湍流模型简述
9个湍流模型介绍
![9个湍流模型介绍](https://img.taocdn.com/s3/m/87d95bcf6429647d27284b73f242336c1fb93049.png)
9个湍流模型介绍
好的,为你介绍9个湍流模型:
1. Reynolds平均的NS方程(Reynolds-Averaged Navier-Stokes,RANS):Reynolds 提出了平均法,将“瞬时值=平均值+脉动值”带入不可压缩流体控制方程中,得到了一个更复杂的方程。
对于可压缩流体,假设瞬时密度的变化对流动影响不大,忽略其影响。
2. Reynolds应力模型(RSM):模仿控制方程的样子,搞出一个针对Reynolds应力的输运方程。
3. 代数应力模型(ASM):简化Reynolds应力方程的对流项和扩散项。
此外,还有一些其他湍流模型,如Spalart-Allmaras模型、k-双方程模型等。
这些模型都有各自的特点和适用范围,可根据具体问题选择合适的湍流模型进行计算。
湍流模型简介以及k-ε模型详解
![湍流模型简介以及k-ε模型详解](https://img.taocdn.com/s3/m/6805dc5f763231126fdb1127.png)
内燃机缸内湍流流动的特点
实验和理论计算表明,缸内湍流的主要来源是 进气射流通过气阀时产生的强烈剪切层以及射 流与缸壁的碰撞。在进气冲程中期,即进气进 行最猛烈时,缸内湍流度达到其峰值。此时湍 流分布很不均匀,而且是各向异性的,主要可 分为射流内的高湍流度区和其余部分的低湍流 度区。随着平均流速的减小,湍流开始衰减。 同时,由于对流和扩散作用,整个缸内湍流趋 向于均匀化和各向同性化。在压缩冲程中,尽 管进气产生的主涡流还残留在缸内,但已经很 弱并且继续衰减。活塞压缩产生的正应力和缸 壁的剪切应力对湍流的生成虽有一定的贡献, 但由于耗散大于生产,故总的效果详解
北京理工大学12级车辆硕
湍流的基本概念
层流和湍流是两种不同的基本流态。它们的区 分变化可以用雷诺数来量化。雷诺数较小时 (小于2000),黏滞力对流场的影响大于惯性 力,流场中流速的扰动会因黏滞力而衰减,流 体流动稳定,为层流;反之,若雷诺数较大时, 惯性力对流场的影响大于黏滞力,流体流动较 不稳定,流速的微小变化容易发展、增强,形 成紊乱、不规则的湍流流场。
3,k-ε模型的强旋流修正
总结
k -ε模型是目前应用最广泛的两方程紊流模型。 大量的工程应用实践表明,该模型可以计算比 较复杂的紊流,比如它可以较好地预测无浮力 的平面射流,平壁边界层流动,管流,通道流 动,喷管内的流动,以及二维和三级无旋和弱 旋加流流动等。但从定量结果来看,它还没有 比代数模型表现在出更明显的优势。随着空化 流动理论和计算方法的发展,数值计算逐渐成 为空化现象研究的有力手段。对于空化流动这 种复杂的湍流进行模拟,湍流模型是一个重要 方面。最初,人们广泛采用了标准的k -ε模型, 由于空化流动中汽泡的生成和溃灭过程对湍流 发展的影响,引起空化流动中湍动能产生项和弥
四种湍流模型介绍知识讲解
![四种湍流模型介绍知识讲解](https://img.taocdn.com/s3/m/c60337759e314332396893f0.png)
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
湍流模型介绍
![湍流模型介绍](https://img.taocdn.com/s3/m/82d481ded05abe23482fb4daa58da0116c171f0b.png)
湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。
这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。
基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。
另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。
大涡模拟(large eddy simulation, LES)大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。
大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。
大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。
这些对涡旋的认识基础就导致了大涡模拟方法的产生。
Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。
大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。
LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。
