各数之和都是偶数,则规定为乙获胜,否则当作甲获胜.请问:(1) 当n =2006时,谁有必胜的策略?(2) 对于任意正整数n ,回答上述问题.解答:(1) 当n =2006时,后填数的乙有必胜策略.用1⨯2的多米诺骨牌对表格进行分割,使得每一行都由1003块多米诺组成,当甲对某块多米诺的一个中填数时,乙也在该多米诺中填数,并且使得这块多米诺中两个数之和为偶数.依此策略,乙可以使得表格的每一行中各数之和都是偶数.故乙获胜.(2) 当n 为偶数时,同上述操作,可知乙有必胜策略;当n 为奇数时,甲有必胜策略:他可以先在第1行第1列的方格中写上1,然后对第1行中其余方格作前面的多米诺分割,采取同样的操作方式,可使表格中第1行中各数之和为奇数.7. 设n 为任意奇正整数,证明:1596n +3202701000n n n --能被2006整除.证明:因为 200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2,17,59整除.显然,表达式能被2整除.应用公式,n 为奇数时,121()()n n n n n a b a b a a b b ---+=+-++,121()()n n n n n a b a b a a b b ----=-+++.则由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又1596-270=1326=17×78,1000-320=680=17×40,所以 15961000270320n n n n +--能被17整除.故结论成立.8. 将正整数中所有被4整除以及被4除余1的数全部删去,剩下的数依照从小到大的顺序排成一个数列{}a n :2, 3, 6, 7, 10, 11, … .数列{}a n 的前n 项之和记为S n ,其中n =1, 2, 3, ….求S =[][][]S S S 200621.....+++的值.(其中[]x 表示不超过x 的最大整数)解答:易知2142n a n -=-,241n a n =-,1,2,n =⋅⋅⋅,因此21234212()()()n n n S a a a a a a -=++++++51321(83n =++++-2583(2)2n n n n +-==+, 2221224(41)(21)n n n S S a n n n n n -=-=+--=-+,所以 2222221(2)(21),(21)(2),n n n S n n S n -<<+-<<故2n =,21n =-,从而n =,于是S =++⋅⋅⋅+122006=+++2006200720130212⨯==. 9. 平面上,正三角形ABC 与正三角形PQR 的面积都为1.三角形PQR 的中心M 在三角形ABC 的边界上,如果这两个三角形重迭部份的面积为S ,求S 的最小值.解答:在正△PQR 的三个顶点处截去三个全等的正三角形,得到一个面积为23的正六边形,则M 是这个正六边形的中心.若点M 与△ABC 的一个顶点重合,如左图,易知正六边形和△ABC 的重迭部分面积是19.在中间的图形中,把△ABC 绕着点M 顺时针旋转,则始边所扫过的三角形和终边所扫过的三角形全等,所以两个三角形的公共部分面积是不变的.若点M 在△ABC 的边上,不妨设在BC 上,且靠近点C ,如右图所示.,过点M 作AC 的平行线MN ,交边AB 于点N ,则△BMN 是正三角形..因为MN BM CM =>,BM 和MN 都与正六边形相交,所以△BMN 与正六边形的公共部分面积为19. 当把正六边形恢复成原来的正三角形时,公共部分面积不会减小.,所以两个三角形公共部分面积的最小值为19,如左图.10. 设m 是一个小于2006的四位数,已知存在正整数n ,使得m -n 为质数,且mn 是一个完全平方数,求满足条件的所有四位数m .解答 由题设条件知:m -n=p ,p 是质数,则m=n+p ,设mn=n (n+p )=2x ,其中x 是正整数,那么22444n pn x +=,即 222(2)(2)n p p x +-=, 于是 2(22)(22)n x p n x p p -+++=, 注意到p 为质数,所以2221,22,n x p n x p p -+=⎧⎨++=⎩ 把两式相加得212p n -⎛⎫= ⎪⎝⎭,进而212p m +⎛⎫= ⎪⎝⎭,结合10002006m ≤<,可得64189p ≤+≤,于是,质数p 只能是67,71,73,79或83.从而,满足条件的m 为1156,1296,1369,1600,1764.。
