测控外文翻译

合集下载

测控技术与仪器专业英语 Unit 2

测控技术与仪器专业英语 Unit 2
– 而且,这些影响测量结果的附加量在测量过程 中并非常数,在测量中产生的误差很难得到修 正。
14
2 M- of non-physical quantities
– It is essential to the nature of an organism or an 2.7 organization that they maintain (social, cultural, political) interactions with their environment. – 保持与周围环境的交互对于生命体或组织的性质是非常必 要的。 – For this reason, it is usually not possible to perform an 2.8 isolated measurement in the same way we can with inanimate things (putting in a thermostat, hooking up to a fixed supply voltage, etc. )
7
1 Measurement of Physical Quantity
• Electrical potential difference
– The primary standard for electrical potential difference used to be provided by an electrochemical standard cell (the Weston standard cell).
2 M- of non-physical quantities
– With non-physical measurements, however, the 3.3

测绘专业英语论文外文翻译

测绘专业英语论文外文翻译

The measurement of the surveying and mapping in mineSince the seventy s, as the electronic technology and laser technology development, the type of surveying and mapping instruments with electronics (such as range finder, electronic tachometer, gyroscopes) to the traditional surveying and mapping instruments methods produced profound effect. In satellite remote sensing, global positioning system, as a representative of the space on earth observation technology in surveying and mapping application in the science of mature, computer technology, system scientifically based geographic information system and application for the emergence of surveying and mapping information source of access, analyze, management, processing and application fully provide strong technical support, automation and intelligence of surveying and mapping system is already in investigation, therefore we can say, the modern mapping technology is undergoing a profound revolution. Mining of measuring technology of an important application field, in the vast coal, metal mines, nonferrous mine production process played an important role. Mine survey of modern task is: in mine exploration, design, development and production of the different stages of the operation of the ground and underground mining area, the space, resources, (in mineral and land resources and environment are mainly) information acquisition, storage, processing, display and use for reasonable and effective development resources, protecting the resources, protecting the environment, management, industrial and environmental services for the continuous development of the station. In order to realize its modern task, mine measurement must be making full use of modern surveying and mapping instruments and techniques, put the advanced modern technology with mine surveying the actual work, specific characteristics, and the combination of broaden the living space mine survey and business scope, promote the reform and development of mine survey, adapt to the market economy system and mining system reform needs. Electronic tachometer, space information technology, the inertial measurement system and other modern surveying and mapping instruments have been in mine survey technology is used to further development and are constantly.This paper to modern surveying and mapping instruments of the development of the technology and its application in mine.1、Electronic tachometer and its application in mine survey:Electronic tachometer as the most widely used surveying and mapping instruments, is electronic technology and optical technology development of the combination of the photoelectric measuring instrument, is also set range finder, electronic advantages in a wide range of instruments, application prospects, the intelligent electronic tachometer is currently the biggest selling surveying and mapping instruments, is also the main future development direction. Intelligent electronic tachometer is with light, electricity and magnetism, machine of the latest scientific achievements, set the location, measuring Angle for the integration of advanced instrument. The international advanced electronic tachometer are on a memory card, internal memory or electronic hand book way, way of double record data transmission communication function, can receive external computer instruction by the computer input data, also can to outside the computer output data. The international advanced electronic tachometer have Japanese SOKKIA POWERSET series production of electronic tachometer and SET5F, SET6F, SET5W electronic tachometer, Swissproduces the TCA100 and TCA1800 electronic tachometer, Japan NIKON DTM-A series of electronic tachometer, etc. Our country has just south of the surveying and mapping instruments company production NTS-200 series electronic tachometer. Electronic tachometer has set up a file in the engineering survey, mine surveying, cadastral etc a wide range of applications, its development and application is in rapid developing. Electronic tachometer because and has the advantages of transit and range finder, and provide measurement results in digital form, its simple operation, stable performance, data can be through the electronic hand book and the computer to carry on the advantages of communication in the mine in the measurement of a wide range of applications. The ground control survey, topographic, engineering surveying all available is, contact measurement, the measurement work can also be used inunderground i To as a representative of the intelligent, digital instrument is minesurveying instrument one of the development direction in the future. Based on theelectronic tachometer and the modern computer technology can establish a mine 3 d data to be automatic collection, transmission,processing of mine surveying dataprocessing system, instead of traditional hand book records, manual entry,detailed calculation of repetitive work. In addition, electronic tachometer in mine surfacemovement monitoring, land reclamation project implementation, mine construction aspects also have been applied, each big ore measurement organizations are to instead of traditional instruments for routine measure the work, not only improves the efficiency, picked up speed, and reduced the development, and to ensure the accuracy2、Space information technology and its application in the measurement of the mine.The core of spatial information technology and the subject is the "3 S" technology (Remote Sensing:RS)、 (Global Positioning System GPS)、 (Grographic Information System:GIS) Remote sensing including satellite remote sensing and remote sensing, remote sensing data topographic map surveying as the important means in practice has a wide range of applications, satellite remote sensing for mapping is also mine of study and has made some significant results, based on remote sensing data to build digital terrain model (DTM) and then used in surveying and mapping work has won more applications. GPS as a cause of surveying and mapping in the traditional concept of major change technology, has become a main technology of land measurement method, also is the most potential mobile technology, in mine measurement, control survey, project survey, environment monitoring, disaster prevention and reduction of the navigation transport plays a significant role. Because not only have all-weather GPS, high precision and high flexibility, and the advantages of the traditional measuring technology without strict control, compared the level measurement, don't take points between depending on the point, without the need to build standard, there is no error accumulation, the three dimensional positioning etc, and in the field measurement model, error sources and data processing to the traditional concept of surveying and mapping is a revolutionary change. The geographic information system as the geographical distribution of space of therelevant data collecting, processing, management, analysis of computer technology system, and its development and application of surveying and mapping the development of science is of great significance, is the modern mapping technology of important technical support. With "3 S" integration or integrated as the leadingtechnology of space information system has gradually become the surveying and mapping learning or the earth informat ics new technology system and the work pattern, its advanced nature, timeliness obvious. With the space information technology for technical support, modern surveying and mapping instruments, technology is in rapid development in. The measurement of the remote sensing technology in the mines application has experienced a long time, and has accumulated rich experience.For remote sensing, it can be used as remote sensing data mining on the data topographic map surveying data source, like a piece of correction, through visual interpretation, field adjustable draw the work, complete the topographic map surveying and mapping. Compared with the traditional mapping method, using remote sensing data of mapping speed, low cost, high precision, it is a kind of application very extensive mapping method. Remote sensing in mine measurement of the applications of the key theory and technology also is in the investigation. Application of remote sensing data mining area, can obtain real-time, dynamic and comprehensive information source, to the mining area environment monitoring of the mining area environment protection to provide decision support. Remote sensing data mining area for prospecting, geological conditions, roof and floor of coal seam in such aspects as research has been applied, all these, explains the application of remote sensing technique in mining measurement is mine surveying realize its modern task important guarantee. GPS technology in the measurement of the mine is mainly applied to replace traditional ground surveying and mapping work. Using GPS technology such as mining surface movement monitoring, hydrology monitoring, mining area control elevation hole net establishment or measure, reform, GPS receiver with performance to price has been rising, and its application in the measurement of mine work the ground has become a part of the modern mine survey is an important support technology. Used in mining area the geographic information system is for mine geographical information system, or called mine material source environmentalinformation system (MRIES). MREIS has become the important developing direction mine survey. With mining area environment resources information system as a platform to all kinds of measurement techniques for data acquisition approach,can build a collection of data acquisition, processing, management, analysis and output in one of the automation, intelligent technology system, as the sustainable development of mining decision support system. Mine survey MREIS work is to establish the fist work, and to create a MREIS mine surveying is an inevitable trend. Therefore, the GPS in the mining area is first applied used in a mine measurement information system established measurement, and then based on this establish the mining area environment information system resources. Space information technology is mine surveying realize its modern task of important technical support and guarantee, "3 S" technology and other measuring instrument technology on the basis of the organic combination of the mining area environment information system is the spatial data information technology in mine survey of the applications of the comprehensive results.3 .the inertial measurement system and its application in the measurement of the mineThe inertial measurement system (Inertial ISS) is a kind of navigation and positioning technology, have all-w, autonomous, fast can flexible and advantages, the earth measurement, engineering surveying and mining measure the work of automation and versatility provided another kind of new technology. It is to use the principle of inertial navigation, and earn geodetic data (longitude and latitude, elevation, azimuth, gravity anomaly and vertical deflection, etc.) of a kind of technology system.ISS can be divided into two categories: platform utility system and type system in the field of surveying and mapping, ISS main application target includes: (1) control measure, such as the existing control point review, encryption, and aerial control, etc.; (2) pipeline monitoring, orientation, crustal deformation, the surface subsidence observation; (3) underground positioning, all kinds of engineering and construction measure; (4) earthquake, gravity survey, geophysical research; (5) shaft and cans of vertical way beam of monitoring, etc. GPS/ISS combination system is to meet high precision navigation and positioning of the development direction of the request. This combination system can make the GPS and the performance of theISS, can get a lot of complementary to the whole landmeasurement model dataprocessing, and make sure that 3 d coordinate and the positioning and the precision of the navigation unstable, and increased significantly. The inertial measurement system in mine to the measurement of the Lord is applied in application in themeasurement of the application, the activities of the underground measurement, and of course the ground also has been applied in many fields, such as stated above. ISS in mines in China, the application in the measurement of work is to carry out in-depth,continue to develop. With GPS + ISS combination system used in mines measurement is a promising a technologyFour other new technology in the new instrument of surveying and mapping application to the measurement of the mineOther modern surveying and mapping instruments, such as laser point to meter, the gyro th, digital levels and related technology are all mine surveying and mapping measurement is used, and with the instrument technology as the foundation, formed many mining measurement instrument, as mine survey for the application of modern instruments and techniques.Mine survey as a cross subject, the development and the progress and the mining technology and the development of the mining project, measuring instruments and equipment of science and technology and the development of other subjects like mathematical science, computer science, etc, the development are closely related. Modern mapping technology is based on the electronic technology, space technology, optical technology, computer technology based on comprehensive technology, and has the intelligence, automation and so on a series of advantages. Modern science and technology, the rapid development of surveying and mapping can surely promote the further development of mine survey. With modern technology, mining engineering surveying and mapping technology and related science and technology as the foundation, the mine survey will form and collect data acquisition, processing, management, transmission, analysis, expression, application, output for the integration of intelligence, automation technology system for mine resources, environmental information system establishment provide fundamental material, promoting mine sustainable development.测绘在矿山测量中的发展七十年代以来,随着电子技术和激光技术的发展,光电结合型的测绘仪器(如测距仪、全站仪、陀螺仪)对传统的测绘仪器方法产生了深刻的影响。

