宁波市2016年中考数学试卷含答案解析
重磅2016年宁波市中考数学命题意图、试题及参考答案
重磅2016年宁波市中考数学命题意图、试题及参考答案2016年宁波市中考数学命题意图1从考试的功能出发思考命题的导向初中毕业生学业考试是全面检测学生在初中阶段数学学习水平最权威的测试,也为普通高中的招生提供了客观的依据。
虽然随着新课程改革的进一步深入,对学生数学学习的评价已从单一转向多元,注重过程评价与结果评价相结合,定性与定量相结合,但“考试”作为一种评价方式其重要性仍然不可替代,实施的效果直接影响到一线的教学,关系到新课程改革能否深入推进。
而考试能否科学全面地评价学生,关键之处就在于能否根据考试的功能编制出符合新课程理念、基于课标和着眼于学生未来发展的试题。
比如在编制压轴题时,为有效地遏制题海战术,减轻学生学业负担,我们借助特殊平行四边形的旋转,呈现角与角、边与边之间的变与不变的辨证关系,实现边与角、未知向已知的转化,着重考查学生综合应用所学知识解决问题的能力和锲而不舍的研究精神。
从整卷来看,无论是题材、结构还是问题的设置都努力体现数学的思维导向,关注试题的有效性、公平性和深刻性。
2从数学的本质出发架构命题的方向M·克莱因认为:“在最广泛的意义上说,数学是一种精神,一种理性的精神,正是这种精神,使得人类的思维运用到最完善的程度。
亦正是这种精神,试图决定性地影响人类的生活;尽力去探求和确立已经获得知识的最深刻和最完善的内涵。
”数学学科的最突出的特点就是严谨和理性,思维的严谨性、深刻性成为考查的重点之一。
而过程性学习正是考查严谨与理性的载体。
为体现过程性学习的理念,我们设置了新定义型的探索性试题。
如第25题新定义试题,又是课题学习型的一个创新型试题,它清晰地展示了这一类学习的研究模式:定义—问题—推理—探究—应用。
同时原创题更好地体现了命题的公平性原则,问题的设置有利于不同层次学生的发挥,着重考查学生数学素养和潜能,彰显新课标中“由知识立意向能力立意过渡”的要求,是坚持学生“可持续发展”理念的体现。
浙江省宁波市 2016年中考数学真题试卷附解析
2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 . (2016·浙江宁波)6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(2016·浙江宁波)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.(2016·浙江宁波)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2016·浙江宁波)使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.(2016·浙江宁波)如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.(2016·浙江宁波)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(2016·浙江宁波)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.(2016·浙江宁波)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.(2016·浙江宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.(2016·浙江宁波)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(2016·浙江宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.(2016·浙江宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.(2016·浙江宁波)实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.(2016·浙江宁波)分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.(2016·浙江宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.(2016·浙江宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m ).∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.(2016·浙江宁波)如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.(2016·浙江宁波)如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.(2016·浙江宁波)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.(2016·浙江宁波)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.(2016·浙江宁波)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.(2016·浙江宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.(2016·浙江宁波)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.(2016·浙江宁波)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()。
2016年浙江省宁波市中考数学试卷
2016年浙江省宁波市中考数学试卷一、选择题(每小题4分,满分48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)6的相反数是()A.﹣6B.C.D.62.(4分)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3C.(a3)2=a5D.a•a2=a3 3.(4分)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.(4分)使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥15.(4分)如图所示的几何体的主视图为()A.B.C.D.6.(4分)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.(4分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm8.(4分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.(4分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2 10.(4分)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2B.a C.a=1D.a11.(4分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题(每小题4分,满分24分)13.(4分)实数﹣27的立方根是.14.(4分)分解因式:x2﹣xy=.15.(4分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.(4分)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.(4分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.(4分)如图,点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.(6分)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.(8分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.(8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.(10分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.23.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.(14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC 的顶点B,C都在第一象限,tan∠AOC,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形F ADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,满分48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)6的相反数是()A.﹣6B.C.D.6【解答】解:6的相反数是﹣6.故选:A.2.(4分)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3C.(a3)2=a5D.a•a2=a3【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选:D.3.(4分)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.4.(4分)使二次根式有意义的x的取值范围是()A.x≠1B.x>1C.x≤1D.x≥1【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.5.(4分)如图所示的几何体的主视图为()A.B.C.D.【解答】解:如图所示:几何体的主视图为:.故选:B.6.(4分)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6.故选:C.7.(4分)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cmC.170cm,165cm D.170cm,170cm【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选:B.8.(4分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选:B.9.(4分)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.10.(4分)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2B.a C.a=1D.a【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选:A.11.(4分)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选:D.12.(4分)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2(a+c)(a﹣c)a2c2,∴S2=S1S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选:A.二、填空题(每小题4分,满分24分)13.(4分)实数﹣27的立方根是﹣3.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.14.(4分)分解因式:x2﹣xy=x(x﹣y).【解答】解:x2﹣xy=x(x﹣y).15.(4分)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.16.(4分)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为101m(结果保留根号).【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=101(m).∴旗杆高BC为101m.故答案为:101.17.(4分)如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD•π• π .故答案为:.18.(4分)如图,点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k,又∵点B(b,)在y上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y(x>0)图象上一点,连结OA,交函数y(x>0)的图象于点B,∴,∴,∴,∴S△ABC=6,故答案为:6.三、解答题(本大题有8小题,满分78分)19.(6分)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.20.(8分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.21.(8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600(人).即全校选择体育类的学生有560人.22.(10分)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时P A+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当P A+PC的值最小时,点P的坐标为:(1,2).23.(10分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.24.(10分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B 种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴,设BD=x,∴()2=x(x+2),∵x>0,∴x1,∵△BCD∽△BAC,∴,∴CD2.26.(14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC 的顶点B,C都在第一象限,tan∠AOC,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形F ADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC,∴tan∠BAH.又∵在直角△BAH中,AB=5,∴BH AB=4,AH AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC,OA=5,∴AM OA=4,OM OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,∠∠°,∴△AOM≌△AFN(AAS),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA,∴∠OGA=∠ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴,∴GQ4.∵tan∠AOC,∴OQ,∴G(,).。
浙江省宁波市镇海区2016年中考数学一模试卷含解析
