超声波探伤(焊缝)工艺

合集下载

钢焊缝手工超声波探伤方法及质量分级法

钢焊缝手工超声波探伤方法及质量分级法

钢焊缝手工超声波探伤方法及质量分级法(最新版5篇)《钢焊缝手工超声波探伤方法及质量分级法》篇1钢焊缝手工超声波探伤方法主要分为预扫查、正式扫查和结束扫查三个阶段。

预扫查阶段主要是为了选择最佳扫查面,确定最佳扫查角度,选择灵敏度最高的探头和适宜的仪器。

正式扫查阶段是超声探伤的关键,其操作方法随工件形状、焊缝形式、探头种类及探伤操作部位的不同而不同。

结束扫查阶段主要是对工件进行局部处理。

质量分级法包括如下内容:1. 对未焊透的评级:当缺陷尺寸小于等于评定标准规定的值时,不论其多少,只做合格品评定;当缺陷尺寸大于评定标准规定的值时,则不合格。

2. 对咬边深度评级:若咬边深度不超过评定标准规定的值,则只做合格品评定;若超过评定标准规定的值,则不合格。

3. 对声影评级:当声影不影响焊缝有效长度内的射线胶片时,只做合格品评定;当声影妨碍射线透入焊缝或妨碍焊缝射线胶片的读出时,则不合格。

4. 对波幅评级:根据缺陷回声最高波的波幅与该焊工、该焊道、该焊缝超声检测的评定标准所规定的要求相比,判定其合格或不合格。

《钢焊缝手工超声波探伤方法及质量分级法》篇2钢焊缝手工超声波探伤方法主要分为4个步骤:1. 表面处理:在探伤前,应将焊缝表面及附近区域彻底清理,以便于检测。

2. 操作人员:操作人员必须经过专业培训,熟悉操作规程,严格按工艺要求进行操作。

3. 探伤灵敏度:应根据母材钢材等级、焊接材料、工艺等因素确定探伤灵敏度。

4. 探伤操作:在探伤操作中,应按照标准规定的操作方法进行,注意检测角度、距离、斜率等参数的选择和调整。

对于手工超声波探伤结果的判定,一般采用《超声检测质量分级指南》(GB11345-89)中规定的标准进行质量分级。

该指南将焊缝质量分为5级,分别是A级、B级、C级、D级和E级。

其中,A级和B 级为合格级别,C级为基本合格级别,D级为不合格级别,E级为严重不合格级别。

《钢焊缝手工超声波探伤方法及质量分级法》篇3钢焊缝手工超声波探伤方法主要分为四个步骤:1. 准备工作:探头校直、探头零点调节、耦合剂的涂敷。

管座角焊缝超声波探伤工艺规程

管座角焊缝超声波探伤工艺规程

管座角焊缝超声波探伤工艺规程1 通用部分a)主题内容与适用范围本规程规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法。

本规程适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊管座角焊缝脉冲反射法手工超声波检验。

本规程不适用于铸钢及奥氏体不锈钢焊缝;内径小于等于200mm的管座角焊缝。

b)文件控制本规程为XX公司受控文件,未经允许不得复制、转让或使用。

c)引用标准ZBY 344 超声探伤用探头型号命名方法ZBY 231 超声探伤用探头性能测试方法ZBY 232 超声探伤用1号标准试块技术条件ZBJ 04 001 A型脉冲反射式超声探伤系统工作性能测试方法GB 11345—1989 钢焊缝手工超声波探伤方法和探伤结果分级2 检验人员2.1从事焊缝探伤的检验人员必须掌握超声波探伤的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识。

2.2焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相应考核组织颁发的等级资格证书,从事相对应考核项目的检验工作。

2.3超声检验人员的视力应每年检查一次,校正视力不得低于1.0。

3 探伤仪、探头及系统性能3.1探伤仪使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1~5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内。

步进级每档不大于2dB,总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%。

3.2探头3.2.1探头应按ZBY 344标准的规定作出标志。

3.2.2晶片的有效面积不应超过500mm2,且任一边长不应大于25mm。

3.2.3声束轴线水平偏离角应不大于2°。

3.2.4探头主声束垂直方向的偏离,不应有明显的双峰,其测试方法见ZBY 231。

3.2.5 斜探头的公称折射角β为45°、60°、70°或K 值为1.0、1.5、2.0、2.5,折射角的实测值与公称值的偏差应不大于2°(K 值偏差不应超过±0.1),前沿距离的偏差应不大于1mm 。

焊缝超声波探伤操作步骤

焊缝超声波探伤操作步骤

焊缝超声波探伤操作步骤一、探头前沿长度的测量。

将探头放置在CSK—ⅠA试块上,将入射点对准R100处,找出反射波达到最高时探头到R100端部的距离。

然后用其所长100减去此段距离。

此时所得的数据就是探头的前沿距离。

按此方法连测三次,求出平均值。

二、测量探头的K值利用CSK—ⅠA试块上的φ50孔的反射角测出并用反三角函数计算出K值。

将探头对准试块上φ50横孔,找到最高回波:则有K=tgβ=(L+l-35)/30。

三、扫描速度的调节1、水平调节法:将探头对准R50、R100,调节仪器使B1、B2分别对准不平刻度,此时计算出l1、l2。

l1,l2将计算出的数据在示波屏上将B1和B2调至相对应的位置,此时水平距离扫描速度为1:1。

2、深度调节法利用CSK-ⅠA试块调节,先计算R50、R100圆弧反射波B1、B2对应的纵深d1、d2:d1,d2B1、B2分别对准水平刻度值d1、d2。

如K=2时,经计算d1=22.4mm、d2=44.8mm。

调节仪器使B1、B2分别对准22.4和平共处44.8,这时深度1:1就调节好了。

四、距离——波幅曲线的绘制1、将探头置于CSK-ⅢA试块上,衰减48dB,调增益使深度为10mm的φ1×6孔的最高回波达基准60%,记录此时的衰减器读数和孔深,然后分别探测其它不同深度的φ1×6孔,增益不动,调节衰减器将各孔的最高回波调至60%高,记下相应的dB值和孔深填入表中。

2、以孔深为横坐标,以分贝值为纵坐标,在坐标纸上描点绘出定量线、判废线和评定线,标出Ⅰ区、Ⅱ区、Ⅲ区,并注明所用探头的频率、晶片尺寸和K值。

3、现以T=30mm举例说明50403020101020304050D BM m五、 调节探伤灵敏度调节探伤灵敏度时,探伤灵敏度不得低于评定线,一般以2倍的壁厚处所对应的评定线dB 值,也就是说在工件60mm 处评定线所对应的分贝值。

如若还要考虑耦合补偿,补偿根据实际情况而定。

焊缝超声波检测工艺规程

焊缝超声波检测工艺规程

焊缝超声波检验规程1 范围适用于金属材料制承压设备用原材料、零部件和设备的超声检测,也适用于金属材料制在用承压设备的超声检测。

与承压设备有关的支承件和结构件的超声检测,也可参照本部分使用.2 规范性引用文件下列文件中的条款通过JB/T 4730 的本部分的引用而成为本部分的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。

凡是不注日期的引用文件,其最新版本适用于本部分。

JB 4730.1—2005 承压设备无损检测第1 部分:通用要求JB/T 7913 —1995 超声波检测用钢制对比试块的制作与校验方法JB/T 9214—1999 A 型脉冲反射式超声波探伤系统工作性能测试方法JB/T 10061—1999 A 型脉冲反射式超声波探伤仪通用技术条件JB/T 10062—1999 超声探伤用探头性能测试方法JB/T 10063 —1999 超声探伤用1 号标准试块技术条件3 一般要求3.1 超声检测人员超声检测人员的一般要求应符合JB/T 4730.1 的有关规定。

3.2 检测设备3.2.1 超声检测设备均应具有产品质量合格证或合格的证明文件。

3.2.2 探伤仪、探头和系统性能3.2.2.1 探伤仪采用A 型脉冲反射式超声波探伤仪,其工作频率范围为0.5MHz ~10MHz ,仪器至少在荧光屏满刻度的80%范围内呈线性显示。