2019年广西创新杯高一数学竞赛初赛试题参考答案及评分标准
![2019年广西创新杯高一数学竞赛初赛试题参考答案及评分标准](https://img.taocdn.com/s3/m/8e8504bab8f67c1cfad6b8c5.png)
广西“创新杯”数学竞赛高一初赛试卷参考答案与评分标准一、选择题(每小题6分,共36分)1.方程224+=x x 的实数解为( )(A )-1或2 (B )1 (C )2 (D )2±答:D 。
解析:由已知得0)1)(2(,022224=+-=--x x x x 22=x 或12-=x (舍去),故有2±=x 。
2.若实数满足y y x 44|1|2=+++,则y x +的值为( )(A )-1 (B )0 (C )1 (D )2答:C 。
解析:由y y x 44|1|2=+++得0)2(|1|2=-++y x ,于是有02,01=-=+y x ,所以1=+y x 。
3.设梯形的中位线的长为l ,两对角线的长分别为y x ,,则( )(A )2y x l +< (B )2y x l += (C )2y x l +> (D )以上答案均有可能 答:A 。
解析:提示过梯形的一顶点作对角线的平行线。
4.方程组⎪⎩⎪⎨⎧=+=+1025y x x y y x 的解为( )(A )⎩⎨⎧==91y x (B )⎩⎨⎧==82y x (C )⎩⎨⎧==64y x (D )⎩⎨⎧==82y x 或⎩⎨⎧==28y x 答:D 。
解析:原方程变形为⎪⎩⎪⎨⎧=+=+1025y x xy y x ,⎩⎨⎧=+=1016y x xy 解得⎩⎨⎧==82y x 或⎩⎨⎧==28y x . 5.方程0)7()1(82=-+--m x m x 恰有一个正根和一个负根,则m 的取值范围是( )(A )7<m (B )9≤m (C )7>m (D )25≥m答:A 。
解析:由已知得2(1)48(7)0m m ∆=--⨯->,即2342250m m -+> 得9m <或25m >,由08721<-=m x x ,得7<m ,故有7<m 为所求。
2019年北京市高一数学竞赛(初赛)试题(pdf版,含答案)
![2019年北京市高一数学竞赛(初赛)试题(pdf版,含答案)](https://img.taocdn.com/s3/m/12c75072e45c3b3567ec8be4.png)
C
F
二、填空题
1.计算
7142853 7142853
2857143 4285713
=________.
答: 7 . 8
解
1:原式
(714285 285714)(7142852 (714285 428571)(7142852
714285 285714 714285 428571
则满足条件的子集 A 的个数是
(A)8.
(B)7.
(C)6.
(D)5.
答:B.
解:经枚举,各元素之和为 3 的倍数的子集有{0},{9},{2, 1},{0, 9},{2, 0, 1},
{2, 1, 9},{2, 0, 1, 9}共 7 个.
2.如图,∠BAF =∠FEB =∠EBC =∠ECD = 90°, ∠ABF = 30°, ∠BFE = 45°,
4.在平面直角坐标系中,已知两点 A(cos110°, sin110°),B(cos50°, sin50°),则由
坐标原点 O 到 AB 中点 M 的距离是
y
(A) 1 . 2
答:选 C.
(B) 2 . 2
(C) 3 . 2
(D)1.
A MB
1
1
解:画草图,易知 50 60 .
(A){3, 4, 6, 9}. (B){2, 0, 1, 9}. (C){0, 3, 5, 9}. (D){1, 2, 7, 8}.
2019 年北京市中学生数学竞赛高中一年级初赛试题参考解答 共 5 页 第 1页
答:D. 解:易知 f (n)的值域为{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, f (f (n))的值域为{1, 2, 7, 8}, f (f (f (n)))的值域是{1, 2, 7, 8}.