测控专业英语

测控专业英语

UNIT1accomplishment n)成果;成就integrate (v.a)使...结合,综合circuit (n)电路circuitry (n)电路(总称)sophisticated (a)复杂的,尖端的equivalent (a)相等的,相同的transducer (n) 同义词传感器;换能器IC (integrated circuit)集成电路VLSI (very large scale integrated circiut)超大规模集成电路chip (n)芯片analog (n)模拟stopwatch 秒表biomedical 生物医学的linear 线性的nonlinear 非线性的instrumentation仪表检测oscilloscope 示波器microprocessor 微处理器bit; kilobit; megabit 位;千位;兆位to name just...这仅仅是......, to name the more prevalent...这些仅是较流行的功能take aback (astound)使...大吃一惊UNIT 2electromagnetic Indution电磁感应flux density 磁通密度q ___coulombs is inQ是库仑potential gradient电势梯度electromotive force (emf)电动势intensity 电流强度magnitude 大小,流量,幅度at right angles to与...垂直deficit 缺少,亏损weber 韦伯(磁通量)Eq. =equation等式systematic troubleshooting系统的检修malfunction故障UNIT 3 resistance电阻inductance电感capacitance电容resistor(resister)电阻inductor电感器capacitor电容器resistive电阻的inductive感应的capacitive电容性的terminal 终端insulating coating 绝缘外套energize 激励,通电coil 线圈magnetic flux磁通量reversing polarity极性逆转counter electromotive force (CEMF)反电动势inductive reactance感抗impedance阻抗insulator绝缘反义词conductor 导体dielectric 电介质farad; 法拉(电容单位)hertz; 赫兹henry; 亨charge;电荷charging;使充电discharging放电leak away 漏出,漏电promote 促进反义词block 阻塞transformer 变压器compress 压缩passive circuit components 无源电路元件AC; 交流电DC 直流电forward biased正向偏置reverse biased反向偏置solid arrow; 实心箭头dashed arrow虚线箭头UNIT4series Circuits串联电路pertain (v)附属,关于Pythagorean Theorem-based formula 基于勾股.. Phasor相量parenthesis括号triangle; triangulation三角形base; altitude; hypotenuse (n)低/高/斜边conversely (v)相反地resonance 共振phasoral layout 相量排列Had..., the voltage would lag, rather than lead.若..,电压将滞后而不是超前于电流UNIT5semiconductor Diode半导体二极管transistor 晶体管silicon (n) 硅crystalline晶体的impurity 杂质rectifier; rectification整流器/整流triac; diac三端双向晶体管/二端交流开关covalent bonding共价键junction结adjacent临近的diffuse传播equilibrium平衡,均衡...be on the order of ...相当于,近似于UNIT6Amplifier放大器Distinction区别,差别be regard as被视为load resistance 负载电阻substantially=essentially基本地/实质上inherently本质上/生来deduce=reach a conclusion推断transistor circuit晶体管电路precaution预防措施distortion 失真shunt 使...并联impractical不切实际的field-effect场效应UNIT7implement 执行,实现sensor 传感器measurand被测量vat 大桶= tubquantitative 数量的,定量的representative 代表性的,典型的condition 调整,调节categorize 分类transformation 转换photovoltaic 光伏的piezoelectric 压电的thermoelectric 热电的thermistor 热敏电阻RTD 电阻式温度检测器LVDT 线性差动变压器be not representative of…不能代表UNIT8geometric 几何的propagate 传播coordinate 坐标graduated 分度的theodolite 经纬仪bubble 气泡dexterity 灵巧,机敏blunder 大错,失误gross 显著的,严重的obviate 消除,排除conscientious 尽责的algebraic 代数的curvature 弯曲,曲率refraction 折光,折射trigonometric 三角法的calibration 标度unquantifiable 不可测量的UNIT 9solenoid 电磁线圈pneumatic 气动的hydraulic 液动的rinse 漂洗blower 鼓风机cereal 谷物的pellet 颗粒throttling 节流调节detrimental 不利的globe 球形pinch 收缩butterfly 蝶形的flange 法兰,凸缘thread 拧螺丝be prone to 倾向于UNIT10radix 基数predecessor前者contraction缩写saturated 饱和的energize 给通电cutoff 截止的de-energized 失电的UNIT11block 积木integration 集成电路CPU 中央处理单元MSI 中等规模集成电路ALU 算术/逻辑单元tailor 制作decoder 解码器synchronization 同步bus 总线pin 管脚multiplex 多路传输assorted 已分类的processor-on-a-chip 单片处理器UNIT12potentiometer 电位计digitize 将….数字化predefine预定义quantize 量化increment 增加acquisition 获取,采集imperfect 半完成的,减弱的UNIT13element 元件manipulate操纵ambient 周围的,环境的trace 示踪excursion 偏差adversely 相反地intervention 介入consistently 协调地UNIT14sinusoidal 正弦的abscissa 横坐标ramp 斜坡parabolic 抛物线的infer 推断fall into 自然的分作from this standpoint the system time-domain analysis is well justified.从这个观点看,对系统进行时域分析是很合理的。

测控技术与仪器专业英语unit

测控技术与仪器专业英语unit
句中,that 从句作output的定语从句。
全句译为:然而,微处理器技术的出现使得传感器必须要 有电信号输出,这样便于接口以实现无人测控。
8
Unit3 Smart Sensors
That also required the analog signal level to be amplified and converted to digital format prior to (在……之前) being supplied to the process controller. Today’s MCUs and analog-to-digital (A/D) converters typically have a 5V power supply, which has dictated the supply voltage for many amplified and signal conditioned sensors.
译为:应用微电子技术之前,传感器或转换器用于测量 物理量,如温度,压力,流量,通常直接与读数装置相连, 通常一个仪表有一个观察员读数。
6
Unit3 Smart Sensors
The transducer converted the physical quantity being measured to a displacement. The observer initiated system corrections to change the reading closer to a desired value. The typical blocks of a measurement system are shown in Figure 3.1.
译为:在今天几乎一切的技术领域都将智能一词作为 其前缀的候选。智能传感器这一术语是在20世纪80年代 中期出现的,从那以后,一些设备已被称之为智能传感器。

测控技术与仪器类外文翻译、中英文翻译

测控技术与仪器类外文翻译、中英文翻译

过滤阴极真空电弧镀膜技术所制得氧化铝薄膜的结构和特性摘要:通过过滤阴极真空电弧镀膜技术制备氧化铝薄膜时,其内部结构、组成、形态、光学和机械性能被详尽的描述,这些都与制备时氧气的流量有关。

薄膜结构、组成、形态和性能都是很重要的,随着氧气流量的增加,薄膜的结构也由非晶体经过一系列变化到单晶体,随着O/Zr原子比率的增加和Z离子由低氧化作用的状态转化为Zr4+再一次形成非晶体。

形成这样的结构是由于其内部结构的变化而引起的,并且影响其形态和机械性能,以致这种非晶体薄膜表面有一些小簇,其光滑程度就像低硬度的多晶体薄膜。

当反射指数和系数相对接近最大值时,在发射率和光学带宽随着O/Zr比增加时,薄膜的组成来决其光学性能而非其密度。

1.说明在大气压力下由于三种不同温度有多种不同靶形态结构,单晶体时低于1170O C,四面体时为1170-2370O C,2370O C为立方体,知道2680O C时形成金属。

Zr有很高的反射指数,大光学带宽间距,和很低的光损失及在0.3-8范围内高透明度,所以被广泛的应用于光学领域。

此外,Zr具有很高的电介质,低泄露量等特点,最有可能代替做电解质的晶体管。

进而,由于Zr很低的传热性,它成为了装置中隔热层的首选。

Z其他的特性如:高硬度、高抗氧性也使其成为机械材料中的热门。

至今为止,已经有很多制备Z的方法,例如反应磁控溅射,离子辅助反应溅射,化学气相沉积等。

薄膜特性的优劣取决于制备过程及其参数。

过滤阴极真空电子弧镀膜技术,在低电压和高电流状态下工作。

通过磁性机械过滤器来防止微粒从阴极发射。

它提供了一种具有很高能量的沉积离子源,远大于相应的热蒸发和磁控溅射。

能有效去处宏观无用微粒,很明显能提高薄膜质量并拓展其应用。

固有的高能量提高薄膜的附着性和密度。

由于能力是离子辅助沉积中最重要的参数,这种制备的方法已经有了一些应用,已经应用于在高热平衡和高SP3状态下碳薄膜的制备,还合成了一些金属氧化物的薄膜。

测绘工程专业英语翻译

测绘工程专业英语翻译

测绘工程专业英语翻译各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:测绘工程专业英语课文翻译Unit 9 Basic Statistical Analysis of Random Errors (随机误差的统计学基本分析)Random errors are those variables that remain after mistakes are detected and eliminated and all systematic errors have been removed or corrected from the measured 后,并且所有系统误差被从测量值中移除或修正后,保留下的那些变量variable变量、变化n.)They are beyond the control of the the random errors are errors the occurrence of which does not follow a deterministic pattern.确定性的模式pattern而发生的误差)In mathematical statistics, they areconsidered as stochastic variables, and despite their irregular behavior, the study of random errors in any well-conducted measuring process or experiment has indicated that random errors follow the following empirical rules:mathematical statistics中,它们被当成随机变量stochastic variable,尽管它们的行为无规律,在任一正确的well-conducted原意为品行端正的,这里指测量实验和活动是无误的测量活动和实验中,对的随机误差的研究显示indicate随机误差遵循以下经验法则empirical⑴A random error will not exceed a certain amount.(随即误差不会超过一个确定的值)⑵Positive and negative random errors may occur at the same frequency.(正负误差出现的频率相同)⑶Errors that are small in magnitude are more likely to occur than those that are larger in magnitude.比数值大的误差出现可能性大be likely to 可能)⑷The mean of random errors tends to zero as the sample size tends to infinite.随机误差的平均值趋近于0)In mathematical statistics, random errors follow statistical behavioral laws such as the laws of 行为behavioral行为的规律,如概率法则)A characteristic theoretical pattern of error distribution occurs upon analysis of a large number of repeated measurements of a quantity, which conform to normal or Gaussian distribution.观测分析analysisn.中的误差分布的一个特征理论模式,遵照conform to遵照正态或高斯分布)在对一个量进行大量重复观测分析后,得到一个误差分布的理论特征——正态或高斯分布The plot of error sizes versus probabilities would approach a smooth curve of the characteristic bell-shape.与……相对概率的关系图,接近一条光滑的特有的characteristic特有的钟形曲线。

测控技术与仪器专业外文翻译--温室温度和湿度智能控制系统

测控技术与仪器专业外文翻译--温室温度和湿度智能控制系统

外文出处:Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS, SYSTEMS, SIGNAL and TELECOMMUNICATIONS.2009,51(17):120-125中文译文温室温度和湿度智能控制系统摘要:文章是基于嵌入式数据库的温室温湿度智能控制系统。

该系统提出在温室温湿度智能控制系统中采用嵌入式数据库技术,来控制温室作物的生长过程,以解决温室作物在温度和湿度控制的环境中生长过程并不理想的问题,以及提高系统的控制和成本效益的问题。

本文着重阐述了控制系统的结构,硬件、软件的设计和系统控制策略。

该控制系统具有硬件结构简单,成本低,易于使用和维护,温度和湿度数据兼测,稳定性好等优点。

关键语:嵌入式数据库,温度和湿度控制,数据过滤,温室,微控制器1 简介带有嵌入式微控制器技术、智能控制系统是科技发展的方向。

数据库是决策智能控制系统的核心,是智能控制的基础,它需要存储的专业知识和例子很多,也需要不断更新和添加实时数据。

为了确保在温室环境下正常的农业生产和高效率,提高农产品质量和数量,降低劳动强度,节约能源,是温室环境中对温度和湿度控制的必要条件。

目前在温室环境下中、低档产品的控制仍存在一些技术问题:一般只对一套温度和湿度控制使用。

由于作物对温度和湿度的要求不一样,用户必须经常调整控制器的设置,这难以满足现代农业生产的要求。

开发一个,低价格,系统可靠的温室是温湿度智能控制系统必需的。

温室环境是非线性的,参数分布,时变,长延迟,多变量耦合和多个控制对象的控制系统。

在温室中培育不同作物需要不同的栖息地。

在温室的温湿度控制系统中建立温室环境的嵌入式数据库系统的目的在于:(1)专家的经验与用户的实际需要相结合,灵活和自动化生产适合对具体对象种植的监测战略;(二)未提供关于作物栽培系统的专家经验,用户可以通过控制系统的独立运作的使用方式建立监测数据库,并长期保存;(三)建立可能对用户系统进行优化和修改的监测数据。

测控技术与仪器专业英语翻译-殷虹-河北工业大学适用

测控技术与仪器专业英语翻译-殷虹-河北工业大学适用

测控专业英语翻译Unit1Measurement,ControlandInstrumentationInstrumentation is defined as the art and science of measurement and control. Instrumentation engineers are responsible for controlling a whole system like a power plant. 译为:仪器可定义为测量和控制的艺术和科学。

