公开课《鸡兔同笼》教学设计ppt课件
北京版四年级下册《鸡兔同笼》公开课PPT课件
目录•课程介绍与目标•知识点梳理与讲解•典型例题分析与解答•学生自主练习与互动环节•知识拓展与延伸•课程总结与回顾课程介绍与目标0102 03古代数学问题起源于中国古代的数学名题,具有深厚的历史文化背景。
逻辑思维训练通过解决“鸡兔同笼”问题,培养学生的逻辑思维能力,提高分析问题和解决问题的能力。
拓展数学知识涉及方程、假设法等数学概念,帮助学生巩固和拓展数学知识体系。
《鸡兔同笼》背景及意义掌握解决“鸡兔同笼”问题的方法,理解方程和假设法的原理。
知识与技能过程与方法情感态度与价值观通过独立思考、小组合作、全班交流等方式,探究解决问题的多种方法。
培养学生勇于探索、敢于质疑的精神,感受数学文化的魅力。
030201教学目标与要求通过故事或情境导入,激发学生的学习兴趣。
课程导入(5分钟)新课学习(25分钟)课堂练习(10分钟)课程小结(5分钟)讲解“鸡兔同笼”问题的背景、意义及解决方法,引导学生探究方程和假设法的原理。
提供不同难度的练习题,让学生运用所学知识解决问题。
总结本节课的知识点和学习方法,鼓励学生将所学知识应用于实际生活中。
课程安排与时间知识点梳理与讲解变量设定通常设鸡的数量为x ,兔的数量为y 。
定义鸡兔同笼问题是一类经典的数学问题,通常描述为“一个笼子里有若干只鸡和兔,从上面数有x 个头,从下面数有y 只脚,问鸡和兔各有多少只?”约束条件根据题目描述,可以列出两个方程,分别表示头的数量和脚的数量。
鸡兔同笼问题基本概念假设全部是鸡首先假设笼子里全部都是鸡,这样脚的数量就是头的数量的两倍。
然后比较实际脚数与假设脚数的差异,每差两只脚就说明有一只兔子,从而求出兔子的数量。
假设全部是兔子同样地,也可以假设笼子里全部都是兔子,这样脚的数量就是头的数量的四倍。
然后比较实际脚数与假设脚数的差异,每差两只脚就说明有一只鸡,从而求出鸡的数量。
列方程根据题目描述,可以列出两个方程,分别表示头的数量和脚的数量。
设鸡的数量为x,兔的数量为y,则有x+y=头数,2x+4y=脚数。
鸡兔同笼PPT教案.pptx
方法二:假设法
假设全是鸡:
35 × 2 = 70(只) 94 – 70 = 24 (只)
4-2=2 兔:24 ÷ 2= 12(只) 鸡:35 –12=23(只)
答:兔有12只,鸡有23只。
第12页/共15页
第13页/共15页
龟鹤问题
有龟和鹤共40只,龟的腿和鹤 的腿共112条,龟和鹤各有多少只?
第3页/共15页
鸡兔同笼
笼子里有若干只 鸡和兔,从上面数, 有8个头;从下面数, 有26只脚。鸡和兔 各有几只?
1、 鸡和兔共8只。 2、 鸡和兔共有26只脚。 3、 鸡有2只脚。 4、 兔有4只脚。
第4页/共15页
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有26只脚.鸡和兔各有几只? 列表法:
第6页/共15页
笼子里有若干只鸡和兔.从上面数,有8个头, 从下面数,有26只脚.鸡和兔各有几只? 假设1:
第7页/共15页
笼子里有若干只鸡和兔.从上面数,有8个 头,从下面数,有26只脚.鸡和兔各有几只? 假设2
8×4=32(只) 32-26=6(只)
4-2=2 6÷2=3(只) 8-3=5(只) 答:鸡有3只,兔有5只.
答:笼子里有鸡3只,有兔5只。
第11页/共15页
笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。 鸡和兔各有几只?
