2019年中考数学专题训练:分类讨论思想(含答案)

合集下载

山东聊城2019中考数学专项:分类讨论

山东聊城2019中考数学专项:分类讨论

山东聊城2019中考数学专项:分类讨论在数学中,我们常常需要依照研究对象性质的差异,分各种不同情况予以考查、这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略、分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会事实上质,关于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的、分类的原那么:〔1〕分类中的每一部分是相互独立的;〔2〕一次分类按一个标准;〔3〕分类讨论应逐级进行、类型之一直线型中的分类讨论直线型中的分类讨论问题要紧是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1、假设等腰三角形中有一个角等于50°,那么那个等腰三角形的顶角的度数为〔〕A 、50°B 、80°C 、65°或50°D 、50°或80°2.某等腰三角形的两条边长分别为3cm 和6cm ,那么它的周长为〔〕A 、9cmB 、12cmC 、15cmD 、12cm 或15cm3.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B ′处,点A 落在点A ′处,(1)求证:B ′E=BF ;(2)设AE=a ,AB=b,BF=c,试猜想a 、b 、c 之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其要紧缘故是对问题思考不周、思维定势、忽视了分类讨论等、4.在Rt △ABC 中,∠C =900,AC =3,BC =4.假设以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,那么r 的取值范围是_____、5.在△ABC 中,AB=AC=5,3cos 5B 、假如圆O B 、C ,那么线段AO 的长等于、6.如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米、⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r 〔厘米〕与时间t 〔秒〕之间的关系式为r =1+t 〔t ≥0〕、〔1〕试写出点A ,B 之间的距离d 〔厘米〕与时间t 〔秒〕之间的函数表达式; 〔2〕问点A 动身后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论要紧是通过变量之间的关系建立函数关系式,然后依照实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特别点的情况.7.AB=2,AD=4,∠DAB=90°,AD ∥BC 〔如图〕、E 是射线BC 上的动点〔点E 与点B 不重合〕,M 是线段DE 的中点、〔1〕设BE=x ,△ABM 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; 〔2〕假如以线段AB 为直径的圆与以线段DE 为直径的圆外切,求线段BE 的长; 〔3〕联结BD ,交线段AM 于点N ,假如以A 、N 、D 为顶点的三角形与△BME 相似,求线段BE 的长、8.如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系、OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处、〔1〕直截了当写出点E 、F 的坐标;〔2〕设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;〔3〕在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?假如存在,求出周长的最小值;假如不存在,请说明理由、参考答案1.【解析】由于角未指明是顶角依旧底角,因此要分类讨论:〔1〕当50°角是顶角时,那么〔180°-50°〕÷2=65°,因此另两角是65°、65°;〔2〕当50°角是底角时,那么180°-50°×2=80°,因此顶角为80°。

中考数学分类讨论题(含答案)

中考数学分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B.如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

东营专版2019年中考数学复习专题类型突破专题一5大数学思想方法训练含答案

东营专版2019年中考数学复习专题类型突破专题一5大数学思想方法训练含答案

专题一5大数学思想方法类型一分类讨论思想(2018·临沂中考)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时,求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】 (1)先判定四边形BDFA是平行四边形,可得FD=AB,再根据AB=CD,即可得出FD=CD;(2)当GC=GB时,点G在BC的垂直平分线上,分情况讨论,即可得到旋转角α的度数.【自主解答】在数学中,如果一个命题的条件或结论有多种可能的情况,难以统一解答,那么就需要按可能出现的各种情况分类讨论,最后综合归纳问题的正确答案.1.(2018·宿迁中考)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是( )A.5 B.4 C.3 D.22.(2018·随州中考)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元) 7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后,统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?类型二数形结合思想(2018·齐齐哈尔中考)某班级同学从学校出发去扎龙自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20 min后乘坐小轿车沿同一路线出行,大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的107继续行驶,小轿车保持原速度不变.小轿车司机因路线不熟错过了景点入口,在驶过景点入口6 km时,原路提速返回,恰好与大客车同时到达景点入口.两车距学校的路程s(km)和行驶时间t(min)之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________ km,大客车途中停留了________ min,a=________;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)小轿车司机到达景点入口时发现本路段限速 80 km/h,请你帮助小轿车司机计算折返时是否超速?(4)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.【分析】 (1)根据图形可得总路程和大客车途中停留的时间,先计算小轿车的速度,再根据时间计算a的值;(2)计算大客车的速度,可得大客车后来行驶的速度,计算小轿车赶上来之后大客车行驶的路程,从而可得结论;(3)先计算直线CD的解析式,计算小轿车驶过景点入口6 km时的时间,再计算大客车到达终点的时间,根据路程与时间的关系可得小轿车行驶6 km的速度与80 km/h作比较可得结论.(4)利用路程÷速度=时间计算出大客车所用时间,计算与小轿车的时间差即可.【自主解答】把问题中的数量关系与形象直观的几何图形有机地结合起来,并充分利用这种结合寻找解题的思路,使问题得以解决.3.(2018·大庆中考)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),点B(3,0),点C(4,y 1),若点D(x 2,y 2)是抛物线上任意一点,有下列结论: ①二次函数y =ax 2+bx +c 的最小值为-4a ; ②若-1≤x 2≤4,则0≤y 2≤5a; ③若y 2>y 1,则x 2>4;④一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确结论的个数是( )A .1B .2C .3D .44.(2018·苏州中考)如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数y =kx 在第一象限内的图象经过点D 交BC 于点E.若AB =4,CE =2BE ,tan∠AOD=34,则k 的值为( )A .3B .2 3C .6D .125.(2018·上海中考)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写自变量的取值范围)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?类型三 转化与化归思想(2017·江西中考)如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB 水平,且与屏幕BC 垂直.(1)若屏幕上下宽BC =20 cm ,科学使用电脑时,求眼睛与屏幕的最短距离AB 的长;(2)若肩膀到水平地面的距离DG =100 cm ,上臂DE =30 cm ,下臂EF 水平放置在键盘上,其到地面的距离FH =72 cm.请判断此时β是否符合科学要求的100°?(参考数据:sin 69°≈1415,cos 21°≈1415,tan 20°≈411,tan 43°≈1415,所有结果精确到个位)【分析】 (1)在Rt△ABC 中利用三角函数即可直接求解;(2)延长FE 交DG 于点I ,利用三角函数求得∠DEI 即可求得β的值,从而作出判断. 【自主解答】把一种数学问题合理地转化成另一种数学问题可以有效地解决问题.在解三角形中,将非直角三角形问题转化为解直角三角形问题,把实际问题转化为数学问题等.6.(2018·山西中考)如图,正方形ABCD 内接于⊙O,⊙O 的半径为2,以点A 为圆心,以AC 长为半径画弧交AB 的延长线于点E ,交AD 的延长线于点F ,则图中阴影部分的面积是( )A .4π-4B .4π-8C .8π-4D .8π-87.(2018·黄冈中考)则a -1a =6,则a 2+1a2值为______.8.(2018·白银中考)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知∠CAB=30°,∠CBA=45°,AC =640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将缩短约多少公里?(参考数据:3≈1.7,2≈1.4)类型四 方程思想(2018·娄底中考)如图,C ,D 是以AB 为直径的⊙O 上的点,AC ︵=BC ︵,弦CD 交AB 于点E.(1)当PB 是⊙O 的切线时, 求证:∠PBD=∠DAB; (2)求证:BC 2-CE 2=CE·DE;(3)已知OA =4,E 是半径OA 的中点,求线段DE 的长.【分析】 (1)由AB 是⊙O 的直径知∠BAD+∠ABD=90°,由PB 是⊙O 的切线知∠PBD+∠ABD=90°,据此可得证;(2)连接OC ,设圆的半径为r ,证△ADE∽△CBE,由AC ︵=BC ︵知∠AOC=∠BOC=90°,再根据勾股定理即可得证;(3)先求出BC ,CE ,再根据BC 2-CE 2=CE·DE 计算可得. 【自主解答】在解决数学问题时,有一种从未知转化为已知的手段就是设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化.9.(2018·白银中考)若正多边形的内角和是1 080°,则该正多边形的边数是________.10.(2018·上海中考)如图,已知正方形DEFG的顶点D,E在△AB C的边BC上,顶点G,F分别在边AB,AC 上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是________.类型五函数思想(2017·杭州中考)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数解析式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?【分析】(1)①直接利用矩形面积求法进而得出y与x之间的关系;②直接利用y≥3得出x的取值范围;(2)直接利用x+y的值结合根的判别式得出答案.【自主解答】在解答此类问题时,建立函数模型→求出函数解析式→结合函数解析式与函数的性质作出解答.要注意从几何和代数两个角度思考问题.11.(2018·桂林中考)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y 轴交于点C.(1)求抛物线y的函数解析式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案类型一【例1】 (1)如图1,连接AF.由四边形ABCD是矩形,结合旋转可得BD=AF,∠EAF=∠ABD.∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,∴四边形BDFA是平行四边形,∴FD=AB.∵AB=CD,∴FD=CD.(2)如图2,当点G位于BC的垂直平分线上,且在BC的右边时,连接DG,CG,BG,易知点G也是AD的垂直平分线上的点,∴DG=AG.又∵AG=AD,∴△ADG是等边三角形,∴∠DAG=60°,∴α=60°.如图3,当点G位于BC的垂直平分线上,且在BC的左边时,连接CG,B G,DG,同理,△ADG是等边三角形,∴∠DAG=60°,此时α=300°.综上所述,当α为60°或300°时,GC=GB.变式训练1.C2.解:(1)设p与x之间的函数关系式为p=kx+b,代入(1,7.5),(3,8.5)得  k+b=7.5, k=0.5,  解得 3k+b=8.5, b=7,  即 p 与 x 的函数关系式为 p=0.5x+7(1≤x≤15,x 为整数). 当 1≤x<10 时, W=[20-(0.5x+7)](2x+20)=-x +16x+260. 当 10≤x≤15 时, W=[20-(0.5x+7)]×40=-20x+520, -x +16x+260(1≤x<10,x为整数), 即 W= -20x+520(10≤x≤15,x为整数). 2 2(2)当 1≤x<10 时, W=-x +16x+260=-(x-8) +324, ∴当 x=8 时,W 取得最大值,此时 W=324. 当 10≤x≤15 时,W=-20x+520, ∴当 x=10 时,W 取得最大值,此时 W=320. ∵324>320,∴李师傅第 8 天创造的利润最大,最大利润是 324 元. (3)当 1≤x<10 时, 令-x +16x+260=299,得 x1=3,x2=13, 当 W>299 时,3<x<13. ∵1≤x<10,∴3<x<10.当 10≤x≤15 时, 令 W=-20x+520>299,得 x<11.05,∴10≤x≤11. 由上可得,李师傅获得奖金的月份是 4 月到 11 月,李师傅共获得奖金为 20×(11-3)=160(元). 答:李师傅共可获得 160 元奖金. 类型二 【例 2】(1)由图形可得学校到景点的路程为 40 km,大客车途中停留了 5min, 小轿车的速度为 40 =1(km/min), 60-202 2 2a=(35-20)×1=15. 故答案为 40,5,15. 15 1 (2)由(1)得 a=15,∴大客车的速度为 = (km/min). 30 2 10 1 125 125 50 小轿车赶上来之后,大客车又行驶了(60-35)× × = (km),40- -15= (km). 7 2 7 7 750 答:在小轿车司机驶过景点入口时,大客车离景点入口还有 km. 7  20k+b=0, k=1, (3)设直线 CD 的解析式为 s=kt+b,将(20,0)和(60,40)代入得 解得 60k+b=40, b=-20,  ∴直线 CD 的解析式为 s=t-20. 当 s=46 时,46=t-20,解得 t=66. 40-15 小轿车赶上来之后,大客车又行驶的时间为 =35(min), 1 10 × 2 7 3 小轿车司机折返时的速度为 6÷(35+35-66)= (km/min)=90 km/h>80km/h. 2 答:小轿车折返时已经超 速. 40 (4)大客车的时间: =80(min),80-70=10(min). 1 2 故答案为 10. 变式训练 3.B 4.A 5.解:(1)设该一次函数解析式为 y=kx+b, 将(150,45),(0,60)代入 y=kx+b 中得 150k+b=45, k=- ,  10  解得  b=60, 1b=60,1 ∴该一次函数解析式为 y=- x+60. 10 1 (2)当 y=- x+60=8 时,解得 x=520, 10 即行驶 520 千米时,油箱中的剩余油量为 8 升. 530-520=10(千米), 油箱中的剩余油量为 8 升时,距离加油站 10 千米. 答:在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是 10 千米. 类型三 BC 【例 3】 (1)∵Rt△ABC 中,tan A= , AB ∴AB= BC BC 20 = ≈ =55(cm). tan A tan 20° 4 11(2)如图,延长 FE 交 DG 于点 I,则四边形 GHFI 为矩形,∴IG=FH, ∴DI=DG-FH=100-72=28(cm). DI 28 14 在 Rt△DEI 中,sin∠DEI= = = , DE 30 15 ∴∠DEI≈69°, ∴β =180°-69°=111°≠100°, ∴此时 β 不符合科学要求的 100°. 变式训练 6.A 7.8 8.解:如图,过点 C 作 CD⊥AB 于点 D.在 Rt△ADC 和 Rt△BCD 中, ∵∠CAB=30°,∠CBA=45°, AC=640, ∴CD=320,AD=320 3, ∴BD=CD=320,BC=320 2, ∴AC+BC=640+320 2≈1 088, ∴AB=AD+BD=320 3+320≈864, ∴1 088-864=224(公里). 答:隧道打通后与打通前相比,从 A 地到 B 地的路程将缩短约 224 公里. 类型四 【例 4】 (1)∵AB 是⊙O 的直径, ∴∠ADB=90°,∴∠BAD+∠ABD=90°. ∵PB 是⊙O 的切线, ∴∠ABP=90°,∴∠PBD+∠ABD=90°, ∴∠BAD=∠PBD. (2)∵∠A=∠DCB,∠AED=∠CEB, ∴△ADE∽△CBE, ∴ DE AE = ,即 DE·CE=AE·BE. BE CE如图,连接 OC.设圆的半径为 r, 则 OA=OB=OC=r, 则 DE·CE=AE·BE=(OA-OE)(OB+OE)=r -OE . ︵ ︵ ∵AC=BC, ∴∠AOC=∠BOC=90°, ∴CE =OE +OC =OE +r , BC =BO +CO =2r , 则 BC -CE =2r -(OE +r )=r -OE , ∴BC -CE =DE·CE. (3)∵OA=4,∴OB=OC=OA=4, ∴BC= OB +OC =4 2. 又∵E 是半径 OA 的中点, ∴AE=OE=2, 则 CE= OC +OE = 4 +2 =2 5. ∵BC -CE =DE·CE, ∴(4 2) -(2 5) =DE·2 5, 6 5 解得 DE= . 5 变式训练 12 9.8 10. 7 类型五 3 【例 5】 (1)①由题意可得 xy=3,则 y= . x 3 ②当 y≥3 时, ≥3,解得 x≤1, x ∴x 的取值范围是 0<x≤1. (2)∵一个矩形的周长为 6,∴x+y=3,2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 2 ∴x+ =3,整理得 x -3x+3=0. x ∵b -4ac=9-12=-3<0, ∴矩形的周长不可能是 6,∴圆圆的说法不对. ∵一个矩形的周长为 10,∴x+y=5, 3 2 ∴x+ =5,整理得 x -5x+3=0. x ∵b -4ac=25-12=13>0,∴矩形的周长可能是 10, ∴方方的说法对. 变式训练 11.解:(1)将点 A,B 的坐标代入函数解析式得  9a-3b+6=0, a=-2,  解得   a+b+6=0, b=-4,2 2∴抛物线的函数解析式为 y=-2x -4x+6, 当 x=0 时,y=6,∴点 C 的坐标为(0,6). (2)由 MA=MB=MC 得 M 点在 AB 的垂直平分线上,M 点在 AC 的垂直平分线上. 设 M(-1,y),由 MA=MC 得 (-1+3) +y =(y-6) +(-1-0) , 11 解得 y= , 4 11 ∴点 M 的坐标为(-1, ). 4 (3)①如图,过点 A 作 DA⊥AC 交 y 轴于点 F,交 CB 的延长线于点 D. ∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°, ∴∠DAO=∠ACO,∠CAO=∠AFO, ∴△AOF∽△COA, ∴ AO CO = , OF AO2 2 2 2 22∴AO =OC·OF. 3 3 3 ∵OA=3,OC=6,∴OF= = ,∴F(0,- ). 6 2 2 3 ∵A(-3,0),F(0,- ), 2 1 3 ∴直线 AF 的解析式为 y=- x- . 2 2 ∵B(1,0),C(0,6),2∴直线 BC 的解析式为 y=-6x+6, 1 3   x=11, y=- x- , 2 2 联立 解得 24  y=-6x+6,  y=- , 15 11 15 24 24 ∴D( ,- ),∴AD= 5,AC=3 5, 11 11 11 24 5 11 8 ∴tan∠ACB= = . 11 3 5∵4tan∠ABE=11tan∠ACB, ∴tan∠ABE=2. 如图,过点 A 作 AM⊥x 轴,连接 BM 交抛物线于点 E. ∵AB=4,tan∠ABE=2, ∴AM=8, ∴M(-3,8). ∵B(1,0),M(-3,8), ∴直线 BM 的解析式为 y=-2x+2. y=-2x+2, 联立 2 y=-2x -4x+6, x=-2,  x=1, 解得 或 (舍去) y = 6 y=0,  ∴E(-2,6). ②当点 E 在 x 轴下方时,如图,过点 E 作 EG⊥AB,连接 BE. 设点 E(m,-2m -4m+6), GE 2m +4m-6 ∴tan∠ABE= = =2, BG -m+1 ∴m=-4 或 m=1(舍去), 可得 E(-4,-10). 综上所述,E 点坐标为(-2,6)或(-4,-10).2 2。