仪器工程师负责控制整个系统,比如一个电厂。

An instrument is a device that measures and/or regulates process variables such as flow, temperature, level, or pressure. Instruments include many varied contrivances that can be as simple as valves and transmitters, and as complex as analyzers.译为:仪器是一种用来测量和/或调节过程变量(如流量、温度、液位或压力)的装置。

仪器包括许多不同的设备,可以像阀和变送器那样简单,也可以像分析仪那样复杂。

Instruments often comprise control systems of varied processes such as refineries, factories, and vehicles. The control of processes is one of the main branches of applied instrumentation. Instrumentation can also refer to handheld devices that measure some desired variable. Diverse handheld instrumentation is common in laboratories, but can be found in the household as well. For example, a smoke detector is a common instrument found in most western homes.译为:仪器通常由如精炼厂、工厂和车辆这些不同流程的控制系统组成。

测控技术与仪器专业英语

测控技术与仪器专业英语

Unit 1 Definition of Measurement and Measurement Theory定义的测量方法和测量理论1. Definition of Measurement测量的定义A possible operational description of the term measurement which agrees with our intuition is the following :“measurement is the acquisition of information ”;the aspect of gathering information is one of the most essential aspects ofmeasurement ;measurement are conducted to learn about the object of measurement ;the measurand .This means that a measurement must be descriptive with regard to that state or that phenomenon in the world around us which we are measuring .一个可能的操作描述这个术语的同意,我们凭直觉测量是下列的“测量信息获取”,采集信息的方面是最重要的方面进行测量,计量了解测量的对象,进行测量。

这意味着一个测量必须描述对于这种状态或这一现象在我们周围的世界我们衡量。

There must be a relationship between this state or phenomenon and the measurement result .Although the aspect of acquiring information is elementary ,it is merely a necessary and not a sufficient aspect of measurement :when one reads a textbook ,one gathers information ,but one does not perform a measurement.必须有一个关系状态或现象和测量结果信息获取的角度,即使是基础,那只是一个必要的和非充分方面的测量:当一个人阅读教科书,一个收集信息,但是一个人不能进行测量。

测控技术与仪器 自动化 外文翻译 外文文献 英文文献

测控技术与仪器 自动化 外文翻译 外文文献 英文文献

外文出处:资料1:Virtual instrument based on serial(用外文写)communication and data acquisition system of management .资料2:LabVIEW serial communication based on Frequency Control Monitoring System附件:资料1:1.翻译译文;2.外文原文。

资料2:1.翻译译文;2.外文原文。

附件:资料1翻译译文在自动化控制和智能仪器仪表中, 单片机的应用越来越广泛, 由于单片机的运算功能较差, 往往需要借助计算机系统, 因此单片机和 PC机进行远程通信更具有实际意义, 通信的关键在于互传数据信息。

51系列单片机内部的串行口具有通信的功能,该串行口可以作为通信接口, 利用该串行口与 PC机的串行口 COM 1或COM 2进行串行通信, 将单片机采集的数据传送到 PC机中, 由 PC机的高级语言或数据库语言对数据进行整理及统计等复杂处理就能满足实际的应用需要。

软件设计,初始化后,打开数据通道对上下游信号进行采样,并进行相关运算,求峰值R~,对R.二是否峰值进行判断,以确保正确求出延时r,从而得出正确的流量。

由于一次相关计算所需时间很短,因此,采用计数器控制。

PC机和单片机在进行通信时, 首先分别对各自的串行口进行初始化、确定串行口工作方式、设定波特率、传输数据长度等, 然后才开始数据传输, 这些工作是由软件来完成的, 因此对 PC机和单片机均需设计相应的通信软件。

DOS环境下, 串行通信一般用中断方式来实现,用户对通信端口进行完全控制。

而在 W i ndow s 环境下, 系统禁止应用程序直接对硬件进行操作。

在W indows环境下提供了完备的 AP I应用程序接口函数, 程序员通过这些函数与通信硬件接口。

通信函数是中断驱动的: 发送数据时, 先将其放入缓存区,串口准备好后, 就将其发送出去; 传来的数据迅速申请中断, 使 W i ndow s接收它并将其存入缓冲区, 以供读取。

【测控专业英语】Typical Measurement Technology典型的测量技术

【测控专业英语】Typical Measurement Technology典型的测量技术
scale天平,天平盘,标尺
我们可以用许多尺度测量厚度。银河系是一个大 约厚为100 Em(1020 m)的螺旋盘。太阳系像个烤薄饼 似的,大约厚1Tm(1012 m)。土星光环大约厚10km.
11
Thickness Measurement • Closer to home, Earth’s atmosphere is a spherical shell about 40 km thick; the weather occurs in the troposphere, about 12 km thick. The outermost shell of the solid Earth is the crust, about 35 km thick.

实际上,高度的信息是大气压力测量通过由压力/ 高度的关系表达式转化为高度指示。 • When a flight level is cleared for an aircraft, it actually means that the pilot must keep flying on an isobaric surface. • 为了飞行,一个飞行水平面被清除, 实际上就它 意味着飞行员必须保持飞行在等压面上。
16

Thickness Measurement
• The thickness may also be changing with time due to deliberate growth or etching, as example for thin films.
• 以薄膜为例,由于有意增长或腐蚀,厚度随时间变 化。 • Thus is follows that, in more general terms, measuring thickness might require measuring the topography or height profile of two surfaces and taking the difference. • topography 地形,地势,地形学 • profile侧面,轮廓,外形,剖面 • 因此,用更概况的话来说厚度测量可能需要测量地 势或两面的高度外形以获取差异。

测控技术与仪器专业英语教程(第2版)课后答案

测控技术与仪器专业英语教程(第2版)课后答案

测控技术与仪器专业英语教程(第2版)课后答案第一章1.简谐信号是最简单和最重要的周期信号。

任意一个周期信号可以用简谐信号来表达,两者之间联系的桥梁是傅里叶级数,所以傅里叶级数是周期信号分析的理论基础。

翻译:Harmonic signal is the simplest and the most important periodic signal. Any one of the periodic signal can use harmonic signal to express, contact between the bridge is Fourier series, so Fourier series is periodic signal analysis of the theoretical basis.2.一个在时域上显得很复杂的信号,将其变换或映射到频域(包括s和z域),就能够分解为非常简单的基本信号形式,进行分析和求解。

翻译:A time domain appear very complex signal, its transformation or mapping to the frequency domain (including s and z domain), can be decomposed to A very simple basic signal form, carries on the analysis and solution.第二章1.信号不是周期性出现,而只是持续一段时间,不再重复出现,如过渡过程、爆炸产生的冲击波、起落架着陆时的信号等,把这一类信号看成为非周期信号。

分析非周期信号的思路是:在时域上,当周期A,周期信号变成为非周期信号:在频域上,周期信号的频谱在A 时的极限,变为非周期信号的频谱,即傅里叶变换。

翻译:Signals are not periodic appear, but only for a period of time, and shall not repeat appear, such as the transition process from an explosion, the shock wave, landing gear landing signal, this kind of signal see as a periodic signal. Analysis of the thinking of the periodic signal in time domain, when A cycle, cycle signal into non periodic signal: in the frequency domain,the signal spectrum in A cycle of limit, A non periodic signal spectrum, namely Fourier transform.2.信号在时域压缩α倍(α>0)时,则在频域中频带加宽,幅值压缩1/α倍;反之信号在时域扩展时(α<1),在频域中将引起频带变窄,但幅值增高。

测控技术与仪器 外文翻译

测控技术与仪器 外文翻译

毕业设计(论文)外文资料翻译学院:自动化工程学院姓名:专业:□自动化学号0707250229□√测控技术与仪器班级:测控072班外文出处:资料1:The project sponsored by Science & TechnologyDeveloping Plan of Hebei province in China.2007,10(01):475-480资料2:Proceedings of the 3rd WSEAS Int. Conf. on CIRCUITS,SYSTEMS, SIGNAL and TELECOMMUNICATIONS.2009,51(17):120-125 附件:资料1:1.翻译译文;2.外文原文。

资料2:1.翻译译文;2.外文原文。

指导教师评语:签名:2011年4 月9 日附件:资料1翻译译文基于USB接口的智能网络温度和湿度测量系统摘要:多数字输出相对湿度和温度传感器-SHT71是设置在系统中,它可以随时对环境监测点的温度和湿度进行实时测量。

温湿度值、露点值和每个测量点的日期和时间都显示在LCM显示模块(液晶显示模块)HY-12864K上。

与此同时,这些数据被保存在非易失性FRAM(铁电随机存取内存)的FM31256中,即可以保证在系统电源出现故障的情况下数据不丢失。

获得的数据可以直接上传到电脑中的USB 主机模式或间接地被复制到电脑而不经过USB设备模式磁盘领域的测试。

该应用软件不仅可以绘制出温度、湿度和露点曲线,计算出最大值,最小值,平均值,同时还可以做进一步的统计分析,报表打印和对系统的基本测量参数进行设置。

关键词:温湿度,USB接口,网络,FRAM。

1简介温湿度测量广泛使用在工业和农业生产,日常生活和研究开发中。

例如,湿度大可造成粮食变质,使药品、香烟和茶叶存储仓库发霉。

如果存放棉花的仓库中温度和湿度不合适,将会引起自燃。

同时,若温度控制不当,将会使精密仪器和半导体器件的性能降低。

测控技术与仪器专业英语教程(第2版)课后答案 英译汉

测控技术与仪器专业英语教程(第2版)课后答案 英译汉

第五章课后A random erroris due to acontrolled,large number of independent small effects that cannothe identified orit is a statistical quantity. As such,iteach replication of the observations. If a large number of readings iswill vary for the same quantity.the scatter of the data about a mean value can be evaluated.The scatter generally follows a guassian distribution about a mean value.whichis assumed to be the true value.Accuracy is the deviation of the output from the calibration input or the true value. If the accuracy of a voltmeter is 2% full scale as described in the preceding section·the maximum deviation i、士2units for all readings.一个随机误差是由于控制,大量的独立影响小,不能他发现或这是一个统计量。