方法一:列方程
解:设兔有X只,鸡有(35-X)只。 鸡兔共有94只脚。就是:
x
4X + 2(35-X)= 94 4X + 70 - 2X = 94 70 + 2X=94 2X=94 - 70 X=12
《鸡兔同笼》教学课件公开课课件教案教学设计
猴子:36÷(4-2)=18(只) 孔雀:30-18=12(只) 答:孔雀有12只,猴子有18只。
我会运用
到了中午,小明又和爸爸妈妈一起去快餐店吃饭。 他们买了汉堡包和可乐共10份,汉堡包一份15元,可 乐一份6元,一共花了114元。那么汉堡包和可乐分别 买了多少份?
假设全都有6只脚:15×6=90(只) 98-90=8(只)
蜘蛛:8÷(8-6)=4(只) 蜻蜓和蝉:15-4=11(只)
蝉:(11×2-16)÷(2-1)=6(只) 蜻蜓:11-6=5(只) 答:蜘蛛有4只,蜻蜓有5只,蝉有6只。
古人怎么解决“鸡兔同笼”问题的?
下一页
今天有 感什 谢么 观收看获?
假设全是汉堡包:10×15=150(元) 150-114=36(元)
可乐:36÷(15-6)=4(份) 汉堡包:10-4=6(份) 答:汉堡包有6份,可乐有4份。
我会运用
吃完午饭,小明又继续逛起了动物园。他发现蜘 蛛、蜻蜓和蝉共15只,共有脚98只,翅膀16对。蜘蛛 有8只脚;蜻蜓6只脚,2对翅膀;蝉6只脚,1对翅膀。 那么蜘蛛、蜻蜓和蝉各有多少只?
共14只脚
14-10=4(只)
有4只脚
假设全是小 兔呢?
小兔:4÷(4-2)=2(只) 小鸡:5-2=3(只)
有10只脚
答:小鸡有3只,小兔有2只。
用面积法来帮 助你理解吧!
返回
比较:比较这几种方法,你有什么发现?
画图法
假设法
列表法
面积法
鸡兔同笼
笼子里有若干只小鸡和小兔。从上面数,有35个头, 从下面数,有94只脚。小鸡和小兔各有几只?
返回
《鸡兔同笼》ppt课件
2023-2026
END
THANKS
感谢观看
KEEP VIEW
REPORTING
该问题描述了一个笼子中鸡和兔共存的情况,需要通过给定的条件求解未知数。
鸡兔同笼问题具有很高的数学价值和教育意义,是锻炼逻辑思维和代数思维的良好 素材。
问题引入
通过展示一个实际的鸡兔同笼场 景,引起学生的兴趣和好奇心。
提出“如何确定笼子中鸡和兔的 数量”的问题,引导学生思考并
进入主题。
简要介绍解题方法,让学生对后 续内容产生期待。
2023-2026
ONE
KEEP VIEW
《鸡兔同笼》ppt课件
汇报人:可编辑
REPORTING
2023-12-26
CATALOGUE
目 录
• 引言 • 问题描述与建模 • 鸡兔同笼问题的解法 • 鸡兔同笼问题的变种 • 实际应用与启示 • 结论
PART 01
引言
背景介绍
鸡兔同笼问题是中国古代数学中的经典问题,最早出现在《孙子算经》中。
对生活的启示
学会转换思维
在面对复杂问题时,可以尝试从不同 的角度去思考,将问题简化。
重视基础知识的积累
基础知识是解决复杂问题的关键,只 有掌握了扎实的基础知识,才能更好 地解决实际问题。
对数学学习的启示
培养数学思维
通过解决“鸡兔同笼”这类问题 ,可以培养数学思维,提高逻辑 推理能力。
学会举一反三
举例说明
解法:首先列出方程组来表示问题,然后解方程组求解 。
逻辑推理法:根据动物的特性(如只有鸡有两只脚,兔 子有四只脚)和给定的条件,通过逻辑推理来求解。
《鸡兔同笼》ppt课件
06 问题拓展与延伸
鸡兔同ห้องสมุดไป่ตู้问题变形
变形一
已知头数和腿数,求鸡兔各多少只。
变形二
已知鸡兔总数和腿数差,求鸡兔各多少只。
变形三
已知鸡兔互换后总腿数的变化,求鸡兔各多少只 。
其他类似数学问题介绍
百僧分馍问题
一百个和尚分一百个馒头,大和尚一人分三个,小和尚三 人分一个,正好分完。问大和尚和小和尚各有多少人?