北京中考数学习题精选:分类讨论思想(含参考答案)

北京中考数学习题精选:分类讨论思想(含参考答案)

此文档部分内容来源于网络,如有侵权请告知删除2019年北京中考数学习题精选一、 填空题1、(2018北京市朝阳区初二年级第一学期期末)在平面直角坐标系xOy 中,(0,2)A ,(4,0)B ,点P 与A ,B 不重合.若以P ,O ,B 三点为顶点的三角形与ABO ∆全等,则点P 的坐标为.答案:(0,-2)或(4,-2)或(4,2)2、 (2018北京市怀柔区初二期末)化简二次根式:2244b ac a -=________ . 答案:二、解答题3.(2018北京昌平区初二年级期末) 已知:关于x 的一元二次方程x 2﹣(2m +3)x + m 2 + 3m + 2 = 0.(1)已知x =2是方程的一个根,求m 的值;(2)以这个方程的两个实数根作为△A BC 中AB 、AC (AB <AC )的边长,当BC=5时,△ABC 是等腰三角形,求此时m 的值.解:(1)∵x =2是方程的一个根,∴222223320m m m -++++=(). ……………………………1分此文档部分内容来源于网络,如有侵权请告知删除∴20m m -=.∴m =0,m =1. ………………………………………………………………2分(2)∵[]22(23)4(32)m m m ∆=-+-++=1. …………………………………………………………………… 3分∴(23)12m x +±=. ∴x =m +2,x =m +1. …………………………………………………………4分 ∵AB 、AC (AB <AC )的长是这个方程的两个实数根,∴AC =m +2,AB =m +1.∵5BC =,△ABC 是等腰三角形,∴①当AB =BC 时,有+15m =, 5 1.m ∴=- …………………………………………………………5分②当AC =BC 时,有+25m =,5 2.m ∴=- (6)分综上所述,当552m m =-1或=时, △ABC 是等腰三角形.4.(2018北京通州区一模)答案:此文档部分内容来源于网络,如有侵权请告知删除。

课标通用安徽省2019年中考数学总复习专题2分类讨论题课件

课标通用安徽省2019年中考数学总复习专题2分类讨论题课件
专题二 分类讨论题
题型概述 方法指导
因题目已知条件存在一些不确定因素,解答无法用统一的方法或 者结论不能给以统一表述的数学问题,我们往往将问题划分为若干 类,或若干个局部问题来解决.2017年安徽中考中,将近10年的结论 判断正误题被分类讨论题所代替,这给我们传递了一个信号,安徽 中考压轴填空题将改变题型.分类讨论题难度大,同学们容易漏掉 解,出题角度多,可以很好地考查同学们思维的条理性、缜密性、 科学性.2018年中考压轴填空题设置为分类讨论题可能性非常大.
以可得AC=5,由题意可得△ABC是等腰三角形,AB=BC=5,且底边 上高为4,BP⊥AC时,勾股定理可得AP=CP=3,所以△ABC 面积=12AC·BP=12×6×4=12.
1234567
3.(2018·浙江绍兴)过双曲线y=
������ ������
(k>0)的动点A作AB⊥x轴于点B,P
∵△PBE∽△DBC,∴������������������������
=
������������ ������������
=
15,
∴PE=15CD=65.
综上所述,PE 的长为 3 或65.
类型一
类型二
类型三
例3(2012·安徽,10)在一张直角三角形纸片的两直角边上各取一 点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分 是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形 纸片的边长是 ( )
由运动知,AM=2t.∴BM=AB-AM=9-2t,故答案为:15,9-2t.
(2)①如图1,☉M切BD于E,∴ME⊥BD,
∴∠BEM=∠BAD=90°,
∵∠EBM=∠ABD,∴△BME∽△BDA.