浙江省宁波市镇海区2016年中考数学一模试卷一、选择题1.﹣(﹣2)的相反数是()A. B.2 C.﹣2 D.﹣2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5D.2.1×10﹣53.下列汽车标志中国,是中心对称图形但不是轴对称图形的是()A. B. C. D.4.将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A.文B.明C.民D.主5.如图,直线y=与x、y轴分别交于A、B两点,则cos∠BAO的值是()A. B. C. D.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.7.计算(﹣3x2)3的结果是()A.9x5B.﹣9x5C.27x6D.﹣27x68.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在9.毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34 B.35 C.36 D.3710.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为()A.5:3 B.3:2 C.10:7 D.8:511.如图,在△ABC中,DE∥BC,且S△ADE:S△CDE=1:3,则S△ADE:S△DBC等于()A.1:5 B.1:12 C.1:8 D.1:912.如图,在△ABC中,AB=AC,O是线段AB的中点,线段OC与以AB为直径的⊙O交于点D,射线BD交AC于点E,∠BAC=90°,那么下列等式成立的是()A.BD=BC B.AD=OD C.AD=CD D.AE=CD二、填空题13.函数的自变量的取值范围是______.14.已知关于x的一元二次方程x2﹣2x﹣k=0有实数根,则k的取值范围是______.15.如图,在△ABC中,AB=10,AC=8,点D在边AB上,若∠ACD=∠B,则AD的长为______.16.数据3,6,7,4,x的平均数是5,则这组数据的中位数是______.17.已知正方形ABCD,正方形CEFG,正方形PQFH如图放置,且正方形CEFG的边长为4,A、G、P三点在同一条直线上,连接AE、EP,那么△AEP的面积是______.18.如图,五边形DEFGH是边长为2的正五边形,⊙O是正五边形DEFGH的外接圆,过点D 作⊙D的切线,与GH、FE的延长线交分别于点B和C,延长HG、EF相交于点A,那么AB的长度是______.三、解答题(本大题有8小题,第19题10分,第20、21题8分,第22题7分,第23题8分,第24题11分,第25题12分,第26题14分,共78分)19.(10分)(2016•镇海区一模)(1)计算:﹣12016﹣32÷(﹣3)+(﹣)0•sin60°﹣;(2)已知关于x的方程=2有增根,求m的值.20.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=20米,AE=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.21.近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市2001~2004年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2004年游客总人数为______万人次,旅游业总收入为______万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是______年,这一年比上一年增长的百分率为______(精确到0.1%);(3)2004年的游客中,国内游客为1200万人次,其余为海外游客.据统计,国内游客的人均消费为700元,问海外游客的人均消费为多少元?(注:旅游收入=游客人数×游客的人均消费)22.已知,如图等边三角形ABC和正方形BDEC的边长均为2,⊙O经过点A,D,E三点.求:⊙O的半径.23.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?24.(11分)(2016•镇海区一模)“三等分角”是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实这个问题无解,数学家普斯借助函数给出一种“三等分角”的方法.探究如图1,已知:矩形PQRM的顶点P、R都在函数y=(x>0)的图象上,试证明:点Q比在直线OM上;应用如图2,将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上,边OA与函数y=(x>0)的图象交于点P,以P为原心,以2OP位半径作弧交图象于点R,分别过点P和R作x轴,y 轴的平行线,两直线交于点M、点Q,连接OM,则∠MOB=,请你用所学的知识证明:∠MOB=.25.(12分)(2016•镇海区一模)我们把:“有一组邻角相等的凸四边形”叫做“等邻角四边形”.(1)任意写出你所学过的特殊四边形中是“等邻角四边形”的一种图形的名称;(2)在探究“等邻角四边形”性质时:①小明画了一个“等邻角四边形”ABCD(如图1),其中∠A=∠B,AD=BC,此时他发现AB ∥DC,请你证明此结论;②由此小明猜想:“对于任意等邻角四边形,当一组对边相等时,另一组对边就平行”,请你直接判断这个命题是真命题还是假命题;(3)已知:在“等邻角四边形”ABCD中,∠A=90°,∠C=60°,AB=6,BC=10,请画出相应图形,并直接写出CD的长.26.(14分)(2016•镇海区一模)如图,抛物线y=ax2+bx+c经过点A(5,0),C(0,4),过C作CD∥x轴交抛物线于D,连结BC、AD两个动点P、Q分别从A、B两点同时出发,都以每秒1个单位长度的速度运动,其中,点P沿着线段AB向B点运动,点Q沿着折线B→C→D 的路线向D点运动,设这个两个动点运动的时间为t(秒)(0<t<7),△PQB的面积记为S.(1)求这条抛物线的函数关系式;(2)求S与t的函数关系式;(3)当t为何值时,S有最大值,最大值是多少?(4)是否存在这样的t值,使得△PQB是直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.2016年浙江省宁波市镇海区中考数学一模试卷参考答案与试题解析一、选择题1.﹣(﹣2)的相反数是()A. B.2 C.﹣2 D.﹣【考点】相反数.【分析】根据只有符号不同的两个数为相反数,可得答案.【解答】解:﹣(﹣2)=2,2的相反数是﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5D.2.1×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;故选:D【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列汽车标志中国,是中心对称图形但不是轴对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、圆是轴对称图形,也是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.将“富强、民主、文明”六个字分别写在一个正方体的六个面上,正方体的平面展开图如图所示,那么在这个正方体中,和“强”相对的字是()A.文B.明C.民D.主【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“强”与面“文”相对,面“富”与面“主”相对,“民”与面“明”相对.故选A.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图,直线y=与x、y轴分别交于A、B两点,则cos∠BAO的值是()A. B. C. D.【考点】锐角三角函数的定义;一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征求出点A、B的坐标,得到OA、OB的长,根据勾股定理求出AB,根据余弦的定义解答即可.【解答】解:当x=0时,y=3,当y=0时,x=﹣4,∴直线y=与x、y轴的交点A的坐标(﹣4,0)、B(0,3),∴OA=4,OB=3,由勾股定理得,AB=5,则cos∠BAO==,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握在直角三角形中,一个锐角的对边比斜边是这个角的正弦,邻边比斜边是这个角的余弦,对边比邻边是这个角的正切是解题的关键.6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是: =.故答案为:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.计算(﹣3x2)3的结果是()A.9x5B.﹣9x5C.27x6D.﹣27x6【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出答案.【解答】解:(﹣3x2)3=﹣27x6.故选:D.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.8.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在【考点】一元一次不等式组的整数解.【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.毕业典礼后,九年级(1)班有若干人,若没人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190张,九年级(1)班人数为()A.34 B.35 C.36 D.37【考点】一元二次方程的应用.【分析】设九年级(1)班人数是x人,则每个人要送其他(x﹣1)张贺卡,则共有x(x﹣1)张贺卡,等于1190张,由此可列方程.【解答】解:设九年级(1)班人数是x人,则根据题意可列方程为:(x﹣1)x=1190,解得:x1=35,x2=﹣34(舍去).故选:B.【点评】本题考查的是一元二次方程在实际生活中的应用,正确找准等量关系列方程即可,比较简单.10.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为()A.5:3 B.3:2 C.10:7 D.8:5【考点】正方形的性质.【分析】将正方形IQKJ平移使左边与大正方形左边重合(红色),设右上角未被盖住部分的面积为x平方厘米,列出方程求出x,然后求出正方形边长即可.【解答】解:将正方形IQKJ平移使左边与大正方形左边重合(红色),三个正方形覆盖的总面积不变,这时,大正方形被分成四个部分,蓝色正方形面积为20平方厘米,红、黄两块显露的矩形面积相等,其面积和是44﹣20=24平方厘米,所以红黄两矩形面积均为12平方厘米,设右上角未被盖住部分的面积为x平方厘米(如图)则12:20=x:1220x=12×1220x=144x=7.2因此大正方形的面积为44+7.2=51.2(平方厘米),所以大正方形ABCD边长为,正方形BEFG的边长为,所以大正方形ABCD和小正方形BEFG的边长之比为==1.6=.故选D.【点评】本题考查正方形的性质、解题的关键是通过平移三个正方形覆盖的总面积不变,设未知数列出方程解决问题,学会把不规则图形变成规则图形解决,属于中考常考题型.11.如图,在△ABC中,DE∥BC,且S△ADE:S△CDE=1:3,则S△ADE:S△DBC等于()A.1:5 B.1:12 C.1:8 D.1:9【考点】相似三角形的判定与性质.【分析】根据等高的三角形的面积比等于对应的边之比得出AE:EC=1:4,根据平行线分线段成比例定理推出==,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ADE的边AE上的高和△CDE的边CE上的高相等,∵S△AD E:S△CDE=1:3,∴=,∵DE∥BC,∴==,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,设S△ADE=k,则S△CDE=3k,S△ABC=16k,∴S△BCD=S△ABC﹣S△ADE﹣S△CDE=12k,∴S△ADE:S△DBC=1:12.故选B.【点评】本题考查了平行线分线段成比例定理和三角形的面积公式的应用,关键是求出AE:EC的比和得出AD:DB=AE:EC.12.如图,在△ABC中,AB=AC,O是线段AB的中点,线段OC与以AB为直径的⊙O交于点D,射线BD交AC于点E,∠BAC=90°,那么下列等式成立的是()A.BD=BC B.AD=OD C.AD=CD D.AE=CD【考点】圆的认识.【分析】设⊙O的半径为a,则AB=2a,AC=2a,根据勾股定理得到OC=,求得CD=,作DM⊥AC于点M,DN⊥AB于点N,根据相似三角形的性质得到=,得到DN=a,ON=a,于是得到BN=a,求得AE=,即可得到结论.【解答】解:设⊙O的半径为a,则AB=2a,AC=2a,∵∠OAC=90°,∴OC=,∵OD=a,∴CD=,作DM⊥AC于点M,DN⊥AB于点N,∵∠BAC=90°,∴DN∥AC,∴△ODN∽△OAC,∴=,∴DN=a,ON=a,∴BN=a,∵△BDN∽△BAE,∴,∴AE=,∴CD=AE,故选D.【点评】本题考查了圆的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线构造相似三角形是解题的关键.二、填空题13.函数的自变量的取值范围是x≥1且x≠2 .【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故答案为x≥1且x≠2.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.已知关于x的一元二次方程x2﹣2x﹣k=0有实数根,则k的取值范围是k≥﹣1 .【考点】根的判别式.【分析】由方程有实数根可知b2﹣4ac≥0,套入数据得出关于k的一元一次不等式,解不等式即可得出结论.【解答】解:由已知得:b2﹣4ac=(﹣2)2﹣4(﹣k)=4k+4≥0,解得:k≥﹣1.故答案为:k≥﹣1.【点评】本题考查了根的判别式,解题的关键是得出关于k的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出方程(方程组、或不等式)是关键.15.如图,在△ABC中,AB=10,AC=8,点D在边AB上,若∠ACD=∠B,则AD的长为 6.4 .【考点】相似三角形的判定与性质.【分析】由∠A=∠A,∠ACD=∠B,得到△ABC∽△ACD,根据相似三角形的性质得到对应边成比例,代入数据即可得到结果.【解答】解:∵∠A=∠A,∠ACD=∠B,∴△ABC∽△ACD,∴,即,解得:AD=6.4.故答案为:6.4.【点评】本题考查了相似三角形的性质和判定的应用,注意:①相似三角形的对应边的比相等,②有两角对应相等的两三角形相似.16.数据3,6,7,4,x的平均数是5,则这组数据的中位数是 5 .【考点】中位数.【分析】根据平均数的计算公式先求出x的值,再根据中位数的定义进行求解即可.【解答】解:∵数据3,6,7,4,x的平均数是5,∴(3+6+7+4+x)÷5=5,∴x=5,把这些数据从小到大排列为:3,4,5,6,7,最中间的数是5,则这组数据的中位数是5;故答案为:5.【点评】此题考查了中位数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.17.已知正方形ABCD,正方形CEFG,正方形PQFH如图放置,且正方形CEFG的边长为4,A、G、P三点在同一条直线上,连接AE、EP,那么△AEP的面积是16 .【考点】正方形的性质.【分析】连接AC、GE、PF.由AC∥GE∥PF,得S△EGA=S△EGC,S△EGP=S△EGF,由此即可解决问题.【解答】解:如图连接AC、GE、PF.∵四边形ABCD、四边形EFGC、四边形PQFH是正方形,∴∠ACD=∠CGE=45°,∠GEF=∠EFP=45°,∴AC∥GE∥PF,∴S△EGA=S△EGC,S△EGP=S△EGF,∴S△AEP=S△EGA+S△EGP=S△EGC+S△EG F=S正方形EFGC=16.故答案为16.【点评】本题考查正方形的性质、平行线的性质等知识,解题的关键是利用等底同高的两个三角形面积相等解决问题,属于中考常考题型.18.如图,五边形DEFGH是边长为2的正五边形,⊙O是正五边形DEFGH的外接圆,过点D 作⊙D的切线,与GH、FE的延长线交分别于点B和C,延长HG、EF相交于点A,那么AB的长度是2+2 .【考点】正多边形和圆;三角形的外接圆与外心;切线的性质.【分析】先证明AG=AF,由SSS得到△OHD与△OED全等,得出∠ODH=∠ODE=54°,证出∠B=∠C=72°,利用SSS得到△GBD与△AGF全等,得出GB=AG,即G为AB的中点,求出HD,GH,BD的长,设GB=xcm,由△DHB∽△GBD,利用相似三角形对应边成比例列出比例式,求出x的值,即可得出结果.【解答】解:∵五边形DEFGH是正五边形,∴∠HDE=∠DEF=∠EFG=∠FGH=∠GHD=108°,∴∠BHD=∠CED=∠AGF=∠AFG=72°,∴AG=AF,同理:AF=CF,同理:AF=CF,∴GF=BC,∴△AGF是等腰三角形;连接DG,如图所示:∵BC是⊙O的切线,∴OD⊥BC,∴∠BFO=∠CFO=90°,在△OHD与△OED中,,∴△OHD≌△OED(SSS),∴∠ODH=∠ODE=54°,∴∠HDB=∠EDC=36°,∴∠B=∠C=72°,∴BD=DH=DE=DC=GF,在△GBD和△AGF中,,∴△GBD≌△AGF(SSS),∴GB=AG,∴点G是线段AB的中点;∵五边形DEFGH是正五边形,∴BD=DH=GH=2,设GB=x,∵∠BDH=∠BGD,∠B=∠B,∴△DHB∽△GBD,∴,即=,整理得:x2﹣2x﹣4=0,解得:x=1±(负值舍去),∴AG=GB=1+,∴AB=2+2;故答案为:2+2.【点评】此题考查了正五边形的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定,切线的性质;熟练掌握正五边形的性质,证明三角形全等和三角形相似是解决问题的关键.三、解答题(本大题有8小题,第19题10分,第20、21题8分,第22题7分,第23题8分,第24题11分,第25题12分,第26题14分,共78分)19.(10分)(2016•镇海区一模)(1)计算:﹣12016﹣32÷(﹣3)+(﹣)0•sin60°﹣;(2)已知关于x的方程=2有增根,求m的值.【考点】实数的运算;分式方程的增根;特殊角的三角函数值.【分析】(1)原式利用乘方的意义,零指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)分式方程去分母转化为整式方程,由分式方程有增根,求出x的值,确定出m的值即可.【解答】解:(1)原式=﹣1+3+﹣3=2﹣;(2)去分母得:2﹣x﹣m=2x﹣4,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:﹣m=0,解得:m=0.【点评】此题考查了实数的运算,以及分式方程的增根,熟练掌握运算法则是解本题的关键.20.如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=20米,AE=30米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:(1)过B作BG⊥DE于G,Rt△ABH中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=10米;(2)∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=10,AH=10米,∴BG=AH+AE=(10+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=10+30.Rt△ADE中,∠DAE=60°,AE=30米,∴DE=AE=30米.