01
02
03
04
城市规划
运用数学建模思想,可以合理 规划城市布局,优化交通网络
,提高城市运行效率。
经济学
数学建模在经济学中广泛应用 ,如预测市场趋势、分析消费 者行为、制定经济政策等。
工程学
在工程学中,数学建模可以帮 助工程师设计更稳定、更高效 的建筑结构、机械系统等。
医学
数学建模在医学领域也有应用 ,如预测疾病传播、分析药物
验证答案正确性
验证方法
将求得的鸡和兔的数量代入原方程组,检验是否满足题目条件。
注意事项
在验证答案时,要确保代入后的等式左右两边相等,否则需要重新检查求解过程。
05 图形法解题步骤与技巧
绘制图形表示鸡兔数量关系
绘制基本图形
用圆形表示动物头部,用 竖线表示动物身体,用两 条斜线表示鸡的脚,用四 条斜线表示兔的脚。
《鸡兔同笼》ppt课 件
目录
• 问题引入 • 解题思路与方法 • 假设法解题步骤与技巧 • 方程法解题步骤与技巧 • 图形法解题步骤与技巧 • 问题拓展与延伸
问题引入
01
古代数学问题
01
算术问题
古代数学问题多以算术为主,涉及整数、分数、比例等 计算。
《鸡兔同笼》ppt课件
现实意义
该问题不仅具有历史价值 ,而且在现实生活中也有 广泛应用,如物流、经济 等领域。
思维训练
通过解决《鸡兔同笼》问 题,可以培养学生的逻辑 思维能力和数学建模能力 。
教学目标与要求
知识与技能
掌握《鸡兔同笼》问题的 解决方法,理解其背后的 数学原理。
过程与方法
通过引导学生自主探索、 合作交流,培养学生的问 题解决能力和团队协作精 神。
给予足够的时间让学生充分讨论 ,教师可在教室巡视,提供必要
的指导和帮助。
分享交流各组解题思路和答案
分享方式
每组选派一名代表,向全班展示本组的解题思路 和答案。
交流内容
各组代表依次上台,使用PPT或口头表述的方式, 详细阐述本组的解题过程、方法和答案。
互动环节
其他同学可以提问或发表自己的看法,与分享者 进行互动交流。
题目描述
一个笼子里有若干只鸡和兔。从上面数,有8个头,从下 面数,有26只脚。鸡和兔各有几只?
解题思路
假设都是鸡,则有8×2=16只脚,比实际少26-16=10只 脚。因为每只兔比每只鸡多2只脚,所以兔有10÷2=5只 ,鸡有8-5=3只。
总结
通过假设法,将问题转化为简单的算术问题,从而求解。
经典题目二:变形题型解析
元一次方程组。
求解方程
通过代入法或消元法求解方程组, 得出鸡和兔的数量。
方程法的优点
适用于更复杂的问题,可以处理多 个未知数的情况,更具普适性。
03
进阶技巧探讨
图形化解题技巧
画图法
通过绘制简单的图形,如圆形或方形代表鸡和兔的头,线段代表脚,帮助学生 直观理解问题。
表格法
建立表格,列出鸡和兔的可能数量组合,通过填写表格找到满足条件的解。
《鸡兔同笼》PPT课件
在数学中的应用
代数运算
鸡兔同笼问题可以通过代数运算进行求解,涉及到方程的建立和求解等数学知识。通过这类问题的训练, 可以提高学生的代数运算能力和数学思维能力。
数学建模
鸡兔同笼问题可以看作是一个简单的数学建模问题。在数学建模中,需要将实际问题抽象成数学模型,并 运用数学方法进行求解。通过鸡兔同笼问题的学习,可以引导学生初步了解数学建模的思想和方法。
方程法
一元一次方程
设鸡为x只,兔为y只。根据题目中给出的头数和脚数,可以列出一个包含x和y的一 元一次方程,然后解方程求出x和y的值。
二元一次方程组
同样地,也可以设鸡为x只,兔为y只,但是列出两个包含x和y的二元一次方程组。 通过解这个方程组,可以求出x和y的值。
列表法
逐一列举
根据题目中给出的头数和脚数的范围,可以逐一列举出所有可 能的鸡和兔的组合,并计算每种组合下的脚数。然后与实际脚 数进行比较,找出符合条件的组合。
示例
一个笼子里有鸡、兔和猪, 共有35个头和94只脚,求 鸡、兔和猪各有多少只?