2019年全国高中数学联合竞赛试题及解析(AB合版)
![2019年全国高中数学联合竞赛试题及解析(AB合版)](https://img.taocdn.com/s3/m/f7c54af9b14e852458fb5741.png)
2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5.在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为.答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p>,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7.如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 .答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n nz z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å. …………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)如图,在锐角ABC D 中,M 是BC 边的中点.点P 在ABC D 内,使得AP 平分BAC .直线MP 与,ABP ACP D D 的外接圆分别相交于不同于点P 的两点,D E .证明:若DE MP =,则2BC BP =.证明:延长PM 到点F ,使得MF ME =.连接,,BF BD CE .由条件可知BDP BAP CAP CEP CEM = = = = . ………………10分 因为BM CM =且EM FM =,所以BF CE =且//BF CE .于是F CEM BDP = = ,进而BD BF =. ………………20分 又DE MP =,故DP EM FM ==.于是在等腰BDF D 中,由对称性得BP BM =.从而22BC BM BP ==. ………………40分二、(本题满分40分)设整数122019,,,a a a 满足122019199a a a =£££=.记22212201913243520172019()()f a a a a a a a a a a a =+++-++++. 求f 的最小值0f .并确定使0f f =成立的数组122019(,,,)a a a 的个数. 解:由条件知2017222221220182019212()i i i f a a aaa a +==++++-å.①由于12,a a 及2(1,2,,2016)i i a a i +-=均为非负整数,故有221122,a a a a ³³,且222()(1,2,,2016)i i i i a a a a i ++-³-=.于是201620162221221222017201811()()i i i i i i a a a a a a a a a a ++==++-³++-=+åå.②………………10分由①、②得2222017201820192017201820192()f a a a a a a ³++-++, 结合201999a =及201820170a a ³>,可知()22220172017201712(99)992f a a a ³+-++22017(49)74007400a =-+³.③………………20分另一方面,令1219201920211920220191,(1,2,,49),99k k a a a a a k k a +-+========, 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30分以下考虑③的取等条件.此时2017201849a a ==,且②中的不等式均取等,即121a a ==,2{0,1}(1,2,,2016)i i a a i +-Î=.因此122018149a a a =£££=,且对每个(149)k k ££,122018,,,a a a 中至少有两项等于k .易验证知这也是③取等的充分条件.对每个(149)k k ££,设122018,,,a a a 中等于k 的项数为1k n +,则k n 为正整数,且1249(1)(1)(1)2018n n n ++++++=,即12491969n n n +++=.该方程的正整数解1249(,,,)n n n 的组数为481968C ,且每组解唯一对应一个使④取等的数组122019(,,,)a a a ,故使0f f =成立的数组122019(,,,)a a a 有481968C 个.………………40分三、(本题满分50分)设m 为整数,2m ||³.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s (2)r s >³使得1r s a a a ==,则r s m ||-³.证明:不妨设12,a a 互素(否则,若12(,)1a a d =>,则1a d 与2ad互素,并且用123,,,a a a d d d代替123,,,a a a ,条件与结论均不改变). 由数列递推关系知234(mod )a a a m || ººº.① 以下证明:对任意整数3n ³,有2212((3))(mod )n a a a n a m m º-+-.②………………10分事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有212(mod )k ma ma m -º,结合归纳假设知112122((3))k k k a a ma a a k a m ma +-=-º-+--2212((2))(mod )a a k a m º-+-,即1n k =+时②也成立.因此②对任意整数3n ³均成立. ………………20分注意,当12a a =时,②对2n =也成立.设整数,(2)r s r s >³,满足1r s a a a ==. 若12a a =,由②对2n ³均成立,可知2212212((3))((3))(mod )r s a a r a m a a a a s a m m -+-º=º-+-,即1212(3)(3)(mod )a r a a s a m ||+-º+-,即2()0(mod )r s a m ||-º.③若12a a ¹,则12r s a a a a ==¹,故3r s >³.此时由于②对3n ³均成立,故类似可知③仍成立. ………………30分我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为234,,,a a a 的公因子,而12,a a 互素,故p 1a ,这与1r s a a a ==矛盾.