因此,它每个复制的观察。

如果大量的读数是同样数量的不同而不同。

散射的数据值可以评估。

散高斯分布通常遵循关于意味着value.which被认为是真正的价值。

准确性是偏差的输出的输入或真正的校准价值。

如果把电压表的准确性2%全面描述在前面的部分·最大偏差我,士2units所有阅读资料。

测控技术与仪器中英文对照外文翻译文献

测控技术与仪器中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)Numerical control technology and equipping development trend and countermeasureEquip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Marx has ever said "the differences of different economic times, do not lie in what is produced, and lie in how to produce, produce with some means of labor ". Manufacturing technology and equipping the most basic means of production that are that the mankind produced the activity, and numerical control technology is nowadays advanced manufacturing technology and equips the most central technology. Nowadays the manufacturing industry all around the world adopts numerical control technology extensively, in order to improve manufacturing capacity and level, improve the adaptive capacity and competitive power to the changeable market of the trends. In addition every industrially developed country in the world also classifies the technology and numerical control equipment of numerical control as the strategic materials of the country, not merely take the greatmeasure to develop one's own numerical control technology and industry, and implement blockading and restrictive policy to our country in view of " high-grade, precision and advanced key technology of numerical control " and equipping. In a word, develop the advanced manufacturing technology taking numerical control technology as the core and already become every world developed country and accelerate economic development in a more cost-effective manner, important way to improve the overall national strength and national position.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, namely the so-called digitization is equipped, its technological range covers a lot of fields: (1)Mechanical manufacturing technology; (2)Information processing, processing, transmission technology; (3)Automatic control technology; (4)Servo drive technology;(5)Technology of the sensor; (6)Software engineering ,etc..1.Development trend of a numerical control technologyThe application of numerical control technology has not only brought the revolutionary change to manufacturing industry of the tradition, make the manufacturing industry become the industrialized symbol , and with the constant development of numerical control technology and enlargement of the application, the development of some important trades (IT , automobile , light industry , medical aret·Ostmen ,etc. ) to the national economy and the people's livelihood of his plays a more and more important role, because the digitization that these trades needed to equip has already been the main trend of modern development. Numerical control technology in the world at present and equipping the development trend to see, there is the following several respect [1- ] in its main research focus.1.1 A high-speed, high finish machining technology and new trend equippedThe efficiency, quality are nonmanufacturing technology. High-speed, high finish machining technology can raise the efficiency greatly , improve the quality and grade of the products, shorten production cycle and improve the market competitive power. Japan carries the technological research association first to classify it as one of the 5 great modern manufacturing technologies for this, learn (CIRP) to confirm it as the Centre in the 21st century and study one of the directions in international production engineering.In the field of car industry, produce one second when beat such as production of 300,000 / vehicle per year, and many variety process it is car that equip key problem that must be solved one of; In the fields of aviation and aerospace industry, spare parts of its processing are mostly the thin wall and thin muscle, rigidity is very bad, the material is Luminal or Luminal alloy, only in a situation that cut the speed and cut strength very small high, could process these muscles, walls. Adopt large-scale whole Luminal alloy method that blank " pay empty " make the wing recently, such large-scale parts as the fuselage ,etc. come to substitute a lot of parts to assemble through numerous rivet , screw and other connection way, make the intensity , rigidityand dependability of the component improved. All these, to processing and equipping the demand which has proposed high-speed, high precise and high flexibility. According to EMO2001 exhibition situation, high-speed machining center is it give speed can reach 80m/min is even high , air transport competent speed can up to 100m/min to be about to enter. A lot of automobile factories in the world at present, including Shanghai General Motors Corporation of our country, have already adopted and substituted and made the lathe up with the production line part that the high-speed machining center makes up. Hyper Mach lathe of U.S.A. CINCINNATI Company enters to nearly biggest 60m/min of speed, it is 100m/min to be fast, the acceleration reaches 2g, the rotational speed of the main shaft has already reached 60 000r/min. Processing a thin wall of plane parts, spend 30min only, and same part general at a high speed milling machine process and take 3h, the ordinary milling machine is being processed to need 8h; The speed and acceleration of main shaft of dual main shaft lathes of Germany DMG Company are up to 120000r/mm and 1g.In machining accuracy, the past 10 years, ordinary progression accuse of machining accuracy of lathe bring 5μm up to from 10μm already, accurate grades of machining center from 3~5μm, rise to 1~1.5μm, and ultraprecision machining accuracy is it enter nanometer grade to begin already (0.01μm).In dependability, MTBF value of the foreign numerical control device has already reached above 6 000h, MTBF value of the servo system reaches above 30000h, demonstrate very high dependability .In order to realize high-speed, high finish machining, if the part of function related to it is electric main shaft, straight line electrical machinery get fast development, the application is expanded further .1.2 Link and process and compound to process the fast development of the lathe in 5 axesAdopt 5 axles to link the processing of the three-dimensional curved surface part, can cut with the best geometry form of the cutter , not only highly polished, but also efficiency improves by a large margin . It is generally acknowledged, the efficiency of an 5 axle gear beds can equal 2 3 axle gear beds, is it wait for to use the cubic nitrogen boron the milling cutter of ultra hard material is milled and pared at a high speed while quenching the hard steel part, 5 axles link and process 3 constant axles to link and process and give play to higher benefit. Because such reasons as complicated that 5 axles link the numerical control system , host computer structure that but go over, it is several times higher that its price links the numerical control lathe than 3 axles , in addition the technological degree of difficulty of programming is relatively great, have restricted the development of 5 axle gear beds.At present because of electric appearance of main shaft, is it realize 5 axle complex main shaft hair structure processed to link greatly simplify to make, it makes degree of difficulty and reducing by a large margin of the cost, the price disparity of the numerical control system shrinks. So promoted 5 axle gear beds of head of complex main shaft and compound to process the development of the lathe (process the lathe including 5).At EMO2001 exhibition, new Japanese 5 of worker machine process lathe adoptcomplex main shaft hair, can realize the processing of 4 vertical planes and processing of the wanton angle, make 5 times process and 5 axles are processed and can be realized on the same lathe, can also realize the inclined plane and pour the processing of the hole of awls. Germany DMG Company exhibits the Diminution series machining center, but put and insert and put processing and 5 axles 5 times to link and process in once, can be controlled by CNC system or CAD/CAM is controlled directly or indirectly.1.3 Become the main trend of systematic development of contemporary numerical control intelligently, openly, markedly.The numerical control equipment in the 21st century will be sure the intelligent system, the intelligent content includes all respects in the numerical control system: It is intelligent in order to pursue the efficiency of processing and process quality, control such as the self-adaptation of the processing course, the craft parameter is produced automatically; Join the convenient one in order to improve the performance of urging and use intelligently, if Thedford control , adaptive operation , electrical machinery of parameter , discern load select models , since exactly makes etc. automatically; The ones that simplified programming , simplified operating aspect are intelligent, for instance intelligent automatic programming , intelligent man-machine interface ,etc.; There are content of intelligence diagnose , intelligent monitoring , diagnosis convenient to be systematic and maintaining ,etc..Produce the existing problem for the industrialization of solving the traditional numerical control system sealing and numerical control application software. A lot of countries carry on research to the open numerical control system at present, such as NGC of U.S.A. (The Next Generation Work-Station/Machine Control), OSACA of European Community (Open System Architecture for Control within Automation Systems), OSEC (Open System Environment for Controller) of Japan, ONC (Open Numerical Control System) of China, etc.. The numerical control system melts to become the future way of the numerical control system open. The so-called open numerical control system is the development of the numerical control system can be on unified operation platform, face the lathe producer and end user, through changing, increasing or cutting out the structure target(numerical control function), form the serration, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety , different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, communication norm , disposing norm , operation platform , numerical control systematic function storehouse and numerical control systematic function software development ,etc. are the core of present research.The networked numerical control equipment is a new light spot of the fair of the internationally famous lathe in the past two years. Meeting production line , manufacture system , demand for the information integration of manufacturing company markedly greatly of numerical control equipment, realize new manufacture mode such as quick make , fictitious enterprise , basic Entrance that the whole world make too. Some domestic and international famous numerical control lathes andsystematic manufacturing companies of numerical control have all introduced relevant new concepts and protons of a machine in the past two years, if in EMO2001 exhibition, " Caber Production Center " that the company exhibits of mountain rugged campstool gram in Japan (Kazak) (intellectual central production control unit, abbreviated as CPC); The lathe company of Japanese big Wei (Kokum ) exhibits " IT plaza " (the information technology square , is abbreviated as IT square ); Open Manufacturing Environment that the company exhibits of German Siemens (Siemens ) (open the manufacturing environment, abbreviated as OME),etc., have reflected numerical control machine tooling to the development trend of networked direction. 1.4 Pay attention to the new technical standard, normal setting-up1.4.1 Design the norm of developing about the numerical control systemAs noted previously, there are better common ability, flexibility, adaptability, expanding in the open numerical control system, such countries as U.S.A. ,European Community and Japan ,etc. implement the strategic development plan one after another , carry on the research and formulation of the systematic norm (OMAC , OSACA , OSEC ) of numerical control of the open system structure, 3 biggest economies in the world have carried on the formulation that nearly the same science planned and standardized in a short time, have indicated a new arrival of period of change of numerical control technology. Our country started the research and formulation of standardizing the frame of ONC numerical control system of China too in 2000.1.4.2 About the numerical control standardThe numerical control standard is a kind of trend of information-based development of manufacturing industry. Information exchange among 50 years after numerical control technology was born was all because of ISO6983 standard, namely adopt G, M code describes how processes, its essential characteristic faces the processing course, obviously, he can't meet high-speed development of modern numerical control technology's needs more and more already. For this reason, studying and making a kind of new CNC system standard ISO14649 (STEP-NC) in the world, its purpose is to offer a kind of neutral mechanism not depending on the concrete system, can describe the unified data model in cycle of whole life of the products, thus realize the whole manufacture process, standardization of and even each industrial field product information.The appearance of STEP-NC may be a revolution of the technological field of the numerical control, on the development and even the whole manufacturing industry of numerical control technology, will exert a far-reaching influence. First of all, STEP-NC puts forward a kind of brand-new manufacture idea, in the traditional manufacture idea, NC processes the procedures to all concentrate on individual computer. Under the new standard, NC procedure can be dispersed on Internet, this is exactly a direction of open , networked development of numerical control technology. Secondly, STEP-NC numerical control system can also reduce and process the drawing (about 75%), process the procedure to work out the time (about 35%) and process the time (about 50%) greatly.At present, American-European countries pay much attention to the research ofSTEP-NC, Europe initiates IMS plan (1999.1.1-2001.12.3) of STEP-NC. 20 CAD/CAM/CAPP/CNC users, manufacturers and academic organizations from Europe and Japan participated in this plan. STEP Tools Company of U.S.A. is a developer of the data interchange software of manufacturing industry in the global range, he has already developed the super model (Super Model ) which accuses of information exchange of machine tooling by counting, its goal is to describe all processing courses with the unified norm. Such new data interchange form has already been verified in allocating the SIEMENS, FIDIA and European OSACA-NC numerical control at present.2 pairs of basic estimations of technology and industry development of numerical control of our countryThe technology of numerical control of our country started in 1958, the development course in the past 50 years can roughly be divided into 3 stages: The first stage is from 1958 to 1979, namely closed developing stage. In this stages, because technology of foreign countries blockade and basic restriction of terms of our country, the development of numerical control technology is comparatively slow. During "Sixth Five-Year Plan Period" , " the Seventh Five-Year Plan Period " of the country in second stage and earlier stage in " the Eighth Five-Year Plan Period ", namely introduce technology, digest and assimilate, the stage of establishing the system of production domestication Singhalese tentatively. At this stage , because of reform and opening-up and national attention , and study the improvement of the development environment and international environment, research , development and all making considerable progress in production domestication of the products of the technology of numerical control of our country. The third stage is and during the "Ninth Five-Year Plan Period" on the later stage in "the Eighth Five-Year Plan Period" of the country, namely implement the research of industrialization, enter market competition stage. At this stage, made substantive progress in industrialization of the domestic numerical control equipment of our country. In latter stage for "the Ninth Five-Year Plan ", the domestic occupation rate of market of the domestic numerical control lathe is up to 50%, it is up to 10% too to mix the domestic numerical control system (popular).Make a general survey of the development course in the past 50 years of technology of numerical control of our country, especially through tackling key problems of 4 Five-Year Plans, all in all has made following achievements.a. Have established the foundation of the technical development of numerical control, has mastered modern numerical control technology basically. Our country has already, the numerical control host computer, basic technology of special plane and fittings grasped and driven from the numerical control system and survey basically now, among them most technology have already possessed and commercialized the foundation developed, some technology has already, industrialization commercialized.b. Have formed the industrial base of numerical control tentatively. In tackling key problems the foundation that the achievement and some technology commercialize, set up the systematic factories of numerical control with production capacity in batches such as numerical control in Central China, numerical control of thespaceflight etc.. Electrical machinery plant of Lanzhou, such factory and the first machine tool plant of Beijing , the first machine tool plant of Jinan ,etc. several numerical control host computer factories of a batch of servo systems and servo electrical machineries as the numerical control in Central China, etc.. These factories have formed the numerical control industrial base of our country basically.c. Have set up a numerical control research, development, managerial talent's basic team.Though has made considerable progress in research and development and industrialization of numerical control technology, but we will realize soberly, the research and development of the technology of advanced numerical control of our country, especially there is greater disparity in current situation and current demand of our country of engineering level in industrialization. Though very fast from watching the development of our country vertically, have disparity horizontally more than (compare foreign countries with) not merely engineering level, there is disparity too in development speed in some aspects, namely the engineering level disparity between some high-grade , precision and advanced numerical control equipment has the tendency to expand . Watch from world, estimate roughly as follows about the engineering level of numerical control of our country and industrialization level.a. On the engineering level, in probably backward 10-1 years with the advanced level in foreign countries, it is bigger in high-quality precision and sophisticated technology.b. On the industrialization level, the occupation rate of market is low, the variety coverage rate is little, have not formed the large-scale production yet; The specialized level of production of function part and ability of forming a complete set are relatively low; Appearance quality is relatively poor; Dependability is not high, the commercialized degree is insufficient; One's own brand effect that the domestic numerical control system has not been set up yet, users have insufficient confidence.c. On the ability of sustainable development, research and development of numerical control technology, project ability is relatively weak to the competition; It is not strong that the technological application of numerical control expands dynamics; Research, formulation that relevant standards are normal lag behind.It is analyzed that the main reason for having above-mentioned disparity has the following several respect.a. Realize the respect. Know to industry's process arduousness , complexity and long-term characteristic of domestic numerical control insufficiently; It is difficult to underestimate to add strangling, system, etc. to the Standard, foreign blockade of the market; It is not enough to ana lyse to the technological application level and ability of numerical control of our country.b. System. Pay close attention to numerical control industrialization many in the issue, consider numerical control industrialization little in the issue synthetically in terms of the systematic one, industry chain in terms of technology; Have not set up related system, perfect training , service network of intact high quality ,etc. and supported the system.c. Mechanism. It causes the brain drain, restraining technology and technologicalroute from innovating again, products innovation that the bad machine is made, and has restricted the effective implementation of planning, has often planned the ideal, implement the difficulty.d. Technology. The autonomous innovation in technology of enterprises is indifferent; the project of key technology is indifferent. The standard of the lathe lags behind, the level is relatively low, it is not enough for new standard of the numerical control system to study. 3 pairs of strategic thinking of technology and industrialized development of numerical control of our country3.1 Strategic considerationOur country make big country, industry is it is it accept front instead of transformation of back end to try one's best to want in shifting in world, namely should master and make key technology advanced, otherwise in a new round of international industrial structure adjustment, the manufacturing industry of our country will step forward and " leave the core spaces ". We regard resource, environment , market as the cost, it is only an international " machining center " in the new economic pattern of the world to exchange the possibility got and " assemble the Centre ", but not master the position of the manufacturing center of key technology , will so influence the development process of the modern manufacturing industry of our country seriously.We should stand in the height of national security strategy paying attention to numerical control technology and industry's question , at first seen from social safety, because manufacturing industry whether our country obtain employment most populous trade, the development of manufacturing industry not only can improve the people's living standard but also can alleviate the pressure of employment of our country , ensure the stability of the society; Secondly seen from national defense security, the western developed country has classified all the high-grade , precision and advanced numerical control products as the strategic materials of the country, realizing the embargo and restriction to our country, " Toshiba incident " and " Cox Report " is the best illustration.3.2 Development tacticsProceed from the angles of the fundamental realities of the country of our country, regard the strategic demand of the country and market demand of national economy as the direction, regard improving our country and making the comprehensive competitive power of equipping industry and industrialization level as the goal, use the systematic method , be able to choose to make key technology upgraded in development of equipping industry and support technology supporting the development of industrialization in our country in initial stage of 21st century in leading factor, the ability to supply the necessary technology realizes making the jump development of the equipping industry as the content of research and development . Emphasize market demand is a direction, namely take terminal products of numerical control as the core, with the complete machine (Such as the numerical control lathe having a large capacity and a wide range, milling machine, high speed high precise high-performance numerical control lathe, digitized machinery of model, key industry key equipment, etc.) drive the development of the numerical controlindustry. Solve the numerical control system and relevant functions part especially The dependability that (digitized servo system and electrical machinery, high speed electric main shaft system and new-enclosure that equip, etc.) and production scale question. There are no products that scale will not have high dependability; Will not have cheap and products rich in the competitiveness without scale; Certainly, it is difficult to have day holding up one's head finally that there is no scale Chinese numerical control equipment.In equiparating researching and developing high-grade , precision and advancemen , should emphasize the production, learning and research and close combination of the end user, regard " drawing, using, selling " as the goal, tackle key problems according to the national will, in order to solve the needing badly of the country.Numerical control technology, emphasized innovation, put emphasis on researching and developing the technology and products with independent intellectual property right before the competition, establish the foundation for the industry of numerical control of our country, sustainable development of equipment manufacture and even the whole manufacturing industry数控技术和装备的发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的最终技术和最基本的装备。