∴CD=CG+GE﹣DE=10+30+10﹣30=40﹣20(米).答:宣传牌CD高约(40﹣20)米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.21.近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假.下面两图分别反映了该市2001~2004年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:(1)2004年游客总人数为万人次,旅游业总收入为万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是年,这一年比上一年增长的百分率为(精确到0.1%);(3)2004年的游客中,国内游客为1200万人次,其余为海外游客.据统计,国内游客的人均消费为700元,问海外游客的人均消费为多少元?(注:旅游收入=游客人数×游客的人均消费)【考点】条形统计图;折线统计图.【分析】由统计图可知:(1)2004年游客总人数为1225万人次,旅游业总收入为940000万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是2004年,这一年比上一年增长的百分率为(940000﹣665000)÷665000=41.4%;(3)设海外游客的人均消费为x元,根据题意,1200×700+(1225﹣1200)x=940000解得x的值即可.【解答】解:(1)2004年游客总人数为1225万人次,旅游业总收入为940000万元;(2)在2002年,2003年,2004年这三年中,旅游业总收入增长幅度最大的是2004年,这一年比上一年增长的百分率为(940000﹣665000)÷665000=41.4%;(3)设海外游客的人均消费为x元,根据题意得:1200×700+(1225﹣1200)x=940000解这个方程,得x=4000.答:海外游客的人均消费为4000元.【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.22.已知,如图等边三角形ABC和正方形BDEC的边长均为2,⊙O经过点A,D,E三点.求:⊙O的半径.【考点】垂径定理;等边三角形的性质;正方形的性质.【分析】作AF⊥BC,垂足为F,并延长交DE于H点.根据其轴对称性,则圆心必定在AH 上.设其圆心是O,连接OD,OE.根据等边三角形的性质和正方形的性质,可以求得AH,DH的长,设圆的半径是r.在直角三角形BOH中,根据勾股定理列方程求解.【解答】解:如图2,作AF⊥BC,垂足为F,并延长AF交DE于H点.∵△ABC为等边三角形,∴AF垂直平分BC,∵四边形BDEC为正方形,∴AH垂直平分正方形的边DE.又∵DE是圆的弦,∴AH必过圆心,记圆心为O点,并设⊙O的半径为r.在Rt△ABF中,∵∠BAF=30°,∴AF=AB•cos30°=2×.∴OH=AF+FH﹣OA=+2﹣r.在Rt△ODH中,OH2+DH2=OD2.∴(2+﹣r)2+12=r2.解得r=2.∴该圆的半径长为2.【点评】本题考查了垂径定理,等边三角形的性质、正方形的性质以及勾股定理.该题的综合性比较强,需要学生对所学的知识有一个比较系统的掌握.23.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?【考点】二元一次方程组的应用.【分析】设A服装成本为x元,B服装成本y元,由题意得等量关系:①成本共500元;②共获利130元,根据等量关系列出方程组,再解即可.【解答】解:设A服装成本为x元,B服装成本y元,由题意得:,解得:,答:A服装成本为300元,B服装成本200元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.24.(11分)(2016•镇海区一模)“三等分角”是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实这个问题无解,数学家普斯借助函数给出一种“三等分角”的方法.探究如图1,已知:矩形PQRM的顶点P、R都在函数y=(x>0)的图象上,试证明:点Q比在直线OM上;应用如图2,将给定的锐角∠AOB置于直角坐标系中,边OB在x轴上,边OA与函数y=(x>0)的图象交于点P,以P为原心,以2OP位半径作弧交图象于点R,分别过点P和R作x轴,y 轴的平行线,两直线交于点M、点Q,连接OM,则∠MOB=,请你用所学的知识证明:∠MOB=.【考点】反比例函数综合题.【分析】(1)延长PQ交x轴于点H,设点P(a,),R(b,),则Q(a,),M(b,),再由tan∠QOH=tan∠MOB即可得出结论;(2)根据PR=2OP,PR=2PS,得出OP=PS,∠PSO=∠POS.再由∠PSO=2∠PMO,∠PMO=∠MOB 可得出结论.【解答】解:(1)如图1,延长PQ交x轴于点H,设点P(a,),R(b,),∵四边形PQRM是矩形,∴Q(a,),M(b,).∵tan∠QOH==,tan∠MOB==,∴∠QOH=∠MOB,即点Q在直线OM上;(2)如图2,∵PR=2OP,PR=2PS,∴OP=PS,∴∠PSO=∠POS.∵∠PSO=2∠PMO,∠PMO=∠MOB,∴∠MOB=∠AOB.【点评】本题考查的是反比例函数综合题,熟知反比例函数图象上点的坐标特点及矩形的性质是解答此题的关键.25.(12分)(2016•镇海区一模)我们把:“有一组邻角相等的凸四边形”叫做“等邻角四边形”.(1)任意写出你所学过的特殊四边形中是“等邻角四边形”的一种图形的名称;(2)在探究“等邻角四边形”性质时:①小明画了一个“等邻角四边形”ABCD(如图1),其中∠A=∠B,AD=BC,此时他发现AB ∥DC,请你证明此结论;②由此小明猜想:“对于任意等邻角四边形,当一组对边相等时,另一组对边就平行”,请你直接判断这个命题是真命题还是假命题;(3)已知:在“等邻角四边形”ABCD中,∠A=90°,∠C=60°,AB=6,BC=10,请画出相应图形,并直接写出CD的长.【考点】四边形综合题.【分析】(1)根据等邻边四边形的定义即可,(2)①作出辅助线,判断出△DFA≌△CEB,再判断出四边形DFEC是平行四边形,即可;②举出反例来说明;(3)分四种情况画图计算即可.【解答】解(1)矩形,∵矩形的四个角都是直角,根据“等邻角四边形”的定义,得到矩形是“等邻角四边形”;(2)①如图,。
浙江省宁波市2016年中考数学试题(附解析)
浙江省宁波市2016年中考数学试题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1-x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm,165cmB. 165cm,170cmC. 170cm,165cmD. 170cm,170cm【答案】B.【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B.考点:中位数;众数.8. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为A. 40°B. 50°C. 60°D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm2【答案】C.【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是 A. 2-=a B. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D.考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分) 13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOEBODS S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOC BOD ,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S.考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
2016年宁波市海曙区中考数学一模试卷含答案解析(word版)
浙江省宁波市海曙区2016年中考数学一模试卷(解析版)(满分120分)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一个符合题目要求)1.实数﹣2016的绝对值是()A.2016 B.﹣2016 C.±2016 D.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2016的绝对值是|﹣2016|=2016,故选:A.【点评】本题考查了实数的性质,利用了负数的绝对值它的相反数是解题关键.2.下列各式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念进行判断即可.【解答】解:被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;=2,不属于最简二次根式,C错误;属于最简二次根式,D正确;故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是()A.a3+a3=a6B.a2a2=a4C.4=16a4,故原题计算错误;D、a6÷a3=a3,故原题计算错误;故选:B.【点评】此题主要考查了同底数幂的除法、乘法、积的乘方,以及合并同类项,关键是掌握各计算法则.5.已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据三角形三边关系确定出第三条边长的范围,表示在数轴上即可.【解答】解:已知三角形的两边长分别为3,4,则第三边长的取值范围为4﹣3<x<4+3,即1<x<7,表示在数轴上为:故选B【点评】此题考查了在数轴上表示不等式的解集,以及三角形三边关系,求出第三边的范围是解本题的关键.6.下表为宁波市2016年4月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是()温度(℃)11 13 14 15 16天数 1 5 2 1 1A.14℃,14℃ B.14℃,13℃ C.13℃,13℃ D.13℃,14℃【分析】利用众数的定义可以确定众数在第二组,由于10天天气,根据表格数据可以知道中位数是按从小到大排序,第5个与第6个数的平均数.【解答】解:∵13出现了5次,它的次数最多,∴众数为13.∵共10天天气,∴根据表格数据可以知道中位数=(13+13)÷2=13,即中位数为13.故选C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.7.如图,将长方体表面展开,下列选项中错误的是()A.B.C.D.【分析】长方体的表面展开图的特点,有四个长方形的侧面和上下两个底面组成.【解答】解:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C.【点评】本题考查的是长方体的展开图,关键是要注意上下底面的长和宽是否可以围成长方体.8.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为()A.3:5:4 B.1:3:2 C.1:4:2 D.3:6:5【分析】过A点作AE⊥BE,交于点E,连接MC、ND、BE,根据已知条件得出MC∥ND∥BE,再根据平行线分线段成比例即可得出答案.【解答】解:过A点作AE⊥BE,交于点E,连接MC、ND、BE,∵是一个正方形,∴MC∥ND∥BE,∴AM:MN:NB=AC:CD:DE=1:3:2,∴AM:MN:NB=1:3:2.故选:B.【点评】此题考查了平行线分线段成比例,作出辅助线,找准对应关系是解决本题的关键.9.如图,△ABC 中,BA=BC ,BD 是三角形的角平分线,DE ∥BC 交AB 于E ,下列结论:①∠1=∠3;②DE=AB ;③S △ADE =S △ABC .正确的有( )A .0个B .1个C .2个D .3个【分析】根据等腰三角形三线合一可得∠1=∠2、BD ⊥AC 且AD=CD ,由平行线性质及相似三角形判定得∠2=∠3、△ADE ∽△ACB ,继而可判断①②③.【解答】解:∵BA=BC ,BD 平分∠ABC ,∴∠1=∠2,BD ⊥AC ,且AD=CD ,∵DE ∥BC ,∴∠2=∠3,△ADE ∽△ACB ,∴∠1=∠3,故①正确;===,即DE=BC ,故②正确;由△ADE ∽△ACB ,且=可得=()2=, 即S △ADE =S △ABC ,故③正确;故选:D .【点评】本题主要考查等腰三角形的性质、平行线的性质及相似三角形的判定与性质,熟练掌握等腰三角形三线合一与相似三角形的判定与性质是解题的关键.10.定义:将一个图形L 沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L 在该方向的拖影.如图,四边形ABB ′A ′是线段AB 水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是( )A .B .C .D .【分析】将所给图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形.【解答】解:只有三角形的拖影是五边形,故选A【点评】本题考查了平移变换的作图知识,做题的关键是掌握平移变换的定义和性质,作各个关键点的对应点.11.如图,半径为1cm的⊙O中,AB为⊙O内接正九边形的一边,点C、D分别在优弧与劣弧上.则下列结论:①S扇形AOB=πcm2;②;③∠ACB=20°;④∠ADB=140°.错误的有()A.0个B.1个C.2个D.3个【分析】由正九边形的性质求出中心角的度数,再由扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质即可得出①②③正确,④错误,即可得出结果.【解答】解:∵AB为⊙O内接正九边形的一边,∴∠AOB==40°,∴S扇形AOB==π(cm2),的长==π(cm);∠ACB=∠AOB=20°;∴①②③正确;∠ADB=180°﹣20°=160°;∴④错误;错误的有1个,故选:B.【点评】本题考查了正九边形的性质、扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质;求出正九边形的性质是解决问题的关键.12.如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20 C.24 D.28【分析】根据图形可得,△CPF与△CPD的面积相等,△APE与△APG的面积相等,四边形BCFG的面积为8,点C(3,4),可以求得点D的坐标,从而可以求得k的值.【解答】解:由图可得,S▱ABCD,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为8,∴S▱CDEO=S▱BCFG=8,又∵点C的纵坐标是4,则▱CDOE的高是4,∴OE=CD=,∴点D的横坐标是5,即点D的坐标是(5,4),∴4=,解得k=20,故选B.【点评】本题考查反比例函数系数k的几何意义、平行四边形的性质,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(每小题4分,共24分)13.x的值为﹣1时,分式无意义.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由分式无意义,得x+1=0,解得x=﹣1,故答案为:﹣1.【点评】本题考查了分式有意义的条件,利用分母为零分式无意义得出方程是解题关键.14.正五边形的一个内角的度数是108°.【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【解答】解:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.【点评】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.15.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.【解答】解:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.【点评】此题主要考查了反比例函数图象上点的坐标特征,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.16.如图,已知△ABC是一个水平放置圆锥的主视图,AB=AC=5cm,,则圆锥的侧面积为15πcm2.【分析】利用三视图得到圆锥的母线长5cm,根据余弦函数的定义求出底面圆的半径,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算此圆锥的侧面积.【解答】解:圆锥底面圆的半径=5×=3(cm),所以此圆锥的侧面积=2π35=15π(cm2).故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.17.如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是2或4.