应用Reynolds时均方程(Reynolds-averaging equations)的模拟方法许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。
fluent中常见的湍流模型及各自应用场合
![fluent中常见的湍流模型及各自应用场合](https://img.taocdn.com/s3/m/463060d76aec0975f46527d3240c844769eaa0e4.png)
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
湍流模型介绍
![湍流模型介绍](https://img.taocdn.com/s3/m/ab0ef71d4a73f242336c1eb91a37f111f1850df8.png)
湍流模型介绍
湍流模型是数学模型的一种,用于描述液体或气体中的湍流运动。
湍流是一种不规律的、难以预测的流体运动,通常是由于速度、密度或温度的不规则分布引起的。
湍流模型通过使用一系列方程,描述流体的速度、压力和密度等参数之间的相互作用,以预测和模拟流体的复杂运动行为。
湍流模型主要分为两类:基于雷诺平均的模型(如k-ε模型、k-ω模型)和直接数值模拟(DNS)。
每种模型都有其适用的范围和局限性,需要根据具体问题的特性选择合适的模型。
湍流模型在气象、水文、工程、航空航天等领域中得到了广泛应用。
6. 湍流模型
![6. 湍流模型](https://img.taocdn.com/s3/m/8ad1a912c5da50e2524d7f91.png)
一、 “雷诺平均”模式(RANS) ——雷诺应力模型(RSM)
雷诺应力模型的关键是对雷诺应力输运方 程各项的模化,使方程得以封闭
一、 “雷诺平均”模式(RANS) 脉动运动方程
用N-S方程减去RANS方程得:
xi
ui
0
ui t i
uj
ui x j
uj
ui x j
1
p
xi
——涡粘模型: 低Re数k-ε模型
——涡粘模型: 低Re数k-ε模型
为体现分子粘性的影响,控制方程的扩散系数项 包括了湍流扩散系数与分子扩散系数两部分。
控制方程的有关系数必须考虑不同流态的影响,
即在系数计算中引入湍流雷诺数Ret。
在k方程中壁面附近湍动能的耗散不是各向同性。
据文献建议,当局部湍流的Ret小于150时,就应该
相关量的输运方程,但方程中必然出现更高阶相关量,因此由
N-S方程导出的湍流统计方程总是不封闭的,湍流模型的任务
是研究统计方程的封闭方法
一、 “雷诺平均”模式(RANS) 雷诺应力输运方程
雷诺应力生成项Pij
uiuk
u j xk
u juk
ui xk
是平均运动变形率和雷诺应力联合作用的结果,
因此,没有平均运动变形率就没有雷诺应力的生
湍流的数值模拟方法简介
湍流数值 模拟方法
直接数值模 拟(DNS)
大涡模拟 方法(LES)
非直接数值 Reynolds平均
模拟
法(RANS)
统计平均法
Reynolds 应力模型
涡粘模型
RSM ASM 零方程模型 一方程模型 两方程模型
两方程模型:标准k-e模型,RNG k-e模型,Realizable k-e模型等
湍流模型介绍
![湍流模型介绍](https://img.taocdn.com/s3/m/982c89c90c22590102029d33.png)
湍流模型介绍因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。
在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。
FLUENT 中采用的湍流模拟方法包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。
7.2.1 雷诺平均与大涡模拟的对比因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。
这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。
雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。
湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。
在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。
根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。
FLUENT 中使用的三种k −ε模型、Spalart-Allmaras 模型、k −ω模型及雷诺应力模型RSM)等都属于湍流模式理论。
大涡模拟(LES)方法是通过滤波处理计算湍流的,其主要思想是大涡结构(又称拟序结构)受流场影响较大,小涡则可以认为是各向同性的,因而可以将大涡计算与小涡计算分开处理,并用统一的模型计算小涡。
流体的湍流模型和湍流模拟