测控技术与仪器专业英语单词句子整理

测控技术与仪器专业英语单词句子整理

1.acquisition of information 信息采集2.object of measurement 测量目标3.measurand 被测物理量,被测对象4.measurement result 测量结果5.qualitative measurement 质量测量6.quantitative measurement 数量测量7.measurement process 测量过程8.theorem 定理,法则9.hypothesis 假说,假设,学说10.single-value 单值11.monotonic function 单调函数12.measurement constitute 测量组成13.physical quantity 物理量14.electrical potential difference 电势差15.electrical current 电流16.electrical resistance 电阻17.capacitance 电容18.inductance 感应系数19.frequency 频率20.mutual induction 互感21.thermostat 自动调温器22.parasitic quantity 寄生量,附加量23.random errors 随机误差24.systematic errors 系统误差25.OSP oscilloscope 示波器26.rms root-mean-square 均方根27.quantitative data 定量数据28.qualitative data 定性数据29.empirical data 经验数据30.processed data 已处理过的数据31.theoretical calculations 理论计算32.theoretical model 理论模型33.data processing 数据处理34.data reduction 数据简化35.measurement strategy 测量策略36.frequency spectrum 频谱37.coherent sampling 相干采样38.amplitude distribution function 振幅分布函数39.multiplex 多路操作40.inaccurate calibration 不准确的刻度41.mismatched impedance 不匹配的阻抗42.response-time error 反应时间误差43.histogram 直方图,柱状图,矩形图44.observational data 观测数据45.descriptive statistic 描述性统计46.statistical inference 统计性推论47.distribution of value 数据分布48.sample mean 样本均值49.performance check 性能检查50.tolerance limit 公差极限51.lower range limit 范围下限52.upper range limit 范围上限53.dead band 死区54.measured variable 被测变量55.sinusoidal signal 正弦信号56.amount of drift 漂移量57.recovery time 回复时间58.saturation effect 饱和效应59.zero drift 零点漂移60.sensitivity drift 敏感性漂移61.static characteristics 静态特征62.hysteresis 滞后现象63.tabular form 表格形式64.graphical form 图解形式65.controller 控制器66.sensor 传感器67.closed-loop 闭环68.open-loop 开环69.feedback 反馈70.regulator system 调节器系统71.follow-up system 随动系统72.actuator 执行器73.numerical control 数值控制74.batch control 批量控制75.sequential control 连续控制76.time-sequential control 时间顺序控制77.event-sequential control 事件顺序控制78.block diagram 方框图79.phase difference 相位差80.phase angle 相位角81.direct current 直流82.frequency response 频率响应83.control mode 控制模型84.proportional mode 比例模型85.integral mode 积分模型86.derivative mode 微分模型87.manual control 手动控制88.external signal 外部信号89.on-off control 开关控制90.bumpless transfer 无扰动切换91.pattern recognition 模式识别92.tagging of instrument 仪器标志93.general instrument symbol 通用仪器标志94.control valve 控制阀95.level transmitter 液位变送器96.maintenance tracking 跟踪维护97.material handling 原料处理puter-assisted simulation 计算机辅助仿真99.hierarchical structure 递阶结构,层次结果100.myriad clone 大量复制101.relay 继电器102.Boolean programming method 布尔编程方法103.LCD liquid crystal display 液晶104.internal register 内部寄存器105.arithmetic unit 算术单元106.logic unit 逻辑单元107.operation manual 操作指南108.system integrator 系统集成器109.industrial relay 工业继电器110.system expansion 系统扩展er manual 用户手册puter analysis 计算机分析113.power assist 辅助动力114.master control 主控制115.process progress 进程patibility 兼容性munication standard 通信标准118.ISO international standards organization 国际标准化组织119.OSI open systems interconnection 开放式系统互联munication network architecture 通信网络层munication sophistication 通信混合系统122.allowable bandwidth 允许的带宽123.fieldbus 现场总线124.interoperability 互用性,协同工作的能力125.distributed real-time system 分布式实时系统126.pyramidal model 金字塔模型127.operational architecture 操作体系结构128.horizontal traffic 水平通信129.vertical traffic 垂直通信130.robustness 鲁棒性131.QoS quality of service 服务质量132.A TC air traffic control 空中交通管制133.barometric 大气压力134.altermetry 测高学135.troposphere 对流层136.galaxy 银河系137.luminous flux 光通量138.pupil 瞳孔139.retina 视网膜140.acceleration 加速度141.velocity 速度142.temperature 温度143.gravitational 重力的144.impedance 阻抗,全阻抗145.hybrid 混合物146.strain 过度疲劳,紧张,张力,应变147.thermometer 温度计,体温计148.calibrate 校准149.bandwidth 带宽150.mapping 映射,绘制……地图,计划151.lubricating oil 润滑油152.heuristic 启发式的153.parameter 参数,参量154.spectrum 光,光谱155.vibration 振动156.collision 碰撞,冲突157.phase 相位158.encoding 译码器,编码器159.decoding 解码器160.multiplexing 多路技术161.protocol 协议,草案162.truckline 主干163.duplex 双工164.router 路由器165.gateway 网关166.interact 互相作用,互相影响167.stack 栈,堆栈168.CIM computer integrated manufacturing 计算机集成制造169.PC personal computer 个人电脑170.PLC programmable logic controller 可编程逻辑控制器171.I/O input/output 输入/输出172. CNC computer numerical control 计算机数字控制系统173.CRT cathode ray tube 阴极射线管174.CPU control processing unit 中央处理器175.DC direct current 直流176.AC alternating current 交流177.ASCII American standard code for information interchange 美国信息交换标准码178.IEC international electro technical commission 国际电工委员会179.MAP manufacturing automation protocol 制造自动化协议180.SDS smart distributed system 分布式智能系统181.signal transducer 信号变送器182.temperature transducer 温度变送器183.flow transmitter 流量变送器184.pressure transmitter 压力变送器1.In the following, we will define measurement as the acquisition of information in the form of measurement result,concerning characteristics, states or phenomena (the measurand) of the world that surrounds us, observed with the aid of measurement systems (instruments).在下文中,我们将测量定义为以测量结果表现形式的信息采集,包括周围世界的性质,状态、现象(被测量)通过测量系统观察获得。