中考数学专题训练 第8课时 分类讨论题(含答案)

中考数学专题训练 第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.5.(上海市)在△ABC中,AB=AC=5,3cos5B .如果圆O10过点B、C,那么线段AO的长等于.6.(•威海市)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

2019年中考数学之——分类讨论思想例题解析

2019年中考数学之——分类讨论思想例题解析

2019年中考数学之——分类讨论思想例题解析分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.1:分式方程无解的分类讨论问题【例题】(2017贵州)分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C【同步训练】(2017山东聊城)如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣4【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选D.2:“一元二次”方程系数或者函数最高次项系数的分类讨论问题【例题】(2017宁夏)关于x的方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是()A. B. C.且a≠1 D.且a≠1【分析】根据方程的形式可以看出最高次是2次,当a﹣1≠0时,定义和判别式的意义得到a ≠1且△=32﹣4(a﹣1)(﹣2)≥0,然后求出两个不等式的公共部分即可.当a=1时,则方程为一次方程,故有a=1。

【解答】解:根据题意得a≠1且△=32﹣4(a﹣1)(﹣2)≥0,解得a≥﹣.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3:三角形、圆等几何图形相关量求解的分类讨论问题【例题】(2017浙江义乌)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P 有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.【同步训练】(2017齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.4:动点问题的分类分类讨论问题4.1:常见平面问题中动点问题的分类讨论;【例题】(2017.江苏宿迁)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′.(1)当B′C′恰好经过点D时(如图1),求线段CE的长;(2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积;(3)在点E从点C移动到点D的过程中,求点C′运动的路径长.【考点】LO:四边形综合题.【分析】(1)如图1中,设CE=EC′=x,则DE=1﹣x,由△ADB′′∽△DEC,可得=,列出方程即可解决问题;(2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题;(3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题.【解答】解:(1)如图1中,设CE=EC′=x,则DE=1﹣x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=1,AD=,∴DB′==,∴△ADB′′∽△DEC,∴=,∴=,∴x=﹣2.∴CE=﹣2.(2)如图2中,∵∠BAD=∠B′=∠D=90°,∠DAE=22.5°,∴∠EAB=∠EAB′=67.5°,∴∠B′AF=∠B′FA=45°,∴∠DFG=∠AFB′=∠DGF=45°,∴DF=FG ,在Rt △AB′F 中,AB′=FB′=1,∴AF=AB′=,∴DF=DG=﹣,∴S △DFG =(﹣)2=﹣.(3)如图3中,点C 的运动路径的长为的长,在Rt △ADC 中,∵tan ∠DAC==,∴∠DAC=30°,AC=2CD=2,∵∠C′AD=∠DAC=30°,∴∠CAC ′=60°,∴的长==π.【同步训练】如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是 .【考点】矩形的性质;等腰三角形的性质;勾股定理.【分析】分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5即可;②当PE=AE=5时,求出BE,由勾股定理求出PB,再由勾股定理求出等边AP即可;③当PA=PE时,底边AE=5;即可得出结论.【解答】解:如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5;故答案为:5或4或5.4.2:组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。

分类讨论型问题2019中考数学高端精品(解析版)

分类讨论型问题2019中考数学高端精品(解析版)

专题09分类讨论型问题【考点综述评价】在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级有序进行.【考点分类总结】考点1字母的不同取值引起分类讨论【典型例题】(2017浙江省宁波市)已知△ABC的三个顶点为A(﹣1,﹣1),B(﹣1,3),C(﹣3,﹣3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数3yx=的图象上,则m的值为.【答案】4或12.【分析】求得三角形三边中点的坐标,然后根据平移规律可得AB边的中点(﹣1,1),BC边的中点(﹣2,0),AC边的中点(﹣2,﹣2),然后分两种情况进行讨论:一是AB边的中点在反比例函数3yx=的图象上,二是AC边的中点在反比例函数3yx=的图象上,进而算出m的值.【方法归纳】解答绝对值化简、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等问题时,由于字母的不同取值可能会引起分类讨论。

【变式训练】(2017黑龙江省齐齐哈尔市)若关于x的方程29304kx x--=有实数根,则实数k的取值范围是()A.k=0B.k≥﹣1且k≠0C.k≥﹣1D.k>﹣1【答案】C.【分析】讨论:当k=0时,方程化为﹣3x﹣94=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣94)≥0,然后求出两个中情况下的k的公共部分即可.考点2研究对象对应关系的不确定性引起分类讨论【典型例题】(2017湖南省郴州市)如图,已知抛物线y=ax2+85x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣12x﹣4与x轴交于点D,点P是抛物线y=ax2+85x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;学+科-网(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?【答案】(1)218455y x x =+-;(2)P 的坐标为(﹣52,﹣274)或(﹣8,﹣4);(3)①证明见解析;②点P 的横坐标为﹣5.5或﹣10.5或2或﹣18.【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可得到关于a 、c 的方程组,然后解方程组求得a 、c 的值即可;(2)设P (m ,218455m m +-),则F (m ,﹣12m ﹣4),则PF =2121510m m --,当PF =OC 时,四边形PCOF 是平行四边形,然后依据PF =OC 列方程求解即可;(3)①先求得点D 的坐标,然后再求得AC 、DC 、AD 的长,最后依据勾股定理的逆定理求解即可;②分为△ACD ∽△CHP 、△ACD ∽△PHC 两种情况,然后依据相似三角形对应成比例列方程求解即可【解答】(1)由题意得:842054a c c ⎧+⨯+=⎪⎨⎪=-⎩,解得:154a c ⎧=⎪⎨⎪=-⎩,∴抛物线的表达式为218455y x x =+-.(2)设P (m ,218455m m +-),则F (m ,﹣12m ﹣4),∴PF =(﹣12m ﹣4)﹣(218455m m +-)=2121510m m --.∵PE ⊥x 轴,∴PF ∥OC ,∴PF =OC 时,四边形PCOF 是平行四边形,∴2121510m m --=4,解得:m =﹣52②由①得∠ACD =90°.当△ACD ∽△CHP 时,AC CH CD HP =218255545n n n --=-218255545n n n +=-,解得:n =0(舍去)或n =﹣5.5或n =﹣10.5. 当△ACD ∽△PHC 时,AC PHCD CH =25184555n n n -=--25184555n n n -=+.解得:n =0(舍去)或n =2或n =﹣18.综上所述:点P 的横坐标为﹣5.5或﹣10.5或2或﹣18时,使得以点P 、C 、H 为顶点的三角形与△ACD相似.【方法归纳】解答未明确底和腰的等腰三角形、未明确直角顶点的直角三角形、两角未明确对应关系的全等或相似等问题时,需要分类讨论.【变式训练】(2017黑龙江省龙东地区)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为.【答案】43或47或4.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.综上所述:当△ABM为直角三角形时,AM的长为4374.故答案为:43474.考点3 图形的不同位置引起分类讨论【典型例题】(2017黄冈)已知:如图所示,在平面直角坐标系xOy 中,四边形OABC 是矩形,OA =4,OC =3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为t (s ).(1)当t =1s 时,求经过点O ,P ,A 三点的抛物线的解析式; (2)当t =2s 时,求tan ∠QP A 的值;(3)当线段PQ 与线段AB 相交于点M ,且BM =2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.【答案】(1)2334y x x =-+;(2)23;(3)t =3s ;(4)3 (02)24324(24)24(4)t t S t t t t t⎧⎪≤≤⎪⎪=-+-<≤⎨⎪⎪>⎪⎩.【分析】(1)可求得P点坐标,由O、P、A的坐标,利用待定系数法可求得抛物线解析式;(2)当t=2s时,可知P与点B重合,在Rt△ABQ中可求得tan∠QP A的值;(3)用t可表示出BP和AQ的长,由△PBM∽△QAM可得到关于t的方程,可求得t的值;(4)当点Q在线段OA上时,S=S△CPQ;当点Q在线段OA上,且点P在线段CB的延长线上时,由相似三角形的性质可用t表示出AM的长,由S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ,可求得S与t的关系式;当点Q在OA的延长线上时,设CQ交AB于点M,利用△AQM∽△BCM可用t表示出AM,从而可表示出BM,S=S△CBM,可求得答案.【解答】(3)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴BP BM AQ AM=,且BM=2AM,∴244tt--=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(4)当0≤t ≤2时,如图3,由题意可知CP =2t ,∴S =S △PCQ =12×2t ×3=3t ;学+-科/+网43AM t t -=,解得AM =312t t -,∴BM =3﹣312t t -=12t ,∴S =S △BCM =12×4×12t =24t ; 综上可知:3 (02)24324(24)24(4)t t S t t t t t⎧⎪≤≤⎪⎪=-+-<≤⎨⎪⎪>⎪⎩.【方法归纳】解答此类问题时,由于图形的不同位置导致结果不同,需要分类讨论.【变式训练】(2017辽宁省辽阳市)如图1,抛物线213y x bx c =++经过A (23-,0)、B (0,﹣2)两点,点C 在y 轴上,△ABC 为等边三角形,点D 从点A 出发,沿AB 方向以每秒2个单位长度的速度向终点B 运动,设运动时间为t 秒(t >0),过点D 作DE ⊥AC 于点E ,以DE 为边作矩形DEGF ,使点F 在x 轴上,点G 在AC 或AC 的延长线上.(1)求抛物线的解析式;(2)将矩形DEGF 沿GF 所在直线翻折,得矩形D 'E 'GF ,当点D 的对称点D '落在抛物线上时,求此时点D '的坐标;(3)如图2,在x 轴上有一点M (230),连接BM 、CM ,在点D 的运动过程中,设矩形DEGF 与四边形ABMC 重叠部分的面积为S ,直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围.【答案】(1)213233y x x =+-;(2)D ′(433,109);(3)22423(0)353412383(2)3t t S t t ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩.【分析】(1)把A 、B 的坐标代入抛物线的解析式求解即可;(2)由等边三角形的性质可知∠BAC =60°,依据特殊锐角三角函数值可得到AE =t ,DE =3t ,AF=23t ,然后再证明AD =DF =2t ,过点D ′作D ′H ⊥x 轴与点H ,接下来,再求得点D ′的坐标,最后将点D ′的坐标代入抛物线的解析式求解即可;学.+科+网 (3)当0<t ≤43时,S =ED •DF ;当43<t ≤2时,S =矩形DEGF 的面积﹣△CGN 的面积. 【解答】(1)把A (23-,0)、B (0,﹣2)代入抛物线的解析式得:21122303c b c =-⎧⎪⎨⨯-+=⎪⎩,解得:32b c ⎧=⎪⎨⎪=-⎩过点D ′作D ′H ⊥x 轴与点H .(3)由(2)可知:DE =3t ,DF =2t ,AE =t . 如图2所示:当AE +EG ≤AC 时,即t +2t ≤4,解得:t ≤43.∴当0<t ≤43时,S =ED •DF =223t . 当43<t ≤2时,如图3所示:∵CG =AG ﹣AC ,∴CG =3t ﹣4,∴GN =3343t -∴S =ED •DF ﹣12CG •GN =223t ﹣12(3t ﹣4)3(3t ﹣4)=25312383t +-+-科.网综上所述,S与t的函数关系式为22423(0)353412383(2)23t tSt t t⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.考点4数学概念、定理本身引发分类讨论【典型例题】已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣4≤y≤8,则kb的值为.【答案】﹣24或﹣48.【分析】根据一次函数的性质,分k>0和k<0时两种情况讨论求解.【方法归纳】在解答此类问题时,由于数学概念、定理本身的规定导致需要分类讨论。

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型一 概念型分类讨论题有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】若m n n m -=-,且4m =,3n =,则2()m n += .类型二 性质型分类讨论题 有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【例3】已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥类型三 参数型分类讨论题 解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题. 【例4】若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( )【例5】对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限【例6】关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为 ( )O-1-1X(A)a=0. (B)a=2. (C)a=1. (D)a=0或a=2.类型四解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x->.解:∵29(3)(3)x x x-=+-,∴(3)(3)0x x+->.由有理数的乘法法则“两数相乘,同号得正”,有(1)3030xx+>⎧⎨->⎩(2)3030xx+<⎧⎨-<⎩解不等式组(1),得3x>,解不等式组(2),得3x<-,故(3)(3)0x x+->的解集为3x>或3x<-,即一元二次不等式290x->的解集为3x>或3x<-.问题:求分式不等式5123xx+<-的解集.类型五统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.类型六方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A.4种 B.3种 C.2种 D.1种类型七综合型分类讨论题【例10】在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数2yx=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为( )A. 2个B. 4个C. 5个D. 6个.几何中的分类讨论类型之一:与等腰三角形有关的分类讨论与角有关的分类讨论:1.已知等腰三角形的一个内角为75°则其顶角为________考点1 与边有关的分类讨论2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.与高有关的分类讨论3.一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.4.等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角是______度.30m的草皮铺设一块一边长为10m的等腰三角形绿地,5.为美化环境,计划在某小区内用2请你求出这个等腰三角形绿地的另两边长.6. 如图建立了一个由小正方形组成的网格(每个小正方形的边长为1).(1)在图1中,画出△ABC关于直线l对称的△A′B′C′;(2)在图2中,点D,E为格点(小正方形的顶点),则线段DE=;若点F也是格点且使得△DEF是等腰三角形,标出所有的点F.综合应用7.在直角坐标系中,O为坐标原点,已知A(-2,2),试在x轴上确定点P,使△AOP为等腰三角形,求符合条件的点P的坐标类型之二:与直角三角形有关的分类讨论8. 已知x轴上有两点A(﹣3,0),B(1,0),在直线l:x+y+1=0上取一点C(x,y),使得△ABC为直角三角形.求点C的坐标.9.如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是 。