![流体的湍流模型和湍流模拟](https://img.taocdn.com/s3/m/fdb32b4503020740be1e650e52ea551810a6c987.png)
流体的湍流模型和湍流模拟流体力学是研究流体的运动规律和性质的学科,其中湍流模型和湍流模拟是其中非常重要的研究方向。
湍流是流体力学中一种复杂而普遍存在的现象,它具有不规则、无序和随机性等特点。
湍流模型和湍流模拟的发展,对于理解和预测真实世界中的湍流现象,以及涉及湍流的工程设计和应用具有重要意义。
一、湍流模型湍流模型是描述湍流现象的数学模型,在流体力学中起着扮演着非常重要的作用。
根据流体力学理论,湍流是由于流体中微小尺度的速度涡旋突然出现和消失所导致的现象。
由于湍流涡旋的尺度范围很广,从而难以直接模拟和计算。
因此,使用湍流模型来近似描述湍流现象,成为了一种常用的方法。
常见的湍流模型包括雷诺平均湍流模型(Reynolds-averaged Navier-Stokes equations, RANS)和大涡模拟(large eddy simulation, LES)等。
雷诺平均湍流模型是基于平均流场的统计性质,通过求解雷诺平均速度和湍流应力来评估湍流效应。
而大涡模拟是将湍流现象分解为不同尺度的涡旋,并通过直接模拟大涡旋来研究湍流运动。
二、湍流模拟湍流模拟是利用计算机来模拟湍流现象的方法,通常基于数值方法对流体力学方程进行求解。
湍流模拟分为直接数值模拟(direct numerical simulation, DNS)、雷诺平均湍流模拟和大涡模拟等。
直接数值模拟是将流场划分为网格,并通过离散化流体力学方程和湍流模型来求解湍流流场的详细信息。
由于该方法需要计算微小尺度的细节,计算量非常大,限制了其在实际工程中的应用。
因此,直接数值模拟主要用于湍流现象的基础研究和理论验证。
相比之下,雷诺平均湍流模拟和大涡模拟能够更有效地模拟湍流现象。
雷诺平均湍流模拟通过对湍流参数进行求解,来描述平均的湍流效应。
而大涡模拟则将湍流现象分为大涡旋和小涡旋,通过模拟大涡旋来捕获湍流流场的主要特征。
三、湍流模型与湍流模拟的应用湍流模型和湍流模拟在工程设计和应用中有着广泛的应用。
K-e湍流模型资料讲解
![K-e湍流模型资料讲解](https://img.taocdn.com/s3/m/3e4a75f8cf2f0066f5335a8102d276a200296039.png)
K-e湍流模型资料讲解
K-e湍流模型
精品资料
K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)
K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,
至于k是怎么设定see fluent manual "turbulence modelling"
作一个简单的平板间充分发展的湍流流动,
基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!
k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;
在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?
Mepsilon=Cu*k*k/Vt%
这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!
仅供学习与交流,如有侵权请联系网站删除谢谢2。
四种湍流模型介绍
![四种湍流模型介绍](https://img.taocdn.com/s3/m/f8a267ac81c758f5f61f67b8.png)
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
湍流模型介绍
![湍流模型介绍](https://img.taocdn.com/s3/m/d4a977d4866fb84ae55c8da5.png)
为了避免这个, Favre平均定义为 W=r/r
Favre平均
f = rf/ r + f’ = f + f’ with f’ = rf’/ r =0
湍流封闭问题
时间平均N-S 方程
mb=2/3m, dij Kronecker函数 delta (dij =1 for i=j and dij = 0 for i=j)
L/ = Re3/4
湍流尺度
大尺度漩涡的能量损失正比例于 l/u, 定义式 为: e =O(u2/(l/u) =O(u3/l)
湍流能量分布
½ u’iu’i = ∫0E(k)dk
分解瞬时变量
U = U + u” P = P + p”
原因: o 我们关心平均值,而不是瞬态值. o 非实际的精细网格求解所有尺度的湍流及
Kolmogorov理论
较大尺寸的漩涡从主流吸取运动能量; 大尺度的漩涡运动能传递到较小尺度的漩涡中; 大尺度漩涡通过瀑布过程将运动能传递到小尺
度漩涡中; 对于尺寸非常小的漩涡, 摩擦力 (粘性应力) 变
得非常大, 运动能转化 (耗散) 成为内能.