因此,由③得0(mod )r s m ||-º.又r s >,所以r s m ||-³.………………50分四、(本题满分50分)设V 是空间中2019个点构成的集合,其中任意四点不共面.某些点之间连有线段,记E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若E 至少有n 个元素,则E 一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(,)G V E =是一个简单图,且G 是连通的,则G 含有||2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分). 引理的证明:对E 的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设4E ≥,并且结论在E 较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含||2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中21,,,k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:1deg()2v ≥.由于P 是最长路,1v 的邻点均在2,,k v v 中,设1i v v E ∈,其中3i k ≤≤.则121{,}i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形2:1deg()1v =,2deg()2v =.则1223{,}v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形3:1deg()1v =,2deg()3v ≥,且2v 与4,,k v v 中某个点相邻.则1223{,}v v v v是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有2E -条边.情形4:1deg()1v =,2deg()3v ≥,且2v 与某个13{,,,}k u v v v ∈/ 相邻.由于P 是最长路,故u 的邻点均在2,,k v v 之中.因122{,}v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -条边.引理获证. ………………20分 回到原题,题中的V 和E 可看作一个图(,)G V E =.首先证明2795n ≥.设122019{,,,}V v v v = .在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如1311216,,,v v v v v v ),共连了26115C 1815-=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤⎢=⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795. ………………30分另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有1,,k m m 个点,及1,,k e e 条边.下面证明1,,k e e 中至多有979个奇数.反证法,假设1,,k e e 中有至少980个奇数,由于12795k e e ++= 是奇数,故1,,k e e 中至少有981个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然12981,,,2m m m ≥ .令9812k m m m =++≥ ,则有2C 1980)(i m i e i ≥≤≤,2981C m k e e ≥++ ,故98022112795C C imk i i i m e ===≤+∑∑. ① 利用组合数的凸性,即对3x y ≥≥,有222211C C C C x y x y +-+≤+,可知当1980,,,m m m 由980个2以及一个59构成时,980221C C imm i =+∑取得最大值.于是 98022225921C C C 980C 26912795imm i =≤=<++∑, 这与①矛盾.从而1,,k e e 中至多有979个奇数. ………………40分对每个连通分支应用引理,可知G 中含有N 个两两无公共边的角,其中1111979(2795979)908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上,所求最小的n 是2795. ………………50分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r rnr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x -中,其4n x -项系数为44(1)(2)(3)(1)C 24nn n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4. 8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b +=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分 (2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=).…………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n nz z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i ii i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。
2019年高一数学竞赛初赛试题含答案
![2019年高一数学竞赛初赛试题含答案](https://img.taocdn.com/s3/m/e76b884e1711cc7931b716b1.png)