探伤仪应具有80dB 以上的连续可调衰减器,步进级每档不大于2dB ,其精度为任意相邻12dB 误差在±1dB 以内,最大累计误差不超过1dB。

水平线性误差不大于1%,垂直线性误差不大于5% 。

其余指标应符合JB/T10061 的规定。

3.2.2.2 探头3.2.2.2.1 晶片面积一般不应大于500mm2,且任一边长原则上不大于25mm 。

3.2.2.2.2 单斜探头声束轴线水平偏离角不应大于2°,主声束垂直方向不应有明显的双峰。

钢焊缝手工超声波探伤标准方法和探伤结果分级

钢焊缝手工超声波探伤标准方法和探伤结果分级

钢焊缝手工超声波探伤标准方法和探伤结果分级11345-89Method for manual ultrasonic testing and classificationof testing results for ferritic steel wdlds1 主题内容与适用范围本标准规定了检验焊缝及热影响区缺陷,确定缺陷位置、尺寸和缺陷评定的一般方法及探伤结果的分级方法.本标准适用于母材厚度不小于8mm的铁素体类钢全焊透熔化焊对接焊缝脉冲反射法手工超声波检验.本标准不适用于铸钢及奥氏体不锈钢焊缝;外径小于159mm的钢管对接焊缝;内径小于等于200mm的管座角焊缝及外径小于250mm和内外径之比小于80%的纵向焊缝.2 引用标准ZB Y 344 超声探伤用探头型号命名方法ZB Y 231 超声探伤用探头性能测试方法ZB Y 232 超声探伤用1号标准试块技术条件ZB J 04 001 A型脉冲反射式超声探伤系统工作性能测试方法3 术语3.1 简化水平距离l'从探头前沿到缺陷在探伤面上测量的水平距离.3.2 缺陷指示长度△l焊缝超声检验中,按规定的测量方法以探头移动距离测得的缺陷长度.3.3 探头接触面宽度W环缝检验时为探头宽度,纵缝检验为探头长度,见图1.3.4 纵向缺陷大致上平行于焊缝走向的缺陷.3.5 横向缺陷大致上垂直于焊缝走向的缺陷.3.6 几何临界角β'筒形工件检验,折射声束轴线与内壁相切时的折射角.3.7 平行扫查在斜角探伤中,将探头置于焊缝及热影响区表面,使声束指向焊缝方向,并沿焊缝方向移动的扫查方法.3.8 斜平行扫查在斜角探伤中,使探头与焊缝中心线成一角度,平等于焊缝方向移动的扫查方法.3.9 探伤截面串列扫查探伤时,作为探伤对象的截,一般以焊缝坡口面为探伤截面,见图2.3.10 串列基准线串列扫查时,作为一发一收两探头等间隔移动基准的线.一般设在离探伤截面距离为0.5跨距的位置,见图2.3.11 参考线探伤截面的位置焊后已被盖住,所以施焊前应予先在探伤面上,离焊缝坡口一定距离画出一标记线,该线即为参考线,将作为确定串列基准线的依据,见图3.3.12 横方形串列扫查将发、收一组探头,使其入射点对串列基准线经常保持等距离平行于焊缝移动的扫查方法,见图4.3.13 纵方形串列扫查将发、收一组探头使其入射点对串列基准线经常保持等距离,垂直于焊缝移动的扫查方法,见图4.4 检验人员4.1 从事焊缝探伤的检验人员必须掌握超声波探伤的基础技术,具有足够的焊缝超声波探伤经验,并掌握一定的材料、焊接基础知识.4.2 焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相考核组织颁发的等级资格证书,从事相对应考核项目的检验工作.注:一般焊接检验专业考核项目分为板对接焊缝;管件对接焊缝;管座角焊缝;节点焊缝等四种.4.3 超声检验人员的视力应每年检查一次,校正视力不得低于1.0.5 探伤仪、探头及系统性能5.1 探伤仪使用A型显示脉冲反射式探伤仪,其工作频率范围至少为1-5MHz,探伤仪应配备衰减器或增益控制器,其精度为任意相邻12dB误差在±1dB内.步进级每档不大于2dB, 总调节量应大于60dB,水平线性误差不大于1%,垂直线性误差不大于5%.5.2 探头5.2.1 探头应按ZB Y344标准的规定作出标志.5.2.2 晶片的有效面积不应超过500mm2,且任一边长不应大于25mm.5.2. 3 声束轴线水平偏离角应不大于2°.5.2.4 探头主声束垂直方向的偏离,不应有明显的双峰,其测试方法见ZB Y231.5.2.5 斜探头的公称折射角β为45°、60°、70°或K值为1.0、1.5、2.0、2.5,折射角的实测值与公称值的偏差应不大于2°(K值偏差不应超过±0.1),前沿距离的偏差应不大于1mm.如受工件几何形状或探伤面曲率等限制也可选用其他小角度的探头.5.2.6 当证明确能提高探测结果的准确性和可靠性,或能够较好地解决一般检验时的困难而又确保结果的正确,推荐采用聚焦等特种探头.5.3 系统性能5.3.1 灵敏度余量系统有效灵敏度必须大于评定灵敏度10dB以上.5.3.2 远场分辨力a.直探头≥30dB;b.斜探头:Z≥6dB.5.4 探伤仪、探头及系统性能和周期检查5.4.1 探伤仪、探头及系统性能,除灵敏度余量外,均应按ZB J04 001的规定方法进行测试.5.4.2 探伤仪的水平线性和垂直线性,在设备首次使用及每隔3个月应检查一次.5.4.3 斜探头及系统性能,在表1规定的时间内必须检查一次.6 试块6.1 标准试块的形状和尺寸见附录A,试块制造的技术要求应符合ZB Y232的规定,该试块主要用于测定探伤仪、探头及系统性能.6.2 对比试块的形状和尺寸见附录B.6.2.1 对比试块采用与被检验材料相同或声学性能相近的钢材制成.试块的探测面及侧面,在以2.5MHz以上频率及高灵敏条件下进行检验时,不得出现大于距探测面20mm处的Φ2mm平底孔反射回来的回波幅度1/4的缺陷回波.6.2.2 试块上的标准孔,根据探伤需要,可以采取其他形式布置或添加标准孔,但应注意不应与试块端角和相邻标准孔的反射发生混淆.6.2.3 检验曲面工件时,如探伤面曲率半径R小于等于W2/4时,应采用与探伤面曲率相同的对比试块.反射体的布置可参照对比试块确定,试块宽度应满足式(1):b≥2λ S/De (1)式中b----试块宽度,mm;λ--波长,mm;S---声程,m;De--声源有效直径,mm6.3 现场检验,为校验灵敏度和时基线,可以采用其他型式的等效试块.7 检验等级7.1 检验等级的分级根据质量要求检验等级分为A、B、C三级,检验的完善程度A级最低,B级一般,C级最高,检验工作的难度系数按A、B、C顺序逐级增高.应按照工件的材质、结构、焊接方法、使用条件及承受载荷的不同,合理的选用检验级别.检验等级应接产品技术条件和有关规定选择或经合同双方协商选定.注:A级难度系数为1;B级为5-6;C级为10-12.本标准给出了三个检验等级的检验条件,为避免焊件的几何形状限制相应等级检验的有效性,设计、工艺人员应考虑超声检验可行性的基础上进行结构设计和工艺安排.7.2 检验等级的检验范围7.2.1 A级检验采用一种角度的探头在焊缝的单面单侧进行检验,只对允许扫查到的焊缝截面进行探测.一般不要求作横向缺陷的检验.母材厚度大于50Mm时,不得采用A级检验.7.2.2 B级检验原则上采用一种角度探头在焊缝的单面双侧进行检验,对整个焊缝截面进行探测.母材厚度大于100mm时,采用双面双侧检验.受几何条件的限制,可在焊缝的双面半日侧采用两种角度探头进行探伤.条件允许时应作横向缺陷的检验.7.2.3 C级检验至少要采用两种角度探头在焊缝的单面双侧进行检验.同时要作两个扫查方向和两种探头角度的横向缺陷检验.母材厚度大于100mm时,采用双面侧检验.其他附加要求是:a.对接焊缝余高要磨平,以便探头在焊缝上作平行扫查;b.焊缝两侧斜探头扫查经过的母材部分要用直探头作检查;c.焊缝母材厚度大于等于100mm,窄间隙焊缝母材厚度大于等于40mm时,一般要增加串列式扫查,扫查方法见附录C.8 检验准备8.1 探伤面8.1.1 按不同检验等级要求选择探伤面.推荐的探伤面如图5和表2所示.8.1.2 检验区域的宽度应是焊缝本身再加上焊缝两侧各相当于母材厚度30%的一段区域,这个区域最小10mm,最大20mm,见图6.8.1.3 探头移动区应清除焊接飞溅、铁屑、油垢及其他外部杂技.