Kolmogorov 简历 (网上摘录)
Kolmogorov 理论
湍流尺度
大尺度漩涡是由流动几何形状来确定的,L. 通过量纲分析确定Kolmogorov 尺度
=(n3/e)1/4 ; t =(n/e)1/2; u =(ne)1/4 , kolmogorov 长度尺度 n, 运动粘性 – m2/s e, 能量耗散率, m2/s3 (单位时间单位质量的能量)
Eddy Viscosity models(涡粘性模型) Reynolds Stress models(Reynolds应力模型) Large Eddy Simulation models(大涡模型模型)
第五章 湍流模型
![第五章 湍流模型](https://img.taocdn.com/s3/m/40d7889fcc22bcd126ff0c48.png)
(2) 雷诺应力模型 (通过雷诺应力输运方程) RSM 对复杂的 3D湍流流动更有效,但是模型更加复杂, 计 算强度更大,比涡粘模型更难收敛
计算湍流粘性
基于量纲分析, μT 能够由 湍流时间尺度 (或速度尺度) 和空间尺 度来决定 2 2 k uiui 2 湍流动能 [L /T ] 2 3 ui x j ui x j uj xi 湍流耗散率 [L /T ] 比耗散率 [1/T] k 每种湍流模型用不同的方法计算 μT T f ~ Spalart-Allmaras 解模拟湍流粘性的输运方程 k2 标准 k–ε, RNG k–ε, Realizable k–ε T f 解关于 k 和 ε的输运方程. 标准 k–ω, SST k–ω k T f 解关于 k 和 ω的输运方程.
过滤NS方程中的湍流涡频谱: 通过网格尺寸筛选 比网格尺寸小的涡被忽略,用subgrid scale (SGS) 建模 较大尺度涡用数值方法直接求解NS方程
大涡模拟 (LES) LES 非常成功的应用于 RANS 模型不能满足要求的高端应用 对N-S方程在物理空间进行过滤,大涡直接求解,小涡各向同性模拟 方法 亚网格尺度(SGS) 湍流模型 Smagorinsky-Lilly 模型 Wall-Adapting Local Eddy-Viscosity(WALE) 壁面适应局部涡粘模 型 Dynamic Smagorinsky-Lilly 模型 Dynamic Kinetic Energy Transport 动能传输 分离涡 (DES) 模型 LES在FLUENT中对所有燃烧模型适用 有基本统计学工具:对求解值进行时均分析,内置快速傅立叶变换 (FFT) 在运行 LES之前, 参考帮助中对 LES方法的指导 (包括网格建议,亚网格 模型, 数值方法, 边界条件等)
流体力学中的湍流模型与数值方法研究
![流体力学中的湍流模型与数值方法研究](https://img.taocdn.com/s3/m/46d6054a591b6bd97f192279168884868762b8d1.png)
流体力学中的湍流模型与数值方法研究在流体力学研究中,湍流是一种普遍存在的现象,广泛应用于工程领域。
湍流的复杂性使得其数值模拟变得非常困难。
因此,研究建立可靠的湍流模型与数值方法,成为流体力学领域的热门课题之一。
一、湍流模型的基本原理湍流模型是描述湍流流动的数学模型。
根据湍流的不同特性和流动情况,主要有两种常用的湍流模型,一种是雷诺平均湍流模型(RANS),另一种是大涡模拟(LES)。
1. 雷诺平均湍流模型(RANS)雷诺平均湍流模型是基于雷诺平均的假设,将湍流流动分解为平均流场和涨落流场,并对平均流场施加雷诺应力平衡方程。
其中,最常用的湍流模型是k-ε模型和k-ω模型。
- k-ε模型是最早提出的一种湍流模型,基于湍流能量方程和湍流耗散率方程,通过求解k和ε两个涡量的方程来计算湍流应力和雷诺应力。
- k-ω模型是基于湍流能量方程和湍流湍流耗散率方程,通过求解k和ω两个涡量的方程来计算湍流应力和雷诺应力。
2. 大涡模拟(LES)大涡模拟是一种直接模拟湍流中的大尺度结构,对小尺度结构进行模型化处理。
在大涡模拟中,流场被分为大尺度结构和小尺度结构,其中大尺度结构可以直接计算,小尺度结构通过湍流模型间接计算。
大涡模拟可以提供更详细的湍流信息,但计算量大,适用于高性能计算。
二、湍流模型的应用领域湍流模型在工程领域有广泛的应用,以下是一些常见的领域:1. 空气动力学湍流模型在飞行器、汽车等流体力学分析中具有重要作用。
通过模拟流场的湍流特性,可以准确预测阻力和升力等空气动力学性能。