不同数量级动物同笼问题
描述
笼子里的动物数量级相差 较大,例如鸡的数量远多 于兔。
解决方法
可以通过合理的估算和假 设,简化问题求解的难度。
示例
一个笼子里有大量的鸡和 少量的兔,共有1000个头 和2700只脚,求鸡和兔各 有多少只?
《鸡兔同笼》问题在现代教育中仍然具有重要意义,被广泛应用于小学数学、初中 数学等课程中。
课件目的
帮助学生理解《鸡兔同笼》问 题的背景、意义和解法,提高 学生的数学素养和解决问题的 能力。
通过对该问题的深入剖析和多 种解法的探讨,培养学生的数 学思维和创新能力。
引导学生体会数学在解决实际 问题中的应用价值,激发学生 学习数学的兴趣和动力。
鸡兔同笼公开课优质.pptx
感谢您的观看!
第29页/共29页
876543 012345 16 18 20 22 24 26
还有更快的方法解决这个问题吗?
第18页/共29页
孙子算经
第19页/共29页
今有雉(鸡)兔同笼,上 有三十五头,下有九十四 足.问雉兔各几何?
第20页/共29页
按
第21页/共29页
草地上有一些鸡兔,共有35个头,94只脚 ,鸡和兔分别有几只?
87 6 5 0 12 3 16 18 20 22
第14页/共29页
鸡
8 7 65 4
兔
0 12 3 4
共有腿数 16 18 20 22 24
第15页/共29页
鸡
8 765 4 3
兔
0 12 3 4 5
共有腿数 16 18 20 22 24 26
第16页/共29页
列表法:
鸡
8 76 5 4 3
第27页/共29页
砍足法:(《孙子算经》中记载的方法)
假如砍去每只鸡、每只兔一半的脚, 则每只鸡就变成了“独角鸡”,每 只兔就变成了“双脚兔”。这样, (1)鸡和兔的脚的总数就由26只变 成了13只;(2)如果笼子里有一只 兔子,则脚的总数就比头的总数多1。 因此,脚的总只数13与总头数8的差, 就是兔子的只数第28页,/共29即页 13-8=5 (只)。显然,鸡的只数就是5只了。
第24页/共29页
全班一共有38人,共租8条船,每 条船都坐满了,大小船各租了几条?
第25页/共29页
◆一只蛐蛐6条腿,一只蜘蛛8条腿,现有蛐蛐和蜘 蛛共7只,共有48条腿,问:蛐蛐几只?蜘蛛几只 ?
第26页/共29页
乒乓球比赛,有8个球案在进行单打 、双打比赛,一共有22人正在比赛。 单打的球案有几张?双打的球案有几 张?
人教版四年级数学下册第9单元《鸡兔同笼》课件(共19张PPT)
对照假设法
假设全是鸡
假设全是兔
方法总结
我们在解决“鸡兔同笼”问题时都用了哪些方法?
方法总结
鸡:3只
兔:5只
方法总结
假设全部都是鸡 8x2=16(只)
26-16=10(只) 兔:1源自÷(4-2)=5(只) 鸡:8-5=3(只)
现在我们就用刚才学到 的这些方法解决《孙子 算经》中的《鸡笼同笼》 问题,你会选用哪一种
人 教 版
鸡兔同笼 小 学 数 学 四 年 级 下 册
笼子中可能会有几只鸡 几只兔呢?