探伤表面应平整光滑,便于探头的自由扫查,其表面粗糙度不应超过6.3μm,必要时应进行打磨:a.采用一次反射法或串列式扫查探伤时,探头移动区应大于1.25P:P=2δtgβ (2)或P=2δK (3)式中P----跨距,mm;δ--母材厚度,mmb.采用直射法探伤时,探头移动区应大于0.75P.8.1.4 去除余高的焊缝,应将余高打磨到与邻近母材平齐.保留余高的焊缝,如焊缝表面有咬边,较大的隆起凹陷等也应进行适当的修磨,并作圆滑过渡以影响检验结果的评定.8.1.5 焊缝检验前,应划好检验区段,标记出检验区段编号.8.2 检验频率检验频率f一般在2-5MHz范围内选择,推荐选用2-2.5MHz公称频率检验.特殊情况下,可选用低于2MHz或高于2.5MHz的检验频率,但必须保证系统灵敏度的要求.8.3 探头角度8.3.1 斜探头的折射角β或K值应依据材料厚度,焊缝坡口型式及预期探测的主要缺陷来选择.对不同板厚推荐的探头角度和探头数量见表2.8.3.2 串列式扫查,推荐选用公称折射角为45°的两个探头,两个探头实际折射角相差不应超过2°,探头前洞长度相差应小于2mm.为便于探测厚焊缝坡口边缘未熔合缺陷,亦可选用两个不同角度的探头,但两个探头角度均应在35°-55°范围内.8.4 耦合剂8.4.1 应选用适当的液体或糊状物作为耦合剂,耦合剂应具有良好透声性和适宜流动性,不应对材料和人体有作用,同时应便于检验后清理.8.4.2 典型的耦合剂为水、机油、甘油和浆糊,耦合剂中可加入适量的"润湿剂"或活性剂以便改善耦合性能.8.4.3 在试块上调节仪器和产品检验应采用相同的耦合剂.8.5 母材的检查采用C级检验时,斜探头扫查声束通过的母材区域应用直探头作检查,以便探测是否有有探伤结果解释的分层性或其他缺陷存在.该项检查仅作记录,不属于对母材的验收检验.母材检查的规程要点如下:a.方法:接触式脉冲反射法,采用频率2-5MHz的直探头,晶片直径10-25mm;b.灵敏度:将无缺陷处二次底波调节为荧光屏满幅的100%;c.记录:凡缺陷信号幅度超过荧光屏满幅20%的部位,应在工件表面作出标记,并予以记录.9 仪器调整和校验9.1 时基线扫描的调节荧光屏时基线刻度可按比例调节为代表缺陷的水平距离l(简化水平距离l');深度h;或声程S,见图7.9.1.1 探伤面为平面时,可在对比试块上进行时基线扫描调节,扫描比例依据工件工和选用的探头角度来确定,最大检验范围应调至荧光屏时基线满刻度的2/3以上.9.1.2 探伤面曲率半径R大于W2/4时,可在平面对比试块上或与探伤面曲率相近的曲面对比试块上,进行时基线扫描调节.9.1.3 探伤面曲率半径R小于等于W2/4时,探头楔块应磨成与工件曲面相吻合,在6.2.3条规定的对比试块上作时基线扫描调节.9.2 距离----波幅(DAC)曲线的绘制9.2.1 距离----波幅曲线由选用的仪器、探头系统在对比试块上的实测数据绘制见图8,其绘制方法见附录D,曲线由判废线RL,定量线SL和评定线EL组成,不同验收级别的各线灵敏度见表3.表中的DAC是以Φ3mm标准反射体绘制的距离--波幅曲线--即DAC基准线.评定线以上至定量线以下为1区(弱信号评定区);定量线至判废线以下为Ⅱ区(长度评定区);判废线及以上区域为Ⅲ区(判废区).9.2.2 探测横向缺陷时,应将各线灵敏度均提高6dB.9.2.3 探伤面曲率半径R小于等于W2/4时,距离--波幅曲线的绘制应在曲面对比试块上进行.9.2. 4 受检工件的表面耦合损失及材质衰减应与试块相同,否则应进行传输损失修整见附录E,在1跨距声程内最大传输损失差在2dB以内可不进行修整.9.2.5 距离--波幅曲线可绘制在坐标纸上也可直接绘制在荧光屏刻度板上,但在整个检验范围内,曲线应处于荧光屏满幅度的20%以上,见图9,如果作不到,可采用分段绘制的方法见图10.9.3仪器调整的校验9.3.1 每次检验前应在对比试块上,对时基线扫描比例和距离--波幅曲线(灵敏度)进行调节或校验.校验点沙于两点.9.3.2 检验过程中每4h之内或检验工作结束后应对时基线扫描和灵敏度进行校验,校验可在对比试块或其他儿试块上进行.9.3.3 扫描调节校验时,如发现校验点反射波在扫描线上偏移超过原校验点刻度读数的10%或满刻度的5%(两者取较小值),则扫描比例应重新调整,前次校验后已经记录的缺陷,位置参数应重新测定,并予以更正.9.3.4 灵敏度校验时,如校验点的反射波幅比距离--波幅曲线降低20%或2dB以上,则仪灵敏度应重新调整,并对前次校验后检查的全部焊缝应重新检验.如校验点的反射波幅比距离--波幅曲线增加20%或2dB以上,仪器灵敏度应重新调整,而前次校验后,已经记录的缺陷,应对缺陷尺寸参数重新测定并予以评定.10 初始检验10.1 一般要求10.1.1 超声检验应在焊缝及探伤表面经外观检查合格并满足8.1.3条的要求后进行.10.1.2 检验前,探伤人员应了解受验工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高及背面衬垫、沟槽等情况.10.1.3 探伤灵敏度应不低于评定线灵敏度.10.1.4 扫查速度不应大于150mm/s,相邻两次探头移动间隔保证至少有探头宽度10%的重叠.10.1.5 对波幅超过评定线的反射波,应根据探头位置、方向、反射波的位置及10.1.2条了解的焊缝情况,判断其是否为缺陷.判断为缺陷的部位应在焊缝表面作出标记.10.2 平板对接焊缝的检验10.2.1 为探测纵向缺陷,斜探头垂直于焊缝中心线在探伤面上,作锯齿型扫查见图11.探头前后移动的范围应保证扫查到全部焊缝截面及热影响区.在保持探头垂直焊缝作前后移动的同时,还应作10°-15°的左右转动.10.2.2 为探测焊缝及热影响区的横向缺陷应进行平行和斜平行扫查.a. B级检验时,可寅边缘使探头与焊缝中心线成10°-20°作斜平行的扫查(图12);b. C级检验时,可将探头放在焊缝及热影响区上作两个方向的平行扫查(图13),焊缝母材厚度超过100mm时,应在焊缝的两面作平行扫查或者采用两种角度探头(45°和60°或45°和70°并用)作单面两个方向的平行扫查;亦可用两个45°探头作串列式平行扫查;c. 对电渣焊缝还应增加与焊缝中心线成45°的斜向扫查.10.2.3 为确定缺陷的位置、方向、形状、观察缺陷动态波形或区分缺陷讯号与伪讯号,可采用前后、左右、转角、环绕等四种探头基本扫查方式(图14).10.3 曲面工件对接焊缝的检验10.3.1 探伤面为曲面时,应按6.2.3和9.1.3条的规定选用对比试块,并采用10.2条的方法进行检验,C级检验时,受工件几何形状限制,横向缺陷探测无法实施时,应在检验记录中予以注明.10.3.2 环缝检验时,对比试块的曲率半径为探伤面曲率半径0.9-1.5倍的对比试块均可采用.探测横向缺陷时按10.3.3条的方法进行.10.3.3 纵缝检验时,对比试块的曲率半径与探伤面曲率半径之差应小于10%.10.3.3.1 根据工件的曲率和材料厚度选择探头角度,并考虑几何临界角的限制,确保声束能扫查到整个焊缝厚度.条件允许时,声束在曲底面的入射角度不应超过70°.10.3.3.2 探头接触面修磨后,应注意探头入射点和折射角或K值的变化,并用曲面试块作实际测定.10.3.3.3 当R大于W2/4采用平面对比试块调节仪器时,检验中应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离孤长的差异,必要时应进行修正.10.4 其他结构焊缝的检验10.4.1 一般原则a.尽可能采用平板焊缝检验中已经行之有效的各种方法;b.