2. 水力学在河流、水库等水力学分析中,湍流模型可以用来预测水体的流速分布、流速剖面和局部流动特性,对水工建筑物的设计具有指导作用。
3. 燃烧工程在燃烧系统中,湍流模型可以用来模拟燃烧反应和燃烧产物的输运过程。
通过研究湍流在燃烧系统中的特性,可以提高燃烧效率和减少污染物产生。
三、湍流模型的数值方法湍流模型的数值求解是湍流模拟的关键。
通常采用的数值方法包括有限差分法、有限元法和谱方法等。
湍流模型构建
![湍流模型构建](https://img.taocdn.com/s3/m/251b3975bf1e650e52ea551810a6f524ccbfcb1f.png)
湍流模型构建一、湍流模型概述湍流是指流体在运动过程中出现的不规则、无序的运动状态。
由于湍流的不稳定性和复杂性,使得研究湍流问题成为流体力学中的难点之一。
为了描述湍流运动,需要建立适当的数学模型,即湍流模型。
目前常用的湍流模型主要有直接数值模拟(DNS)、大涡模拟(LES)和雷诺平均Navier-Stokes方程(RANS)三种。
二、雷诺平均Navier-Stokes方程1.基本原理雷诺平均Navier-Stokes方程是一种基于统计平均方法来描述湍流运动的数学模型。
该模型假设了在一个足够长时间内,湍流中各个位置上的速度和压力都会发生变化,并且这些变化都是随机性的。
因此,可以通过对时间进行平均来消除这种随机性,并得到一个稳定的平均场。
2.方程形式雷诺平均Navier-Stokes方程包含了连续性方程、动量守恒方程和能量守恒方程三个部分。
其中,连续性方程描述了质量守恒;动量守恒方程描述了动量守恒;能量守恒方程描述了能量守恒。
这三个方程的具体形式如下:连续性方程:$$\frac{\partial \rho}{\partial t}+\nabla \cdot (\rho u)=0$$动量守恒方程:$$\rho \frac{\partial u}{\partial t}+\rho u \cdot \nabla u=-\nabla p+\mu\nabla^2u+\rho g$$能量守恒方程:$$\rho c_p(\frac{\partial T}{\partial t}+u \cdot \nablaT)=\nabla\cdot(k\nabla T)+Q$$其中,$\rho$为流体密度,$u$为流速,$p$为压力,$\mu$为粘性系数,$g$为重力加速度,$c_p$为比热容,$T$为温度,$k$为热导率,$Q$为单位时间内的热源或热汇。
3.湍流模型雷诺平均Navier-Stokes方程中包含了湍流运动的统计平均过程。
湍流的数学模型简介精心整理版
![湍流的数学模型简介精心整理版](https://img.taocdn.com/s3/m/6911d516a26925c52dc5bf1c.png)
湍流能量的耗散发生在小涡结构中,这一最小的湍流流动结构尺
寸可用Kolmogorow长度尺度表示:
1
lK
3
4
2 Kolmogorow时间尺度
Kolmogorow时间尺度表示最小湍流结构的动量扩散时间,它的定义为
1
K
2
第1章 湍流导论
1.2 湍流的统计平均法
1.3、湍流的基本方程 湍流瞬时控制方程(包括连续方程、动量方程和能量方程)
可用通用微分方程表示。
一般认为,无论湍流流动多么复杂,非稳态的连续性方 程和N-S方程(动量方程)仍然适用于湍流的瞬时流动。
第1章 湍流导论
1.3、湍流的基本方程(不可压) N-S方程
ui ui ui'
将非稳态N-S方程对时间作平均,即把湍流的运动看成是时间平均
1.2 湍流的统计平均法
1 时均法
时均法的确切定义是:
ui(t)
1 T
tt00Tui(t)dt
上式中的速度瞬时值是任一次试验结果,积分限中的下线 可以任意 取,即一次试验中,从任何时候开始都不能影响平均值的结果。
当时间间隔T很长时,有:
ui(t)Tli m T1 tt00Tui(t)dt
(V i)(t)1V i(,,,t)ddd
体均值要求与积分体积 的大小及 所处的坐标位置无关。因此严格说来,体
均法只适用于描述对体均值而言的均匀的湍流流场。
3 概率平均法(系综平均法)
时均法和体均法只适用于两种特殊状态的湍流,前者适用于定常湍流,后
者适用于均匀湍流。对于一般的不定常非均匀流,可以采用随机变量的一般 平均法,即概率平均法。
湍流模型简述
![湍流模型简述](https://img.taocdn.com/s3/m/d020a7c45022aaea998f0fad.png)
2 U k 2 t ij k ij 3 x k 3