测控技术与仪器 外文文献 外文翻译 英文文献 电子秤

测控技术与仪器 外文文献 外文翻译 英文文献 电子秤

Electronic scalesElectronic scales are weighing technology in a new type of instrument is widely used in various occasions. Electronic scales and mechanical scales have more small size, light weight, simple structure, low price and practical value of strong, convenient maintenance and so on can be in a variety of environmental work, the weight of the signal can be Remote, the weight of display is easy to implement digital, easy-to-computer network, production automation, higher labor productivity. Scale labels in the supermarket is in the application of face value. A small label contains: name, price, weight, etc. 11 list in this small electronic label. Greatly accelerated the use of label machine sales pace, but also convenient for customers. Top barcode labels have many remarkable features of scale, Ethernet feature makes the management more convenient.Electronic Scale Classification (scales can be divided into mechanical and electronic type)1.How it works: electronic works in electronic components (weighing sensor, AD conversion circuit, microcontroller circuits, display circuit, keyboard circuitry, communications interface circuits, regulated power supply circuit circuit.2.using the function: electronic weighing the use of modern sensor technology, electronics and computer technology integration,electronic weighing devices, in order to meet and solve real life's "fast, accurate, continuous, automatic" weighing requirements, while effectively eliminating human error, to make it more in line with the management of legal metrology and industrial production process control applications.3. Three health scales are weighing the use of features in a category (divided into mechanical and electronic), inexpensive, it can help people to effectively monitor their own body weight changes, new products also can detect their fat content, but also Somehuman-oriented subsidiary functions. May not be part of measuring equipment.4.Electronic Scale is a measurement of the state compulsory test apparatus, and his qualified products are test indexing the value of D values of e and subdivision standards, is subject to the protection of the national metrology products. In the electronic weighing there is a category called "human scale" products, which can test in the measurement sector, weighing very precise.Block diagram interpretation of the principle of electronic balanceThe first part of the electronic scale principle block diagram:Program K / B (button) ↑ Fx → Sensors → OP Zoom → A / D converter → CPU → → di splay driver display memoryWorkflow Note: When an object on the pan when the pressure facilities to the sensor that occurred deformation, so that resistance to change, while the use of excitation voltage changes, the output of a change in analog signal. This signal amplification by the amplifier output to the ADC. Converted to facilitate the processing of the digital signal output to the CPU operator control. CPU under the keyboard commands and program output to display this result. Until the show such a result.The second part of the scale of the classification: 1. According to principles of points: E-scale mechanical scale mechanical and electrical integration scales 2. According to the functions sub: Counting Scales Weighing Scale Pricing Scale 3. Purpose: Industrial Commercial Scales Special Scales BalanceThe third part of the scale types: 1. The full name of the desktop Scale refers to the volume of less than 30Kg electronic scale 2. The full name of platform scale refers to the volume within the 30-300Kg Electronic Scale 3. Loadometer full name refers to the volume of more than 300Kg Electronic Scale 4. Precision Balance4th Part of the accuracy of classification: I Class: Special scales precision ≥ 1 / 10 Wan II level: high-precision scale 1 / 10000 ≤ precision of "1 / 100,000 III: the accuracy of scale 1 / 1000 ≤ precision of "1 / 10000 Class IV: Common Scale 1 / 100 ≤ precision of" 1 / 1000Part V of professional terminology: 1. Maximum weighing: an electron balance, excluding tare weight, the maximum load can weigh;2. Minimum weigh: a electronic scales below the value that would have occurred when a relatively error;3. safe load: 120% of the normal weighing range;4. Rated load: normal weighing range;5. permissible error: class test when the maximum deviation;6. a sense of quantity: a single electronic scales can show the smallest scale; usually "d" to represent;7. analytic capacity: a function with a count of the electronic scales, can distinguish the smallest scale;8. Resolution: a counting function with an electronic scale, the internal capacity of a Resolution of a parameter;9. Warm-up time: a scale used to achieve the targets of the time; 10. Accuracy: The full name of a sense of volume and volume ratios; 11. electronic scale use of environmental temperature: -10 degrees Celsius to 40 degrees Celsius 12. platform scale The table size: 25cm X 30cm 30cm X 40cm 40cm X 50cm 42cm X 52cm 45cm X60cmPart VI electronic scale features: 1. To achieve long-distance operations; 2. To achieve automatic control; 3. Figures show that an intuitive, reduce human error; 4. High accuracy and resolution strong;5. Weighing range is wide; 6 . unique features: buckle weight, withholding weight, zero, accumulated, warning, etc.; 7. maintenance simple; 8. size is small; 9. installation, calibration simple; 10. special industry, can be accessed by the printer or computer-driven; 11.Intelligent electronic scale, quick reaction, high efficiency; Part VII of the electronic scale inspection process: 1. First, the overall examination: whether the wear and tear; 2. Whether the boot: the boot sequence is from 0 to 9 in turn shows that figures are vague, can zero; 3. Whether the backlight ; 4. with the weight tests in weighing; 5. chargers is intact, can use; 6. parts are complete; Part VIII sensor type: 1. Resistive: affordable, high accuracy, widely used; 2. Capacitive: small size, low precision; 3. Maglev-style: special high-precision, high cost; 4. Hydraulic formula: the current the market has been eliminated; Display Type: 1.LCD (liquid crystal display): free electricity, energy-saving, with backlight; 2.LED: free electricity, power consumption, very bright;3. Lamp: electricity, power consumption , high; K / B (button) type: 1. film button: contact type; 2. mechanical buttons: made up of many individual combinations of keys together; sensor characteristics: 1. rated load; 2. output sensitivity; 3. non-linear;4. hysteresis;5. repeatable;6. creep;7. 12:00 output effects;8. rated output temperature;9. 12:00 input; 10. input impedance; 11. output impedance; 12. Insulation Resistance ; 13. to allow excitation voltage; (5-18V)Part IX sensor damaged phenomenon: 1. Weighing not allowed;2. Shows no return to zero;3. Shows the number of bounce to judge the sensor + E,-E, + S,-S 1. The first to use resistance profile measurement 4-line 22 This resistance value, a total of 6 groups. The case of 400-450,compared with Europe + E,-E; if it is 350 in Europe, compared to +S,-S; for the 290 in Europe, compared to R-arm; 2. + E,-E terminated on the + 1.5V voltageSensor correctly to exert a pressure, such as the output + _S increase, then the red table pens as + S, the contrary-S; 10th part of the high-precision counting scale features: 1.Kg/Ib unit conversion functions; 2. 12:00 display range adjustment function (GLH series does not) 3. Sampling speed adjustment function; 4. There are 10 groups memory function singlet; 5. may be at the same time the weight, quantity, the cumulative function (GLH only the number of cumulative) 6. can set the weight, the maximum amount of warning function; 7. automatic zero tracking, temperature linear correction; 8. deduction of withholding heavy weight and function; 9. Standby function; 10. there is zero shows zero tracking range and scope; 11. there is the battery voltage control to limit the function; Electronic scales are weighing technology in a new type of instrument is widely used in various occasions. Electronic scales and mechanical scales have more small size, light weight, simple structure, low price and practical value of strong, convenient maintenance and so on can be in a variety of environmental work, the weight of the signal can be Remote, the weight of display is easy to implement digital, easy-to-computer networking, process automation of production and improve laborproductivity. Electronic Scale also has an automatic zero tracking, overload display of self-extinguishing characteristics.Mechanical scales, floor scale / land in the value (car value), weigh-bridges and other fitted force-sensitive sensors and microcomputer-controlled intelligent weighing instruments become intelligent digital electrical and mechanical balance (or the mechanical and electrical dual-use scales), to improve the mechanical balance of the measurement accuracy, with low cost, high reliability, simple installation and so on, without prejudice to the original mechanical scales to any transmission bearing structure. There are peeled, set to zero, the cumulative number of times, the cumulative weight (cumulative amount of valuation-based), auto-zeroing, auto-tracking and other functions. Weighing data can be directly printed or transmitted via computer networks, industrial processes can improve the level of scale and product quality, trade clearing with the scale can improve the credibility of incalculable social and economic benefits.Electronic Scale is basically a sensor, amplifier circuit, A / D conversion circuit, microcontroller control of display parts, switch matrix circuit, the keyboard circuit and power circuit. Weight sensor signals are converted to a corresponding electrical signal, after amplified into the A / D converted into pulses weight, through the SCM under the control of the analog voltage signals into digital. Thedigital conversion by the SCM program in line with the actual weight of the value of sending the number of display windows.MCU at the same time the keyboard and switch matrix for monitoring. According to the input parameter values, the program handled accordingly. Power circuit to provide the various parts of the operating voltage. Microprocessors such as 8050, HD404418F, 8031, etc. CPU. Highly versatile motherboard, different values of range and sub-degree scales, just adjust the jumpers on the motherboard and the DIP switch can be achieved, the only difference is that the sensor used with a rated carrying capacitySensor is a physical device or biological organ that can detect and feel the outside of the signal, physical condition (such as light, heat, humidity) or chemical composition (such as smoke), and Discovery of information to other devices or organs. Definition of sensorNational standard GB7665-87 sensor is defined as: "can feel the requirements are measured and converted in accordance with the laws of certain signal device or devices available, usually composed of sensitive components and conversion devices." Sensor is a detection device, can feel the information being measured, and can detect sense of information, according to certain laws of transformation into electrical signals, or other forms of information required for output to meet the information transmission, processing, storage, display,recording and control requirements. It is the automatic detection and control of the primary link.The role of sensorPeople in order to obtain information from the outside world must help of sense organs. And rely on people's own sense organs, the study of natural phenomena and laws, and production activities in their functions on far enough. To meet this situation, we need sensors. It can be said sensor is an extension of human senses, also known as electronic features.The arrival of the new technological revolution, the world entered the information age. In the course of the use of information, we must first resolve is to obtain accurate and reliable information, and sensors is to obtain information in the field of natural and production of the main ways and means.In modern industrial production, especially automated production process, the use of various sensors to monitor and control the various parameters of the production process, so that devices work best in the normal state or condition, and to achieve the best quality products. Therefore we can say, without a large number of good sensors, modern production base will be lost.In the basic science research, a more prominent position sensor.The development of modern science and technology into many new areas: for example, thousands of light years to observe the macro level of the vast universe, to observe microscopically small particles cm the world, vertical, to observe the evolution over hundreds of years of celestial bodies , a short response to the s moment. In addition, there was even a matter of deepening understanding, developing new energy, new materials, play an important role in a variety of extreme technology such as ultra-high temperature, ultra-low temperature, high pressure, ultra-high vacuum, powerful magnetic field, ultra-weak magnetic bagging, etc. . Obviously, to obtain a large number of human senses can not directly access the information,Not compatible with sensors is impossible. Many basic scientific research obstacles, first of all to obtain information on the object is difficult, and a new highly sensitive detection mechanism and the emergence of sensors, often lead to breakthroughs in the field. The development of a number of sensors is often a pioneer in the development of marginal subjects.Sensor has already penetrated into, such as industrial production, space development, marine exploration, environmental protection, resource survey, medical diagnostics, biotechnology, and even conservation areas and so most of the pan. It is no exaggeration to say that, from the vast space, the vastness of the ocean, as well as a variety of complex engineering systems, almost every modern project, areinseparable from a variety of sensors.Thus, the sensor technology in economic development, promote the important role of social progress is very clear. Countries in the world attach great importance to the development of this area. I believe in the near future, there will be a leap in sensor technology, to achieve status commensurate with its important new level.Sensor classificationDifferent views can be classified on the sensors: they transform principle (Transducer on the basic physical or chemical effect); their purpose; their output signal types and the production of their materials and processes.Working principle of the sensor can be divided into physical sensors and chemical sensors two categories:Sensor working principle of the classification of physical sensors that physical effects, such as the piezoelectric effect, magnetostriction, ionization, polarization, thermal, optical, magnetic and electric effects. Small changes in the amount of the measured signal will be converted into electrical signals.Chemical sensors, including those with chemical adsorption,electrochemical reaction, a causal relationship between the phenomenon of the sensor, the measured signal will be small changes in volume converted to electrical signals.Some sensors can not divided into physics, can not be divided into chemical classes. Most of the physics-based sensor is functioning. Many problems of chemical sensor technology, such as reliability issues, the possibility of mass production, prices, etc., solve such problems, the application of chemical sensors will have tremendous growth.Dynamic characteristicThe so-called dynamic characteristics, is the change in the input sensor, its output characteristics. In practice, the sensor's dynamic characteristics common to certain standards of its response to said input signal. This is because the sensor response to the standard input signal easily obtained by experiment, and its standard input signal response and its response to any input signal exists between the relationship, often the latter that the former can be presumed. The most commonly used standard input signal and sine signal with step two, so the dynamic characteristics of sensors are commonly used in the step response and frequency response to that.电子秤电子秤是称重技术中的一种新型仪表,广泛应用于各种场合。

测控技术与仪器专业英语单词

测控技术与仪器专业英语单词

Accuracy 精确,精度Deflection 偏移Monolithic 单片电路Amplitude 振幅,幅度Deformation 变形Monopolize 独占,垄断Aperiodic 非周期的Diaphragm 薄膜,振动膜Motherboard 母板Approach 近似,接近Dissipation 消耗Optoisolator 光绝缘体Approximation 近似值Distinct 不同Parametric 参量的Arbitrary 任意的Distortion 变形,扭曲Proprietary 所有的,所有权Channel 信道,频道Dope 掺杂Protocol协议Coefficient 系数Electromagnetic 电磁的Retrieval 检索,巡检Convergence 收敛Enamel 搪塞Scale 刻度Conversely 相反的Encapsulation 密封,封装Simulate 模仿Coordinate 坐标Enclose 包装,封入Simultaneously 同时的Criterion 标准,规范Epoxy 环氧的Slot 长槽Deteriorate 恶化,退化Epoxy resin 环氧树脂Succeeding 以后的,随后的Differentiate 求。