在选择探伤面和探头时应考虑到检测各种类型缺陷的可能性,并使声束尽可能垂直于该结构焊缝中的主要缺陷.10.4.2 T型接头10.4.2.1 腹板厚度不同时,选用的折射角见表4,斜探头在腹板一侧作直射法和一次反射法探伤见图15位置2.10.4.2.2 采用折射角45°(K1)探头在腹板一侧作直射法和一次反射法探测焊缝及腹板侧热影响区的裂纹(图16).10.4.2.3 为探侧腹板和翼板间未焊透或翼板侧焊缝下层状撕裂等缺陷,可采用直探头(图15位置1)或斜探头(图16位置3)在翼板外侧探伤或采用折射角45°(K1)探头在翼板内侧作一次反射法探伤(图15位置3).10.4.3 角接接头角接接头探伤面及折射角一般按图17和表4选择.10.4.4 管座角焊缝10.4.4.1 根据焊缝结构形式,管座角焊缝的检验有如下五种探侧方法,可选择其中一种或几种方式组合实施检验.探测方式的选择应由合同双方商定,并重点考虑主要探测对象和几何条件的限制(图18、19).a.在接管内壁表面采用直探头探伤(图18位置1);b.在容器内表面用直探头探伤(图19位置1);c.在接管外表面采用斜探头探伤(图19位置2);d.在接管内表面采用斜探头探伤(图18位置3,图19位置3);e.在容器外表面采用斜探头探伤(图18位置2).10.4.4.2 管座角焊缝以直探头检验为主,对直探头扫查不到的区域或结构,缺陷向性不适于采用直探头检验时,可采用斜探头检验,斜探头检验应符合10.4.1条的规定.10.4.5 直探头检验的规程a.推荐采用频率2.5Mhz直探头或双晶直探头,探头与工件接触面的尺寸W 应小于2√R;b.灵敏度可在与工件同曲率的试块上调节,也可采用计算法或DGS曲线法,以工件底面回波调节.其检验等级评定见表5.11 规定检验11.1 一般要求11.1.1 规定检验只对初始检验中被标记的部位进行检验.11.1.2 探伤灵敏度应调节到评定灵敏度.11.1.3 对所有反射波幅超过定量线的缺陷,均应确定其位置,最大反射波幅所在区域和缺陷指示长度.11.2 最大反射波幅的测定11.2.1 对判定为缺陷的部位,采取10.2.3条的探头扫查方式、增加探伤面、改变探头折射角度进行探测,测出最大反射波幅并与距离--波幅曲线作比较,确定波幅所在区域.波幅测定的允许误差为2DB.11.3 位置参数的测定11.3.1 缺陷位置以获得缺陷最大反射波的位置来表示,根据相应的探头位置和反射波在荧光屏上的位置来确定如下全部或部分参数.a.纵坐标L代表缺陷沿焊缝方向的位置.以检验区段编号为标记基准点(即原点)建立坐标.坐标正方向距离L表示缺陷到原点之间的距离见图20;b.深度坐标h代表缺陷位置到探伤面的垂直距离(mm).以缺陷最大反射波位置的深度值表示;c.横坐标q代表缺陷位置离开焊缝中心线的垂直距离,可由缺陷最大反射波位置的水平距离或简化水平距离求得.11.3.2 缺陷的深度和水平距离(或简化水平距离)两数值中的一个可由缺陷最大反射波在荧光屏上的位置直接读出,另一数值可采用计算法、曲线法、作图法或缺陷定位尺求出.11.4 尺寸参数的测定应根据缺陷最大反射波幅确定缺陷当量值Φ或测定缺陷指示长度△l.11.4.1 缺陷当量Φ,用当量平底孔直径表示,主要用于直探头检验,可采用公式计算,DGS曲线,试块对比或当量计算尺确定缺陷当量尺寸.11.4.2 缺陷指示长度△l的测定推荐采用如下二种方法.a.当缺陷反射波只有一个高点时,用降低6dB相对灵敏度法测长见图21;b.在测长扫查过程中,如发现缺陷反射波峰值起伏变化,有多个高点,则以缺陷两端反射波极大值之间探头的移动长度确定为缺陷指示长度,即端点峰值法见图22.12 缺陷评定12.1 超过评定线的信号应注意其是否具有裂纹等危害性缺陷特征,如有怀疑时采取改变探头角度,增加探伤面、观察动态波型、结合结构工艺特征作判定,如对波型不能准确判断时,应辅以其他检验作综合判定.12.2 最大反射波幅位于Ⅱ区的缺陷,其指示长度小于10mm时按5mm计.12.3 相邻两缺陷各向间距小于8mm时,两缺陷指示长度之和作为单个缺陷的指示长度.13 检验结果的等级分类13.1 最大反射波幅位于Ⅱ区的缺陷,根据缺陷指示长度按表6的规定予以评级.13.2 最大反射波幅不超过评定线的缺陷,均应为Ⅰ级.13.3 最大反射波幅超过评定线的缺陷,检验者判定为裂纹等危害性缺陷时,无论其波幅和尺寸如何,均评定为Ⅳ级.13.4 反射波幅位于Ⅰ区的非裂纹性缺陷,均评为Ⅰ级.13.5 反射波幅位于Ⅲ区的缺陷,无论其指示长度如何,均评定为Ⅳ级.13.6 不合格的缺陷,应予返修,返修区域修后,返修部位及补焊受影响的区域,应按原探伤条件进行复验,复探部位的缺陷亦应按12章评定.14 记录与报告14.1 检验记录主要内容:工件名称、编号、焊缝编号、坡口形式、焊缝种类、母材材质、规格、表面情况、探伤方法、检验规程、验收标准、所使用的仪器、探头、耦合剂、试块、扫描比例、探伤灵敏度.所发现的超标缺陷及评定记录,检验人员及检验日期等.反射波幅位于Ⅱ区,其指示长度小于表6的缺陷也应予记录.14.2 检验报告主要内容:工件名称、合同号、编号、探伤方法、探伤部位示意图、检验范围、探伤比例收标准、缺陷情况、返修情况、探伤结论、检验人员及审核人员签字等.14.3 检验记录和报告应至少保存7年.14.4 检验记录和报告的推荐格式见附录F.附录A标准试块的形状和尺寸(补充件)注:尺寸公差±0.1;各边垂直度不大于0.05;C面尺寸基准面,上部各折射角刻度尺寸值见表A1,下部见表A2.附录B对比试块的形状和尺寸(补充件)B1 对比试块的形状和尺寸见表B1.注:①尺寸公差±0.1mm; ②各边垂直度不大于0.1; ③表面粗糙度不大于6.3μm; ④标准孔与加工面的平行度不大于0.05.附录C串列扫查探伤方法(补充件)C1 探伤设备C1.1 超声波探伤仪的工作方式必须具备一发一收工作状态.C1.2 为保证一发一收探头相对于串列基准线经常保持等距离移动,应配备适宜的探头夹具,并适用于横方型及纵方型两种扫查方式.C1.3 推荐采用,频率2-2.5Mhz,公称折射角45°探头,两探头入射点间最短间距应小于20mm.C2 仪器调整C2.1 时基线扫描的调节采用单探头按标准正文9.1 的方法调节,最大探测范围应大于1跨距声程.C2.2 灵敏度调整在工件无缺陷部位,将发、收两探头对向放置,间距为1跨距,找到底面最大反射波见图C1及式C1,调节增益使反射波幅为荧光屏满幅高度的40%,并以此为基准波高.灵敏度分别提高8dB、14dB和20dB代表判废灵敏度、定量灵敏度和评定灵敏度.C3 检验程序C3.1 检验准备a.探伤面对接焊缝的单面双侧;b.串列基准线如发、收两探头实测折射角的平均值为β或K值平均为K.在离参考线(参考线至探伤截面的距离L'-0.5P)的位置标记串列基准线,见图C2及式C2.0.5P=δtgβ (C1)或0.5P=δK (C2)C3.2 初始探伤C3.2.1 探伤灵敏度不低于评定灵敏度.C3.2 .2 扫查方式采用横方形或纵方形串列扫查,扫查范围以串列基准线为中心尽可能扫查到整个探伤截面,每个探伤截面应扫查一遍.C3.2.3 标记超过评定线的反射波,被判定为缺陷时,应在焊缝的相应位置作出标记.C3.3 规定探伤C3.3.1 对象只对初始检验标记部位进行探伤.C3.3.2 探伤灵敏度为评定灵敏度.C3.3.3 缺陷位置不同深度的缺陷,其反射波均出现在相当于半跨距声程位置见图C3.缺陷的水平距离和深度分别为:(C3)(C4)C3.3.4 缺陷以射波幅在最大反射波探头位置,以40%线为基准波高测出缺陷反射波的dB数作为缺陷的相对波幅,记为SL±----dB.C3.3.5 缺陷指示长度的测定采用以评定灵敏度为测长灵敏度的绝对灵敏度法测量缺陷指示长度.即进行左右扫查(横方形串列扫查),以波幅超过评定线的探头移动范围作为缺陷指示长度.C4 缺陷评定所有反射波幅度超过评定线的缺陷均应按标准正文第12章的规定予以评定,并按第13章的规定对探伤结果作等级分类.附录D距离----波幅(DAC)曲线的制作(补充件)D1 试件D1.1 采用标准附录B对比试块或其他等效形式试块绘制DAC曲线.D1.2 R小于等于W2/4时,应采用探伤面曲率与工件探伤面曲率相同或相近的对比试块.D2 绘制步骤DAC曲线可绘制在坐标纸上(称DAC曲线),亦可直接绘制在荧光屏前透明的刻度板上(称DAC曲线板).D2.1 DAC曲线的绘制步骤如下:。