“笼子里有若干只鸡和兔,从 上面数,有8个头;从下面数, 有26只脚。鸡和兔各有几只?”
①鸡和兔共8只。②鸡和兔共有26条腿。 ③鸡有2条腿。 ④兔有4条腿。
列表法
脚总数:3×2+5×4=26(只) 鸡有3只,兔有5只。
方法?为什么?
假设法
假设法
笼子里有若干鸡和兔,从上面数,有35个头; 从下面数。有94只脚。鸡和兔各有几只?
假设法:假设笼子里全都是兔 35x4=140(只) 140-94=46(只)4-2=2(只) 鸡:46÷2=23(只) 兔:35-23=12(只) 答:兔有12只,鸡有23只。
列表法 画图法 假设法
当数据比较小时适用。 当数据比较小时适用。 当数据比较大时适用。
“鸡兔同笼”的方法可以运用到什么情况上??
请同学们们运用今天所学的“鸡兔同笼”的方法进行解答。
同学们 再见
假设法
假设全是鸡
假设法
1.假设8只全是兔,一共有几只脚?
8x4=32(只)
2.与条件26只相比,相差几只脚? 32-16=6(只)
4.相差的6只脚,能换成几只鸡? 鸡:6÷2=3(只)
鸡兔同笼公开课优质PPT课件
辅助学生理解题意
通过示意图的直观展示,帮助学生更 好地理解题目中的条件和要求。
引导学生观察示意图
指导学生观察并理解示意图中鸡兔数 量和脚数之间的变化规律。
逐步推导过程详解
设定未知数
根据题目条件,设定表 示鸡或兔数量的未知数
。
列方程
根据鸡兔头数和脚数的 等量关系,列出方程。
实际生活中的应用
虽然问题背景较为抽象,但类似的问 题在实际生活中也有应用,比如不同 种类物品的计数问题。
已知条件与未知量
已知条件
通常已知鸡和兔的总数量以及它们的总腿数。
未知量
需要求解的是鸡和兔各自的数量。
初步解题思路探讨
假设法
可以假设全部是鸡或全部是兔 ,然后通过比较腿数的差异来
逐步逼近正确答案。
解方程
运用代数知识,求解方 程得到鸡或兔的数量。
验证答案
将求得的解代入原题中 进行验证,确保答案正
确。
图形化方法优缺点分析
优点
直观形象,易于理解;能够帮助学生快速找到解题思路;适 用于各年级学生。
缺点
需要一定的绘图技巧;对于复杂问题可能不够精确;不适用 于所有类型的问题。
04
代数法求解过程剖析
设立代数方程表示问题
06
课堂互动环节
学生自主尝试解题并分享思路
学生独立思考,尝试运用所学 知识解决鸡兔同笼问题。
鼓励学生分享自己的解题思路 和方法,锻炼口头表达能力。
通过比较不同学生的解题思路 ,拓展全班同学的思维视野。
小组讨论交流不同解法心得
学生分组进行讨论,交流各自在 解题过程中的心得体会。
鸡兔同笼ppt课件
04
总结与反思
问题的总结
鸡兔同笼问题是一个经典的数 学问题,通常出现在小学奥数 或中学数学中。
问题描述了一个鸡和兔子在同 一笼子里的场景,要求我们根 据给定的头数和脚数,推断出 鸡和兔子的数量。
问题的核心在于利用数学方程 来解决现实生活中的问题。
对解法的反思
通常的解法是使用代数方程来解 决鸡兔同笼问题。
鸡兔同笼问题
目录
• 问题引入 • 解决方法 • 问题的应用 • 总结与反思
01
问题引入
问题的来源
01
鸡兔同笼问题是一个经典的数学 问题,起源于中国古代的数学著 作《算经》。
02
问题是关于鸡和兔子在同一笼子 里的数量关系,通常以“鸡兔同 笼,一笼百只,鸡兔总脚,二百 六十”的形式提出。
问题的现实意义
通过假设和方程的运用,可以轻 松地得出孩子和宠物的数量。
在其他学科中的应用
鸡兔同笼问题不仅在数学和日常生活中的应用,还扩展到了其他学科。
在生物学中,鸡兔同笼问题可以用来解决动物种群数量的问题;在经济 学中,鸡兔同笼问题可以用来解决资源分配和产出问题。