2019年浙江中考数学复习方法技巧专题二:分类讨论思想训练

2019年浙江中考数学复习方法技巧专题二:分类讨论思想训练

方法技巧专题二分类讨论思想训练当数学问题中的某一条件模糊而不确定时,需要对这一条件进行分类讨论,然后逐一解决.常见的分类讨论有概念的分类、解题方法的分类和图形位置关系的分类等.一、选择题1.⊙O中,点A,B,C在⊙O上,∠AOB=100°,点C不与A、B重合,则∠ACB的度数为( ) A.50° B.80°或50°C.130° D.50°或130°2.[2019·荆门] 已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为( )A.7 B.10C.11 D.10或113.[2019·聊城] 如图F2-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( )图F2-1A.2个 B.3个 C.4个 D.5个二、填空题4.[2019·西宁] 若点A(m,n)在直线y=kx(k≠0)上,当-1≤m≤1时,-1≤n≤1,则这条直线的函数解析式为________.5.[2019·西宁] ⊙O的半径为1,弦AB=2,弦AC=3,则∠BAC的度数为________.6.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为________.图F2-27.[2019·江西]如图F2-2是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是________.8.[2019·齐齐哈尔] 如图F2-3,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是________.图F2-39.[2019·鄂州] 如图F2-4,AB =6,O 是AB 的中点,直线l 经过点O ,∠1=120°,P 是直线l 上一点.当△APB 为直角三角形时,AP =________.图F2-410.[2019·荆门] 如图F2-5,已知点A(1,2)是反比例函数y =kx 图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点,若△PAB 是等腰三角形,则点P 的坐标是________.图F2-511.[2019·义乌] 如图F2-6,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点,若使P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是________.图F2-6参考答案1.D 2.D 3.B 4.y =x 或y =-x 5.75°或15°6.2 3或4 3或6 [解析] ①当∠ABC=60°时,如图①,求得CP =2 3或4 3;②当∠ACB=60°时,如图②,此时CP =6.7.5 2或4 5或5 [解析] 如图所示.①当点P 在AD 边上时,△AEP 是等腰直角三角形,底边PE =2AE =5 2; ②当点P 在BC 边上时,P 1E =AE =5,BE =AB -AE =8-5=3, ∴P 1B =P 1E 2-BE 2=4.∴AP 1=AB 2+P 1B 2=82+42=4 5; ③当点P 在DC 边上时,P 2A =P 2E ,底边AE =5.综上所述,等腰三角形AEP 的底边长为5 2或4 5或5.8.10或4 13或2 73 [解析] ∵AB=AC =10,BC =12,底边BC 上的高是AD ,∴∠ADB =∠ADC =90°,BD =CD =12BC =12×12=6,∴AD =102-62=8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是82+122=4 13.(3)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是62+162=2 73.综上所述,这个平行四边形较长的对角线的长是10或4 13或2 73.9.3或3 3或3 7 [解析] 如图,分类讨论如下:(1)当∠APB=90°时,以AB为直径作⊙O,与直线l交于点P1,P2,则AP1=3,AP2=3 3;(2)当∠PAB=90°时,AP3=3 3;(3)当∠ABP=90°时,BP4=3 3,AP4=AB2+BP42=62+(3 3)2=3 7.综上所述,当△APB为直角三角形时,AP=3或3 3或3 7.10.(-5,0)或(-3,0)或(3,0)或(5,0)①11.x=0或x=4 2-4或4<x<4 2 [解析] 分三种情况:①如图①,当M与O重合时,即x=0时,点P恰好有三个;②如图②,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,②∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4 2,当M与D重合时,即x=OM-DM=4 2-4时,同理可知:点P恰好有三个;③如图③,取OM=4,以M为圆心,以OM为半径画圆,③则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N为圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4 2时,圆M在移动过程中,则会与OB除了O外有两个交点,使P,M,N构成等腰三角形,此时,满足条件的点P恰好有三个.综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4 2-4或4<x<4 2.故答案为x=0或x=4 2-4或4<x<4 2.2019-2020学年数学中考模拟试卷一、选择题1.如图所示,将两根钢条,AA BB ''的中点O 连在一起,使,AA BB ''可以绕着点O 自由转动,就做成了一个测量工具,则''A B 的长等于内槽宽AB ,那么判定OAB OA B ≅''的理由是:( )A .SASB .ASAC .AASD .SSS2.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .643.有理数﹣12的倒数是( ) A .12B .﹣2C .2D .14.如图,矩形OABC 的顶点A ,C 在坐标轴上,顶点B 的坐标是(4,2),若直线y =mx ﹣1恰好将矩形分成面积相等的两部分,则m 的值为( )A .1B .0.5C .0.75D .25 ( ) A .16的平方根B .16的算术平方根C .±4D .±26.如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则AD 的长为( )A .3B .4C .D .87.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB 上,反比例函数8y x=,在第二象限的图像经过点E ,则正方形AOBC 与正方形CDEF 的面积之差为( )A.6B.8C.10D.128.如图,矩形ABCD 中,AB =7,BC =4,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交AB ,BC 于点E ,F ;再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠ABC 内部相交于点H ,作射线BH ,交DC 于点G ,则DG 的长为( )A .2B .3C .4D .59.如图,以正方形ABCD 的顶点A 为圆心,以AD 的长为半径画弧,交对角线AC 于点E ,再分别以D ,E 为圆心,以大于12DE 的长为半径画弧,两弧交于图中的点F 处,连接AF 并延长,与BC 的延长线交于点P ,则∠P =( )A .90°B .45°C .30°D .22.5°10.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:则这15名同学一周在校参加体育锻炼的时间的中位数和众数分别为( ) A.6,7B.7,7C.7,6D.6,611.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为( ) A.12B.13C.14D.1512.在同一直角坐标平面内,如果直线y =k 1x 与双曲线2k y x=没有交点,那么k 1和k 2的关系一定是( ) A.k 1+k 2=0B.k 1•k 2<0C.k 1•k 2>0D.k 1=k 2二、填空题13.长春市农博产业园占地2150000平方米,数字2150000用科学记数法表示为( )A .21.5×105B .2.15×105C .2.15×106D .0.215×107 14.64的算术平方根是______.15.改写命题“对角线互相平分的四边形是平行四边形”:如果__________,那么_______. 16.如图,n 个边长为1的相邻正方形的一边均在同一直线上,点1M ,2M ,3M ,n M 分别为边1B 2B ,23B B ,34B B ,,1n n B B +的中点,111B C M △的面积为1S ,222B C M △的面积为2S ,,n n nB C M △的面积为n S ,则n S =________.(用含n 的式子表示)17.如图,已知直线AB ∥CD ,∠1=60°,∠2=45°,则∠CBD 的度数为_____.18.分解因式(x -1)2-4的结果是______. 三、解答题19.某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y (立方米)与x (时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y 与x 之间的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x 的取值范围.20.已知2222x 4x 4x 11T x 2x x x x⎛⎫-+-=+÷ ⎪-+⎝⎭ (1)化简T ;(2)若x 为△ABC 的面积,其中∠C =90°,∠A =30°,BC =2,求T 的值.21.有三面小旗,分别为红、黄、蓝三种颜色.(1)把三面小旗按不同顺序排列,共有多少种不同排法?用树状图表示,并把它们排列出来.(2)如果把小旗从左至右排列,红色小旗排在最左端的概率是多少?22.十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率1220表2北京森林面积和森林覆盖率(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a,全国森林覆盖率21.63%记为b,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到 万公顷(用含a 和b 的式子表示).23.二孩政策出台后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同 (1)甲家庭已有一个男孩,准备再生育一个孩子,则第二个孩子是女孩的概率是 . (2)乙家庭没有孩子,准备生育两个孩子,请利用列表或画树状图求至少有一个男孩的概率. 24.中国海军亚丁湾护航十年,中国海军被亚丁湾上来往的各国商船誉为“值得信赖的保护伞”如图,在一次护航行动中,我国海军监测到一批可疑快艇正快速向护航的船队靠近.为保证船队安全,我国海军迅速派出甲、乙两架直升机分别从相距20海里的船队首(O 点)尾(A 点)前去拦截,4分钟后同时到达B 点将可疑快艇驱离.已知甲直升机每小时飞行180海里,航向为北偏东25°,乙直升机的航向为北偏西65°,求乙直升机的飞行速度.25.一般轮船在A 、B 两个港口之间航行,顺流需要4个小时,逆流需要5个小时,已知水流通度是每小时2千米,求轮船在静水中的速度.【参考答案】*** 一、选择题二、填空题 13.C 14.815.四边形的对角线互相平分 这个四边形是平行四边形 16.()142n 1-17.75°18.(x -3)( x +1) 三、解答题19.(1)每小时的进水量为5立方米;(2)当8≤x≤12时,y =3x+1;(3)3792x 剟. 【解析】 【分析】(1)由4点到8点只进水时,水量从5立方米上升到25立方米即能求每小时进水量;(2)由图象可得,8≤x≤12时,对应的函数图象是线段,两端点坐标为(8,25)和(12,37),用待定系数法即可求函数关系式;(3)由(2)的函数关系式即能求在8到12点时,哪个时间开始贮水量不小于28立方米,且能求出每小时的出水量;14点后贮水量为37立方米开始每小时减2立方米,即能求等于28立方米的时刻【详解】解:(1)∵凌晨4点到早8点只进水,水量从5立方米上升到25立方米∴(25﹣5)÷(8﹣4)=5(立方米/时)∴每小时的进水量为5立方米.(2)设函数y =kx+b 经过点(8,25),(12,37)8251237k b k b +=⎧⎨+=⎩ 解得:31k b =⎧⎨=⎩∴当8≤x≤12时,y =3x+1 (3)∵8点到12点既进水又出水时,每小时水量上升3立方米∴每小时出水量为:5﹣3=2(立方米)当8≤x≤12时,3x+1≥28,解得:x≥9当x >14时,37﹣2(x ﹣14)≥28,解得:x≤372∴当水塔中的贮水量不小于28立方米时,x 的取值范围是9≤x≤372 【点睛】本题考查了一次函数的应用,解题关键是理解图象中横纵坐标代表的意义并结合题意分析图象的每个分段函数.20.(1)2x ﹣3;(2)3.【解析】【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)根据直角三角形的性质求出x 的值,代入计算可得.【详解】解(1)222244112x x x T xx x x x ⎛⎫-+-=+÷ ⎪-+⎝⎭ =2(2)(1)(1)(2)(1)x x x x x x x x ⎛⎫-+-+⋅ ⎪-+⎝⎭, =12x x x x x --⎛⎫+ ⎪⎝⎭=2x ﹣3;(2)∵∠C =90°,∠A =30°,BC =2,∴tan BC A AC ==,∴AC =∴122x =⨯⨯=当x =23233T x =-=⨯=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及直角三角形的性质.21.(1)共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)红色小旗排在最左端的概率是13. 【解析】【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先由(1)中的树状图即可求得红色小旗排在最左端的情况,然后由概率公式求得答案.【详解】(1)画树状图得:则共有6种不同排法:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝红黄、蓝黄红;(2)∵由(1)中的树状图得:红色小旗排在最左端的有2种情况, ∴红色小旗排在最左端的概率是:2163=. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.(1)四;(2)见解析;(3)0.2715a b. 【解析】【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率; 故答案为:四;(2)补全折线统计图,如图所示:(3)根据题意得:ab×27.15%=0.2715ab,则全国森林面积可以达到0.2715ab万公顷,故答案为:0.2715ab.