超声波检测技术在风电塔筒焊缝探伤中的工艺及应用

超声波检测技术在风电塔筒焊缝探伤中的工艺及应用

超声波检测技术在风电塔筒焊缝探伤中的工艺及应用摘要:目前,在风电发电工程的质量控制当中,流行引用超声波无损检测技术,该技术可以在不破坏原有结构的前提下,迅速找出结构缺陷、质量问题等,工程企业通过分析无损检测的最终结果,使风电设备中存在的质量问题得以妥善解决。

伴随着现代技术的迅速发展,超声波无损检测技术被推广到更多的领域当中,其今后的发展潜力不容小视。

在此基础上,文章围绕着超声波无损检测技术的发展现状、应用情况展开分析和论述,希望能够促进风电工程水平的进一步提高。

关键词:超声波无损检测技术;发展现状;应用情况;探讨与分析;风力发电具有清洁.保护环境经济效益好可再生永不枯竭,自动控制水平高、运行管理人员少等优点。

风力发电资源是我国重要的能源资源。

风电塔筒就是风力发电的塔杆,在风力发电机组中主要起支撑作用,同时吸收机组震动。

风电塔简系圆锥筒形焊接结构件.分段制造每段高度在十几米至三十几米,每段节间采用连接法兰连接顶部安装风力发电机。

所以承重,受力焊缝的内在质量尤为重要特别是筒节与法兰 .筒节与筒节。

基础环的对接焊缝如果内部存在裂纹、未焊透及大面积的夹渣等缺陷,势必会严重降低焊接强度,并且裂纹、未焊透等焊接缺陷在持续受力情况下存在扩展性.这样风电塔筒在吊运、安装、运行过程中很可能存在断裂损毁、膨胀破裂等重大隐患,造成重大经济损失和安全事故。

1超声波无损检测技术的发展超声波无损检测技术的原理是利用电、光、声音等特性,基于被测物体的固有性能维持不变,从而找出其存在的质量、性能等缺陷。

在使用该检测技术的过程中,需要有专业检测仪器的参与,才能把缺陷的相关信息逐一检测出来,比如形状、位置和大小等。

超声波无损检测使用的机械波频率一般不能低于220 k Hz,具有连续在介质中传播的能力,在超声波与被测对象的相互作用下,超声波仪器中会有声波不断发出,而它具有着出色的导向性能,在检测过程中沿介质进行直线传输,一旦声波发生散射、衰减等情况,就说明被检测材料是存在缺陷的。

焊接缺陷超声波探伤施工工艺

焊接缺陷超声波探伤施工工艺

焊接缺陷超声波探伤施工工艺1. 简介超声波探伤是一种常用的无损检测方法,被广泛应用于焊接缺陷的检测。

本文档旨在介绍焊接缺陷超声波探伤的施工工艺,旨在帮助工程师和技术人员正确使用超声波探伤技术,准确检测焊接缺陷,确保焊接质量。

2. 焊接缺陷的常见类型在焊接过程中,常见的焊接缺陷包括焊接孔隙、夹渣、气体孔洞、裂纹等。

这些缺陷会影响焊接接头的强度和密封性,因此需要通过超声波探伤进行及时检测和修复。

3. 焊接缺陷超声波探伤施工流程3.1 准备工作在进行焊接缺陷超声波探伤之前,需要进行以下准备工作:- 确定探测区域:根据焊接图纸和焊接工艺要求,确定需要检测的焊接接头和焊缝位置;- 确定超声波探测仪器:选择适合的超声波探测仪器,包括超声波传感器、探头和信号处理设备;- 准备工作场所:确保施工现场的清洁、安全,以保证探测结果的准确性。

3.2 实施探测按照以下步骤进行焊接缺陷超声波探测:1. 清洁焊接接头表面,确保无杂质干扰;2. 安装超声波探测仪器,根据焊接接头的形状和尺寸选择合适的超声波传感器和探头;3. 设置探测参数,包括超声波频率、脉冲宽度、增益等;4. 对焊接接头进行扫描,记录探测数据,并标记发现的缺陷位置;5. 根据探测数据分析缺陷类型和严重程度,判断是否需要修复。

4. 结果分析与修复根据焊接缺陷超声波探测的结果,进行以下分析和修复工作:- 分析缺陷类型和严重程度,确定是否影响焊接接头的强度和密封性;- 基于分析结果,制定修复方案,包括补焊、磨光等;- 完成修复后,进行二次超声波探测,确保缺陷得到有效修复。

5. 安全注意事项在进行焊接缺陷超声波探测施工时,需要注意以下安全事项:- 确保工作场所通风良好,避免超声波探测仪器的信号受到干扰;- 使用个人防护装备,如手套、护目镜等;- 遵循超声波探测仪器的使用说明,确保操作安全。

6. 结论焊接缺陷超声波探伤施工工艺是一种重要的无损检测方法,可帮助工程师和技术人员准确检测焊接缺陷,并进行及时修复。

探伤焊缝技术

探伤焊缝技术

探伤焊缝技术焊接是现代工业重要的一项加工工艺,探伤则是焊接品质保证的重要手段之一。

探伤焊缝技术是利用非破坏性检测手段,对焊接接头进行缺陷探测和评价的过程。

本文将详细介绍探伤焊缝技术的常见方法及操作流程,以便读者了解和运用此项技术。

探伤焊缝技术的常见方法目前,探伤焊缝技术主要有以下三种常见方法:1.超声波检测(UT)超声波探伤是利用超声波在材料内部传播的特点,检测焊接接头内部缺陷的一种探伤方法。

其原理是将超声源固定在焊接接头上,并让其发出一定频率和能量的超声波。

如果焊接接头中存在缺陷,超声波就会受到散射、反射等物理现象,探伤人员通过对反射信号的分析,判断焊接接头的品质。

2.磁粉探伤(MT)磁粉探伤是通过在焊缝表面施加交变电流,使之产生磁场,再通过磁粉在磁场中的吸附和聚集,来检测焊缝表面、近表面等处的缺陷的探伤方法。

其原理是磁粉在有缺陷处会形成磁粉堆,从而反映出焊接接头的缺陷情况。

3.涡流探伤(ET)涡流探伤是将交变电流通过针头状的探头或线圈,使其在焊接接头中产生交变磁场,从而在接头的表面产生涡流。

如焊接接头有缺陷,涡流在接触提高缺陷处时,会产生异常的磁场变化,检测人员通过对异常信号的判断,来判断焊接接头的质量。

探伤焊缝技术的操作流程1.确定焊接接头的检查范围以及探伤方法;2.对探伤设备进行检查和测试,确保各部件工作正常;3.在焊接接头表面进行清理,确保焊接接头表面无遮阳物,无较大的表面粗糙度;4.进入探伤工作状态,开始对焊接接头进行探伤,探伤人员需要准确掌握探头的位置、角度、速度,并对反射信号进行其声学或电学表征的测量;5.记录探伤数据及结果,包括缺陷的位置、形态、大小、数量等信息;6.针对检测结果进行评价和处理,判定焊接接头的质量。