【分析】如图过点G作MN⊥AB垂足为M,交CD于N,作GK⊥BC于K,先证明△HNG≌△FAE,得到AE=NG=2,ED=GM=4,再由△CGK∽△GBK得到=,GK=MB=CN=2,由△AEF∽△MFG,得到=,列出方程即可解决问题.【解答】解:如图过点G作MN⊥AB垂足为M,交CD于N,作GK⊥BC于K.∵四边形EFGH是矩形,∴GH=EF,GH∥EF,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD∥AB,∴∠NHG=∠AFE,在△HNG和△FAE中,,∴△HNG≌△FAE,∴AE=NG=2,ED=GM=4,∵四边形NGKC、四边形GMBK都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK∽△GBK,∴=,∴GK=MB=CN=2,∴DN=AM=AB﹣MB=6,∴四边形AMND是正方形,设AF=x,则FM=6﹣x,∵△AEF∽△MFG,∴=,∴=∴x2﹣6x+8=0,∴x=2或4.∴AF=2或4.故答案为2或4【点评】本题考查矩形的性质、全等三角形得到和性质、相似三角形的判定和性质,解题的关键是添加辅助线,构造全等三角形或相似三角形,学会转化的思想,把问题转化为方程去思考,属于中考常考题型.18.已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为22.【分析】根据抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,可知该抛物线顶点的纵坐标是﹣1,由A(m﹣1,n)和B(m+3,n),可得抛物线的对称轴和AB的长度,从而可以得到关于b,c的关系式,通过转化即可求得n的值,从而可以求得四边形AMNB的周长.【解答】解:y=2x2+bx+c=,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.【点评】本题考查二次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.先化简,后求值:,其中x=3.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式===,当x=3时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.【分析】(1)把a=1代入原方程,然后利用因式分解法解方程即可;(2)根据方程两个不相等的实数根,得到根的判别式△>0,列出a的不等式即可.【解答】解:(1)当a=1时,x2﹣5x+6=0,(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4(3a+3)>0,解得a<.【点评】本题主要考查了根的判别式的知识,解答本题的关键是熟练掌握根的判别式与根数量之间的关系,此题难度不大.21.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件√;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球×;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.【分析】(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.【解答】解:(1)甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件.√乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球.×故答案为:√;×;(2)不认同.画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P(摸出的球中有白球)=.故不认同.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的,请完成下列问题:(1)求本次抽取的学生人数;(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图;(3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?【分析】(1)根据漫画的人数和所占的百分比即可求出总人数;(2)先求出喜欢小说名著和童话故事的总人数,再根据喜欢小说名著的人数是喜欢童话的,分别求出喜欢小说的人数和喜欢童话的人数,从而补全统计图;(3)用全校的总人数乘以最喜欢“小说名著”的人数所占的百分比,即可得出答案.【解答】解:(1)根据题意得:9÷15%=60(人).答:本次抽取的学生人数是60人;(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),补图如下:(3)根据题意得:2100×=525(人).答:最喜欢“小说名著”的人数有525人.【点评】本题考查的是条形统计图和,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【分析】(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出BE=2,在RT△ABE中,利用锐角三角函数关系得出sin∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO=.【解答】(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴,∵OA=OB∴∠ABD=∠BAO,∴.【点评】此题主要考查了切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系,正确转化角度得出是解题关键.24.张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)首先求出y=0时,t的值,进而得出a的值;(3)根据汽车的耗油量以及剩余油量和加油量之间关系得出等式求出答案.【解答】解:(1)设加油前函数解析式为y=kt+b(k≠0),把(0,28)和(1,20)代入,得,解得:,故张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式为:y=﹣8t+28;(2)当y=0时,﹣8t+28=0,解得:t=,故a=﹣=3;(3)设途中加油x升,则28+x﹣34=8×,解得:x=46,答:张师傅途中加油46升.【点评】此题主要考查了一次函数的应用,正确求出一次函数解析式是解题关键.25.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是(5,3),(3,5);(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是+,+,2.【分析】(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(2)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.【解答】解:(1)①∵∠ABC=90,∴BD===,故答案为,②∵A(0,3),B(5,0),∴AB==6,设点P(m,n),A(0,0),∴OP==6,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3),,∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE AB=1,∴DE===,∴S准矩形ABCD=S△ADE+S梯形BCDE=DE×AE+(BC+DE)×BE=×+(2+)×1=+;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=BC=,∴DF===,∴S准矩形ABCD=S△DCF+S梯形ABFD=FC×DF+(AB+DF)×BF=××+(2+)×=+;③当AD=CD,如图3,连接AC中点和D并延长,连接BG,过B作BH⊥DG,∴BD= AC=4,∴AG=AC=2,∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt△DHB中,BH=1,BD=4,∴DH=,∴DM=DH﹣MH=﹣,∴S准矩形ABCD=S△DCF+S四边形AMCD=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为+,+,2.【点评】此题是四边形综合题,主要考查了新定义,勾股定理,梯形面积公式,对角线面积公式,三角形面积公式,分情况计算是解本题的难点.26.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【分析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=m2﹣m+2函数解析式,根据抛物线的特点确定出最小值.【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC ∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴CD=,∴BNmin==,∴BN1min=BN min=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴l AB:Y=x+1不妨设P(m,﹣(m﹣2)2),则E(m,m+1)∴PE=m2﹣m+2∴当m=1时,此时,PQ1最小,最小值为=,∴PQ1=PQ2=.【点评】此题是二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点,解本题的关键是判断出达到极值是的位置.。
浙江省宁波市海曙区2016届九年级中考一模试卷数学试题解析(解析版)
一、选择题(本大题共8个小题,每小题3分,共24分.)1.实数﹣2016的绝对值是()A.2016 B.﹣2016 C.±2016 D.1 2016【答案】A【解析】试题分析:﹣2016的绝对值是|﹣2016|=2016,故选:A.考点:实数的性质2. 下列各式中,属于最简二次根式的是()A B C D【答案】D【解析】被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;,不属于最简二次根式,C错误;D正确;故选:D.考点:最简二次根式的概念3. 人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【答案】B【解析】试题分析:将“两千万”用科学记数法表示为:2×107,故选:B考点:科学记数法的表示方法4. 下列运算正确的是()A.a3+a3=a6 B.a2a2=a4C.(2a)4=2a4 D、a6÷a3=a2【答案】B考点:同底数幂的乘法、同底数幂的除法、积的乘方5. 已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()【答案】B【解析】试题分析:已知三角形的两边长分别为3,4,则第三边长的取值范围为4﹣3<x<4+3,即1<x<7,表示在数轴上为:故选B考点:数轴上表示不等式的解集6. 下表为宁波市2016年4月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是()温度(℃)11 13 14 15 16天数 1 5 2 1 1A.14℃,14℃ B.14℃,13℃ C.13℃,13℃ D.13℃,14℃【答案】C【解析】试题分析:∵13出现了5次,它的次数最多,∴众数为13.∵共10天天气,∴根据表格数据可以知道中位数=(13+13)÷2=13,即中位数为13.故选C.考点:中位数和众数7. 如图,将长方体表面展开,下列选项中错误的是()【答案】C考点:长方体的展开图8. 如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为()A.3:5:4 B.1:3:2 C.1:4:2 D.3:6:5【答案】B【解析】试题分析:过A点作AE⊥BE,交于点E,连接MC、ND、BE,∵是一个正方形,∴MC∥ND∥BE,∴AM:MN:NB=AC:CD:DE=1:3:2,∴AM:MN:NB=1:3:2.故选:B.考点:平行线分线段成比例定理9. 如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=12 AB;③S△ADE=14S△ABC.正确的有()A.0个 B.1个 C.2个 D.3个【答案】D【解析】试题分析:∵BA=BC,BD 平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD ,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;12AD AE DE AC AB BC ===,即DE=12BC ,故②正确; 由△ADE∽△ACB,且AD AC =12可得S ADE S ABC △△=(AD AC )2=14, 即S △ADE =14S △ABC ,故③正确; 故选:D .考点:等腰三角形的性质、平行线的性质及相似三角形的判定与性质10. 定义:将一个图形L 沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L 在该方向的拖影.如图,四边形ABB′A′是线段AB 水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是( )【答案】A【解析】试题分析:只有三角形的拖影是五边形,故选A考点:平移变换的作图11. 如图,半径为1cm 的⊙O 中,AB 为⊙O 内接正九边形的一边,点C 、D 分别在优弧与劣弧上.则下列结论:①S 扇形AOB =19πcm 2;②29AB l π=;③∠ACB=20°;④∠ADB=140°.错误的有( )A.0个 B.1个 C.2个 D.3个【答案】B【解析】试题分析:∵AB为⊙O内接正九边形的一边,∴∠AOB=3609=40°,∴S扇形AOB=2401360π⨯=19π(cm2),AB的长=401180π⨯=29π(cm);∠ACB=12∠AOB=20°;∴①②③正确;∠ADB=180°﹣20°=160°;∴④错误;错误的有1个,故选:B.考点:正九边形的性质、扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质12. 如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数kyx=的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20 C.24 D.28【答案】B【解析】试题分析:由图可得,12S AOC S ABC==△△S▱ABCD,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S ▱OEPF =S ▱BGPD ,∵四边形BCFG 的面积为8,∴S ▱CDEO =S ▱BCFG =8,又∵点C 的纵坐标是4,则▱CDOE 的高是4, ∴OE=CD=824=, ∴点D 的横坐标是5,即点D 的坐标是(5,4), ∴4=5k ,解得k=20, 故选B .考点:反比例函数系数k 的几何意义、平行四边形的性质二、填空题(每小题4分,共24分)13. x 的值为 时,分式261x x -+无意义. 【答案】-1【解析】 试题分析:由分式261x x -+无意义,得 x+1=0,解得x=﹣1,故答案为:﹣1.考点:分式有意义的条件14. 正五边形的一个内角的度数是【答案】108°【解析】试题分析:∵正多边形的内角和公式为:(n ﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.考点:多边形的内角和计算公式15. 如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为 .【答案】5 12【解析】试题分析:∵P(12,a)在反比例函数60yx=图象上,∴a=6012=5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=5 12,故答案为:5 12.考点:反比例函数图象上点的坐标特征,锐角三角函数的定义及运用16. 如图,已知△ABC是一个水平放置圆锥的主视图,AB=AC=5cm,3cos5ACB=∠,则圆锥的侧面积为cm2.【答案】15π【解析】试题分析:圆锥底面圆的半径=5×35=3(cm),所以此圆锥的侧面积=122π35=15π(cm2).故答案为15π.考点:圆锥的计算17. 如图,矩形ABCD 中,AD=6,CD=6+E 为AD 上一点,且AE=2,点F ,H 分别在边AB ,CD 上,四边形EFGH 为矩形,点G 在矩形ABCD 的内部,则当△BGC 为直角三角形时,AF 的值是 .【答案】2或4【解析】试题分析:如图过点G 作MN⊥AB 垂足为M ,交CD 于N ,作GK⊥BC 于K .∵四边形EFGH 是矩形,∴GH=EF,GH∥EF,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD∥AB,∴∠NHG=∠AFE ,在△HNG 和△FAE 中,HNG FAE NHG AFE GH EF =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△HNG≌△FAE,∴AE=NG=2,ED=GM=4,∵四边形NGKC 、四边形GMBK 都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK∽△GBK, ∴CK GK GK BK=,,∴DN=AM=AB﹣MB=6,∴四边形AMND 是正方形,设AF=x ,则FM=6﹣x ,∵△AEF∽△MFG,∴AE AF MF MG=,∴264xx= -∴x2﹣6x+8=0,∴x=2或4.