的微分Etch 蚀刻,酸洗Supplier 供应商Dimension 维数Fidelity 保真Terminal 终端Discontinuity 心电图Filament 丝,细丝线Uniformly 均匀地Even 偶数的Flame-failure 火焰,故障V erbatim 逐字的Expansion 展开式Flapper 蛇阀Workbench 工作台Foregoing 前述的Foil 箔,薄片Active element 有源元件Geometrical 几何学的Former 框架Air-evacuated 抽成真空的Hal f-wave symmetry 半波对称Friction 摩擦Amplifier 放大器Harmonical 谐波的Gauge 表,仪器Anode 阳极Identity 恒等式Harmonics 谐波Attributable 可归因于Instant 瞬间Illumination 照度Bias 偏压,偏置Integrand 被积函数Inductance 电感,感应Capacitor 电容器Integrate 求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计外文资料翻译学院:电气信息学院专业:测控技术与仪器姓名:孙石震学号: 100803216 外文出处: /view/ 88d49da19b89680203d82596.html 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文传感器新技术的发展传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。

输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。

自动化程度越高,系统对传感器要求越高。

传感器的几个关键词:1传感器元件除特例外,大多数的传感器都由敏感元件、转换元件或控制元件组成。

如振动膜、波纹管、应力管和应力环、低音管和悬臂都是敏感元件,它们对压力和力作出响应把物理量转变成位移。

然后位移可以改变电参数,如电压、电阻、电容或者感应系数。

机械式和电子式元件合并形成机电式传感设备或传感器。

这样的组合可用来输入能量信号。

热的,光的,磁的和化学的相互结合产生的热电式、光电式、电磁式和电化学式传感器。

2 传感器灵敏度通过校正测量系统获得的被测物理量和传感器输出信号的关系叫做传感器灵敏度K1,也就是K1=输出信号增量/测量增量。

实际中,传感器的灵敏度是已知的,并且通过测量输出信号,输入量由下式决定,输入量=输出信号增量/K1。

3 理想传感器的特性(a)高保真性:传感器输出波形应该真实可靠地再现被测量,并且失真很小。

(b)可测量最小的干扰,任何时候传感器的出现不能改变被测量。

(c)尺寸:传感器必须能正确地放在所需的地方。

(d)被测量和传感器信号之间应该有一个线性关系。

(e)传感器对外部影响的灵敏度应该小,例如压力传感器经常受到外部振动和温度的影响。

(f)传感器的固有频率应该避开被测量的频率和谐波。

传感器可分为以下几类:1 电传感器电传感器具有许多理想特性。

它们不仅实现远程测量和显示,还能提供高灵敏度。

电传感器可分为两大类。

(a)变参数型,包括:(i)电阻式;(ii)电容式;(iii)自感应式;(v)互感应式;这些传感器的工作依靠外部电压。

(b)自激型,包括:(i)电磁式;(ii)热电式;(iii)光栅式;(iv)压电式。

这些传感器根据测量输入值产生输出电压,而且这一过程是可逆的。

比如,在一般情况下,压电式传感器可根据晶体材料的变形产生一个输出电压;但是,如果在材料上施加一个可变电压,传感器可以通过变形或与变电压同频率的振动来体现可逆效应。

2 电阻式传感器电阻式传感器可以分为两大类:(i)那些表现为大电阻变化的物理量可通过分压方式进行测量,电位器就属于此类。

(ii)那些表现为小电阻变化的物理量可通过桥电路方式进行测量,这一类包括应变仪和电阻温度计。

3 电容式传感器电容量随着相对介电常数、截面面积、或者极板间的距离的变化而变化。

电容的特征曲线表明,在空间的一段范围内,截面面积和相对介电常数的变化与电容量变化成线性关系。

不象电位器,变极距型电容传感器有无限的分辨率,这最适合测量微小的位移增量的位移。

4 电感式传感器电感可以通过改变电感电路的阻抗来调节。

电容式和电感式传感器的测量技术:(a)用差分式电容或电感作为交流电桥;(b)用交流电位计电路做动态测量;(c)用直流电路为电容器提供正比于容值变化的电压;(d)采用调频法,C或者L随着振荡电路频率的变化而改变。

电容式和电感式传感器的一些重要特性如下:(i)分辨率无限(ii)精确到满量程的±0.1%(iii)位移范围从25*10-6m到10-3m(iv)上升时间小于50us典型的被测量是位移、压力、振动量、声音和液位。

5 线性调压器6 压电式传感器7 电磁式传感器8 热电式传感器9 光电管10 机械式传感器及敏感元件在今天的信息时代里,信息产业包括信息采集、传输、处理三部分,即传感技术、通信技术、计算机技术。

现代的计算机技术和通信技术由于超大规模集成电路的飞速发展,而已经充分发达后,不仅对传感器的精度、可靠性、响应速度、获取的信息量要求越来越高,还要求其成本低廉且使用方便。

显然传统传感器因功能、特性、体积、成本等已难以满足而逐渐被淘汰。

世界许多发达国家都在加快对传感器新技术的研究与开发,并且都已取得极大的突破。

如今传感器新技术的发展,主要有以下几个方面:利用物理现象、化学反应、生物效应作为传感器原理,所以研究发现新现象与新效应是传感器技术发展的重要工作,是研究开发新型传感器的基础。

日本夏普公司利用超导技术研制成功高温超导磁性传感器,是传感器技术的重大突破,其灵敏度高,仅次于超导量子干涉器件。

它的制造工艺远比超导量子干涉器件简单。

可用于磁成像技术,有广泛推广价值。

利用抗体和抗原在电极表面上相遇复合时,会引起电极电位的变化,利用这一现象可制出免疫传感器。

用这种抗体制成的免疫传感器可对某生物体内是否有这种抗原作检查。

如用肝炎病毒抗体可检查某人是否患有肝炎,起到快速、准确作用。

美国加州大学巳研制出这类传感器。

传感器材料是传感器技术的重要基础,由于材料科学进步,人们可制造出各种新型传感器。

例如用高分子聚合物薄膜制成温度传感器;光导纤维能制成压力、流量、温度、位移等多种传感器;用陶瓷制成压力传感器。

高分子聚合物能随周围环境的相对湿度大小成比例地吸附和释放水分子。

高分子电介常数小,水分子能提高聚合物的介电常数。

将高分子电介质做成电容器,测定电容容量的变化,即可得出相对湿度。

利用这个原理制成等离子聚合法聚苯乙烯薄膜温度传感器,其有以下特点:测湿范围宽;温度范围宽,可达-400℃~+1500℃;响应速度快,小于1S;尺寸小,可用于小空间测试;温度系数小。

陶瓷电容式压力传感器是一种无中介液的干式压力传感器。

采用先进的陶瓷技术和厚膜电子技术,其技术性能稳定,年漂移量小于0.1%F.S,温漂小于±0.15%/10K,抗过载强,可达量程的数百倍。

测量范围可从0到60Mpa。

德国E+H公司和美国Kahlo公司产品处于领先地位。

光导纤维的应用是传感材料的重大突破,其最早用于光通信技术。

在光通信利用中发现当温度、压力、电场、磁场等环境条件变化时,引起光纤传输的光波强度、相位、频率、偏振态等变化,测量光波量的变化,就可知道导致这些光波量变化的温度、压力、电场、磁场等物理量的大小,利用这些原理可研制出光导纤维传感器。

光纤传感器与传统传感器相比有许多特点:灵敏度高,结构简单、体积小、耐腐蚀、电绝缘性好、光路可弯曲、便于实现遥测等。

光纤传感器日本处于先进水平。

如IdecIzumi公司和Suns公司。

光纤传感受器与集成光路技术相结合,加速光纤传感器技术的发展。

将集成光路器件代替原有光学元件和无源光器件,使光纤传感器有高的带宽、低的信号处理电压,可靠性高,成本低。

半导体技术中的加工方法有氧化、光刻、扩散、沉积、平面电子工艺,各向导性腐蚀及蒸镀,溅射薄膜等,这些都已引进到传感器制造。

因而产生了各种新型传感器,如利用半导体技术制造出硅微传感器,利用薄膜工艺制造出快速响应的气敏、湿敏传感器,利用溅射薄膜工艺制压力传感器等。

日本横河公司利用各向导性腐蚀技术进行高精度三维加工,制成全硅谐振式压力传感器。

核心部分由感压硅膜片和硅膜片上面制作的两个谐振梁结成,两个谐振梁的频差对应不同的压力,用频率差的方法测压力,可消除环境温度等因素带来的误差。

当环境温度变化时,两个谐振梁频率和幅度变化相同,将两个频率差后,其相同变化量就能够相互抵消。

其测量最高精度可达0.01%FS。

美国Silicon Microstructure Inc(SMI)公司开发一系列低价位,线性度在0.1%到0.65%范围内的硅微压力传感器,最低满量程为0.15psi(1KPa),其以硅为材料制成,具有独特的三维结构,轻细微机械加工,和多次蚀刻制成惠斯登电桥于硅膜片上,当硅片上方受力时,其产生变形,电阻产生压阻效应而失去电桥平衡,输出与压力成比例的电信号。

象这样的硅微传感器是当今传感器发展的前沿技术,其基本特点是敏感元件体积为微米量级,是传统传感器的几十、几百分之一。

在工业控制、航空航天领域、生物医学等方面有重要的作用,如飞机上利用可减轻飞机重量,减少能源。

另一特点是能敏感微小被测量,可制成血压压力传感器。

中国航空总公司北京测控技术研究所,研制的CYJ系列溅谢膜压力传感器是采用离子溅射工艺加工成金属应变计,它克服了非金属式应变计易受温度影响的不足,具有高稳定性,适用于各种场合,被测介质范围宽,还克服了传统粘贴式带来的精度低、迟滞大、蠕变等缺点,具有精度高、可靠性高、体积小的特点,广泛用于航空、石油、化工、医疗等领域。

集成传感器的优势是传统传感器无法达到的,它不仅仅是一个简单的传感器,其将辅助电路中的元件与传感元件同时集成在一块芯片上,使之具有校准、补偿、自诊断和网络通信的功能,它可降低成本、增加产量,美国LUCAS、NOV ASENSOR公司开发的这种血压传感器,每星期能生产1万只。

智能化传感器是一种带微处理器的传感器,是微型计算机和传感器相结合的成果,它兼有检测、判断和信息处理功能,与传统传感器相比有很多特点:具有判断和信息处理功能,能对测量值进行修正、误差补偿,因而提高测量精度;可实现多传感器多参数测量;有自诊断和自校准功能,提高可靠性;测量数据可存取,使用方便;有数据通信接口,能与微型计算机直接通信。

把传感器、信号调节电路、单片机集成在一芯片上形成超大规模集成化的高级智能传感器。

美国HONYWELL公司ST-3000型智能传感器,芯片尺寸才有3×4×2mm3,采用半导体工艺,在同一芯片上制成CPU、EPROM、静压、压差、温度等三种敏感元件。