总之,探伤焊缝技术是一项重要的非破坏性检测方法,可用于评估焊接接头的质量、发现缺陷。

利用探伤焊缝技术,可以避免质量责任和事故的发生,帮助保证焊接接头的安全和稳定。

焊缝超声波探伤标准

焊缝超声波探伤标准

焊缝超声波探伤标准焊缝超声波探伤是一种常用的无损检测方法,通过超声波的传播和反射来检测焊缝内部的缺陷和质量问题。

在工业生产中,焊接是一项非常重要的工艺,焊缝质量直接影响着产品的安全性和可靠性。

因此,制定和严格执行焊缝超声波探伤标准对于保障焊接质量和产品质量具有重要意义。

一、焊缝超声波探伤的基本原理。

焊缝超声波探伤是利用超声波在材料中传播的特性来检测焊缝内部的缺陷。

当超声波遇到材料的界面或者缺陷时,会发生反射、折射或者散射,通过探伤仪器接收到这些信号,就能够分析出焊缝内部的情况。

根据超声波的传播速度、衰减情况以及反射信号的强度等信息,可以判断焊缝的质量和存在的缺陷类型。

二、焊缝超声波探伤的标准要求。

1. 探伤人员资质要求。

进行焊缝超声波探伤的人员应当具备相应的资质证书,经过专业培训和考核合格。

只有具备一定的理论知识和实际操作经验的人员才能够进行焊缝超声波探伤工作。

2. 探伤仪器要求。

焊缝超声波探伤所使用的仪器应当符合国家标准,具有稳定的性能和精准的测量功能。

同时,仪器的操作人员也应当熟悉仪器的使用方法和维护保养要求,确保仪器的正常运行和准确探伤结果。

3. 探伤环境要求。

进行焊缝超声波探伤的环境应当符合相应的要求,保证探伤工作的准确性和可靠性。

例如,探伤环境应当保持相对清洁,避免杂音和干扰信号的产生,同时还要考虑到温度、湿度等因素对探伤结果的影响。

4. 探伤报告要求。

对于焊缝超声波探伤的结果,应当及时、准确地制作探伤报告。

报告中应当包括探伤的焊缝位置、探伤仪器的型号和参数、探伤人员的信息、探伤结果以及可能存在的问题和建议等内容,确保探伤结果的可追溯性和可靠性。

三、焊缝超声波探伤的应用范围。

焊缝超声波探伤广泛应用于航空航天、石油化工、核电、铁路、桥梁、船舶等领域。

通过超声波探伤,可以及时发现焊缝内部的缺陷,保证焊接质量,提高产品的安全性和可靠性。

四、结语。

制定和执行严格的焊缝超声波探伤标准,对于保障焊接质量和产品质量具有重要意义。

超声波检测技术工艺

超声波检测技术工艺
合条件下,采用对比试块预先实测绘制横孔回波 的距离振幅曲线用于确定起始灵敏度以及检测过 程中对缺陷的定量评定。这是以相对同一基准波 高的、不同埋藏深度的横孔回波高度分贝值(衰 减器或定量增益上的读数)为纵坐标,以横孔埋 藏深度为横坐标,实测绘制的距离振幅曲线(实 测线)为基础,按验收标准要求而相应增益一定 的分贝值构成一组曲线供检测时使用,它只适合 于检测时使用的特定的探头与仪器组合条件,如 图所示。
注意我国商品化斜探头的K值系列为1、1.5、2、 2.5和3,在这里应选用K=2.5,此时折射声束轴线 将通过焊缝截面中心的上方,若选用K=2时,声 轴线通过焊缝截面中心的下方,从而容易出现死 区。
(五)斜探头前沿长度的选择:斜探头的前 沿长度太长时,将会导致所需K值太大,检 测声程加长,对检测不利。此外,在许多构 件情况中,前沿长度大的探头其体积和探头 总长度都比较大,从而限制了在一些空间较 狭小的部位使用,但是前沿短的探头又往往 难以消除楔内回波的干扰影响而导致始波占 宽加大,影响近表面分辨率,因此需要根据 具体被检测工件以及焊缝的具体情况选择具 有适当前沿长度的探头 。
在图b中,这是在IIW2试块上进行的,以 Φ5mm横孔为反射体,适用于名义K值 1.5~2.5范围的斜探头,有:K=(X+L-25)/20 在图c中,这是在横孔试块上进行的,可以 根据名义K值范围,按2倍近场长度的声程
选择适当埋深的横孔作为测试反射体,有:
K=(X+L-a)/y 式中a为试块边缘到横孔中心的距离,y为横 孔埋藏深度。
超声波检测技术工艺
Technology of Ultrasonic Testing
一、焊缝的超声检测概述
焊缝的超声检测多采用横波检测,其主要原因是 焊缝一般都有加强高突起,焊道表面有焊波存在 而不平整,使得平直探头在焊道上的耦合有困难, 更重要的是焊缝中的缺陷,特别是危害性缺陷, 例如裂纹、未焊透、坡面未熔合等的取向多与探 测面垂直或有一定的倾斜角度,采用横波检测有 利于发现这些缺陷,此外,相对于纵波而言,横 波本身具有指向性好、分辨力高和检测灵敏度高 等优点。不过,采用横波检测也带来了缺陷定位、 定量和定性评定上其特有的技术特点。

焊缝超声波探伤操作步骤

焊缝超声波探伤操作步骤

焊缝超声波探伤操作步骤一、探头前沿长度的测量。

将探头放置在CSK—ⅠA试块上,将入射点对准R100处,找出反射波达到最高时探头到R100端部的距离。

然后用其所长100减去此段距离。

此时所得的数据就是探头的前沿距离。

按此方法连测三次,求出平均值。

二、测量探头的K值利用CSK—ⅠA试块上的φ50孔的反射角测出并用反三角函数计算出K值。

将探头对准试块上φ50横孔,找到最高回波:则有K=tgβ=(L+l-35)/30。

三、扫描速度的调节1、水平调节法:将探头对准R50、R100,调节仪器使B1、B2分别对准不平刻度,此时计算出l1、l2。

l1,l2将计算出的数据在示波屏上将B1和B2调至相对应的位置,此时水平距离扫描速度为1:1。

2、深度调节法利用CSK-ⅠA试块调节,先计算R50、R100圆弧反射波B1、B2对应的纵深d1、d2:d1,d2= 然后调节仪器使B1、B2分别对准水平刻度值d1、d2。

如K=2时,经计算d1=22.4mm、d2=44.8mm。

调节仪器使B1、B2分别对准22.4和平共处44.8,这时深度1:1就调节好了。

四、距离——波幅曲线的绘制1、将探头置于CSK-ⅢA试块上,衰减48dB,调增益使深度为10mm的φ1×6孔的最高回波达基准60%,记录此时的衰减器读数和孔深,然后分别探测其它不同深度的φ1×6孔,增益不动,调节衰减器将各孔的最高回波调至60%高,记下相应的dB值和孔深填入表中。

2、以孔深为横坐标,以分贝值为纵坐标,在坐标纸上描点绘出定量线、判废线和评定线,标出Ⅰ区、Ⅱ区、Ⅲ区,并注明所用探头的频率、晶片尺寸和K值。

3、现以T=30mm举例说明50403020101020304050D BM m五、 调节探伤灵敏度调节探伤灵敏度时,探伤灵敏度不得低于评定线,一般以2倍的壁厚处所对应的评定线dB 值,也就是说在工件60mm 处评定线所对应的分贝值。

如若还要考虑耦合补偿,补偿根据实际情况而定。

超声波探伤焊缝工艺

超声波探伤焊缝工艺

超声波探伤(焊缝)工艺1 总则1.1 本工艺适用于钢制锅炉压力容器的母材厚度为6〜120mm的全焊透熔化焊焊缝及其等级评定。

1.2 本工艺不适用于铸钢及奥氏体钢焊缝,外径小于159mm的钢管对接焊缝,内径小于或等于200mm的管座角焊缝;也不适用于外径小于250mm或内外径之比小于80%的纵向对接焊缝。

1.3 依据标准:《蒸汽锅炉安全技术监察规程》(96版)、TSG R0004-2009《固定式压力容器安全技术监察规程》、TSG R7001-2004《压力容器定期检验规则》和第 1 、2、 3 号修改单、JB/T 4730-2005 《承压设备无损检测》。

1.4 人员资格: 焊缝超声检测人员必须持有质量技术监督部门颁发的具有相应项目的有效资格证书;初级以上在中级的指导下可进行检测操作;中级以上可出具检测报告。

1.5 焊缝超声检测原则上按本工艺进行, 特殊情况应由检测人员编制工艺, 经超声检验检测责任师和技术负责人审批后方可进行。

国家新标准或规定下达后,应及时修订本工艺。

2 检测准备2.1 检测人员首先应了解被检工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高、表面状况、背面衬垫、沟槽等情况,绘制被检工件展开图。

2.2 检测面2.2.1 一般采用一种K值探头,母材厚度小于或等于46mn W,应用一次反射波(即二次波)在焊缝的单面双侧进行检测;母材厚度大于46mn W,应用直射法(即一次波)在焊缝的双面双侧进行检测。

2.2.2 检测区域的宽度为焊缝及其两侧各相当于母材厚度30% 的一段区域且不小于10mm。

2.2.3 探头移动区的确定: 采用一次反射法时, 不小于0.75P(跨距P=2TKmmT, 为母材厚度,K为探头K值)。

2.2.4 清除探头移动区内的飞溅、油垢、锈蚀,并打磨露出金属光泽,必要时进行补焊修磨至平滑,经外观检验合格后方可检测。

225 探头移动区内的母材应采用频率为2〜5MHz 晶片直径为10〜25mm勺直探头进行检测,其检测灵敏度为:将无缺陷处第二次底波调节为荧光屏满刻度的100%。

T型焊缝超声波检验工艺

T型焊缝超声波检验工艺

T型焊缝超声波检验工艺1、总则1.1 适用范围:本工艺适用于6~50mm锅炉,压力容器全焊透T型接头焊缝的超声波检测。

其他用途的全焊透T型接头焊缝的超声波检测也可参照执行。

1.2 编制依据:JB47301.3 检验人员:应是取得锅炉压力容器无损检测人员资格考核委员会颁发的超声Ⅱ级或Ⅱ级以上人员,对检查对象焊缝特性有足够的认识。

2、仪器、探头、试块与耦合剂2.1 所用探伤仪器必须满足JB4730标准中关于仪器的要求。

2.2 所用探头必须满足JB4730标准中关于探头的要求。

采用直探头探伤时,探头的频率为2.5MHz,探头的晶片尺寸不宜过大。

采用斜探头探伤时斜探头的频率为2.5~5.0MHz。

用斜探头在翼板外侧或翼板内侧进行探测时,推荐使用K1探头,用斜探头在腹板一侧进行探侧时,探头K值根据腹板厚度,按表一进行选择。

表一推荐的斜探头K值2.3 所用试块为JB4730标准中的CSK-ⅠA、CSK-ⅢA及CS2试块。

2.4 耦合剂为机油或浆糊。

3、探伤3.1 距离-波幅曲线灵敏度的确定用斜探头探测时,距离-波幅曲线灵敏度以腹板厚度按表二确定;用直探头探测时,距离-波幅曲线灵敏度以翼板厚度按表三确定。

表二距离-波幅曲线的灵敏度表三直探头距离-波幅曲线的灵敏度3.2 探伤灵敏度:不低于评定线3.3 探伤时机:探伤面经打磨、外观检查合格后进行探伤。

3.4 检测原则:在选择检测面和探头时应考虑到检测各类缺陷的可能性,并使声束尽可能垂直于该焊缝结构中主要缺陷。

3.5 检测方式根据焊缝结构形成,T型接头焊缝的检测有如下三种检测方式。

可选择其中一种或几种方式组合实施检测,检测方式的选择应考虑主要检测对象和几何条件的限制。

(1) 用斜探头从翼板外侧用直射法进行探测,见图一位置1、图二位置1和图三位置1;(2) 用斜探头在腹板一侧用直射法或一次反射法进行探测,见图一位置2和位置4、图二位置2和位置4和图三位置2;(3) 用直探头或双晶直探头在翼板外侧进行纵向探测或者用斜探头(K1探头)在翼板外侧作横向探测见图一位置3、图二位置3和图三位置3。