∴AF=2或4.故答案为2或4考点:矩形的性质、全等三角形得到和性质、相似三角形的判定和性质18. 已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.【答案】22【解析】试题分析:y=2x2+bx+c=22248b bx c⎛⎫++-⎪⎝⎭,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴218bc-=-,得218bc=-,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x=1312m mm-++=+=224b b-=-⨯,∴b=﹣4(m+1),∴[]224(1)188mbc-+=-==2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.y=2x2+bx+c=22248b bx c⎛⎫++-⎪⎝⎭,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴218bc-=-,得218bc=-,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x=1312m mm-++=+=224b b-=-⨯,∴b=﹣4(m+1),∴[]224(1)188mbc-+=-==2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.考点:二次函数的性质三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19. 先化简,后求值:2242()2244x xx x x x--⋅--++,其中x=3.【答案】1 5【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可试题解析:原式=22422(2)x x x x --⋅-+ =2(2)(2)22(2)x x x x x +--⋅-+ =22x x -+, 当x=3时,原式=15. 考点:分式的化简求值 20. 已知关于x 的方程x 2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a 的取值范围.【答案】(1)x 1=2,x 2=3(2)a <1312 【解析】试题分析:(1)把a=1代入原方程,然后利用因式分解法解方程即可;(2)根据方程两个不相等的实数根,得到根的判别式△>0,列出a 的不等式即可.试题解析:(1)当a=1时,x 2﹣5x+6=0,(x ﹣2)(x ﹣3)=0,∴x 1=2,x 2=3;(2)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4(3a+3)>0,解得a <1312. 考点:根的判别式21. 在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件 ;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球 ;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为12,你认同吗?请画树状图或列表计算说明.【答案】(1)√;×;(2)不认同;【解析】试题分析:(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.试题解析:摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球.×故答案为:√;×;(2)不认同.画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P(摸出的球中有白球)=21 32 .故不认同.考点:列表法或树状图法求概率22. 李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的57,请完成下列问题:(1)求本次抽取的学生人数;(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图;(3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?【答案】(1)60人(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×512=15(人),喜欢童话的人数是:36×712=21(人),(3)525人【解析】试题分析:(1)根据漫画的人数和所占的百分比即可求出总人数;(2)先求出喜欢小说名著和童话故事的总人数,再根据喜欢小说名著的人数是喜欢童话的57,分别求出喜欢小说的人数和喜欢童话的人数,从而补全统计图;(3)用全校的总人数乘以最喜欢“小说名著”的人数所占的百分比,即可得出答案.试题解析:(1)根据题意得:9÷15%=60(人).答:本次抽取的学生人数是60人;(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×512=15(人),喜欢童话的人数是:36×712=21(人),补图如下:(3)根据题意得:2100×1560=525(人).答:最喜欢“小说名著”的人数有525人.考点:条形统计图23. 如图,⊙O中,点A为BC中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若BC ,AB=6,求sin∠ABD的值.【答案】(1)AP是⊙O的切线(2【解析】试题分析:(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出RT△ABE中,利用锐角三角函数关系得出sin∠,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠试题解析:(1)证明:连结AO ,交BC 于点E .∵点A 是BC 的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP 是⊙O 的切线;(2)解:∵AO⊥BC,BC =,∴12BE BC == 又∵AB=6∴sin ∠BAO=BE AB =, ∵OA=OB ∴∠ABD=∠BAO,∴ sin ∠ABD=sin ∠BAO=BE AB =.考点:切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系24. 张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y (升)与行驶时间t (小时)之间的关系式;(2)求出a 的值;(3)求张师傅途中加油多少升?【答案】(1)y=﹣8t+28(2)a=3(3)46【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)首先求出y=0时,t的值,进而得出a的值;(3)根据汽车的耗油量以及剩余油量和加油量之间关系得出等式求出答案.试题解析:(1)设加油前函数解析式为y=kt+b(k≠0),把(0,28)和(1,20)代入,得2820 bk b=⎧⎨+=⎩,解得:828kb=-⎧⎨=⎩,故张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式为:y=﹣8t+28;(2)当y=0时,﹣8t+28=0,解得:t=72,故a=72﹣50100=3;(3)设途中加油x升,则28+x﹣34=8×500 100,解得:x=46,答:张师傅途中加油46升.考点:一次函数的应用25. 定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD= ;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是;;.【答案】(12)(5,3),(3,5)(3;【解析】试题分析:(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(2)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.试题解析:(1)①∵∠ABC=90,==,,②∵A(0,3),B(5,0),,设点P(m,n),A(0,0),=6,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3+∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE 12AB=1,==,∴S准矩形ABCD=S△ADE+S梯形BCDE=12DE×AE+12(BC+DE)×BE=1212(;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=12,==∴S 准矩形ABCD =S △DCF +S 梯形ABFD =12FC×DF+12(AB+DF )×BF=1212(③当AD=CD ,如图3,连接AC 中点和D 并延长,连接BG ,过B 作BH⊥DG, ∴BD=CD=AC=4, ∴AG=12AC=2, ∵AB=2,∴AB=AG,∵∠BAC=60°,∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,,,在Rt△DHB中,BH=1,BD=4,,∴S准矩形ABCD=S△DCF+S四边形AMCD=12BM×AB+12AC×DM=1212)考点:四边形综合题,主要考查了新定义,勾股定理,梯形面积公式,对角线面积公式,三角形面积公式26. 如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【答案】(1)y=﹣14(x﹣2)2(2)△ABC∽△N1BN2(3)16 5(4)7 2【解析】试题分析:(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=14m2﹣12m+2函数解析式,根据抛物线的特点确定出最小值.试题解析:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣1 4∴y=﹣14(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN 1=BN 2=BN ,∠N 1BD=∠NBD,∠NBC=∠N 2BC∴∠N 1BN 2=2∠DBC∵四边形ABCD 是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N 1BN 2,12AB BC BN BN = ∴△ABC∽△N 1BN 2(3)∵点N 是CD 上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD 时,BN 最短.∵C(2,0),D (0,﹣1),∴BNmin=BD CO CD ⨯= ∴BN 1min =BN min, ∵△ABC∽△N 1BN 2 ∴112AB AC BN N N =, N 1N 2min =165, (4)如图2,过点P 作PE⊥x 轴,交AB 于点E .∵∠PQA=∠BAC∴PQ 1∥AC∵菱形ABCD 中,C (2,0),D (0,﹣1)∴A(﹣2,0),B (0,1)∴l AB :Y=12x+1 不妨设P (m ,﹣14(m ﹣2)2),则E (m ,12 m+1) ∴PE=14m 2﹣12m+2 ∴当m=1时,min 74PE 此时,PQ 1最小,最小值为1tan PE EQ P ∠=72, ∴PQ 1=PQ 2=72. 考点:二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点。
宁波市中考数学试卷含答案解析(word版)
2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 .【考点】扇形面积的计算.【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。
浙江省宁波市北仑区2016届九年级中考一模试卷数学试题解析(解析版)
一、选择题(每小题4分,共48分.在每小题给出的四个选项中,只有一项符合题目要求)1.﹣2的相反数为()A.2 B.12C.﹣2 D.—12【答案】A【解析】试题分析:与﹣2符号相反的数是2,所以,数﹣2的相反数为2.故选A.考点:相反数的意义2. 据初步统计,2015年北仑区实现地区生产总值(GDP)约为1134.6亿元.其中1134.6亿元用科学记数法表示为()A.1134.6×108元B.11.346×1010元C.1.1346×1011元 D.1.1346×1012元【答案】 C【解析】试题分析:1134.6亿用科学记数法表示应为:1.1346×1011考点:科学记数法的表示方法3. 3.下列运算正确的是()A.a2•a3=a6B.(3a)3=9a3C.a3﹣2a3=﹣1 D.(a2)3=a6【答案】D考点:同底数幂的乘法、积的乘方、合并同类项、幂的乘方4. 有意义的字母x的取值范围是()A.x≥34B.x≤34C.x<34D.x≠34【答案】B【解析】试题分析::由题意得,3﹣4x≥0,解得x≤34,故选:B.考点:二次根式有意义的条件5. 如图是由四个大小相同的立方体组成的几何体,则这个几何体的左视图是()【答案】A【解析】试题分析:解:从左边看,第一层是两个小正方形,第二层左边一个小正方形,故选:A.考点:简单组合体的三视图6. 在四张完全相同的卡片上,分别画有等边三角形、菱形、正五边形、圆.现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.14B.12C.34D.1【答案】D【解析】试题分析:卡片上的图形恰好是中心对称图形的有4个,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是1,故选D考点:概率问题7. 不等式组3012xx-⎧⎪⎨-⎪⎩<≥-1的解在数轴上表示正确的是()【答案】C 【解析】试题分析:3012xx-⎧⎪⎨-⎪⎩<①≥-1②,由①得,x<3,由②得x≥﹣1,故不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选C.考点:在数轴上表示不等式的解集8. 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为()A.10°B.15°C.20°D.25°【答案】B【解析】试题分析:∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB﹣∠BCE=45°﹣30°=15°,故选:B.考点:平行线的性质9. 下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是4【答案】D考点:随机事件发生的可能性(概率)的计算方法10. 如图,已知▱ABCD中,AE⊥BC,AF⊥DC,BC:CD=3:2,AB=EC,则∠EAF=()A.50°B.60°C.70°D.80°【答案】B【解析】试题分析:设BC=3x,则CD=2x,∵四边形ABCD是平行四边形,∴AB=CD=2x,AB∥DC,∵AE⊥BC,AF⊥DC,∴∠AEB=90°,AF ⊥AB ,∴∠BAF=90°,∵AB=EC ,∴EC=2x ,∴BE=BC=EC=x=12AB , ∴∠BAE=30°,∴∠EAF=90°﹣30°=60°,故选B .考点:平行四边形的性质、含30°角的直角三角形的判定、平行线的性质11. 如图,在矩形ABCD 中,AB=4,AD=5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .【答案】A【解析】试题分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE ,FBGO 是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM 是⊙O 的切线,∴DN=DE=3,MN=MG ,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=43,∴DM=34+3=133,故选A.考点:切线的性质,勾股定理,正方形的性质12. 如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9【答案】C【解析】试题分析:设抛物线的解析式是y=ax2+bx+c,∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,∴0 16404a b ca b cc++=⎧⎪++=⎨⎪=-⎩解得154a b c =-⎧⎪=⎨⎪=-⎩∴y=﹣x2+5x ﹣4,设过点B (4,0),C (0,﹣4)的直线的解析式为y=kx+m404k m m +=⎧⎨=-⎩解得14k m =⎧⎨=-⎩即直线BC 的直线解析式为:y=x ﹣4,设点D 的坐标是(x ,﹣x2+5x ﹣4)∴S △ABC= =﹣2(x ﹣2)2+8,∴当x=2时,△BCD 的面积取得最大值,最大值是8.故选C .考点:二次函数的最值二、填空题(每小题4分,共24分)13. 因式分解:4a 3﹣16a= .【答案】4a (a+2)(a ﹣2)【解析】试题分析:原式=4a (a2﹣4)=4a (a+2)(a ﹣2),故答案为:4a (a+2)(a ﹣2)考点:提公因式法与公式法的综合运用14. 已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为 cm 2.