10
根据确定紊流粘性系数 t 的微分方程数目,又分为
零方程模型 一方程模型 两方程模型
零方程模型
•
常系数模型
t C umax umin
2 t l m
•
二维Prandtl混合长度理论
29
2.颗粒之间碰撞模型
对于浓度非常低的气固两相流动,颗粒间的碰撞可以忽略不 计。当颗粒浓度较高时,颗粒之间的碰撞会对流动过程产生影响 ,为考虑颗粒之间的碰撞问题,因此发展了此模型。 颗粒之间碰撞模型可分为 硬球模型
软球模型
(1)硬球模型
硬球模型把颗粒之间的碰撞看成是瞬时的、二元的弹性 碰撞,直接用冲量定理完成碰撞过程。该方法完全适应稀 薄气固两相的情况,并且不受颗粒粒径的限制。主要问题 是一次只能计算一对颗粒之间的碰撞,代表的方法有蒙特 卡洛方法(DSMC)【1】
30
60
90 120 150 180
r (mm) z=373mm切向速度对比图 (0o~180o)
k-ε模型给出的解与 试验值差别较大
Vz (m/s)
10 0 30 60 90 120 150 180 r (mm) 实验值 RNG k-e RSM
-180 -150 -120 -90 -60 -30 0 -10 -20 -30
z =373mm轴向速度对比图(0o ~180o )
21
RSM和LES计算结果比较
下图为RSM和LES计算的旋风分离器内一点的瞬时切向速度随时间的 变化曲线(摘自:清华刘成文的博士论文《旋风分离器的能耗与减阻杆机 理研究》,2006.11):
RSM计算得到 的速度脉动基 本呈单一尺度
第三章 湍流模型
![第三章 湍流模型](https://img.taocdn.com/s3/m/d1e943d433d4b14e85246862.png)
第三章 湍流模型第一节 前言湍流流动模型很多,但大致可以归纳为以下三类:第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。
即:2121x u u u t ∂∂=''-μρ 3-1 推广到三维问题,若用笛卡儿张量(笛卡尔坐标系)表示,即有:ij i j j i t j i k x u x u u u δρμρ32-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''- 3-2 ij δ为DELT 函数,一般i=j 时为1,否则为0.模型的任务就是给出计算湍流粘性系数t μ的方法。
根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。
(模拟大空间建筑空气流动)μt=0.038 74ρvl (模拟通风空调室内的空气流动)比例系数由直接数值模拟的结果拟合而得,其中:v 为当地时均速度,l 为当地距壁面最近的距离。
第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。
第三类是大涡模拟。
前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。
大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。
实际求解中,选用什么模型要根据具体问题的特点来决定。
选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。
参见:湍流模型的选择资料。
FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。
湍流模型种类示意图大涡模拟启动需要用命令:(rpsetvar 'les-2d? #t)Direct Numerical Simulation包含更多物理机理 每次迭代计算量增加 提的模型选RANS-based models第二节 平均量输运方程输运过程的粘滞系数、扩散系数和热传导率,故称为输运方程雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 U k 2 t ij k ij 3 x k 3
10
根据确定紊流粘性系数 t 的微分方程数目,又分为
零方程模型 一方程模型 两方程模型
零方程模型
•
常系数模型
t C u max u min
2 t l m
•
二维Prandtl混合长度理论
z =373mm轴向速度对比图(0o ~180o )
21
RSM和LES计算结果比较