焊缝超声波检测工艺规程

焊缝超声波检测工艺规程

焊缝超声波检测工艺规程1主题内容和适用范围1.1本规程适用于采用A型脉冲反射式超声波探伤仪,并规定了超声波检测人员资格、仪器、探头、试块、检测范围、检测方法。

1.2本规程规定了钢箱梁对接焊缝及角接焊缝的超声波检测及对缺陷评定和质量等级要求。

1. 3本规程适用于钢板片度为8〜100mm的桥梁焊缝。

1.2本规程为制订专用检测工艺卡提供了编制依据,专用检测工艺卡是本规程的补充。

2引用标准GB11345-1989《钢对接焊接接头手工超声波探伤方法和探伤结果的分级》3检测人员3.1焊缝超声检验人员应按有关规程或技术条件的规定经严格的培训和考核,并持有相应考核组织颁发的等级资格证书,从事相对应考核项口的检验工作。

3.2检测人员必须熟悉检测对象的加工工艺和结构型式,能熟练按照检测工艺要求实施检测。

I级人员可以在II级人员指导下参加辅助工作。

检测报告必须由1【级或1【级以上人员出具、审核、签发。

3.3当检测条件不符合本规程的要求或不具备安全作业条件时,检测人员有权停止检测。

待条件改善符合要求后再进行检测工件。

3.2凡从事铁路桥梁焊缝超声波检测人员,要求矫正视力不低于1.0,并每年检查一次。

4检测仪器与探头4.1检测仪器采用A型脉冲反射式超声波探伤仪,其工作频率范围为0.5MHz〜10MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。

探伤仪应具有80dB以上的连续可调衰减器,步进级每档不大于2dB。

仪器衰减器精度在任意相邻12dB误差不超过±ldB。

水平线性误差W1%,垂直线性误差W5%,其余指标应符合JB/T10061-1999 的规定。

4.2探头4. 2.1探头性能必须符合ZBY231-84《超声波探伤用探头测试方法》的规定。

4. 2. 2探头要求:探头晶片有效面积W500 mm 任一边长W25 mm。

斜探头由声束水平方向偏差不大于2。

,主声束垂直方向不应有明显的双峰。

4.3仪器和探头的系统性能4. 3.1在最大检测声程时,仪器和探头组合灵敏度余量应$10dB。

焊缝超声波探伤标准

焊缝超声波探伤标准

焊缝超声波探伤标准焊接是制造业中常见的一种连接工艺,而焊缝的质量直接关系到焊接件的使用性能和安全性。

为了确保焊缝质量,超声波探伤技术被广泛应用于焊接质量检测中。

本文将介绍焊缝超声波探伤的标准和要点。

一、超声波探伤原理。

超声波探伤是利用超声波在材料中的传播特性来检测材料内部缺陷的一种无损检测技术。

当超声波遇到材料内部的缺陷时,会发生反射、散射或透射,通过对超声波的接收和分析,可以确定材料内部的缺陷类型、位置和大小。

二、焊缝超声波探伤标准。

1. 超声波探伤设备。

进行焊缝超声波探伤时,应选择适当的超声波探伤设备,包括超声波发射探头、接收探头、超声波检测仪器等。

设备的选择应符合相关标准要求,并经过校准和检定。

2. 探伤方法。

焊缝超声波探伤可以采用直接接触法、浸润法或者接触耦合法。

在选择探伤方法时,应根据具体情况和标准要求进行合理选择,并保证探伤过程中与焊缝的充分接触。

3. 探伤参数。

探伤参数包括超声波频率、波束角、增益、脉冲重复频率等。

在进行焊缝超声波探伤时,应根据焊缝的材料、厚度、几何形状等特点,合理选择探伤参数,并进行相应的调节和优化。

4. 探伤结果评定。

根据焊缝超声波探伤的标准,对探伤结果进行评定和判定。

根据探伤结果,判断焊缝内部是否存在缺陷,确定缺陷的类型、位置和大小,并进行相应的等级评定。

5. 报告和记录。

对焊缝超声波探伤的整个过程进行记录和报告,包括探伤设备的选择和校准、探伤方法和参数的选择、探伤结果的评定等内容,确保探伤过程的可追溯性和可复制性。

三、注意事项。

1. 操作人员应具备专业的超声波探伤技术知识和操作技能,严格按照相关标准和要求进行操作。

2. 探伤设备应定期进行维护和保养,确保设备的正常工作状态。

3. 在进行焊缝超声波探伤前,应对焊缝进行清洁和表面处理,保证探伤的准确性和可靠性。

四、结论。

焊缝超声波探伤是一种有效的焊接质量检测方法,对焊接件的质量和安全性具有重要意义。

严格按照相关标准和要求进行焊缝超声波探伤,可以有效地发现焊缝内部的缺陷,保证焊接件的质量和可靠性。

焊缝焊接探伤工艺

焊缝焊接探伤工艺

焊缝超声波检测工艺焊缝超声波检测工艺锅炉、压力容器主要是采用焊接加工形成的。

焊缝内部质量主要利用射线和超声波来检测。

但对于焊缝中的裂纹、未焊透等危险性缺陷,超声波检测出射线更容易发现。

为了有效地检出焊缝中的缺陷,检测人员除了具备超声波检测的测试技术外,还应对焊接过程、焊接接头和坡口形式以及焊缝中常见缺陷有所了解。

,o"[9F)_$p.V'N,E(W,y#N1.对接焊缝超声波检测方法-B7{*R1|:P/L(1)检测频率、探头、仪器要求"G;f&P7U4Y对接焊缝超声波检测时通常采用2.5MHZ横波斜探头检测。

在某些特殊场合下也可采用5MHZ或1.25MHZ的探头。

在检测时探头工作频率应符合所选用的检测频率,其误差不得超过4%-5%(缺陷定量精度要求为±1dB)。

JB4730-1994标准《锅炉和钢制压力容器对接焊缝超声波探伤》规定:横波斜探头K值选择应符合下表规定。

在检测条件许可的情况下,应尽量采和K值较大的斜探头检测以提高面积形缺陷(如裂缝)的检测能力。

带有曲率工件的超声波检测时,探头与工件表面接触面积的尺寸将直接影响超声耦合,致使耦合损耗增加,为此在带有曲率工件的焊缝超声波检测时,应尽可能采用接触面尺寸(探头与工件表面接触的底面尺寸)较小的探头检测。

为了保证缺陷测定数据的正确性及可靠性,对接焊缝超声波检测时,仪器与探头组合后的基本性能要求见下表。

$a8x+J5~7y+B6k4J.l9d$P0I斜探头K值选择(JB4730-1994)仪器与探头组合后的基本性能要求:(2)控测方向和检测面选择6F)K6v4B8~;W!d探测方向和检测面应按被检测焊缝中可能产生的裂纹、未熔合的方向选择,尽可能采用K值较大的探头(减小声波入射缺陷的角度)进行超声波检测。

JB4730-1994标准规定:$|r)x'J,Q(H+J&f①母材厚度为8-46mm的对接焊缝,在焊缝单面两侧用一种K 值的横波斜探头,在一次波和二次波的位置上探测。