2019年数学竞赛高一初试试题 一、选择题(每题5分,共60分)1.已知集合A ={x||x|≤2,x ∈R },B ={x|x ≤4,x ∈Z },则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2} 2.若,,,,b a R c b a >∈则下列不等式成立的是( ) A .ba 11< B .22b a > C .1122+>+c bc a D .c b c a >3.下列函数为偶函数,且在)0,(-∞上单调递减的函数是( ) A .32)(x x f = B .3)(-=x x fC .xx f )21()(=D .x x f ln )(=4. 已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊥α,n ⊥β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若m ∥n ,m ⊂α,n ⊂β,则α∥β5. 等比数列{}n a 的前项和为n S ,且321,2,4a a a 依次成 等差数列,且11=a , 则10S =( )A .512 B. 511 C .1024 D .1023 6.已知f(x)=2tanx -2sin 2x 2-1sin x 2cos x 2,则f(π12)的值为( )A. 833 B. 8 C .4 D. 4 37.设变量x ,y 满足约束条件⎩⎨⎧y ≥x ,x +3y ≤4,x ≥-2,则z =x -3y 的最大值为()A .10B .8-C .6D .4 8.已知0,0>>y x ,且112=+yx ,若m m y x 222+>+恒成立,则实数m 的取值范围是( )A .24-≤≥m m 或 B. 42-≤≥m m 或 C . 24<<-m D. 42<<-m9. 如图所示,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD.将四边形ABCD 沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30°D .四面体A ′-BCD 的体积为1310. 已知定义在R 上的奇函数)(x f 满足当0≥x 时,,)2(log )(2b x x x f +++= 则3)(>x f 的解集为( )A .)2,(--∞ ∪ ),2(+∞B . )4,(--∞∪ ),4(+∞C .)2,2(- D. )4,4(-11. 若直线45π=x 和49π=x 是函数 )0)(sin(>+=w wx y ϕ 图象的两条相邻对称轴,则ϕ的一个可能取值为( ) A .43π B. 4π C .3π D. 2π 12. 已知定义在R 上的奇函数)(x f 满足当0≥x 时,[)[)⎪⎩⎪⎨⎧+∞∈--∈+=,,1,31,1,0),1(log )(21x x x x x f则关于x 的函数)10()()(<<-=a a x f x F 的所有零点之和为( ) A .12-a B .12--a C .a --21 D .a 21-二、填空题(每题5分,共20分)13. 已知),1,2(),4,1(),3,(===c b k a 且,)32(c b a⊥-则实数=k _________。
2019年全国高中数学联赛A+B卷(含答案)
![2019年全国高中数学联赛A+B卷(含答案)](https://img.taocdn.com/s3/m/cd4e36c6bceb19e8b8f6badd.png)
2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分. 1. 已知正实数a 满足8(9)a a a a =,则log (3)a a 的值为 .答案:916.解:由条件知189a a =,故9163a a ==,所以9log (3)16a a =.2. 若实数集合{1,2,3,}x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .答案:32-.解:假如0x ³,则最大、最小元素之差不超过max{3,}x ,而所有元素之和大于max{3,}x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-.3. 平面直角坐标系中,e 是单位向量,向量a 满足2a e⋅=,且25a a te£+对任意实数t 成立,则a的取值范围是 .答案:.解:不妨设(1,0)e =.由于2a e ⋅=,可设(2,)a s=,则对任意实数t ,有2245s a a te +=£+= 这等价于245s s +£,解得[1,4]s Î,即2[1,16]s Î.于是a=Î.4. 设,A B 为椭圆G 的长轴顶点,,E F 为G 的两个焦点,4,AB =2AF =P 为G 上一点,满足2PE PF ⋅=,则PEF D 的面积为 . 答案:1.解:不妨设平面直角坐标系中G 的标准方程为22221(0)x y a b a b +=>>.根据条件得24,2a AB a AF ====可知2,1a b ==,且EF ==由椭圆定义知24PE PF a +==,结合2PE PF ⋅=得()2222212PE PF PE PF PE PF EF +=+-⋅==,所以EPF 为直角,进而112PEF S PE PF D =⋅⋅=.5. 在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10 ----中随机选出一个数b ,则2a b +被3整除的概率为 .答案:37100.解:数组(,)a b 共有210100=种等概率的选法.考虑其中使2a b +被3整除的选法数N .若a 被3整除,则b 也被3整除.此时,a b 各有3种选法,这样的(,)a b 有239=组.若a 不被3整除,则21(mod3)a º,从而1(mod3)b º-.此时a 有7种选法,b 有4种选法,这样的(,)a b 有7428´=组.因此92837N =+=.于是所求概率为37100.6. 对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值.若正数a 满足[0,][,2]2a a a M M =,则a 的值为 .答案:56p 或1312p .解:假如02a p<£,则由正弦函数图像性质得[0,][,2]0sin a a a M a M <=£,与条件不符.因此2a p >,此时[0,]1a M =,故[,2]12a a M =.于是存在非负整数k ,使得51322266k a a k p p p p +£<£+, ①且①中两处“£”至少有一处取到等号.当0k =时,得56a p =或1326a p =.经检验,513,612a p p =均满足条件. 当1k ³时,由于13522266k k p p p p æö÷ç+<+÷ç÷çèø,故不存在满足①的a . 综上,a 的值为56p 或1312p .7. 如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF 的值为 . 答案.解:记a 为截面所在平面.延长,AK BF 交于点P ,则P在a 上,故直线CP 是a 与平面BCGF 的交线.设CP 与FG 交于点L ,则四边形AKLC 为截面.因平面ABC 平行于平面KFL ,且,,AK BF CL 共点P ,故ABC KFL -为棱台.