(结果保留π)【答案】15π【解析】试题分析:底面圆的半径为3cm ,则底面周长=6πc ,侧面面积=12×6π×5=15πcm 2. 考点:圆的周长公式和扇形面积公式15. 已知a+b=ab ,则(a ﹣1)(b ﹣1)= .【答案】1【解析】试题分析:(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1,∵a+b=ab,∴原式=ab﹣ab+1=1.故答案是:1.考点:多项式的乘法法则16. 如图,在△ABC中,D,E两点分别在边AB,AC上,AB=8cm,AC=6cm,AD=3cm,要使△ADE与△ABC相似,则线段AE的长为cm.【答案】4或9 4【解析】试题分析:①当△ADE∽△ABC时,有AD:AB=AE:AC,∵AB=8,AC=6,AD=3,∴AE=94;②当△AED∽△ABC时,有AD:AE=AC:AB,∵AB=8,AC=4,AD=3,∴AE=4,所以AE等于4或94.故答案为:4或94.考点:似三角形的判定和性质17. 如图,已知A,B两点的坐标分别为(0),(0,10),M是△AOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为.【答案】(,4).【解析】试题分析:∵A ,B 两点的坐标分别为(,0),(0,10),∴OB=10,,∴∵∠AOB=90°,∴AB 是直径,,∴Rt△AOB 外接圆的圆心为AB 中点,∴C ,5),过点C 作CF∥OA,过点M 作ME⊥OA 于E 交CF 于F ,作CN⊥OE 于N ,如图所示:则ON=AN=12, 设ME=x ,∵∠AOM=30°,∴x∴∠CFM=90°,∴MF=5﹣x ,x ,在△CMF x 2+(5﹣x )2=()2,解得:x=4或x=0(舍去),∴故答案为:(,4).考点:圆周角定理、直角三角形的性质、勾股定理18. 如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数y=1x (x >0)的图象上,△P 1OA ,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1,A 1A 2,A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数).若△P 1OA 1的内接正方形B 1C 1D 1E 1的周长记为l 1,△P 2A 1A 2的内接正方形的周长记为l 2,…,△P n A n ﹣1A n 的内接正方形B n C n D n E n 的周长记为l n ,则l 1+l 2+l 3+…+l n = (用含n 的式子表示).. 【解析】试题分析:过P 1作P 1M 1⊥x 轴于M 1,易知M 1(1,0)是OA 1的中点,∴A 1(2,0).可得P 1的坐标为(1,1),∴P 1O 的解析式为:y=x ,∵P 1O∥A 1P 2,∴A 1P 2的表达式一次项系数相等,将A 1(2,0)代入y=x+b ,∴b=﹣2,∴A 1P 2的表达式是y=x ﹣2,与y=1x (x >0)联立,解得P 2(,﹣).仿上,A 2(,0).P 3),A 3(,0).依此类推,点A n 的坐标为(0),∵l 1=43OA 1,l 2=43A 1A 2,l 3=43A 2A 3…l n =43A n ﹣1A n ,∴l 1+l 2+l 3+…+l n =43OA n =43..考点:反比例函数图象上点的坐标特征,等腰直角三角形的性质,正方形的性质三、解答题(本题有8小题,共78分)19. |﹣2|+(1)0﹣9tan30°.1.【解析】试题分析:原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.试题解析:原式2+1﹣9=﹣1.考点:实数的运算20. 如图,从热气球C 处测得地面A ,B 两点的俯角分别为30°,45°,此时热气球C 处所在位置到地面上点A 的距离为400米.求地面上A ,B 两点间的距离.【答案】+200(米).【解析】试题分析:如图,过点C作CD⊥AB于点D,构建直角△ACD和直角△BCD,通过解这两个直角三角形求AD、BD的长度,则易求AB=AD+BD.试题解析:如图,过点C作CD⊥AB于点D,在直角△ACD中,∠A=30°,AC=400米,则AD=ACcos30°=400CD=12AC=200米.在直角△BCD中,∠B=45°,∠CDB=90°,则∠BCD=∠B=45°,所以BD=CD=200米,所以+200(米).考点:解直角三角形的应用﹣仰角俯角问题21. 某市为了解九年级学生的身体素质测试情况,随机抽取了该市九年级部分学生的身体素质测试成绩作为样本,按A(优秀),B(良好),C(合格),D(不合格)四个等级进行统计,并将统计结果绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整,并计算扇形统计图中“A”部分所对应的圆心角的度数.(3)该市九年级共有8000名学生参加了身体素质测试,估计测试成绩在良好以上(含良好)的人数.【答案】(1)500人(2)72°,图见解析(3)4800(人)【解析】试题分析:(1)用B等级人数÷B等级人数所占百分比即可算出总人数;(2)用总人数减去A、B、D三等级人数可得C等级人数,将360°乘以A等级人数占被调查人数百分比可得;(3)用样本中良好(A、B两等级)等级人数占被调查人数百分比乘以总人数8000可得.试题解析:(1)此次共调查学生20040%=500(人),答:此次共调查了500名学生;(2)C等级人数为:500﹣100﹣200﹣60=140(人),A等级对应扇形圆心角度数为:100500×360°=72°,补全条形图如图:(3)估计测试成绩在良好以上(含良好)的人数为:8000×100200500=4800(人),答:估计测试成绩在良好以上(含良好)的约有4800人.考点:条形统计图和扇形统计图的综合运用22. 2016年宁波市北仑区体育中考的3个选测项目分别是50米跑,一分钟跳绳,篮球运球投篮.另规定:游泳满分的学生,只需从3个选测项目中选择一项进行测试;游泳未得满分或未参加的学生,需从3个选测项目中任选两项进行测试.(1)小明因游泳测试获得了满分,求他在3个选测项目中选择“一分钟跳绳”项目的概率.(2)若小红和小慧的游泳测试都未得满分,她们都必须从3个选测项目中选择两项进行体育中考测试,请用列表(或画树状图)的方法,求出小红和小慧选择的两个项目完全相同的概率.【答案】(1)他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)红和小慧选择的两个项目完全相同的概率为:13(图见解析)【解析】试题分析:(1)直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小慧选择的两个项目完全相同的情况,再利用概率公式即可求得答案.试题解析:(1)∵小明因游泳测试获得了满分,∴他在3个选测项目中选择“一分钟跳绳”项目的概率为:13;(2)分别用A,B,C表示50米跑,一分钟跳绳,篮球运球投篮;画树状图得:∵共有9种等可能的结果,小红和小慧选择的两个项目完全相同的有3种情况,∴小红和小慧选择的两个项目完全相同的概率为:39=13.考点:列表法或树状图法求概率23. 如图,△ABC是等边三角形,点E,F分别在BC,AC上,且BE=CF,连结AE与BF相交于点G.将△ABC沿AB边折叠得到△ABD,连结DG.延长EA到点H,使得AH=BG,连结DH.(1)求证:四边形DBCA是菱形.(2)若菱形DBCA 的面积为,45DB DG =,求△DGH 的面积.【答案】(1)四边形DBCA 是菱形(证明过程见解析)(2)S △DGH. 【解析】 试题分析:(1)利用等边三角形的性质和折叠的定义,可知AC=AD=BC=BD ,利用菱形的判定定理可得结论;(2)首先证得△ABE≌△BCF(SAS ),再由菱形的性质和全等三角形的判定证得△DBG≌△DAH(SAS ),由全等三角形的性质和相似三角形的判定可证得△DBA∽△DGH,由相似三角形的性质面积比等于相似比的平方,可得结果.试题解析:证明:∵△ABC 是等边三角形,∴AC=BC 由折叠知AC=AD ,BC=BD ,∴AC=AD=BC=BD ,∴四边形DBCA 是菱形;(2)解:∵△ABC 是等边三角形,∴AB=BC ,∠ABC=∠C=60°,在△ABE 与△BCF 中,AB BC ABC C BE CF =⎧⎪=⎨⎪=⎩∠∠,∴△ABE≌△BCF(SAS ),∴∠AEB=∠BFC,∵四边形DBCA 是菱形,∴DA∥BC,DB∥AC,∠BDA=∠C=60°,∴∠HAD=∠AEB,∠DBG=∠BFC,∴∠HAD=∠DBG,在△DBG 与△DAH 中,DA DB AH BG =⎧⎪=⎨⎪=⎩∠HAD ∠DBG ,∴△DBG≌△DAH(SAS ),∴DG=DH ,∠BDG=∠ADH,∴∠HDG=∠ADH+∠GDA=∠BDG+∠GDA=∠BDA=60°,又∵DA=DB ,DG=DH ,∴△DBA∽△DGH, ∴221625S DBA DB S DGH DG ==△△, ∵S △DBA =12S 菱形DBCA=1×2∴S △DGH考点:全等三角形的判定及性质、折叠的定义、相似三角形的性质及判定24. 某厂家生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD ,线段CD 分别表示该产品每千克生产成本y 1(单位:元),销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的实际意义.(2)求线段CD 所表示的y 2与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元(2)y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140)(3)当该产品的质量为80kg 时,获得的利润最大,最大利润为2560元【解析】试题分析:(1)点D 的横坐标、纵坐标的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元;(2)根据线段AB 经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)先求出销售价y 2与产量x 之间的函数关系,利用:总利润=每千克利润×产量列出有关x 的二次函数,求得最值即可.试题解析:(1)点D 的实际意义:当产量为140kg 时,该产品每千克生产成本与销售价相等,都为40元.(2)设线段CD 所表示的y 2与x 之间的函数表达式为y 2=k 1x+b 1,∵点(0,124),(140,40)在函数y 2=k 1x+b 1的图象上∴11112414040b k b =⎧⎨+=⎩,解得:1135124k b ⎧=-⎪⎨⎪=⎩, ∴y 2与x 之间的函数表达式为y 2=﹣35x+124(0≤x≤140);(3)设线段AB 所表示的y 1与x 之间的函数表达式为y 1=k 2x+b 2,∵点(0,60),(100,40)在函数y 1=k 2x+b 2的图象上 ∴2226010040b k b =⎧⎨+=⎩,解得:221560k b ⎧=-⎪⎨⎪=⎩, ∴y 1与x 之间的函数表达式为y 1=﹣15x+60(0≤x≤100) 设产量为x 千克时,获得的利润为W 元①当0≤x≤100时,W=[(﹣35x+124)﹣(﹣15x+60)]x=﹣25(x ﹣80)2+2560, ∴当x=80时,W 的值最大,最大值为2560元. ②当100≤x≤140时,W=[(﹣35x+124)﹣40]x=﹣35(x ﹣70)2+2940 由﹣35<0知,当x≥70时,W 随x 的增大而减小∴当x=100时,W的值最大,最大值为2400元.∵2560>2400,∴当该产品的质量为80kg时,获得的利润最大,最大利润为2560元.考点:待定系数法求函数解析式及二次函数的应用25. 如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.(2)如图2,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.【答案】(1)AE是△ABC是一条特异线(2)符合条件的∠ABC的度数为135°或112.5°或140°.(3)若它的顶角度数不是整数,则顶角度数为(1807)°.【解析】试题分析:(1)只要证明△ABE,△AEC是等腰三角形即可.(2)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB=BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.(3)如图3中,当BD是特异线时,分两种情形讨论即可.当AD是特异线时,不合题意.试题解析:(1)证明:如图1中,∵DE是线段AC的垂直平分线,∴EA=EC,即△EAC是等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,即△EAB是等腰三角形,∴AE是△ABC是一条特异线.(2)如图2中,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°=15°=135°,如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,如果AD=DB,DC=DB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃).如图3中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°﹣20°﹣20°=140°当CD为特异线时,不合题意.∴符合条件的∠ABC的度数为135°或112.5°或140°.(3)如图3中,当BD是特异线时,有两种情形,如果AD=BD=BC,设∠A=x,则x+2x+2x=180°,解得x=36°,设AD=BD=BC=a,由△BCD∽△ABC得到BC CD AB CB=,∴22a aa-=,∴a2+2a﹣4=0,∴a=﹣1如果AD=BC,BC=CD,设∠A=x,则2x+2x+3x=180°解得x=(1807)°.当AD是特异线时,如果DA=DB,CA=CD,设∠B=∠C=x,则x+2x+2x=180°,解得x=36°,∴∠BAC=108°,不符合题意.∴△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,其特异线的长度为﹣,若它的顶角度数不是整数,则顶角度数为(1807)°.考点:三角形综合题,等腰三角形的判定和性质、三角形内角和定理26. 如图,已知二次函数图象的对称轴为直线x=2,顶点为点C,直线y=x+m与该二次函数的图象交于点A,B两点,其中点A的坐标为(5,8),点B在y轴上.(1)求m的值和该二次函数的表达式.为线段AB上一个动点(点P不与A,B两点重合),过点P作x 轴的垂线,与这个二次函数的图象交于点E.①设线段PE的长为h,求h与x之间的函数关系式,并写出自变量x的取值范围.②若直线AB与这个二次函数图象的对称轴的交点为D,求当四边形DCEP是平行四边形时点P的坐标.(3)若点P(x,y)为直线AB上的一个动点,试探究:以PB为直径的圆能否与坐标轴相切?如果能请求出点P的坐标,如果不能,请说明理由.【答案】(1)m=3,抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3(2)①h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②点P的坐标为(3,6)(3)故存在点P,坐标为P(﹣,﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.【解析】试题分析:(1)根据点A在直线AB上,求出直线解析式,再根据点A,B求出抛物线的解析式;(2)①根据点P在直线AB上,表示出点P,求出h=PE;②由DC∥PE,只要DC=PE即可,求出点P的坐标;(3)由点P在直线AB上,确定出点P到x,y轴的距离,再由以BC为直径的圆与坐标轴相切,求出点P 坐标.试题解析:(1)A的坐标为(5,8)在直线y=x+m上,∴8=5+m,∴m=3,∴直线AB解析式为y=x+3,∴B(0,3),设抛物线解析式为y=a(x﹣2)2+k,∵点A,B在抛物线上,∴98a ka k+=⎧⎨+=⎩,∴11 ak=⎧⎨=-⎩,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3,顶点C(2,﹣1)(2)①∵点P在线段AB上,∴P(x,x+3)(0≤x≤5),∵PE⊥x轴,交抛物线与E,P(x,x+3),∴E(x,x2﹣4x+3),∴h=PE=x+3﹣(x2﹣4x+3)=﹣x2+5x,(0≤x≤5)②∵直线AB与这个二次函数图象的对称轴的交点为D,∴D(2,5),∴DC=6,∵四边形DCEP是平行四边形,∴PE=DC=6,∵PE=|﹣x2+5x|,Ⅰ、当0≤x≤5时,﹣x2+5x=6,∴x1=2(舍),x2=3,∴P(3,6),Ⅱ、当x<0,或x>5时,x2﹣5x=6,∴x3=﹣1,x4=6,∴P(﹣1,2)或P(6,9),(舍)即:点P的坐标为(3,6)(3)∴点P(x,y)为直线AB上的一个动点,∴P(x,x+3),∴点P到x轴的距离为|x+3|,到y轴的距离为|x|,∵点B(0,3),∴=,∵以PB为直径的圆能与坐标轴相切,∴①以PB为直径的圆能与y轴相切,∴|x|,∴x=0(舍),②以PB为直径的圆能与x轴相切,∴|x|,∴x=﹣6﹣或x=﹣,∴P(﹣6﹣,﹣)或P(﹣6﹣,﹣3﹣).故存在点P,坐标为P(﹣)或P(﹣6﹣,﹣3﹣)时,以PB为直径的圆能与坐标轴相切.考点:待定系数法求函数解析式的方法,平行四边形的性质,圆的特点。
宁波中考数学试题及答案(完整版)-中考 (2).doc
:2016年宁波中考数学试题及答案(完整版)-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2016宁波中考慈溪一模