【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.23.(1)12;(2)34【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是男孩的结果数,然后根据概率公式求解.【详解】(1)第二个孩子是女孩的概率=12,故答案为:12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是男孩的结果数为3,所以至少有一个孩子是男孩的概率=34.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.24.乙直升机的飞行速度为每小时飞行240海里.【解析】【分析】根据已知条件得到∠ABO=25°+65°=90°,根据勾股定理即可得到结论.【详解】∵甲直升机航向为北偏东25°,乙直升机的航向为北偏西65°,∴∠ABO=25°+65°=90°,∵OA=20,OB=180×460=12,∴,∵16÷460=240海里,答:乙直升机的飞行速度为每小时飞行240海里.【点睛】本题考查了解直角三角形-方向角问题,正确的理解题意是解题的关键.25.18千米/小时【解析】【分析】设轮船在静水中的速度为x千米/小时,则顺流的速度为(x+2)千米/小时,逆流的速度为(x﹣2)千米/小时,根据路程=速度×时间结合A、B两个港口之间的路程相等,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设轮船在静水中的速度为x千米/小时,则顺流的速度为(x+2)千米/小时,逆流的速度为(x﹣2)千米/小时,依题意,得:4(x+2)=5(x﹣2),解得:x=18.答:轮船在静水中的速度为18千米/小时.【点睛】本题主要考查一元一次方程的应用,关键在于表示顺流速度和逆流速度.2019-2020学年数学中考模拟试卷一、选择题1.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.2.方程组21230x y x y -=⎧⎨++=⎩①②的解是( ) A .12x y =-⎧⎨=⎩ B .12x y =-⎧⎨=-⎩ C .10x y =⎧⎨=⎩ D .21x y =⎧⎨=-⎩3.如图,已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合),给出以下五个结论:①AE =CF ;②∠APE =∠CPF ;③连接EF ,△EPF 是等腰直角三角形;④EF =AP ;⑤S 四边形AFPE =S △APC ,其中正确的有几个( )A.2个B.3个C.4个D.5个4.如图,,,AB AC BD 是O 的切线,切点分别是,,P C D .若5,3AC BD ==,则AB 的长是( )A .2B .4C .6D .85.下列计算正确的是( )A .224a a a +=B .()2326a a =C .()23533a a a -=-gD .623422a a a ÷= 6.将抛物线221y x x =--向上平移1个单位,平移后所得抛物线的表达式是( )A .22y x x =-B .222y x x =--C .21y x x =--D .231y x x =--.7.图为歌神KTV的两种计费方案说明.若嘉淇和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务员试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们同一间包厢里欢唱的人数至少有( )A.6人B.7人C.8人D.9人8.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数为( )A.60°B.120°C.72°D.108°9.书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是( )A.65°B.35°C.165°D.135°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③当x<0时,y随x的增大而增大;④2c<3b;⑤a+b>m(am+b)(其中m≠1)其中正确的个数是()A.1 B.2 C.3 D.411.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )A.54°B.64°C.74°D.26°12( )A.2和3 B.3和4 C.4和5 D.5和6 二、填空题13.同时抛掷两枚硬币,恰好均为正面向上的概率是______.14.在函数y=中,自变量x的取值范围是__________.15.(3分)分解因式:= .16.分式方程2111xx x+=-+的解为_____.17.若x+3=5﹣y,a,b互为倒数,则代数式12(x+y)+5ab=_____.18.多项式1+x+2xy-3xy2的次数是______.三、解答题19.(1)化简:22242a aa a÷--;(2)若二次函数y=x2+(c﹣1)x﹣c的图象与横轴有唯一交点,求c的值.20.如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.21.已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.22.如图所示,将矩形纸片OABC 放置在直角坐标系中,点A(3,0),点C(0).(I).如图,经过点O 、B 折叠纸片,得折痕OB ,点A 的对应点为1A ,求1A OC ∠的度数;(Ⅱ)如图,点M 、N 分别为边OA 、BC 上的动点,经过点M 、N 折叠纸片,得折痕MN ,点B 的对应点为1B ①当点B 的坐标为(-1,0)时,请你判断四边形1MBNB 的形状,并求出它的周长;②若点N 与点C 重合,当点1B 落在坐标轴上时,直接写出点M 的坐标.23101|3|5( 3.14)2π-⎛⎫--⨯-- ⎪⎝⎭24.如图,AB 为一斜坡,其坡角为19.5°,紧挨着斜坡AB 底部A 处有一高楼,一数学活动小组量得斜坡长AB =15m ,在坡顶B 处测得楼顶D 处的仰角为45°,其中测量员小刚的身高BC =1.7米,求楼高AD .(参考数据:sin19.5°≈13,tan19.5°≈520,最终结果精确到0.1m ).25.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)交x轴于点A(2,0),B(﹣3,0),交y 轴于点C,且经过点d(﹣6,﹣6),连接AD,BD.(1)求该抛物线的函数关系式;(2)若点M为X轴上方的抛物线上一点,能否在点A左侧的x轴上找到另一点N,使得△AMN与△ABD相似?若相似,请求出此时点M、点N的坐标;若不存在,请说明理由;(3)若点P是直线AD上方的抛物线上一动点(不与A,D重合),过点P作PQ∥y轴交直线AD于点Q,以PQ为直径作⊙E,则⊙E在直线AD上所截得的线段长度的最大值等于.(直接写出答案)【参考答案】***一、选择题二、填空题13.1 414.x>-1 15..16.x=﹣3 17.618.3三、解答题19.(1)2(2)aa a-+;(2)c=﹣1.【解析】【分析】(1)利用除法法则转化为分式乘法,然后再进行计算即可;(2)由二次函数图象与x 轴有唯一交点,可得出△=(c+1)2=0,解之即可得出c 的值.【详解】(1)原式=()()22222a a a a a -+-=2(2)a a a -+;(2)∵二次函数y =x 2+(c ﹣1)x ﹣c 的图象与横轴有唯一交点,∴△=(c ﹣1)2﹣4×1×(﹣c)=(c+1)2=0,解得:c =﹣1,∴c 的值为﹣1.【点睛】本题考查了抛物线与x 轴的交点以及分式的乘除法,解题的关键是:(1)牢记分式运算的法则;(2)牢记“△=b 2﹣4ac =0时,抛物线与x 轴有1个交点”.20.(1)4y x =;(2)【解析】【分析】(1)可得点D 的坐标为:4m 2,3⎛⎫+ ⎪⎝⎭,点A (m ,4),即可得方程4m=43(m+2),继而求得答案; (2)作点A 关于y 轴的对称点E ,连接BF 交y 轴于点P ,可求出BF 长即可.【详解】解:(1)∵CD ∥y 轴,CD =43, ∴点D 的坐标为:(m+2,43), ∵A ,D 在反比例函数y =k x(x >0)的图象上, ∴4m =43(m+2), 解得:m =1,∴点A 的坐标为(1,4),∴k =4m =4,∴反比例函数的解析式为:y =4x; (2)过点A 作AE ⊥y 轴于点E ,并延长AE 到F ,使AE =FE =1,连接BF 交y 轴于点P ,则PA+PB 的值最小.∴PA+PB =PF+PB =BF ==【点睛】此题考查了待定系数法求反比例函数的解析式以及轴对称的性质.注意准确表示出点D 的坐标和利用轴对称正确找到点P 的位置是关键.21.(1)见解析;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【解析】【分析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA 1B 1,△OA 2B 2,即为所求;(2)点A 1的坐标为:(﹣1,3),点A 2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.22.(Ⅰ)30°;(Ⅱ)①四边形1B MBN 为菱形,周长为192;②,0)或,0). 【解析】【分析】(Ⅰ)由点A 、C 的坐标可得出OA 、AB 的长,即可求出tan ∠BOA 的值,根据特殊角的三角函数值可得∠BOA 的度数,根据折叠的性质利用角的和差关系即可得答案;(Ⅱ)①连接1BB ,交MN 与点E .点B ,1B 关于MN 对称可得MN 是BB 1的垂直平分线,即可得出1BE B E =,190BEN B EM ∠∠==,BN=B 1N ,BM=B 1M ,根据矩形的性质可得1BNE B ME ∠∠=.即可证明1BNE B ME ∆∆≌,进而可得1BN B M =,即可证明四边形B 1MBN 是菱形,过N 作NF OA ⊥,垂足为F ,设NB x =,在Rt △NFB 1中,利用勾股定理列方程求出x 的值即可得出答案;②分别讨论B 1在y 轴和x 轴两种情况,根据折叠的性质即可得答案.【详解】(Ⅰ)∵矩形OABC ,∴90OAB ∠=.BA tan BOA OA ∠==, ∴30BOA ∠=.∵点A 的对应点为A 1,∴130A OB AOB ∠∠==.∴190303030A OC ∠=--=.(Ⅱ)①连接1BB ,交MN 与点E .∵点B ,1B 关于MN 对称,∴MN 垂直平分1BB ,∴BN=B 1N ,BM=B 1M ,1BE B E =,190BEN B EM ∠∠==.∵//BC OA ,∴1BNE B ME ∠∠=.∴1BNE B ME ∆∆≌.∴1BN B M =.∴BN=B 1N=B 1M=BM ,∴四边形1B MBN 为菱形.过N 作NF OA ⊥,垂足为F .设NB x =,则3OF CN x ==-,14B F x =-.在1Rt NFB ∆中,22211NF B F B N +=,∴()2224x x +-=,解得198x=.∴菱形1B MBN的周长为192.②如图,当B1在y轴上时,CM是BB1的垂直平分线,∴BC=B1C,∵∠BCB1=90°,∴∠B1CM=45°,∴∴点M0).如图,当B1在x轴上时,CM是BB1的垂直平分线,∴B1C=BC=3,∴OB1,∵∠BCD=∠B1MD,∠B1DM=∠BDC=90°,BD=B1D,∴△BCD≌△B1MD,∴B1M=BC=3,∴OM=OB1+B1,∴点M的坐标为(,0)综上所述:点M的坐标为(,0,0).本题考查折叠的性质、矩形的性质、菱形的判定及全等三角形的判定与性质,折叠前后的两个图形对应边相等,对应角相等,熟练掌握相关定理及性质是解题关键.23.﹣15【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=3﹣2﹣3×5﹣1=﹣15.【点睛】此题主要考查了实数运算,正确化简各数是解题关键24.楼高AD 为21.0米.【解析】【分析】作CF ⊥AD 于点F ,在直角△ABE 中求得BE ,和AE 的长,然后在直角△CDE 中利用三角函数求得DE 的长,根据AD =DF+AF =CF+BC+BE 求解.【详解】作CF ⊥AD 于点F .在Rt △ABE 中,∵AB =15,∴BE =ABsin19.5°=15sin19.5°,AE =ABcos19.5°=15cos19.5°,在Rt △CDF 中,∵CF =AE ,∠DCF =45°,∴DF =CF ,∴AD =DF+AF =CF+BC+BE =15cos19.5°+1.7+15sin19.5°≈21.0(m ).答:楼高AD 为21.0米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,还考查的知识点有三角函数、直角三角形的性质以及勾股定理等.25.(1)2113442y x x =--+;(2)30,2M ⎛⎫ ⎪⎝⎭ 或31,2⎛⎫- ⎪⎝⎭ ,点(2N - 或(2 或(﹣3,0)或5,04⎛⎫- ⎪⎝⎭;(3)125 .【分析】(1)用交点式函数表达式得:y =a (x ﹣2)(x+3),将点D 坐标代入上式即可求解;(2)分∠MAB =∠BAD 、∠MAB =∠BDA ,两种大情况、四种小情况,分别求解即可;(3)QH =PHcos ∠PQH =22441133314125544242555PH x x x x x ++⎛⎫=---=-- ⎪⎝+⎭,即可求解. 【详解】解:(1)用交点式函数表达式得:y =a (x ﹣2)(x+3), 将点D 坐标代入上式并解得:a =14-, 故函数的表达式为:y =2113442x x --+…①, 则点C (0,32);(2)由题意得:AB =5,AD =10,BD = ,①当∠MAB =∠BAD 时,当∠NMA =∠ABD 时,△AMN ∽△ABD ,则tan ∠MAB =tan ∠BAD =34, 则直线MA 的表达式为:y =﹣34x+b , 将点A 的坐标代入上式并解得:b =32, 则直线AM 的表达式为:y =﹣34x+32…②, 联立①②并解得:x =0或2(舍去2),即点M 与点C 重合,则点M (0,2),则AM =∵△AMN ∽△ABD ,∴AN AM AD AB=,解得:AN =,故点N (2﹣,0);当∠MN′A=∠ABD 时,△ANM ∽△ABD ,同理可得:点N′(2,0),即点M (0,32),点N (2﹣,0)或(2,0); ②当∠MAB =∠BDA 时,同理可得:点M (﹣1,32),点N (﹣3,0)或(﹣54,0);故:点M (0,32)或(﹣1,32), 点N (2﹣,0)或(2,0)或(﹣3,0)或(﹣54,0); (3)如图所示,连接PH ,由题意得:tan ∠PQH =34,则cos ∠PQH =45, 则直线BD 的表达式为:y =34x ﹣32, 设点P (x ,2113442x x --+),则点H (x ,3342x --), 则QH =PHcos ∠PQH =45PH =2411333544242x x x ⎛--+-+ ⎝)=21412555x x --+, ∵15-<0,故QH 有最大值,当x =﹣2时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,其中(2)需要分类求解共四种情况,避免遗漏.。