智能化传感器的研究与开发,美国处于领先地位。

美国宇航局在开发宇宙飞船时称这种传感器为灵巧传感器(Smart Sensor),在宇宙飞船上这种传感器是非常重要的。

我国在这方面的研究与开发还很落后,主要是因为我国半导体集成电路工艺水平有限。

传感器的发展日新月异,特别是80年代人类由高度工业化进入信息时代以来,传感器技术向更新、更高的技术发展。

美国、日本等发达国家的传感器技术发展最快,我国由于基础薄弱,传感器技术与这些发达国家相比有较大的差距。

因此,我们应该加大对传感器技术研究、开发的投入,使我国传感器技术与外国差距缩短,促进我国仪器仪表工业和自化化技术的发展。

摘自——《传感器技术手册》,Jon Wilson,Newnes附件2:外文原文Development of Sensor New TechnologySensor is one kind component which can transform the physical quantity, chemistry quantity and the biomass into electrical signal. The output signal has the different forms like the voltage, the electric current, the frequency, the pulse and so on, which can satisfy the signal transmission, processing, recording, and demonstration and control demands. So it is the automatic detection system and in the automatic control industry .If automatic Technology is used wider, then sensor is more important.Several key words of the sensor:1 Sensor ElementsAlthough there are exception ,most sensor consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or sensor. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical sensor respectively.2 Sensor SensitivityThe relationship between the measured and the sensor output signal is usually obtained by calibration tests and is referred to as the sensor sensitivity K1= output-signal increment / measured increment . In practice, the sensor sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1.3 Characteristics of an Ideal SensorThe high sensor should exhibit the following characteristics.(a)high fidelity-the sensor output waveform shape be a faithful reproduction of the measured; there should be minimum distortion.(b)There should be minimum interference with the quantity being measured; the presence of the sensor should not alter the measured in any way.(c)Size. The sensor must be capable of being placed exactly where it is needed.(d)There should be a linear relationship between the measured and the sensor signal.(e)The sensor should have minimum sensitivity to external effects, pressure sensor,for example,are often subjected to external effects such vibration and temperature.(f)The natural frequency of the sensor should be well separated from the frequency and harmonics of the measurand.Sensors can be divided into the following categories:1 Electrical SensorElectrical sensor exhibit many of the ideal characteristics. In addition they offer high sensitivity as well as promoting the possible of remote indication or mesdurement. Electrical sensor can be divided into two distinct groups:(a)variable-control-parameter types,which include:(i)resistance(ii)capacitance(iii)inductance(iv)mutual-inductance typesThese sensor all rely on external excitation voltage for their operation.(b)self-generating types,which include(i)electromagnetic(ii)thermoelectric(iii)photoemissive(iv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible. For example, a piezo-electric sensor normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the sensor exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage.2 Resistance SensorResistance sensor may be divided into two groups, as follows:(i)Those which experience a large resistance change, measured by using potential-divider methods. Potentiometers are in this group.(ii)Those which experience a small resistance change, measured by bridge-circuit methods. Examples of this group include strain gauges and resistance thermometers.3 Capacitive SensorThe capacitance can thus made to vary by changing either the relative permittivity, the effective area, or the distance separating the plates. The characteristic curves indicate thatvariations of area and relative permittivity give a linear relationship only over a small range of spacings. Thus the sensitivity is high for small values of d. Unlike the potentionmeter, the variable-distance capacitive sensor has an infinite resolution making it most suitable for measuring small increments of displacement or quantities which may be changed to produce a displacement.4 Inductive SensorThe inductance can thus be made to vary by changing the reluctance of the inductive circuit. Measuring techniques used with capacitive and inductive sensor:(a)A.C. excited bridges using differential capacitors inductors.(b)A.C. potentiometer circuits for dynamic measurements.(c)D.C. circuits to give a voltage proportional to velocity for a capacitor.(d)Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit.Important features of capacitive and inductive sensor are as follows:(i)resolution infinite(ii)accuracy±0.1% of full scale is quoted(iii)displacement ranges 25*10-6 m to 10-3m(iv)rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level.5 Linear Variable-differential Ttransformer6 Piezo-electric Sensor7 Electromagnetic Sensor8 Thermoelectric Sensor9 Photoelectric Cells10 Mechanical Sensor and Sensing ElementsIn information age, the information industry includes information gathering, transmission, process three parts, namely sensor technology, communication, computer technology. Because of ultra large scale integrated circuit’s rapid development after having been developed Modern computer technology andcommunication, not only requests sensor precision reliability, speed of response and gain information content request more and more high but also requests its cost to be inexpensive. The obvious traditional sensor is eliminated gradually because of the function, the characteristic, the volume, the cost and so on. As world develop many countries are speeding up to the sensor new technology’s research and the development, and all has obtained the enormous breakthrough. Now the sensor new technology development mainly has following several aspects:Using the physical phenomenon, the chemical reaction, the biological effect as the sensor principle therefore the researches which discovered the new phenomenon and the new effect are the sensor technological improving ways .it is important studies to developed new sensor’s the foundation. Japanese Sharp Corporation uses the superconductivity technology to develop successfully the high temperature superconductivity magnetic sensor and get the sensor technology significant breakthrough. Its sensitivity is so high and only inferior in the superconductivity quantum interference component. Its manufacture craft is far simpler than the superconductivity quantum interference component. May use in magnetism image formation technology. So it has the widespread promoted value.Using the immune body and the antigen meets one another compound when the electrode surface. It can cause the electrode potential change and use this phenomenon to be possible to generate the immunity sensor. The immunit y sensor makes with this kind of immune body may to some organism in whether has this kind of ant original work inspection. Like may inspect somebody with the hepatitis virus immune body whether contracts the hepatitis, plays to is fast, the accurate role. The US UC sixth branch has developed this kind of sensor.The sensor material is the important foundation for sensor technology, because the materials science is progressive and the people may make each kind of new sensor For example making the temperature sensor with the high polymer thin film; The optical fiber can make the pressure, the current capacity, the temperature, the displacement and so on the many kinds of sensors; Making the pressure transmitterwith the ceramics. The high polymer can become the proportion adsorption and the release hydrogen along with the environment relative humidity size. The high polymer electricity lies between the constant to be small, the hydrogen can enhance the polymer the coefficient of dialectical loss. Making the capacitor the high polymer dielectric medium, determines the electric capacity cape city the change, then obtains the relative humidity. Making the plasma using this principle to gather the legitimate polystyrene film temperature sensor below, it has the characteristic.Measured the wet scope is wide; The temperature range is wide, may reach -400 ℃ ~ +1,500 ℃; The speed of response is quick, is smaller than 1S; The size is small, may use in the small space measuring wet; The temperature coefficient is small.The ceramic electric capacity type pressure transmitter is one kind does not have the intermediary fluid the dry type pressure transmitter. Uses the advanced ceramic technology, the heavy film electronic technology, its technical performance is stable, the year drifting quantity is smaller than 0.1%F.S, warm floats is smaller than ±0.15%/10K, anti- overloads strongly, may reach the measuring range several hundred times. The survey scope may from 0 to 60mpa.German E+H Corporation and the American Kahlo Corporation product is at the leading position.The optical fiber application is send the material significant breakthrough, its uses in most early the optical communication techniques. In the optical communication use discovered works as environmental condition change and so on the temperature, pres-sure, electric field, magnetic field, causes the fiber optic transmission light wave intensity, the phase, the frequency, change and so on the polarization condition, the survey light wave quantity change, may know causes these light wave physical quantity the and so on quantitative change temperature, pressure ,electric field, magnetic field size, uses these principles to be possible to develop the optical fiber sensor. The optical fiber sensor and the traditional sensor compare has many characteristics: Sensitivity high, the structure simple, the volume small, anti-corrosive, the electric insulation good, the path of rays may be curving, be advantageous for the realization telemeter and so on. Optical fiber sensor J apan is inthe advanced level. Like Idec Izumi Corporation and Sun x Corporation. The optical fiber send receiver and the integrated path of rays technology unify, accelerates the optical fiber sensor technology development. Will integrate the path of ray’s component to replace the original optics part and the passive light component; enable the optical fiber sensor to have the high band width, the low signal processing voltage, the reliability high, the cost will be low.In semiconductor technology processing method oxygenation, the photo etc hang, the proliferation, the deposition, the plane electron craft, various guides corrosion and steams plates, the sputtering thin film and so on, these have all introduced to the sensor manufacture. Thus has produced each kind of new sensor, like makes the silicon micro sensor using the semiconductor technology, makes the fast response using the thin film craft the gas to be sensitive, the wet sensitive sensor, the use sputtering thin film craft system pressure transmitter and so on..The Japanese horizontal river company uses various guides’ corrosion technology to carry on the high accuracy three dimensional processing; the system helps the silicon resonance type pressure transmitter. The core partially presses two resonant Liang by the feeling which above the silicon diaphragm and the silicon diaphragm manufactures to form, two resonant Liang's frequency difference correspondence different pressure, measures the pressure with the frequency difference method, may eliminate the error which factor and so on ambient temperature brings. When ambient temperature change, two resonant Liang frequencies and the amplitude variation are same, after two frequency differences, its same change quantity can counterbalance mutually. I t’s survey most high accuracy may reach 0.01%FS.American Silicon Microstructure Inc.(SMI) the company develops a series of low ends, linear in 0.1% to 0.In 65% scope silicon micro pressure transmitter, the lowest full measuring range is 0.15psi (1KPa), it makes take the silicon as the material, has the unique three dimensional structure, the light slight machine-finishing, makes the wheat stone bridge many times with the etching on the silicon diaphragm, when above silicon chip stress, it has the distortion, the resistance produces presses the anti-effect but to lose the bridge balance, the output and the pressure becomes the proportion the electrical signal.Such silicon micro sensor is the front technology which now the sensor develops, Its essential feature is the sensitive unit volume is a micron magnitude, Is the traditional sensor several dozens, several 1%. In aspect and so on industry control, aerospace domain, biomedicine has the vital role, like on the airplane the use may reduce the airplane weight, reduces the energy. Another characteristic is can be sensitive is small surveyed, may make the blood pressure pressure transmitter.The Chinese aviation main corporation Beijing observation and control technical research institute, the development CYJ series splashes thanks the membrane pressure transmitter is uses the ion sputtering craft to process the metal strain gauge, it has over come the nonmetallic strain gauge easily the temperature influence insufficiency, has the high stability, is suitable in each kind of situation, is measured the medium scope widely, but also overcame the tradition lowly to glue the precision which the type brought, sluggish big, shortcoming and so on slow change, had the precision high, the re-liability is high, the volume small characteristic, widely used in domain and so on aviation, petroleum, chemical industry, medical service.Integrates the sensor the superiority is the traditional sensor is unable to achieve, it is a simple sensor not merely, it in at the same time the auxiliary circuit part and send the part will integrate on together the chip, will cause it to have the calibration, to compensate, from the diagnosis and the network correspondence function, it might reduce the cost, the gain in yield, this kind of blood pressure sensor which American LUCAS, NOVASENSOR Corporation will develop, each week will be able to produce 10,000.The intellectualized sensor is one kind of belt microprocessor sensor, is achievement which the microcomputer and the sensor unifies, it has at the same time the examination, the judgment and the information processing function, compares with the traditional sensor has very many characteristics:Has the judgment and the information processing function, can carry on the revision,the error to the observed value compensates, thus enhancement measuring accuracy; May realize the multi-sensor multi parameters survey; Has from the diagnosis and from the calibration function, enhances the reliability; The survey data may deposit and withdraw, easy to operate; Has the data communication interface, can and the microcomputer direct communication.The sensor, the signal adjustment electric circuit, the monolithic integrated circuit integration forms ultra large-scale integrated on a chip the senior intelligence sensor. American HONY WELL Corporation ST-3000 intelligence sensor, the chip size only then has 3×4×2mm3, uses the semiconductor craft, makes CPU, EPROM, the static pressure, the differential pressure, the temperature on the identical chip and so on three kind of sensitive units.The intellectualized sensor research and the development, US is at the leading position. American Space Agency when development spaceship called this kind of sensor for the clever sensor (Smart Sensor), on the spaceship this kind of sensor is extremely important. Our country in this aspect research and development also very backward mainly is because our country semiconductor integrated circuit technological level is limited.The sensor’s development is changing day after day since especially the 80's humanities have entered into the high industrialization the information age, sensor techno-logy to renewal, higher technological development. US, Japan and so on developed country sensor technological development quickest, our country because the foundation is weak, the sensor technology compares with these developed countries has the big disparity. Therefore, we should enlarge to the sensor engineering research, the development investment, causes our country sensor technology and the foreign disparity reduces, promotes our country instrument measuring appliance industry and from the technical development.——From《Sensor Technology Handbook》,Jon Wilson,Newnes。

相关文档
最新文档