2016年初中毕业生学业考试数学试题参考答案及评分标准二、填空题(每小题4分,共24分)三、解答题(共78分)注: 1.阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分.19.解:原式=19122+-+5分(各1分) =1926分20.解:解:原式=41(2)(2)2m m m --+- 2分 =42(2)(2)m m m ---+ 4分=2(2)(2)mm m --+ 5分=12m -+ 6分 当3m =-时,111232m -=-=+-+ 8分21.解:过A 作A D ⊥CF 于D由题意得CAG ∠=15° ∴ACE ∠=15° 1分 ∵ECF ∠=75° ∴ACF ∠=60° 3分∴sin ACF ∠=ADAC∴sin 60AD AC =分 分 0)上,分分分AP AB分方法不唯一,正确相应给分) 分分分 分 GP53152724.解:(1) 设教师人数为x 人,学生家长人数为3x 人,学生人数为y 人. 1分由题意得:82(3)656048(3)4875%3120x x y x x y ++=⎧⎨++⨯=⎩, (注:方程写对一个得1分) 4分 所以560x y =⎧⎨=⎩, 33515x =⨯=答:老师5人,家长15人,学生60人. 6分 (2)①当060m <<时,82(80)4875%y m m =-+⨯656046m =- 8分 ②当6080m ≤<时,4875%6048(60)82(80)y m m =⨯⨯+-+-584034m =- 10分25.解:(1)AC 边上的伴随圆的半径为 2 .1分(2)①当O 在BC 上时如图(1), ⊙O 与AB 相切且经过C 此时△BOD ∽△BAE ⇒OD OBAE AB=⇒645r r -=所以83r =注:当⊙O 与AC 相切且经过B,83r = 3分②当O 在AB 上时如图(2),(3)⊙O 与BC 相切且经过A 此时△BOD ∽△BAE⇒OD OBAE AB =⇒545r r -= 所以209r =5分⊙O 与AC 相切且经过B 此时△AOD ∽△⇒AO OD AB BF =⇒55 4.8r r -= 所以12049r = 7分注:当O 在AC 上时同②可得209r =,12049r =(按草图只需写出直接答案,共三种情况写出一个得2分,两个三分)(图1)(图2) (图3)(3)①证明:如图(4)∵△CPD 为直角三角形∴△CPD 的外接圆圆心O 在CD 中点处,此时设,OC OP OD a ===2,3AD a AO a == ∵AP =2BP∴23AP AD AB AO == ∴DP ∥OB8分 ∴12,34∠=∠∠=∠∵23∠=∠ ∴14∠=∠∵OC OP =,OB OB =∴△OCB ≌△OPB 9分∴OCB OPB ∠=∠=90∴⊙O 与AB 相切 ∵⊙O 过C∴△CPD 的外接圆是△ABC 某一条边上的伴随圆. 10分 ②解:如图(4)设,3,4,2OC OP a OA a AC a AD a =====, ∵OPA ∠=90°∴,AP AB ==,∵4AC a =∴BC =11分∴OB =∵23DP OB = ∴DP ==∴3cos 2DP PDC CD a ∠===12分(图4)BC26.解:(1)把A (﹣1,0)和B (5,0)代入抛物线y =ax 2+bx +3得25530a b c a b -+=⎧⎨++=⎩ 2分所以35125a b ⎧=-⎪⎪⎨⎪=⎪⎩所以解析式为2312355y x x =-++4分 (2)由题意得(0,3)C ,∵CD 绕点D 顺时针旋转90°得到线段DE.∴CD=DE 5分 ∵OCD ODC ∠+∠=90 ,ODC EDH ∠+∠=90 ∴OCD EDH ∠=∠∵COD EHD ∠=∠=90∴△OCD ≌△BDE 6分 ∴3HD OC ==∵COH FHO CFH ∠=∠=∠=90∴四边形OCFH 为矩形 7分 ∴3HF OC == ∴3HD HF ==∴DF = 8分 (3)①由题意得△CDE, △FDH 为等腰直角三角形∵CF ∥OH∴CFD FDH ∠=∠=45 ,FCD ODC ∠=∠∵DCE ∠=45∴CFD DCE ∠=∠=45 ∵CDG FDC ∠=∠∴△CDG ∽△FDC 9分 ∴CGD FCD ∠=∠CD DGDF CD =∴CGD ODC ∠=∠,2CD DG DF =∵,3DG DF ==∴CD=10分∵OC=3,D在OB上∴(1,0)D∴1OD=∴tan CGD∠=tan331CDO∠==11分②△CDE为等腰直角三角形,若45EDP∠=︒,则DP必过CE中点M。
【2016中考真题】浙江省宁波市中考数学试卷(解析版)
2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为6.【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。
2016年浙江省宁波市中考数学试卷(解析版)
2016年浙江省宁波市中考数学试卷r 为6cm ,高h 为8cm ,则圆锥的侧面积为(2 2一、选择题1 . 6的相反数是(1A .2•下列计算正确的是( A . D . ) C . 3、2 5 (a ) =a3 3 6 a +a =a B . 3a - a=3 3.宁波栎社国际机场三期扩建工程建设总投资 10 2 3 D . a?a =a 84.5亿元,其中84.5亿元用科学记数法表示为( C . 8.45 >109元 D . 8.45X1010元4.使二次根式 •…有意义的x 的取值范围是(A . x 鬥B . x > 1C . x <1D . x 羽 5. 如图所D .3个红球,它们除颜色外均相同•从中任意摸出一个球, 尺寸(cm ) 160 165170 175 180 学生人数(人) 1 3 2 2 2A . 165cm , 165cmB .&如图,在△ ABC 中,/ 165cm , 170cm C . ACB=90 ° CD // AB , 170cm , 165cm D . 170cm , 170cm / ACD=40。
,则/ B 的度数为( )D . 709.如图,圆锥的底面半径60 n cm D . 80 冗cma, |a>- a”是假命题的一个反例可以是(丄VsA. a= — 2 B . a= -- C . a=1 D . a= 211.已知函数y=ax - 2ax - 1 (a 是常数,a^0),下列结论正确的是() A. 当a=1时,函数图象过点(-1, 1)B. 当a=- 2时,函数图象与x 轴没有交点C. 若a >0,则当X 》时,y 随x 的增大而减小D. 若a v 0,则当x €时,y 随x 的增大而增大12•如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角 二、填空题13 .实数-27的立方根是214.分解因式:x - xy= O OO OOO ® ②16. 如图,在一次数学课外实践活动中, 仪高AD 为1m ,则旗杆高BC 为BJ 八的Im ________S 1,另两张直角三角形纸片的面积都为 S 2,中间一张正方形纸片的面积为 S 3,则这个15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成, 按此规律,图案⑦需根火柴棒. 图案①需8根火柴棒,图案②需15根火柴棒,…,③小聪在距离旗杆 10m 的A 处测得旗杆顶端 B 的仰角为60°测角 m (结果保留根号).形纸片的面积都为D . 3S 1+4S 318. 如图,点A为函数甘(x > 0)图象上一点,连结OA,交函数y= ■: (x> 0)的图象于点B,点C是x轴上一点,且AO=AC,则△ ABC的面积为三、解答题(本大题有 8小题,满分78 分)19. 先化简,再求值:(x+1 )( x - 1) +x (3 - x ),其中 x=2 .20•下列3X 3网格图都是由9个相同的小正方形组成,每个网格图中有 3个小正方形已涂上阴影,请在余 下的6个空白小正方形中,按下列要求涂上阴影:21•为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个 类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程•为了了解学生选择拓展性课程的 情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):耒校左径花展理程器丿居it 圣坯蚤 某税远屋拓韻呈程为人欝扁気汀箋 根据统计图中的信息,解答下列问题: (1) 求本次被调查的学生人数.(2) 将条形统计图补充完整.(3) 若该校共有1600名学生,请估计全校选择体育类的学生人数.222.如图,已知抛物线 y= - x +mx+3与x 轴交于A , B 两点,与y 轴交于点C ,点B 的坐标为(3, 0)(1)选取1个4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图 1、图2、图3中,均只需画出符合条件的一种情形) A6C 三丸比旨至強 M 宇其性 :异-逼眉_ A 聿三’七 5)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴I上的一个动点,当PA+PC的值最小时,求点P的坐标.24.某商场销售 A , B 两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万兀/套) 1.5 1.2 售价(万兀/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需 66万元,全部销售后可获毛利润 9万元.(1) 该商场计划购进 A , B 两种品牌的教学设备各多少套?(2) 通过市场调研,该商场决定在原计划的基础上,减少 A 种设备的购进数量,增加 B 种设备的购进数 量,已知B 种设备增加的数量是 A 种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超 过69万元,问A 种设备购进数量至多减少多少套?25•从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角 形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把 这条线段叫做这个三角形的完美分割线. (1)如图1,在厶ABC 中,CD 为角平分线,/ A=40 ° / B=60 °求证:CD ABC 的完美分割线. (2) 在厶ABC 中,/ A=48 ° CD 是厶ABC 的完美分割线,且 △ ACD 为等腰三角形,求/ ACB 的度数.(3) 如图2, △ ABC 中,AC=2 , BC= . CD 是厶ABC 的完美分割线,且 △ ACD 是以CD 为底边的等CD 的长.AB=10,弦AC=6,/ BAC 的平分线交O O 于点D ,过点D 作DE 丄AC 交AC的延长线于点E .(1) 求证:DE 是O O 的切线. (2) 求DE 的长.O为坐标原点,点A的坐标为(5, 0),菱形OABC的顶点B, C都在26.如图,在平面直角坐标系中,第一象限,tan/AOC=,将菱形绕点A按顺时针方向旋转角 a (0°<Z a<Z AOC)得到菱形FADE (点O的对应点为点F), EF与OC交于点G,连结AG .(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分/ OGE .(4)连结BD并延长交x轴于点P,当点P的坐标为(12, 0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()1 IA.- 6B.「C" D. 6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是-6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2. 下列计算正确的是()336 , 3、25 2 3A、a +a =a B . 3a - a=3 C . (a )=a D . a?a =a【考点】幕的乘方与积的乘方;合并同类项;同底数幕的乘法.【分析】根据同类项合并、幕的乘方和同底数幕的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a- a=2a,错误;C、(a3)2=a6,错误;D、a?a =a,正确;故选D.【点评】此题考查同类项合并、幕的乘方和同底数幕的乘法,关键是根据同类项合并、幕的乘方和同底数幕的乘法的定义解答.3. 宁波栋社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A . 0.845X1010元B. 84.5 >108元 C . 8.45 >109元 D . 8.45X1010元【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a>0n的形式,其中1哼a|v 10, n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10 - 1=9 .【解答】解:84.5亿元用科学记数法表示为8.45 >09元.故选:C .【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4. 使二次根式"-有意义的x的取值范围是()A . x 鬥B . x > 1C . x<1D . x 羽【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x - 1 S0,解得x昌,故选:D .【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5. 如图所示的几何体的主视图为()主枫方向【解答】解:如图所示:几何体的主视图为:故选:B .【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6. —个不透明布袋里装有 1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球, 则是红球的概率为( )A . ■B .C .D . 【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红1球的概率是3^6='. 故选:C .【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人) 1 3222则这10名学生校服尺寸的众数和中位数分别为()A . 165cm , 165cmB . 165cm , 170cmC . 170cm , 165cmD . 170cm , 170cm 【考点】众数;中位数. 【专题】统计与概率.【分析】根据表格可以直接得到这 10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列 即可得到中位数.【解答】解:由表格可知,这 10名学生校服尺寸的众数是 165cm ,这10名学生校服尺寸按从小到大排列是: 160、165、165、165、170、170、175、175、180、180,170+170=故这10名学生校服尺寸的中位数是: ^ cm , 故选B .【点评】本题考查众数和中位数, 解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.CD // AB ,/ ACD=40 ° 则/ B 的度数为(【分析】由CD // AB ,/ ACD=40 °根据两直线平行,内错角相等,即可求得/ A 度数,继而求得答案.【解答】解:••• CD // AB ,/ ACD=40 °•••/ A= / ACD=40 °•••在△ ABC 中,/ ACB=90 °【考点】简单几何体的三视图.【分析】禾U 用主视图的定义,即从几何体的正面观察得出视图即【考点】平行线的性质.•••/ B=90A=50 ° 故选B .【点评】此题考查了平行线的性质以及三角形内角和定理•注意两直线平行,内错角相等. 【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:••• h=8, r=6, 可设圆锥母线长为_ 由勾股定理,1= *' =10,1圆锥侧面展开图的面积为: S 侧=:疋>6 n 10=60 n 所以圆锥的侧面积为 60冗cm 2. 故选:C .【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可. 10.能说明命题 对于任何实数a , |a|>-_a”是假命题的一个反例可以是()I典A . a= - 2B . a=C . a=1D . a= 【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项. 【解答】解:说明命题 对于任何实数a , |a >- a”是假命题的一个反例可以是 a=- 2, 故选A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组 成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成 如果••那么…”形式. 有些命题 的正确性是用推理证实的,这样的真命题叫做定理. 任何一个命题非真即假.要说明一个命题的正确性, 一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 11.已知函数y=ax 2 - 2ax - 1 (a 是常数,a 老),下列结论正确的是( )A. 当a=1时,函数图象过点(-1, 1)B. 当a=- 2时,函数图象与x 轴没有交点C. 若a >0,则当X 》时,y 随x 的增大而减小D. 