下图为RSM和LES计算的旋风分离器内一点的瞬时切向速度随时间的 变化曲线(摘自:清华刘成文的博士论文《旋风分离器的能耗与减阻杆机 理研究》,2006.11):
RSM计算得到 的速度脉动基 本呈单一尺度
LES计算出的 速度脉动呈现 多尺度,显示 出了流场的非 定常特性
– 大尺度涡:直接求解非稳态的Navier-stokes方程 – 小尺度涡:采用近似模型(亚格子模型)考虑小涡对大涡的影响
基于Reynolds时均方程的统观模拟(Reynolds association numerical simulation,RANS)
7
基于Reynolds时均方程的统观模拟(RANS)
标准k-ε模型只适用于高Reynolds数的湍流流动,不能 用于近壁区,在求解各项异性的流动时遇到较大的困难, 如强旋流、浮力流、曲壁边界层流及圆射流等。
针对不足,许多学者对标准的模型进行了修正。应用较 多的有
重整化群k-ε模型(renormalization group,RNG
model) 可实现k-ε模型(realizable k-ε model) 多尺度k-ε模型(multiscale model of turbulence)
13 [3] Hoekstra A J, Derksen J J, Van Den Akker H E A. An experimental and numerical study of turbulent swirling in gas cyclones. Chemical Engineering Science,
29
2.颗粒之间碰撞模型
对于浓度非常低的气固两相流动,颗粒间的碰撞可以忽略不 计。当颗粒浓度较高时,颗粒之间的碰撞会对流动过程产生影响 ,为考虑颗粒之间的碰撞问题,因此发展了此模型。 颗粒之间碰撞模型可分为 硬球模型
软球模型
(1)硬球模型
硬球模型把颗粒之间的碰撞看成是瞬时的、二元的弹性 碰撞,直接用冲量定理完成碰撞过程。该方法完全适应稀 薄气固两相的情况,并且不受颗粒粒径的限制。主要问题 是一次只能计算一对颗粒之间的碰撞,代表的方法有蒙特 卡洛方法(DSMC)【1】
fluent
报 告 人: 报告时间: 许伟伟 2009-10-19
• 气相数值模拟
2
主要 内容
一、湍流现象 二、湍流的数值模拟方法 三、湍流模型具体介绍 四、不同湍流模型在旋风分离器模拟中的应用
3
CFD求解流程
涉及 湍流模型 选取
4
1. 湍流现象(Turbulent)
湍流是一种高度复杂的三维非稳态、带旋转的不 规则流动。流体的各种物理参数,如速度、压力、温 度等都随时间和空间发生随机的变化。 UL ReL
从文献报道来看,LES大涡模型模拟的结果更可靠,更相信。 但RSM目前是工程应用中比较有效的湍流模型。
24
边界条件中湍流参数的设置问题
常 用
【1】 【2】
充分发展的湍流
【1】邹宽,杨荣等.水力旋流器湍流流动的数值模拟.工程热物理学报,2004
25
(a)切向速度 (b)轴向速度 (c)径向速度 (d)静压力 图 旋风分离器内气相流场各参数分布图
DNS和LES能直接得到气体的瞬态流场,但需要很大的计算机
容量和CPU时间,未能广泛应用于工程应用。
RANS将非稳态控制方程对时间作平均,即 N
1 n U i x , t lim ui x , t N N n 1
ui x, t U i x, t uix, t
大尺度的涡旋
从主流获 得能量, 是引起低 频脉动的 原因。
6
2. 湍流的数值模拟方法 div( v) 0
t
控制方程
dv F gradp v grad(divv ) dt 3
数值模拟方法 直接模拟(direct numerical simulation,DNS) 大涡模拟(large eddy simulation,LES)
无粘,层流或湍流
模型参数
湍流选项
近壁处理
其余的湍流选项
19
4. 不同湍流模型在旋风分离器模拟中的应用
A.J.Hoekstra
RSM的模拟结果更接 近真实情况 。
20
60 50 40 30 20 10 0 -180 -150 -120 -90 -60 -30 0
Vt (m/s)
实验值 RNG k-e RSM
RNG k-ε
能模拟射流撞击,分离流,二 次流,旋流等中等复杂流动
Realizable k- 和RNG模型差不多,还可以模 ε 拟圆口射流问题
RSM
考虑的物理机理更仔细,包括 了湍流各向异性影响
CPU时间长(2~3倍),动量 和湍流量高度耦合
17
Fluent中的湍流模型
Zero-Equation Models
L = x, D, Dh, etc.