不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFL -的体积14V =.设PF h =,则1KF FL PF h AB BC PB h ===+.注意到,PB PF 分别是棱锥P ABC -与棱锥P KFL -的高,于是111466P ABC P KFL V V V AB BC PB KF FL PF --==-=⋅⋅-⋅⋅ 3221331(1)1616(1)h h h h h h æöæö++÷ç÷ç÷ç=+-=÷÷çç÷ç÷èø÷ç++èø. 化简得231h =,故h =1EK AE KF PF h ===. 8. 将6个数2,0,1,9,20,19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:498.解:将2,0,1,9,20,19的首位不为0的排列的全体记为A .易知55!600A =´=(这里及以下,X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ;A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ;A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知4!B =,5!B C +=,44!B D +=´,即24,96,72B C D ===. 由B 中排列产生的每个8位数,恰对应B 中的224´=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换).类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列.因此满足条件的8位数的个数为\()42B C DA B C D +++3600184836498422B C DA =---=---=.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ABC D 中,,,BC a CA b AB c ===.若b 是a 与c 的等比中项,且sin A 是sin()B A -与sin C 的等差中项,求cos B 的值.解:因b 是,a c 的等比中项,故存在0q >,满足2,b qa c q a ==. ①因sin A 是sin(),sin B A C -的等差中项,故2sin sin()sin sin()sin()2sin cos A B A C B A B A B A =-+=-++=.…………………4分结合正、余弦定理,得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. …………………8分αLD F B K将①代入并化简,可知24212q q q +-=,即421q q =+,所以212q =. …………………12分 进而2224222111cos 222c a b q q B ac q q +-+-====. …………………16分10. (本题满分20分) 在平面直角坐标系xOy 中,圆W 与抛物线2:4y x G =恰有一个公共点,且圆W 与x 轴相切于G 的焦点F .求圆W 的半径.解:易知G 的焦点F 的坐标为(1,0).设圆W 的半径为(0)r r >.由对称性,不妨设W 在x 轴上方与x 轴相切于F ,故W 的方程为222(1)()x y r r -+-=. ①将24yx =代入①并化简,得2221204y y ry æö÷ç÷-+-=ç÷÷çèø.显然0y >,故 222221(4)12432y y r y y y æöæö÷+ç÷ç÷ç÷=-+=÷çç÷÷ç÷ç÷èøçèø. ② …………………5分根据条件,②恰有一个正数解y ,该y 值对应W 与G 的唯一公共点.考虑22(4)()(0)32y f y y y+=>的最小值.由平均值不等式知2244444333y y +=+++³,从而1()329f y y ³⋅=. 当且仅当243y =,即3y =时,()f y取到最小值9. ………………15分由②有解可知9r ³.又假如9r >,因()f y 随y 连续变化,且0y +及y +¥时()f y 均可任意大,故②在0,3æççççèø及3æö÷ç÷+¥ç÷ç÷çèø上均有解,与解的唯一性矛盾.综上,仅有9r =满足条件(此时1,33æ÷ç÷ç÷ç÷çèø是W 与G 的唯一公共点). …………………20分11. (本题满分20分)称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++³.解:考虑有趣的复数数列{}n z .归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n nz z n z z N ++æöæö÷÷çç÷÷++=Îçç÷÷ç÷÷çèøèø,解得*11()4N n n z n z +-=Î.因此1112n n n n z z z z ++===,故 *11111()22N n n n z z n --=⋅=Î.①…………………5分进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②记*12()N m m T z z z m =+++Î. 当*2()N m s s =Î时,利用②可得122122sm k k k T z z z z -=³+-+å21222k k k z z ¥-=>-+å212223k k ¥-==-=å.…………………10分 当*21()N m s s =+Î时,由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故12212212s m k k s k T z z z z z -+=æö÷ç³+-+-÷ç÷çèøå212223k k k z z ¥-=>-+=å. 当1m =时,1113T z ==>.以上表明3C =满足要求. …………………15分另一方面,当*1221221111,,()22N k k k k z z z k ++--===Î时,易验证知{}n z 为有趣的数列.此时2112211lim lim ()ss k k s s k T z z z ++ ¥¥==++å134lim 11833ss k ¥=-=+=+⋅=, 这表明C不能大于3. 综上,所求的C为3. …………………20分2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学竞赛试题
【本试题满分100分,考试时间120分钟】
一.选择题:本大题共5小题,每小题6分,共30分.在每个小题给出的四个选项中,只有一个正确的答案.