若a v 0,则当x €时,y 随x 的增大而增大【考点】二次函数的性质.【分析】把a=1, x= - 1代入y=ax 2- 2ax - 1,于是得到函数图象不经过点(-1, 1),根据△ =8>0,得 -2s到函数图象与x 轴有两个交点,根据抛物线的对称轴为直线x= -=1判断二次函数的增减性.【解答】解:A 、•••当a=1, x= - 1时,y=1+2 -仁2,二函数图象不经过点(- 1, 1),故错误; B 、 当a=- 2时,=42 - 4X (- 2) >( - 1) =8 > 0,二函数图象与 x 轴有两个交点,故错误;r 为6cm ,高h 为8cm ,则圆锥的侧面积为(A . 30 n cmB . 48 Ticm 【考点】圆锥的计算.2 2C . 60 n cmD . 80 冗cm 9.如图,圆锥的底面半径C、•抛物线的对称轴为直线x= - 2& =1 ,.•.若a>0,则当x羽时,y随x的增大而增大,故错误;D、T抛物线的对称轴为直线x= -2a =1••若a v 0,则当x W时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S i,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为( )A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2 (用a、c表示),得出S1, S2, S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,1 I I则S2= ' (a+c)( a- c) = a2- 'c2,I... S2=S1 -童S3,••• S3=2S1 - 2S2,•••平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1 - 2S2=4S1.故选A .【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1, S2, S3之间的关系,属于中考常考题型.二、填空题13 .实数-27的立方根是-3 .【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:•••(- 3) 3= - 27,•实数-27的立方根是-3 .故答案为:-3 .【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.214 .分解因式:x - xy= x ( x- y) .【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2- xy=x (x - y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.图案①需8根火柴棒,图案②需15根火柴棒,…, 15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,按此规律,图案⑦需50根火柴棒.O CO QOO① ② ③【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7 (n- 1) =7n+1根,令n=7可得答案.【解答】解:•••图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;•••图案n需火柴棒:8+7 ( n - 1) =7n+1根;当n=7 时,7n+1=7 X7+1=50,•图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16•如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°测角BC为10讥+1 m (结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.Rt △ BAE 中,【分析】首先过点A作AE // DC,交BC于点E,则AE=CD=10m , CE=AD=1m,然后在/ BAE=60 °然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE // DC,交BC于点E,则AE=CD=10m , CE=AD=1m , •••在Rt△ BAE 中,/ BAE=60 °• BE=AE?tan60°=10 _ ( m),• BC=CE+BE=10 +1 ( m).•旗杆高BC为」0 _+1m .故答案为:10 「+1.B【点评】本题考查仰角的定义•注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.7T17. 如图,半圆O的直径AB=2,弦CD // AB,/ COD=90 °则图中阴影部分的面积为°AOR【考点】扇形面积的计算.【分析】由CD // AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出 S A ACD =S A OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论•【解答】解:•••弦 CD // AB , 二 SA ACD =S A OCD ,二s 阴影=S 扇形COD= 360° ?n? 2=3&0” Xnd 2*= 4._K故答案为::•【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出 s 阴影=s 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18. 如图,点A 为函数沪'' (x > 0)图象上一点,连结 OA ,交函数y= ■: (x > 0)的图象于点B ,点C 是 x 轴上一点,且 AO=AC ,则△ ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质. 【专题】推理填空题.【分析】根据题意可以分别设出点 A 、点B 的坐标,根据点 0、A 、B 在同一条直线上可以得到 A 、B 的 坐标之间的关系,由 AO=AC 可知点C 的横坐标是点 A 的横坐标的2倍,从而可以得到 △ ABC 的面积. 【解答】解:设点 A 的坐标为(a ,),点B 的坐标为(b , •••点C 是x 轴上一点,且 AO=AC , •••点C 的坐标是(2a , 0),_9_解得,k=「ZCOD (马 2(£)2■),设过点0( 0, 0), A (a ,-)的直线的解析式为:y=kx ,)在y 「上,又•••,解得, (舍去),n 9 n 1 18z 2a*— 2a'v — “ =9 _ 3=6ah 2 2二 SA ABC =S ^AOC — OBC = 乙2 =,故答案为:6. 【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有 8小题,满分78分)19. 先化简,再求值:(x+1 )( x - 1) +x (3 - x ),其中 x=2 . 【考点】整式的混合运算 一化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开, 再合并同类项即可化简, 把x 的值代入计算即可.【解答】解:原式=x 2 - 1+3x - x 2 =3x - 1,当x=2时,原式=3々-1=5 .【点评】本题考查了整式的混合运算和求值的应用, 能正确运用整式的运算法则进行化简是解此题的关键. 20•下列3X 3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:【考点】作图一应用与设计作图;轴对称的性质;中心对称. 【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2) 根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3) 在最上一行、中间一列,中间一行、最右一列涂上阴影即可.3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21•为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个 类别的拓展选取 选取 选取 1个涂上阴影,使 1个涂上阴影,使 2个涂上阴影,使 (1) (2) (3) (请将三个小题依次作答在图 4个阴影小正方形组成一个轴对称图形,但不是中心对称图形. 4个阴影小正方形组成一个中心对称图形,但不是轴对称图形. 5个阴影小正方形组成一个轴对称图形.1、图2、图3中,均只需画出符合条件的一种情形) (2)如图2所示;性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):荒咲疋捧拓壽理柱艺人曲京二二箋根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1) 60七0%=200 (人),即本次被调查的学生有200人;(2)选择文学的学生有:200沁5%=30 (人),选择体育的学生有:200 - 24 - 60 - 30 - 16=70 (人),补全的条形统计图如下图所示,【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.222. 如图,已知抛物线y= - x +mx+3与x轴交于A , B两点,与y轴交于点C,点B的坐标为(3, 0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴I上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1 )首先把点B的坐标为(3, 0)代入抛物线y= - x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴I于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3, 0)代入抛物线y= - x2+mx+3得:0= - 32+3m+3 ,解得:m=2,2 2••• y= - x +2x+3= -( x - 1) +4,顶点坐标为:(1, 4).(2)连接BC交抛物线对称轴I于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b ,•••点 C (0, 3),点 B (3, 0),r0=3k+b• 3=b ,I二 - 1*解得:〔23 ,•直线BC的解析式为:y= - x+3 ,当x=1 时,y= - 1+3=2 ,•••当PA+PC的值最小时,求点P的坐标为:(1 , 2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题•注意找到点P的位置是解此题的关键.23. 如图,已知O O的直径AB=10 ,弦AC=6 , / BAC的平分线交O O于点D,过点D作DE丄AC交AC 的延长线于点E.(1)求证:DE是O O的切线.(2)求DE 的长.【考点】切线的判定.【分析】(1)连接0D,欲证明DE是O O的切线,只要证明0D丄DE即可.(2)过点0作OF丄AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△ AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD ,•/ AD 平分/ BAC ,•••/ DAE= / DAB ,•/ OA=OD,•/ ODA= / DAO ,•••/ ODA= / DAE ,• OD// AE,•/ DE 丄AC ,• OD 丄DE,• DE是O O切线.(2)过点O作OF丄AC于点F,• AF=CF=3 ,OF=1 十"厂=:=4.•••/ OFE= / DEF= / ODE=90 °•四边形OFED是矩形,【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.A B进价(万兀/套) 1.5 1.2售价(万兀/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进 A , B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A 种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进 A , B两种品牌的教学设备分别为x套,y套,根据题意即可列方程fl. 5x+1.2y=66组!2",解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加 1.5a套,根据题意即可列不等式 1.5 (20- a) +1.2 (30+1.5a)詬9,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进 A , B两种品牌的教学设备分别为x套,y套,1宓+1 •戈尸6640.15x+0. 2y=9,*20解得:^30,答:该商场计划购进 A , B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加 1.5a套,1.5 (20 - a) +1.2 (30+1.5a)詬9,解得:a <10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用•注意根据题意找到等量关系是关键.25•从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在厶ABC中,CD为角平分线,/ A=40 ° / B=60 °求证:CD ABC的完美分割线.(2)在厶ABC中,/ A=48 ° CD是厶ABC的完美分割线,且△ ACD为等腰三角形,求/ ACB的度数.(3)如图2, △ ABC中,AC=2 , BC= :, CD是厶ABC的完美分割线,且△ ACD是以CD为底边的等【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ ABC不是等腰三角形,②△ ACD是等腰三角形,③△ BDC BCA 即可.(2)分三种情形讨论即可① 如图2,当AD=CD时,② 如图3中,当AD=AC时,③ 如图4中,当AC=CD 时,分别求出/ ACB即可.BC BE(3)设BD=x,利用△ BCD BAC,得 =1 ,列出方程即可解决问题.【解答】解:(1)如图1中,•••/ A=40 ° / B=60 °•••/ ACB=80 °,•••△ABC不是等腰三角形,•/ CD 平分/ ACB ,I•••/ ACD= / BCD= 'Z ACB=40 °•••/ ACD= Z A=40 °•△ ACD为等腰三角形,vZ DCB= Z A=40 ° ° Z CBD= Z ABC ,•••△BCD BAC ,• CD是厶ABC的完美分割线.(2)① 当AD=CD 时,如图2, Z ACD= Z A=45 ° °•/△ BDC BCA ,•Z BCD= Z A=48 ° °•Z ACB= Z ACD+ Z BCD=96 °.② 当AD=AC 时,如图 3 中,Z ACD= Z ADC= =66° ,•/△ BDC BCA ,•Z BCD= Z A=48 ° ,•Z ACB= Z ACD+ Z BCD=114 °③ 当AC=CD 时,如图 4 中,/ ADC= / A=48 ° •/△ BDC s\ BCA , •••/ BCD= / A=48 °•••/ ADC >Z BCD,矛盾,舍弃.•••/ ACB=96。
2016年宁波市中考数学试卷及答案
2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B.C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1) B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2 C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题ADCDBCBBCADA二、填空题13.﹣3.14.x(x﹣y).15.50.16.10+1.17..18.6.三、解答题(本大题有8小题,满分78分)19.5.20.21.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.22.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).23.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.24.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.25.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.26.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,11∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:尺寸(cm)160 165 170 175 180学生人数(人)1 3 2 2 2则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 . 【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示A B进价(万元/套) 1.5 1.2售价(万元/套) 1.65 1.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。