这些学科中的问题,也可以运用假设、方程等数学方法,转化为鸡兔同 笼问题进行解决。
02
03
设未知数
设鸡的数量为x,兔的数 量为y。
建立方程
根据鸡和兔的头和脚的数 量,建立两个方程。
解方程组
通过解方程组来找到鸡和 兔的数量。
方程法
建立方程
根据鸡和兔的头和脚的数量,建 立一个方程。
解方程
通过解方程来找到鸡和兔的数量 。
03
问题的应用
在数学竞赛中的应用
鸡兔同笼问题是小学奥数中的经典问题,经常出现在数学竞赛的试题中,如华罗庚 金杯少年数学邀请赛、希望杯全国数学邀请赛等。
人教版鸡兔同笼课件ppt课件
目 录
• 鸡兔同笼问题概述 • 鸡兔同笼问题的解决方法 • 鸡兔同笼问题的扩展应用 • 鸡兔同笼问题的实际应用 • 总结与回顾
01
鸡兔同笼问题概述
问题的起源
鸡兔同笼问题起源于中国古代的数学著作《孙子算经》,是古代数学中一个著名的 趣味问题。
该问题通常是指一个笼子里有鸡和兔子两种动物,我们只能看到头和脚的数量,却 不知道鸡有几只,兔子有几只。
变式三:工作分配问题
工作分配问题
将鸡兔同笼问题中的动物替换为 工作人员,求解不同岗位上的人
数。
数学模型
假设x人从事岗位A,y人从事岗位 B,根据题目条件建立方程求解。
扩展知识点
了解不同岗位的工作性质和工作内 容,以及人员需求和工作分配的合 理性。
04
鸡兔同笼问题的实际应用
在日常生活中的应用
动物养殖
这个问题通过一个简单的数学模型,展现了数学在解决实际问题中的重要作用。
问题的现实意义
鸡兔同笼问题不仅仅是一个数学问题, 它还具有现实意义。
在现实生活中,我们经常会遇到类似的 问题,比如在统计不同种类动物的数量 时,或者在计算不同种族或性别的人数
时,可能会遇到类似的混淆情况。
鸡兔同笼问题为我们提供了一种解决这 类问题的方法和思路。
02
鸡兔同笼问题的解决方法
传统的算术方法
总结词:直接计算
详细描述:鸡兔同笼问题是一个经典的数学问题,通常使用传统的算术 方法来解决。该方法直接计算鸡和兔子的数量,然后根据题目条件进行
验证和调整。
适用范围:适用于问题较简单的情况,当鸡和兔子的数量较少时,可以 直接计算出结果。
代数方法
总结词
建立方程,求解未知数
四年级鸡兔同笼课件ppt课件
与代数问题结合
例如,将鸡兔同笼问题与线性方程 组结合,通过建立多个等式来求解 未知数。
与概率问题结合
例如,在鸡兔同笼问题中引入概率 元素,如某只动物出现的概率,然 后根据概率计算结果的可能性。
在日常生活中的应用
01
02
03
购物时计算找零
例如,在购买商品时,如 果给的钱是整钱,需要计 算应找回的零钱数量。
该问题描述了一个笼子中鸡和兔子共存的情况,需要通过观察和推理来计算出鸡和 兔的数量。
鸡兔同笼问题在古代中国被广泛应用于解决日常生活中的实际问题,如买卖牲畜、 度量衡等。
现代应用
鸡兔同笼问题在现代数学教育中 被广泛采用,作为培养学生逻辑
思维和推理能力的经典问题。
通过解决鸡兔同笼问题,学生可 以学习到如何运用代数、方程等 数学工具来解决问题,提高数学
利用图形计算器进行模拟
准备工具
图形计算器(如TI-84 Plus)及 相应的软件。
操作步骤
在图形计算器上输入鸡和兔的数 量及总头数,模拟出鸡和兔在笼
子中的分布情况。
演示结果
通过图形计算器的模拟结果,展 示鸡和兔的头数和脚数,帮助学
生理解问题。
在线模拟平台的使用
寻找平台
在网上搜索“鸡兔同笼问题在线模拟平台”。
然后,根据题目中的条件,筛选出符 合条件的组合。
首先,我们需要根据题目中的条件, 列出所有可能的鸡和兔的组合。
列表法适用于解决一些比较简单的鸡 兔同笼问题,但对于一些数量较多的 情况,可能需要较多的时间和精力。