如右图所示,当入口 速度V=20m/s时,旋风分 离器入口 Re=164,300
5
1. 湍流现象(Turbulent)
从物理结构上说,湍流由各种不同尺度的涡旋叠合而成。
由于流体 粘性的作 用,不断 消失,从 而产生能 量耗散; 是引起高 频脉动的 原因。
小尺度的涡旋
22
RSM和LES计算结果比较
由上图可知,LES比RSM预测出了更多了旋涡结构,特别是外旋 流区旋涡结构非常丰富。 23
研究者
陆耀军、周力 行等 邹宽 M.D.SLAC K等 戴光清、李建 明等 禇良银,陈文 梅 刘晓敏,檀润 华
旋流器的研究工作
采用标准模型、RNG 模型和雷诺应力模式RSM模型进行模拟。结 果表明3种模型中以RSM模型的预报结果最为合理。 利用雷诺应力模型进行计算,并与修正的模型的计算结果进行了比 较,得到结果与实际结果更接近。 采用雷诺应力湍流模型和大涡模型进行模拟,实测结果与计算值吻 合。 分别采用修正模型系数的模型和各向异性模型进行模拟;计算值与 二维激光多普勒测速仪实测结果基本一致。 选择了能反映湍流各向异性的代数应力模型(ASM),用数值计 算与实验研究相结合的方法对旋流器内的湍流场进行了模拟 采用RNG k-ε模型分析了旋流场内部湍流度及相对湍流度对湍流 场流动分布、湍流脉动和分离介质所产生的影响,其预报结果是有 限的。
时均值 脉动值
因此,只能得到流场的时均值。要想得到瞬时值,它还必须和 另一些求脉动速度的方法相结合。在实际工程应用中,人们更关心流 动的时均值,而忽略湍流的细节。 因此,目前工程湍流计算还是依 赖于RANS。
8
基于Reynolds时均方程的统观模拟(RANS)
忽略流体相密度脉动,可得如下的时均方程组:
代数应力模型
1.紊流粘性模型(Eddy-Viscosity Models ,EVM)
引入Boussinesq涡粘性假设,认为雷诺应力与平均速 度梯度成正比,即将Reynolds应力项表示为
U i U j ij u iu j t x xi j
15
RSM模型摒弃了湍流各向同性假设,因此其计算结果比 基于“有效粘度”的两方程模型更为准确。但由于该模型相 对复杂、方程多、需确定的常数多,故计算量大。
3. 代数应力模型(Algebraic Stress Model,ASM)
主要思想是设法将应力的微分方程简化为代数表达式,以 减少RSM模型过分复杂的弱点,同时保留湍流各项异性的 基本特点。 与RSM模型相比,该模型大大削减了方程数目,对初始 条件和边界条件的要求也不像RSM模型那么严格。但是在模 拟旋流数很高的强旋流动中,由于该模型忽略了应力对流的 作用,因而会引起显著的误差。
One-Equation Models
Spalart-Allmaras
RANS-based models
Two-Equation Models
Standard k-e RNG k-e Realizable k-e Standard k-w SST k-w Increase in Computational Cost Per Iteration
26
• 气固两相数值模拟
27
气 固 两 相 流 计 算 方 法
Euler-Lagrange方法:
把流体作为连续介质,而将颗粒看作离散体系,在 Euler坐标系下考察流体相的运动,在Lagrange坐标系 下研究颗粒群的运动,即颗粒轨道模型
Euler-Euler方法:
将流体作为连续介质外,把颗粒也作为拟连续介质或 拟流体,设其在空间有连续的速度和温度分布及等价 的输运性质(粘性、扩散、导热等),两相都在Euler 坐标系下处理,即连续介质模型
湍流粘性系数
表达式为:
12
模型参数
[1] 胡砾元,时铭显,周力行,等.旋风分离器三维强旋湍流流动的数值模拟[1501-1504. [2] 王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-343.
以上介绍的模型都是基于Boussinesq假设,认为湍流粘性系 数各向同性,难于考虑旋转流动及流动方向表面曲率变化的影响, 不适用于复杂流动。