1.已知集合M =⎭⎬⎫⎩⎨⎧<-+013|
x x x ,N ={}3|-≤x x ,则集合{}1|≥x x =( ) A .N M ⋂
B .N M ⋂
C .C R )(N M ⋂
D .C R )(N M ⋃ 2.已知43πβα=
+,则)tan 1)(tan 1(βα--等于( ) A .2 B .2- C .1 D .1-
3.设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式
0)()(<--x x f x f 的解集为( )
A .)1,0()1,(⋃--∞
B .),1()0,1(+∞⋃-
C .),1()1,(+∞⋃--∞
D .)0,1()0,1(⋃-
4.函数()ln |1|3f x x x =--+的零点个数为( )
A .3
B .2
C .1
D .0
5.已知函数⎪⎩⎪⎨⎧<+≥=4
),1(4,)21()(x x f x x f x 则=)(log 32f A .823-
B .111
C .241
D .19
1 二.填空题:本大题共5小题,每小题6分,共30分.将正确的答案写在题中横线上.
6. 已知20π
≤≤x ,则函数x x x x f 2cos cos sin 24)(+=的值域是 .
7. 已知:a ,b ,c 都不等于0,且
abc
abc c c b b a a +++的最大值为m ,最小值为n ,则=+n m . 8. 已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,
若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则=+++4321x x x x .
9.定义集合A ,B 的一种运算:},,{2121B x A x x x x x B A ∈∈+==*,若
,则中的所有元素之和为 .
10.= 70sin 50sin 30sin 10sin .
三.解答题:本大题共4小题,每小题10分,共40分.解答时须写出必要的解题步骤、
文字说明和计算结果.
11.已知函数2()23cos 2cos 1()f x x x x x R =+-∈
(1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦
上的最大值和最小值; (2)若006(),,542f x x ππ⎡⎤=
∈⎢⎥⎣⎦
,求0cos 2x 的值.
12.设a ,R b ∈,且2≠a ,定义在区间),(b b -内的函数)(x f =x
ax 211lg ++是奇函数 (1)求a 的值 (2)求b 的取值范围 (3)讨论)(x f 的单调性.
13.已知函数)(x f 的定义域为R ,对任意实数m ,n 都有)()()(n f m f n m f •=+,且
当0>x 时,1)(0<<x f .
(1)证明1)0(=f ,且0<x 时,1)(>x f .
(2)若21)1(=
f ,解关于x 的不等式 8
1)2(2<-x x f .
14.已知函数())(2
2R a a ax x x f ∈+
-=,∈x [0,1],求()x f 的最小值)(a g ,并求)(a g 的最大值.
参考答案
一.选择题:
1.D ; 2.A ; 3.B ; 4.A ; 5.C .