04
鸡兔同笼问题的变种和扩展
与其他数学问题结合
与几何问题结合
例如,将鸡兔同笼问题与面积或 体积问题结合,通过设置未知数 代表不同形状的面积或体积,建
小学鸡兔同笼ppt课件
小学鸡兔同笼ppt课件《鸡兔同笼》教学设计汉中市西乡县东关小学乔艳丽[教学内容]义务教育课程北师大版小学数学第九册80、81页内容[教材简析]本课是本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一列表法、跳跃式列表法、取中列表法等来解决问题。
学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
教材注重渗透思想方法,关注学习过程,为学生的发展奠定了基础。
本节课借助我国古代趣题“鸡兔同笼”这个题材,主要不是为了解决“鸡兔同笼”问题本身,而是要借助“鸡兔同笼”这个载体,让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表法。
[学情分析]1、认知分析:学生在本册教材第三节“数学与交通”的解决问题部分中,已经学会了用列表法来解决怎样租车省钱的问题,为本节课的学习打下了必备的基础。
2、能力分析:五年级的学生具备了一定的分析问题和解决问题的能力,积累了一定的解决问题的策略。
[设计理念]遵照《课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。
主动投入解决问题的实践活动中去,经历数学学习的全过程。
“鸡兔同笼”是我国古代数学的经典趣题,教材借助这个问题向学生提供了有趣、富有挑战性的学习素材,旨在让学生通过合作交流,应用假设法进行探究学习,积累解决问题的经验,掌握解决问题的策略。
[教学目标]1、学会用不同方法解答“鸡兔同笼”问题,比较各种列举法的特点,并让学生体会怎样列举更简便。
- 1 -2、运用假设法通过合作交流探索多种方法解决鸡兔同笼问题并学会用这种方法解决生活中类似的实际问题。
3、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,学习我国传统的数学文化。
鸡兔同笼ppt教学课件
思维点拨:这题跟鸡兔同笼类似,可以将大船、小船分别看成是兔子和鸡,
大小船的只数就是鸡兔的头数,每只大船能坐的人数是就是兔子的脚数,
每只小船能坐的人数就是鸡的脚数,总人数就是总脚数,接着就可用鸡兔
同笼的方法解决了。
假设全是小船,则一共能坐:3×11=33(人) 比实际的人数少:48-33=15(人) 每只大船比小船能多坐:6-3=3(人) 大船的只数:15÷3=5(只) 小船的只数:11-5=6(只)。
教材分析 设计思路
《鸡兔同笼》
实际问题的提出,多种解法 的比较,说明引入方程组模型
的必要性。
通过丰富的问题情境,形成 用方程组解决实际问题的一
般性策略和方法。
教学策略
教学过程 教学评价
合理解释相应的 数学模型
树立用二元一次方程组 构建数学模型解决实际问
题的思想
教材分析 设计思路 教学策略 教学过程 教学评价
思维点拨:假设小明全部做对了,他应得6×10=120(分),但实际上他只 得了96分,他少得了120-96=24(分),少得的原因是他没有全对,做 错一题少得6+2=8(分)。
假设小明全部做对了,他应得6×10=120(分),但实际上他只得了96分, 他少得了120-96=24(分),少得的原因是他没有全对,做错一题少得6 +2=8(分),所以他做错了24÷8=3(题),做对了20-3=17(题)。
地发挥主观能动性和创造性,并从中学习探