2019-2020年中考数学专题复习《分类讨论思想》

2019-2020年中考数学专题复习《分类讨论思想》

2019-2020年中考数学专题复习《分类讨论思想》
我们在解数学题时,如果遇到的对象不确定,就要根据已知条件和题意的要求,
分不同的情况作出符合题意的解答,这就是分类讨论。

比如:①对字母的取值情况进
行筛选,根据题意作出取舍;②在不同的数的范围内,对代数式表达为不同的形式;
③对符合题意的图形,作出不同的形状、不同的位置关系等。

【范例讲析】:
例1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()
A.42 B.32 C.42 或 32 D.37 或 33
例2.在半径为1的圆O中,弦AB、AC的长分别是3、2,则∠BAC的度数
是。

x-=,则第三边长例3、已知直角三角形两边x、y的长满足240
∆中,AB=9,AC=6,,点M在AB上且AM=3,点N在为.. 例4.在ABC
AC上,联结MN,若△AMN与原三角形相似,求AN的长。

【闯关夺冠】
1.已知AB是圆的直径,AC是弦,AB=2,AC=2,弦AD=1,则∠CAD=.
2. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为
_______.
3.⊙O的半径为5㎝,弦AB∥CD,AB=6㎝,CD=8㎝,则AB和CD的距离是()
(A)7㎝(B)8㎝(C)7㎝或1㎝(D)1㎝
4.已知⊙O的半径为2,点P是⊙O外一点,OP的长为3,那么以P这圆心,且与⊙O相
切的圆的半径一定是()
A.1或5 B.1 C.5 D.1或4
5.已知点P是半径为2的⊙O外一点,PA是⊙O的切线,切点为A,且PA=2,在⊙O内
作了长为AB,连接PB,求PB的长。

中考数学专题训练 分类讨论及答案

中考数学专题训练 分类讨论及答案

第三节 分类讨论【回顾与思考】数字间→确定分类的原则或标准→分类【例题经典】会根据字母的大小或取值范围分类例1 (天津市)已知│x │=4,│y │=,且xy<0,则=_______. 【点评】由xy<0知x ,y 异与应分x>0,y<0,及x<0,y>0两类.会根据条件指待不明分类例2 (黑龙江省)为了美化环境,计划在某小区内用30m 2•的草皮铺设一块边长为10m 的等腰三角形绿地,请你求出等腰三角形绿地的另两边.【点评】因已知边为10指待不明,故应将已知边为10分底边或腰,当为腰时还要按三角形形状分类共三种.会根据图形的相对位置不同分类例3 ①(乌鲁木齐市)若半径为1cm 和2cm 的两圆相外切,•那么与这两个圆相切、且半径为3cm 的圆的个数为( )A .5个B .4个C .3个D .2个【点评】两圆相切,有内切,外切,故应分都外切,都内切,一内一外,一外一内共有五种.②⊙O 1与⊙O 2相交于AB ,且AB=24,两圆的半径分别为r 1=15,r 2=13,求两圆的圆心距.【点评】根据两圆圆心与公共弦的相对位置分O 1、O 2在AB 的同一侧和在AB•两侧进行分类.【考点精练】 1.(山西省)现有长度分别为2cm ,3cm ,4cm ,5cm 的木棒,从中任取三根,•能组成三角形的个数是( )A .1B .2C .3D .4 2.(哈尔滨市)直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,•△ABC 为等腰三角形,则满足条件的点C 最多有( )A .4个B .5个C .7个D .8个 3.(山西省)已知⊙O 的半径为5,AB 是弦,P 是直线AB 上的一点,PB=3,AB=8,则tan ∠OPA 的值为( ) A .3 B .C .或D .3或 4.(河南省)三角形两边的长分别是8和6,•第三边的长是一元二次方程x 2-16x+60=0的一个实数根,则该三角形的面积是( )⎧⎨⎩不重不漏12xy37133737A .24B .24或C .48D .5.(山西省)如图,AB ,AC 与⊙O 相切于B,C ,∠A=50°,点P 是圆上异于B 、•C 的一动点,则∠BPC 的度数是( )A .65°B .115°C .65°和115°D .130°和50° 6.(陕西省)要做甲、乙两个形状相同(相似)的三角形框架,•已有三角形框架甲,它的三边长分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,•那么符合条件的三角形框架乙共有( )A .1种B .2种C .3种D .4种 7.(甘肃省)若半径为3,5的两个圆相切,则它们的圆心距为( ) A .2 B .8 C .2或8 D .1或48,则斜边上的高为________.9.已知⊙O 是△ABC 的外接圆,OD ⊥BC 于D ,∠BOD=42°,则∠BAC=______度. 10.在△ABC 中,AB=AC ,AB 的中垂线与直线AC 相交所得的锐角为50°,•则底角∠B 的大小为__________. 11.⊙O 1和⊙O 2交于A ,B ,且⊙O 1经过点O 2,∠AO 1B=90°,则∠AO 2B 的度数为____. 12.若一次函数当自变量x 的取值范围是-1≤x ≤3时,函数y 的范围为-2≤y ≤6,•则此函数的解析式为________. 13.(天津市)已知正方形ABCD 的边长是1,E•为CD•边的中点,•P•为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B →C →E 运动,到达点E .若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当y=时,x 的值等于_______. 14.(日照市)在“五·一”黄金周期间,某超市推出如下购物优惠方案:(1)一次性购物在100元(不含100元)以内时,不享受优惠;(2)一次性购物在100元(含100元)以上,300元(不含300元)以内时,一律享受九折优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠.王茜在本超市两次购物分别付款80元,•252元.如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款( ) A .332元 B .316元或332元 C .288元 D .288元或316元 15.(杭州市)在图所示的平面直角坐标系内,已知点A (2,1),O 为坐标原点.请你在坐标轴上确定点P ,使得△AOP 成为等腰三角形,•在给出的坐标系中把所有这样的点P 都找出来,画上实心点,并在旁边标上P 1,P 2,……,P k (有k 个就标到P k 为止,•不必写出画法).1316.(河北省)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=•12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q•从点C 出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C•同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;(4)是否存在时刻t,使得PO⊥BD?若存在,求出t的值;若不存在,请说明理由.17.(荆州市)已知:如图,在直角梯形COAB中,CB∥OA,以点O为原点建立平面直角坐标系,A,B,C的坐标分别为A(10,0),B(4,8),C(0,8),D为OA的中点,动点P•自A点出发沿A→B→C→O的路线移动,速度为每秒1个单位,移动时间记为t秒.(1)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,指出自变量的取值范围,并求出S的最大值;(2)动点P从A出发,几秒钟后线段PD将梯形COAB的面积分成1:3两部分?求出此时P点的坐标.18.(泉州市)如图,在△ABC 中,∠ACB=90°,AC=BC=6cm ,正方形DEFC•的边长为2cm ,其一边EF 在BC 所在的直线L 上,开始时点F 与点C 重合,让正方形DEFG•沿直线L 向右以每秒1cm 的速度作匀速运动,最后点E 与点B 重合.(1)请直接写出该正方形运动6秒时与△ABC 重叠部分面积的大小; (2)设运动时间为2).①在该正方形运动6秒后至运动停止前这段时间内,求y 与x 之间的函数关系式;• ②在该正方形整个运动过程中,求当x 为何值时,y=.答案:12例题经典 例1:-8例2:①当AB 为底边时,AD=DB=5,②当AB•为腰且三角形为锐角三角形时,AB=AC=10,=8,BD=2,③当AB为腰且三角形为钝角三角形时, AB=BC=10,BD=8,例3:①A ②14或4考点精练1.C 2.C3.D 4.B 5.C6.C 7.C 8 9.42°或138° 10.20°或70° 11.45°或135° 12.y=2x 或y=-2x+4 13.或 14.D15.P 1(4,0),P 2(0,2),P 30),P 4(0),P 5(0,,P 6(0,,P 7(,0),P 8(0,)16.(1)S=96-6t (2)•①若PQ=BQ ,t=②若BP=BQ 得3t 2-32t+144=0,△<0,无解,∴PB ≠BQ ③若PB=PQ 得t 2+122=(16-2t )2+122,解得t 1=,t 2=16(舍去), ∴当t=秒或秒时以B 、P 、Q•为顶点的△是等腰三角形 (3)由△OAP ∽△OBQ 得 (4)当t=9秒时,PQ ⊥BD .17.(1)S=2t (0<t ≤10)当t=10时,S 最大值=20 (2)可得经过7秒或秒后,线段PD 将梯形COAB 的面积分成1:3两部分, 此时符合题意的点坐标为(23535452721637216315830,,tan 2529AP AO t QPE BQ OB ==∴=∴∠=825292828,),(0,)55518.(1)重叠部分面积为×22=2(cm 2) •(2)①当正方形停止运动时,点E 与点B 重合,此时EB=90°,ME=EB=CB-CE=6-(x-2)=8-EB =(8-x )2 • ②在正方形运动过程中分四种情况:Ⅰ.当0<x<2时,y=2x 且0<y<4令y=得x=. Ⅱ.•当2≤x ≤4时,重叠部分面积为4,此时y ≠.Ⅲ.当4<x ≤6时,y 随x 增大而减小,2≤y<4,此时y ≠. Ⅳ.当6<x<8时,由(2)①得y=(8-x )2, ∵y 随x 增大而减小,当x=6时,y=2,当x=•8时,y=0,∴0<y<2,令(x-8)2=,且x 1=7,x 2=9(舍去), ∴x=7,综上所述:x=或x=7时y=.1212121412121212121412。