二.填空题:
6.]3,1[-; 7.0; 8.8-; 9.14; 10.16
1. 三.解答题:
11.(本小题满分10分)
(1))62sin(2cos 2sin 31cos 2cos sin 32)(2π
+=+=-+=x x x x x x x f ,…2分
所以函数()f x 的最小正周期π=T . ……………………………………………3分 因为]2,
0[π∈x ,所以]67,6[62πππ∈+x , 所以1)6
2sin(21≤+≤-πx ,所以2)(1≤≤-x f ,
所以当262ππ
=+x 即6
π=x 时,()f x 有最大值为2; 当6762ππ=+x 即2
π=x 时,()f x 有最小值为1-. ……………………………6分 (2)由(1)知56)62sin(2)(00=+=πx x f ,所以5
3)62sin(0=+πx .7分 因为]2,4[0ππ∈x ,所以]67,32[620πππ∈+x ,所以5
4)62cos(0-=+πx , …8分 所以6
sin )62sin(6cos )62cos()662cos(2cos 0000ππππππ+++=-+=x x x x 10
34321532354-=⨯+⨯-=.……………………………………………10分
12.(本小题满分10分)
(1)∵定义在区间),(b b -内的函数)(x f =x
ax 211lg ++是奇函数, ∴)()(x f x f -+=0411lg 211lg 211lg 2=--=--+++x
x a x ax x ax ,…………………… 2分 ∴14112=--x
x a ,∴42=a ,又∵2≠a ,∴2-=a .……………………… 3分 (2)由(1)知)(x f =x x 2121lg
+-,令02121>+-x x ,解得2
121<<-x ,…………… 4分 ∴)21,21(),(-⊆-b b ,∴)2
1,0()0,21(⋃-∈b .……………………………… 5分 (3)设1x ,)21,21(),(2-⊆-∈b b x ,且21x x <,则 )()(21x f x f -=2
1212121221122114)(214)(21lg )21212121lg(2121lg 2121lg x x x x x x x x x x x x x x x x --+---=-+⋅+-=+-++-, 7分 ∵1x ,)2
1,21(),(2-⊆-∈b b x ,
∴04)(212121>---x x x x ,04)(212121>--+x x x x ,
∵21x x <,∴212121214)(214)(21x x x x x x x x --+>---,……………… 9分
∴14)(214)(212
1212121>--+---x x x x x x x x ,∴0)()(21>-x f x f ,∴)()(21x f x f >, ∴)(x f 在),(b b -上单调递减.………………………………………………… 10分
13.(本小题满分10分)
(1)令1=m ,0=n ,则有)0()1()1(f f f =,∵1)1(0<<f ,∴1)0(=f . 2分 当0<x 时,0>-x ,∴1)(0<-<x f ,
又∵1)()())(()0(=-=-+=x f x f x x f f ,∴)
(1)(x f x f -=,∴1)(>x f .4分 (2)∵)()()(n f m f n m f =+,∴)()()()()(n f m f n f m f n m f =
-=-.…………… 5分 设1x ,R x ∈2,且21x x <,则0)(2>x f ,且1)()
()(2121>-=x x f x f x f , ∴)()(21x f x f >,∴)(x f 在),(+∞-∞上单调递减. ……………………… 7分 又∵2
1)1(=
f ,∴)3()1()1()1(21212181f f f f =⨯⨯=⨯⨯=, …………… 8分 ∴不等式81)2(2<-x x f 可化为)3()2(2f x x f <-, ∴322<-x x ,∴31<<-x , ……………………………………………… 9分 即不等式 8
1)2(2<-x x f 的解集为}31{<<-x x .…………………… 10分 14.(本小题满分10分) 二次函数())(22R a a ax x x f ∈+
-=的图像开口向上,对称轴为2a x =.……… 1分 ①当02
<a ,即0<a 时,()x f 在]1,0[上单调递增, 所以()x f 的最小值为2
)0(a f =;………………………………………………… 3分
②当120<≤a ,即20<≤a 时,(x f ]1,2
(a 上单调递增,
所以()x f 的最小值为2
4)2(2a a a f +-=;………………………………………… 5分 ③当
12
≥a ,即2≥a 时,()x f 在]1,0[上单调递减, 所以()x f 的最小值为21)1(a f -=.……………………………………………… 6分 综合①②③可得,⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥-<≤+-<=2,2120,240,2)(2a a a a a a a a g .………………………………… 7分 又当0<a 时,02
)(<=a a g ;当20<≤a 时,4124)(02≤+-=≤a a a g ;当2≥a 时,02
1)(≤-
=a a g . …………………………………………………………………… 9分 所以当1=a 时,)(a g 有最大值为41.…………………………………………… 10分。