焊缝的超声波探伤资料讲解

焊缝的超声波探伤资料讲解
第二临界角 当纵波入射角继续增大时,在第二 介质中的横波折射角也增大,当βS达 90度时,第二介质中没有超声波, 超声波都在表面,为表面波。
超声波的反射、折射、波形转换
在有机玻璃与钢的介面:
第一临界角为α=27.2°,βS=33.3° 第二临界角为α=56.7°,βS=90°
用于焊缝检测的超声波斜探头的入射 角必须大于第一临界角而小于第二临 界角。 我国习惯:斜探头的横波折射角用横 波折射角度的正切值表 示,如K=2
超声波探伤用试块
CSK-IA
超声波探伤用试块
调节:探头的前沿、K值、声速
超声波探伤用试块
CSK-IIIA
距离-波幅(DAC)曲线绘制
三条曲线生成后,按“增益”键,使用方向键调节曲线的高底,使 判废线达到屏幕的80%高度,进入探伤界面,进行探伤检测。
探测灵敏度的选定
➢ 探测灵敏度决定了检测缺陷的能力 灵敏度高,检测缺陷的能力大,探伤时反射的杂波太多,影响缺陷波的
GB11345-89标准规定:检验频率f一般在2-5MHz范围内选 择,
推荐选用2-2.5MHz公称频率检验。
检验等级
•A级检验
采用一种角度的探头在焊缝的单面单侧进行检验,只对允许扫 查到的焊缝截面进行探测.一般不要求作横向缺陷的检验.母材厚度 大于50mm时,不得采用A级检验。
检验等级
• B级检验
➢ 采用二次波探伤,探测面修整宽度为:
S ≥ 2KT+50 (mm)
➢ 采用一次波探伤,探测面修整宽度为:
S≥KT+50 (mm) 式中: K----探头的K值;
T----工件厚度。
P
P
二次波探伤
一次波探伤
耦合剂的选用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波探伤(焊缝)工艺
1 总则
1.1 本工艺适用于钢制锅炉压力容器的母材厚度为 6 ~120mm 的全焊透熔化焊焊缝及其等级评定。

1.2 本工艺不适用于铸钢及奥氏体钢焊缝, 外径小于159mm 的钢管对接焊缝, 内径小于或等于200mm 的管座角焊缝; 也不适用于外径小于250mm 或内外径之比小于80%的纵向对接焊缝。

1.3 依据标准:《蒸汽锅炉安全技术监察规程》(96版)、TSG R0004-2009《固定式压力容器安全技术监察规程》、TSG R7001-2004《压力容器定期检验规则》和第1、2、3号修改单、JB/T 4730-2005 《承压设备无损检测》。

1.4 人员资格: 焊缝超声检测人员必须持有质量技术监督部门颁发的具有相应项目的有效资格证书; 初级以上在中级的指导下可进行检测操作; 中级以上可出具检测报告。

1.5 焊缝超声检测原则上按本工艺进行, 特殊情况应由检测人员编制工艺, 经超声检验检测责任师和技术负责人审批后方可进行。

国家新标准或规定下达后,应及时修订本工艺。

2 检测准备
2.1 检测人员首先应了解被检工件的材质、结构、曲率、厚度、焊接方法、焊缝种类、坡口形式、焊缝余高、表面状况、背面衬垫、沟槽等情况,绘制被检工件展开图。

2.2 检测面
2.2.1 一般采用一种K值探头, 母材厚度小于或等于46mm时, 应用一次反射波(即二次波)在焊缝的单面双侧进行检测; 母材厚度大于46mm时, 应用直射法(即一次波)在焊缝的双面双侧进行检测。

2.2.2 检测区域的宽度为焊缝及其两侧各相当于母材厚度30% 的一段区域且不小于10mm。

2.2.3 探头移动区的确定: 采用一次反射法时, 不小于0.75P(跨距P=2TKmm, T 为母材厚度, K为探头K值)。

2.2.4 清除探头移动区内的飞溅、油垢、锈蚀,并打磨露出金属光泽,必要时进行补焊修磨至平滑,经外观检验合格后方可检测。

2.2.5 探头移动区内的母材应采用频率为2~5MHz、晶片直径为10~25mm的直探头进行检测, 其检测灵敏度为: 将无缺陷处第二次底波调节为荧光屏满刻度的100% 。

凡缺陷信号幅度超过荧光屏满刻度20%的部位,应在工件表面作标记,并予以记录,以利于辩别焊缝缺陷。

2.3 探头K值
根据工件厚度按下表选取
2.4 耦合剂, 要求润湿能力强, 并有足够的粘度, 一般选用机油或化学浆糊, 但标定仪器所用的耦合剂必须与检测用的耦合剂相同。

2.5 试块, 采用标准试块CSK-ⅠA、CSK-ⅡA、CSK-ⅢA和CS1,CS2。

2.6 设备, 应符合标准中的规定。

2.7 校准, 在基础试块上进行, 校准中应使超声主声束垂直对准反射体的轴线, 以获得稳定的和最大的反射信号。

在探头开始使用时,应按ZBY230的有关规定进行一次全面的性能校准: 对于斜探头应校准前沿距离、K值、主场束偏离、灵敏度余量和分辩力;对于直探头应校准始脉冲宽度灵敏度余量和分辩力。

在探头使用过程中,每个工作日应对斜探头校准前沿距离、K值和主声束偏离;每个月应对直探头检查一次。

2.8 复核
2.8.1 复核时机, 每次检测前均应对扫描线灵敏度进行复核, 遇有下述情况时还应随时复核。

a. 校准后的探头、耦合剂和仪器旋钮发生改变时;
b. 开始电压波动或检测者怀疑灵敏度有变化时;
c. 连续工作4小时以上时;
d. 工作结束时。

2.8.2 扫描量程的复核, 如果距离一波幅曲线上任意一点在扫描线上偏移超过扫描读数的 10%, 则扫描量程应予以修正, 并在检测记录中加以标明。

2.8.3 距离一波幅曲线的复核, 应不少于3点, 如曲线上任何一点幅度下降
2dB, 则应对上一次以来所有的检测结果进行复检; 如幅度上升2dB, 则应对所有的记录信号进行重新评定。

2.9 距离一波幅曲线及检测灵敏度的确定。

2.9.1 直探头距离一波幅曲线, 应根据在 CS2试块上测定的数据绘制, 其灵敏度按标准中表 9-5评定线确定。

2.9.2 斜探头距离--波幅曲线, 应根据在CSK-ⅡA试块上测定的数据绘制, 其灵敏度按标准中表 9-3评定线确定。

2.9.3 注意事项: 检测横向缺陷时应将灵敏度提高 6dB; 检测面的曲率半径 R ≤W2/4时, 距离--波幅曲线的绘制应在曲面对比试块上进行;被检工件表面状况及材质与试块不相同时, 应按标准附录 L的规定进行传输损失补偿。

检测
3.1 平板对接焊缝的检测
3.1.1 检测纵向缺陷, 当母材厚度 T≤46mm时, 采用斜探头垂直于焊缝中心线, 在焊缝的单面双侧进行检测; 母材厚度> 46mm时, 采用双面双侧检测, 若受几何条件限制, 则用两种 K值探头在焊缝的双面单侧进行检测; 母材厚度T> 40mm且单侧坡口角度小于 5°时, 应按JB4730-94标准附录 P“串列式检测方法”进行。

扫描方式为锯齿型移动, 并辅以 10-15°左右转动。

3.1.2 检测横向缺陷, 当母材厚度T≤100mm时,采用斜探头与焊缝中心线作平行或成100~200。

斜平行单面扫查;当母材厚度T≥100mm采用双面双侧平行扫查或采用两种K1探头作单面两个方向的平行扫查;必要时亦可用两个K1探头作串列扫查。

对电渣焊缝还应增加与焊缝中心成45。

的扫查。

3.2 曲面工件对接焊缝的检测
3.2.1 检测环缝时, 一般按平板对接焊缝检测方法进行, 若受曲率影响, 应用对比试块校核,其曲率半径应为检测面曲率半径的0.9-1.5倍。

对受几何条件限制无法检测的焊缝应予记录。

3.2.2 检测纵缝时,对比试块的曲率半径与检测面曲率半径之差应小于10%,并注意如下几点:
a.选择K 值,应据工件的曲率、母材厚度、几何临界角综合考虑,确保声束能扫查被检测面。

b.探头接触面修磨后,应用曲率对比试块重新测定其入射点和k 值。

c.当检测面曲率半径R>W2/4且采用平面对比试块调节仪器时,应注意到荧光屏指示的缺陷深度或水平距离与缺陷实际的径向埋藏深度或水平距离弧长的差异,必要时应予修正。

3.2.3 当曲率半经R>W2/4,应采用与曲率半径相同的试块。

3.3 管座角焊缝的检测
3.3.1 根据检测面状态选择探头类型和检测方法,使声束尽可能垂直于焊缝中的主要缺陷。

3.3.2 检测一般以直探头为主,其频率、尺寸按本工艺2.2.5 选择,对直探头扫查不到的区域可用斜探头检测。

4 记录
4.1 在展开图上画出有特征(如人孔、接管等)的部件,发现需记录的缺陷,应标示其相对位置。

4.2 缺陷反射波幅在定量线以上时,应用6dB 法或端点6dB 法测定并记录其指示长度,同时记录其最大反射波幅dB值和当量值。

5 评定
5.1 缺陷指示长度小于10mm按5 mm计。

5.2 两缺陷间距小于其中较小缺陷长度应作为一个缺陷,指示长度为两缺陷指示长度之和。

5.3 缺陷等级评定标准《承压设备无损检测》JB/T4730-2005。

6 报告
6.1 检测报告应由具备中级以上资格人员出具,并经两级签审,一式两份(一份存档,一份交用户)。

6.2 检测报告
报告应按《压力容器全面检验报告》项目检验报告《超声波检测报告》之要求。

相关文档
最新文档