2019年广西柳州市中考数学专题训练06:分类讨论思想(含答案)

2019年广西柳州市中考数学专题训练06:分类讨论思想(含答案)

专题训练(六)[分类讨论思想]1.[2017·聊城] 如图ZT6-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A,PB,那么使△ABP为等腰直角三角形的点P的个数是()图ZT6-1A.2个B.3个C.4个D.5个2.[2017·义乌] 如图ZT6-2,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有三个,则x的值是.图ZT6-23.[2017·齐齐哈尔] 如图ZT6-3,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.图ZT6-34.[2017·绥化] 在等腰三角形ABC中,AD⊥BC交直线BC于点D,若AD=1BC,则△ABC的顶角的度数为.25.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.是抛物线上6.[2017·眉山] 如图ZT6-4,抛物线y=ax2+bx-2与x轴交于A,B两点,与y轴交于C点,已知A(3,0),且M1,-83一点.图ZT6-4(1)求a,b的值;(2)连接AC,设点P是y轴上任一点,若以P,A,C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O,A重合),过点N作NH∥AC交抛物线的对称轴于点H.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.7.[2017·烟台] 如图ZT6-5①,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4.矩形OBDC的边CD=1,延长DC交抛物线于点E.图ZT6-5(1)求抛物线的表达式.(2)如图ZT6-5②,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值.(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.8.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.图ZT6-6(1)如图ZT6-6①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图②,△ABC中,AC=2,BC=√2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD 的长.参考答案1.B [解析] 由图可知,矩形的长是宽的2倍,以点B 为直角顶点构成等腰直角三角形的点P 有2个,以点A 为直角顶点构成等腰直角三角形的点P 有1个,∴满足条件的有3个.2.0或4√2-4或4<x<4√23.10或4√13或2√73 [解析] ∵AB=AC=10,BC=12,底边BC 上的高是AD , ∴∠ADB=∠ADC=90°,BD=CD=12BC=12×12=6, ∴AD=√102-62=8.∴用这两个三角形拼成平行四边形,可以分三种情况: (1)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10. (2)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是 √82+122=4√13. (3)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是√62+162=2√73.综上所述,这个平行四边形较长的对角线的长是10或4√13或2√73.4.30°或90°或150° [解析] 应分下列三种情况求顶角.(1)若角A 是顶角,如图①,AD=12BC ,则AD=BD ,底角为45°,所以顶角为90°;(2)若角A 不是顶角,当三角形是锐角三角形时,如图②,则在△ACD 中,AD=12BC=12AC ,所以顶角为30°;若三角形是钝角三角形,如图③,则∠ACD=30°,所以顶角为150°.故填30°或90°或150°.5.3或65 [解析] 由题意知,点P 在线段BD 上.(1)如图所示,若PD=P A ,则点P 在AD 的垂直平分线上,故点P 为BD 的中点,PE ⊥BC ,故PE ∥CD ,故PE=12DC=3;(2)如图所示,若DA=DP ,则DP=8,在Rt △BCD 中,BD=√BC 2+CD 2=10,∴BP=BD-DP=2.∵△PBE ∽△DBC ,∴PEDC =BP BD =15,∴PE=15CD=65.综上所述,PE 的长为3或65.6.解:(1)由题意,得{9a +3b -2=0,a +b -2=-83, 解得{a =23,b =-43.(2)由(1)得,抛物线的关系式为y=23x 2-43x-2,当x=0时,y=-2,∴C (0,-2).∵以P ,A ,C 三点为顶点的三角形是等腰三角形,∴分三种情况:①若AC=AP (如图①),由AO ⊥CP ,得OP=OC=2,∴P 1(0,2);②若CA=CP (如图②),∵AC=√OA 2+OC 2=√32+22=√13, ∴P 2(0,-2+√13),P 3(0,-2-√13);③若AP=PC (如图③),设点P 的坐标为(0,m ),则AP=PC=m+2,由勾股定理,得AP 2=OP 2+OA 2,∴(m+2)2=m 2+32,解得m=54,∴P 40,54.综上所述,符合条件的点P 有4个,坐标分别为P 1(0,2),P 2(0,-2+√13),P 3(0,-2-√13),P 40,54.(3)设抛物线的对称轴交x 轴于点D ,交AC 于点E , ∵抛物线y=23x 2-43x-2的对称轴为直线x=1, ∴D (1,0).又∵tan ∠OAC=DE DA =OC OA , ∴DE 2=23, ∴DE=43.∵NH ∥AC ,∴△DHN ∽△DEA , ∴DH DE=DN DA,即DH43=|t -1|2,∴DH=23|t-1|.分两种情况:①当0<t<1时(如图④),S=12·t ·23(1-t )=-13t 2+13t ; ②当1<t<3时(如图⑤),S=12·t ·23(t-1)=13t 2-13t. 综上所述,S 与t 之间的函数关系式为S={-13t 2+13t (0<t <1);13t 2-13t (1<t <3).7.解:(1)将x=0代入抛物线的解析式,得y=2.∴C (0,2). ∵四边形OBDC 为矩形, ∴OB=CD=1.∴B (1,0). 又∵AB=4,∴A (-3,0).设抛物线的解析式为y=a (x+3)(x-1). 将点C 的坐标代入得-3a=2,解得a=-23,∴抛物线的解析式为y=-23x 2-43x+2. (2)∵点E 在CD 上,∴y E =2.将y=2代入抛物线的解析式,得-23x 2-43x+2=2,解得x=0或x=-2.∴E (-2,2).∴EC=OC=2,∴∠COE=45°. ∵PG ∥y 轴,∴∠PGH=∠COE=45°. 又∵PH ⊥OE ,∴PH=√22PG.设直线OE 的解析式为y=kx ,将点E 的坐标代入,得-2k=2,解得k=-1. ∴直线OE 的解析式为y=-x.设点P 的坐标为m ,-23m 2-43m+2,则点G 的坐标为(m ,-m ).∴PG=-23m 2-43m+2+m=-23m 2-13m+2.∴l=√22×-23m 2-13m+2=-√23m 2-√26m+√2=-√23m+142+49√248.∴l 的最大值为49√248.(3)抛物线的对称轴为直线x=-b2a=-1.设点N 的坐标为(-1,n ),点M 的坐标为(x ,y ).①当AC 为平行四边形的对角线时,依据线段的中点坐标公式可知-1+x 2=0-32,解得x=-2.将x=-2代入抛物线的解析式得y=2. ∴M (-2,2).②当AM 为平行四边形的对角线时,依据线段的中点坐标公式可知-3+x 2=-1+02,解得x=2.将x=2代入抛物线的解析式得y=-23×4-43×2+2=-103.∴M 2,-103.③当AN 为平行四边形的对角线时,依据线段的中点坐标公式可知0+x 2=-1+(-3)2,解得x=-4.将x=-4代入抛物线的解析式得y=-103.∴M -4,-103.综上所述,点M 的坐标为(-2,2)或2,-103或-4,-103.8.解:(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=80°, ∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD=∠BCD=12∠ACB=40°, ∴∠ACD=∠A=40°,∴△ACD 为等腰三角形, ∵∠DCB=∠A=40°,∠CBD=∠ABC , ∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线.(2)①当AD=CD 时,如图①,∠ACD=∠A=48°, ∵△BDC ∽△BCA , ∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC 时,如图②,∠ACD=∠ADC=180°-48°2=66°,∵△BDC ∽△BCA , ∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD 时,如图③,∠ADC=∠A=48°,∵△BDC ∽△BCA ,∴∠BCD=∠A=48°, ∵∠ADC>∠BCD ,矛盾,舍去. ∴∠ACB=96°或114°. (3)由已知AC=AD=2, ∵△BCD ∽△BAC ,∴BC BA =BD BC,设BD=x ,∴(√2)2=x (x+2),∵x>0,∴x=√3-1, ∵△BCD ∽△BAC ,∴CD AC =BD BC =√3-√2,∴CD=√3-√2×2=√6-√2.。

2019-2020年中考数学二轮复习-分类讨论(附答案)

2019-2020年中考数学二轮复习-分类讨论(附答案)

2019-2020年中考数学二轮复习-分类讨论(附答案)Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】(武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

2019中考数学复习专项训练之分类讨论思想

2019中考数学复习专项训练之分类讨论思想

如图,∠APB=30°,点0是直线PB上的一点,OP=5cm, 若以点0为圆心,半径为1.5cm的⊙O沿BP方向移 动,当⊙O与PA相切时,圆心0移动的距离为 ______cm。
A
P 0 B
如图,AB,AC是⊙O的切线,B,C为切点,∠A=50°,点P 是圆上异于B,C的一个动点,则∠BPC的度数是______。
B
0
A C
答案115°或65°
如图,形如量角器的半圆0的直径DE=12cm,形如三角板的 △ABC中,∠ACB=90°,∠ABC=30°,BC=12cm,半圆0以 2cm/s的速度从左向右运动,在运动过程中,点D,E始终在 直线BC上.设运动时间为t(s),当t=0s时,半圆0在△ABC的 左侧,0C=8cm.当t为何值时,△ABC的一边所在直线与半圆 0所在的圆相
半径为5cm的圆内有两条互相平行的弦,长度分别 为6cm和8cm,则这两弦间的距离为______cm。
⊙O的弦AB等于圆的半径,那么弦AB所对的圆周角 是______。 已知点P是⊙O所在平面内的一点,P与圆上所有点 的距离中最长距离是9cm,最短距离是4cm,则⊙O 的半径是________。
已知点0是△ABC的外心,∠AOB=110°,则 ∠C的度数为_______。 已知⊙O的周长为6π,若某直线l上有一点 到圆心0的距离为3,则直线l与⊙O的位置关 系是________。

中考数学复习 分类讨论思想综合练习(有答案)

中考数学复习  分类讨论思想综合练习(有答案)