索的方法,体验成功的乐趣,激起学习数学
的兴趣。
教材分析 设计思路 教学策略 教学过程 教学评价
1.教法
《鸡兔同笼》
⑴创设生动具体的教学情境,使学生
在愉快的情景中学习数学知识。
⑵鼓励学生独立思考、自主探索和合
《鸡兔同笼》最新版ppt课件完整版(2024)
对未来学习的展望
01
02
03
04
深入探究数学问题
在未来的学习中,继续深入探 究数学问题,提高自己的数学
素养。
拓展应用领域
尝试将鸡兔同笼问题的解决方 法应用于其他领域,如物理、
化学等。
创新解题方法
不断探索新的解题方法,提高 解题效率和准确性。
培养数学兴趣
通过参加数学竞赛、阅读数学 书籍等方式,培养自己的数学
18
05
学生互动环节设计
2024/1/29
19
小组讨论与合作解题
2024/1/29
分组讨论
将学生分成若干小组,每组4-6人,让他们针对鸡兔同笼问题进 行讨论,共同探索解题方法。
合作解题
鼓励学生在小组内展开合作,相互分享思路和解题方法,共同解 决鸡兔同笼问题。
小组展示
让每个小组选派一名代表,向全班展示他们小组的解题过程和结 果,增强学生的自信心和表达能力。
24
学习方法建议
理解问题本质
深入理解鸡兔同笼问题 的本质,掌握基本解法
和思路。
2024/1/29
多练习多总结
通过大量练习,熟练掌 握各种解题方法,形成
自己的解题思路。
拓展思维
交流合作
尝试将鸡兔同笼问题与 其他数学问题联系起来
,拓展自己的思维。
25
与同学或老师交流学习 心得和体会,共同探讨
解决问题的方法。
2024/1/29
分享心得
邀请几位学生分享他们在解题过程中的心得体会,以及从中获得 的启示和收获。
交流体会
鼓励学生之间相互交流学习体会,分享各自在解题过程中的经验和 教训。
教师点评
教师对学生的分享进行点评和总结,肯定学生的努力和成绩,同时 指出需要改进的地方,激励学生继续努力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课外练习题: 1、小娟爱好集邮票,她用了10元钱
买了6角和8角的两种邮票,共15张, 那么这两种邮票她各买了多少张?
8
9
6
练习题:
1、动物园里有一群鸵鸟和长颈鹿,它们共 有30只眼睛和44条腿,问鸵鸟和长颈鹿各有 多少只?
提示:30只眼睛共有多少只鸵鸟 和长颈鹿 鸵鸟 有几条腿,长颈鹿有几条腿。
解:设长颈鹿有 ⅹ 只,则鸵鸟有 (30÷2-ⅹ )只。 长颈鹿有 4ⅹ 条腿,鸵鸟有 2×(30÷2-ⅹ )条腿。
4 ⅹ +2×(30÷2-ⅹ )= 44
雉:野鸡。
3
意思是:
笼子里有若干只鸡和兔。从上 面数有35个头,从下面数有94 只脚。鸡和兔各有几只?
4
审题:
笼子里有若干只鸡和兔。从上面数有35个头, 从下面数有94只脚。鸡和兔各有几只?
鸡的只数 + 兔的只数 = 35 鸡的只数 = 35 - 兔的只数 鸡的脚 + 兔的脚 = 94
5
例题:
解比较复杂的方程
科目:五年级数学上册
授课教师:汤 俊
课件制作室:坡告小学
授课时兔同笼是中国古代著名的有趣题目之一。 大约在1500年前,《孙子算经》中就记载了 这个有趣的问题。书中是这样叙述的:
2
zhì
今有雉兔同笼,上有三十 五头,下有九十四足,问 雉兔各几何?
笼子里有若干只鸡和兔。从上面数有35个头, 从下面数有94只脚。鸡和兔各有几只?
解:设兔有 ⅹ 只,则鸡有 (35-ⅹ )只。
兔有 4 ⅹ 条腿, 则鸡有 2×(35-ⅹ ) 条腿。
鸡兔共有94只脚,就是: 4 ⅹ +2(35-ⅹ )= 94
ⅹ = 12
方程 法
鸡:35 -12 = 23(只)
答:鸡有23只,兔有12只。