2019年中考数学复习分类讨论思想综合练习一.选择题1. 已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 ( )15°或75°A.15°B.30°或90°C.90°D.15°或75°2. 已知一等腰三角形的两边长x,y 满足方程⎩⎪⎨⎪⎧2x-y =33x+2y =8,则此等腰三角形的周长为( ) A.5 B.4 C.3 D.5或43.[2018·枣庄] 如图是由8个全等的矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连结PA,PB,那么使△ABP 为等腰直角三角形的点P 有( )A.2个B.3个C.4个D.5个4. 如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P ,使得△ABP 为直角三角形,那么满足条件的点P 共有( )A.3个B.6个C.9个D.12个5.点A,B,C 在☉O 上,∠AOB=100°,点C 不与A,B 重合,则∠ACB 的度数为 ( )A.50°B.80°或50°C.130°D.50°或130°6. 已知直角三角形两边的长a 、b 满足|a -2|+b 2-3=0,则第三边长为( )A.1B.1或7C. 7D.不能确定7. 若关于x 的方程kx 2+2(k +1)x +k -1=0有实数根,则k 的取值范围是( ) A. k≤13 B. k≥13 C. k≤-13 D. k≥-138. A,B两地相距450千米,甲、乙两车分别从A,B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2B.1或4C.3D.2或2.59.在半径为1的⊙O中,弦AB,AC的长分别为1和2,则∠BAC的度数为()A. 15°或50°B.30°或75°C. 15°或75°D. 15°或105°10.[2018·鄂州] 如图,已知矩形ABCD中,AB=4 cm,BC=8 cm,动点P在边BC上从点B向点C运动,速度为1 cm/s,同时动点Q从点C出发,沿折线C→D→A运动,速度为2 cm/s.当一个点到达终点时,另一个点随之停止运动.设点P运动时间为t(s),△BPQ的面积为S(cm2),则描述S(cm2)与时间t(s)的函数关系的图象大致是()二.填空题11.[2018·聊城] 如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是.12. 如果四个整数中的三个分别是2,4,6,且它们的中位数也是整数,那么它们的中位数是________.13.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.14.如图,已知点A(1,2)是反比例函数y=kx图象上的一点,连结AO并延长交双曲线的另一分支于点B,点P是x轴上一动点,若△PAB是等腰三角形,则点P的坐标是.15. 如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.16.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有3个,则x的值是.三.解答题17. 在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD·DC,求∠BCA的度数.18. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是多少元.19. 已知△ABC的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),将△ABC向右平移m(m>0)个单位后,△ABC某一边的中点恰好落在反比例函数y=3x的图象上,求m的值.20. 如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)当AC=3,BC=4时,求AD的长.21. 如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数y=kx的图象的交点,若直线BD将△ABC的面积分成1∶2的两部分,求k的值.22. 如图,直线y=3x+3交x轴于点A,交y轴于点B,过A,B两点的抛物线交x轴于另一点C(3,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的点Q的坐标;若不存在,请说明理由.参考答案1-5 DABBD6-10 BDDDA11. 180°或360°或540°12. 3或4或513. 3或5614. (-5,0)或(-3,0)或(3,0)或(5,0)15. 10或413或27316. x=0或x=42-4或4<x<4217. 解:①如图①,当△ABC 为锐角三角形时,△ABD ∽△CAD ,∠BCA =∠BAD =90°-25°=65°;②如图②,当△ABC 为钝角三角形时,∠BCA =∠CDA +∠CAD =90°+∠B =90°+25°=115°.图①图②18. 解:设第一次购书原价为a 元,则第二次购书原价为3a 元,易知第一次购书原价必然不超过100元,否则两次付款必然大于229.4,故分类讨论如下:①若a≤100且3a≤100,显然a +3a≤200<229.4,舍去;②若a≤100且100<3a≤200,则a +0.9×3a =229.4,解得a =62,所以两次购书原价和为4a =4×62=248元;③若a≤100且3a >200,则a +0.7×3a =229.4,解得a =74,所以两次购书原价和为4a =4×74=296元.综上所述:两次购书的原价和为248元或296元.19. 解:依题可得:有两种可能,即AC 、AB 中点落在反比例函数y =3x的图象上. ①若为AC 中点(-2,-2)向右平移m 个单位后落在y =3x的图象上, 则有点(m -2,-2)在y =3x的图象上, 代入得-2=3m -2, ∴-2m +4=3,∴m =0.5;②若为AB 中点(-1,1)向右平移m 个单位后落在y =3x图象上, 则有点(m -1,1)在y =3x的图象上, 代入得1=3m -1,∴m -1=3, ∴m =4.所以m 为0.5或4.20. 解:有两种情况:① 若CE ∶CF =3∶4,如图①所示.∵CE ∶CF =AC ∶BC ,∴EF ∥AB.由折叠性质可知,CD ⊥EF ,∴CD ⊥AB ,即此时CD 为AB 边上的高.在Rt △ABC 中,AC =3,BC =4,∴AB =5,∴cosA =0.6,AD =AC·cosA =3×0.6=1.8;②若CF ∶CE =3∶4,如图②所示.∴△CEF ∽△CBA ,∴∠CEF =∠B.由折叠性质可知,∠CEF +∠ECD =90°,又∵∠A +∠B =90°,∴∠A =∠ECD ,∴AD =CD.同理可得:∠B =∠FCD ,CD =BD ,∴此时AD =BD =12×5=2.5. 综上所述,AD 的长为1.8或2.5.图①图②21. 解:如图,过点C 作CM ⊥AB 于点M ,在Rt △CBM 中,BC =23,∠ABC =60°,∴BM =3,CM =3,∴S △ABC =12AB·CM =12AC·AO =6, ∵BD 将S △ABC 分成1∶2的两部分,则AD =13AC 或AD =23AC , ∵点D 在反比例函数y =k x上, ∴k =-13AC·OA =-4或k =-23AC·OA =-8.22. 解:(1)设抛物线的表达式为y =ax 2+bx +c ,∵直线y =3x +3交x 轴于点A ,交y 轴于点B ,∴点A 的坐标为(-1,0),点B 的坐标为(0,3),又∵抛物线经过A ,B ,C 三点,点C 的坐标为(3,0),∴⎩⎪⎨⎪⎧a -b +c =09a +3b +c =0c =3,解得⎩⎪⎨⎪⎧a =-1b =2c =3,∴抛物线的表达式为y =-x 2+2x +3;(2)∵y=-x2+2x+3=-(x-1)2+4,∴该抛物线的对称轴为直线x=1.设点Q的坐标为(1,m),则AQ=4+m2,BQ=1+(3-m)2,AB=10.当AB=AQ时,10=4+m2,解得m=±6,∴点Q的坐标为(1,6)或(1,-6);当AB=BQ时,10=1+(3-m)2,解得m1=0,m2=6,∴点Q的坐标为(1,0)或(1,6),但当点Q的坐标为(1,6)时,点A,B,Q在同一条直线上,∴舍去;当AQ=BQ时,4+m2=1+(3-m)2,解得m=1,∴点Q的坐标为(1,1).∴抛物线的对称轴上存在点Q(1,6),(1,-6),(1,0),(1,1),使△ABQ是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练(六)[分类讨论思想]1.[2017·聊城] 如图ZT6-1是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A,PB,那么使△ABP为等腰直角三角形的点P的个数是()图ZT6-1A.2个B.3个C.4个D.5个2.[2017·义乌] 如图ZT6-2,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使P,M,N构成等腰三角形的点P恰好有三个,则x的值是.图ZT6-23.[2017·齐齐哈尔] 如图ZT6-3,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.图ZT6-34.[2017·绥化] 在等腰三角形ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.5.[2018·安徽] 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.6.[2017·眉山] 如图ZT6-4,抛物线y=ax2+bx-2与x轴交于A,B两点,与y轴交于C点,已知A(3,0),且M1,-是抛物线上一点.图ZT6-4(1)求a,b的值;(2)连接AC,设点P是y轴上任一点,若以P,A,C三点为顶点的三角形是等腰三角形,求P点的坐标;(3)若点N是x轴正半轴上且在抛物线内的一动点(不与O,A重合),过点N作NH∥AC交抛物线的对称轴于点H.设ON=t,△ONH的面积为S,求S与t之间的函数关系式.7.[2017·烟台] 如图ZT6-5①,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4.矩形OBDC的边CD=1,延长DC交抛物线于点E.图ZT6-5(1)求抛物线的表达式.(2)如图ZT6-5②,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值.(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.8.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.图ZT6-6(1)如图ZT6-6①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图②,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD 的长.参考答案1.B[解析] 由图可知,矩形的长是宽的2倍,以点B为直角顶点构成等腰直角三角形的点P有2个,以点A为直角顶点构成等腰直角三角形的点P有1个,∴满足条件的有3个.2.0或4-4或4<x<43.10或4或2[解析] ∵AB=AC=10,BC=12,底边BC上的高是AD,∴∠ADB=∠ADC=90°,BD=CD=BC=×12=6,∴AD=-=8.∴用这两个三角形拼成平行四边形,可以分三种情况:(1)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是10.(2)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=4.(3)按照如图所示的方法拼成平行四边形,则这个平行四边形较长的对角线的长是=2.综上所述,这个平行四边形较长的对角线的长是10或4或2.4.30°或90°或150°[解析] 应分下列三种情况求顶角.(1)若角A是顶角,如图①,AD=BC,则AD=BD,底角为45°,所以顶角为90°;(2)若角A不是顶角,当三角形是锐角三角形时,如图②,则在△ACD中,AD=BC=AC,所以顶角为30°;若三角形是钝角三角形,如图③,则∠ACD=30°,所以顶角为150°.故填30°或90°或150°.5.3或[解析] 由题意知,点P在线段BD上.(1)如图所示,若PD=P A,则点P在AD的垂直平分线上,故点P为BD的中点,PE⊥BC,故PE∥CD,故PE=DC=3;(2)如图所示,若DA=DP,则DP=8,在Rt△BCD中,BD==10,∴BP=BD-DP=2.∵△PBE∽△DBC,∴==,∴PE=CD=.综上所述,PE的长为3或.6.解:(1)由题意,得---解得-(2)由(1)得,抛物线的关系式为y=x2-x-2,当x=0时,y=-2,∴C(0,-2).∵以P,A,C三点为顶点的三角形是等腰三角形,∴分三种情况:①若AC=AP(如图①),由AO⊥CP,得OP=OC=2,∴P1(0,2);②若CA=CP(如图②),∵AC===,∴P2(0,-2+),P3(0,-2-);③若AP=PC(如图③),设点P的坐标为(0,m),则AP=PC=m+2,由勾股定理,得AP2=OP2+OA2,∴(m+2)2=m2+32,解得m=, ∴P40,.综上所述,符合条件的点P有4个,坐标分别为P1(0,2),P2(0,-2+),P3(0,-2-),P40,.(3)设抛物线的对称轴交x轴于点D,交AC于点E,∵抛物线y=x2-x-2的对称轴为直线x=1,∴D(1,0).又∵tan∠OAC==,∴=,∴DE=.∵NH∥AC,∴△DHN∽△DEA,∴=,即=-,∴DH=|t-1|.分两种情况:①当0<t<1时(如图④),S=·t·(1-t)=-t2+t;②当1<t<3时(如图⑤),S=·t·(t-1)=t2-t.综上所述,S与t之间的函数关系式为S=--7.解:(1)将x=0代入抛物线的解析式,得y=2.∴C(0,2).∵四边形OBDC为矩形,∴OB=CD=1.∴B(1,0).又∵AB=4,∴A(-3,0).设抛物线的解析式为y=a(x+3)(x-1).将点C的坐标代入得-3a=2,解得a=-,∴抛物线的解析式为y=-x2-x+2.(2)∵点E在CD上,∴y E=2.将y=2代入抛物线的解析式,得-x2-x+2=2,解得x=0或x=-2.∴E(-2,2).∴EC=OC=2,∴∠COE=45°.∵PG∥y轴,∴∠PGH=∠COE=45°.又∵PH⊥OE,∴PH=PG.设直线OE的解析式为y=kx,将点E的坐标代入,得-2k=2,解得k=-1.∴直线OE的解析式为y=-x.设点P的坐标为m,-m2-m+2,则点G的坐标为(m,-m).∴PG=-m2-m+2+m=-m2-m+2.∴l=×-m2-m+2=-m2-m+=-m+2+.∴l的最大值为.(3)抛物线的对称轴为直线x=-=-1.设点N的坐标为(-1,n),点M的坐标为(x,y).①当AC为平行四边形的对角线时,依据线段的中点坐标公式可知-=-,解得x=-2.将x=-2代入抛物线的解析式得y=2.∴M(-2,2).②当AM为平行四边形的对角线时,依据线段的中点坐标公式可知-=-,解得x=2.将x=2代入抛物线的解析式得y=-×4-×2+2=-.∴M2,-.③当AN为平行四边形的对角线时,依据线段的中点坐标公式可知=--,解得x=-4.将x=-4代入抛物线的解析式得y=-.∴M-4,-.综上所述,点M的坐标为(-2,2)或2,-或-4,-.8.解:(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图①,∠ACD=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图②,∠ACD=∠ADC=-=66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图③,∠ADC=∠A=48°, ∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍去.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=-1,∵△BCD∽△BAC,∴==-,∴CD=-×2=-.。

相关文档
最新文档