初中数学一元二次方程解法及应用中考试题含答案

合集下载

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

中考数学复习 专题11 一元二次方程试题(B卷,含解析)-人教版初中九年级全册数学试题

一元二次方程一、选择题1. (某某某某,5,4分)—元二次方程x 2+2x +1=0的根的情况( )A .有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根【答案】B【逐步提示】先根据一元二次方程x 2+2x +1=0确定a 、b 、c 的值,再求判别式b 2-4ac 的值,最后根据判别式值的情况作出判断.【详细解答】解:一元二次方程x 2+2x +1=0中,a =1,b =2,c =1,所以b 2-4ac =22-4×1×1=0,故选择B .【解后反思】一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.【关键词】一元二次方程;一元二次方程根的判别式2. ( 某某省,14,2分)a ,b ,c 为常数,且(a -c )2>a 2+c 2,则关于x 的方程ax 2+bx +c =0根的情况是()A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为0【答案】B【逐步提示】本题考查了一元二次方程根的判别式,先化简不等式得到ac <0,进而判断出b 2-4ac 的符号,由此可知方程根的情况.【详细解答】解:∵(a -c )2>a 2+c 2,即a 2-2ac+c 2>a 2+c 2,∴ac <0,a ≠0.∴关于x 的方程ax 2+bx+c 是一元二次方程,且b 2-4ac >0,故该方程有两个不相等的实数根.【解后反思】1.一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程没有实数根;当b 2-4ac ≥0时,一元二次方程有实数根,以上结论反过来也成立.ax 2+bx +c =0来说,只有当a≠0时,这个方程才是一元二次方程.【关键词】不等式;根的判别式;一元二次方程的定义3. (某某省某某市,10,3分)关于x 的一元二次方程042=++k x x 有两个相等的实根,则k 的值为( )A.k =-4B.k =4C.4-≥kD.4≥k【答案】B【逐步提示】本题考查的是一元二次方程根的判别式,利用一元二次方程的根的情况得到判别式的大小是解题的关键.第一步,根据题目已知条件判断“0=∆”;第二步, 由ac b 42-=∆,列出含有字母k 的方程并求解即可得出答案。

初中数学九年级上册一元二次方程试卷(含答案)

初中数学九年级上册一元二次方程试卷(含答案)

九年级(上)《一元二次方程》数学试卷(中难度)一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.21.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣927.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,530.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<人教版九年级(上)《一元二次方程》数学试卷(中等难度)参考答案与试题解析一.填空题(共4小题)1.已知关于x的一元二次方程:x2﹣2x﹣a=0,有下列结论:①当a>﹣1时,方程有两个不相等的实根;②当a>0时,方程不可能有两个异号的实根;③当a>﹣1时,方程的两个实根不可能都小于1;④当a>3时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为3.【解答】解:∵x2﹣2x﹣a=0,∴△=4+4a,∴①当a>﹣1时,△>0,方程有两个不相等的实根,故①正确,②当a>0时,两根之积<0,方程的两根异号,故②错误,③方程的根为x==1±,∵a>﹣1,∴方程的两个实根不可能都小于1,故③正确,④若方程的两个实根一个大于3,另一个小于3.则有32﹣6﹣a<0,∴a>3,故④正确,故答案为3.2.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解x3=0,x4=﹣3.【解答】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.3.一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣7x+12=0的一个根,则此三角形的周长是14.【解答】解:解方程x2﹣7x+12=0得:x=3或4,当腰为3时,三角形的三边为3,3,6,3+3=6,此时不符合三角形三边关系定理,此时不行;当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为4+4+6=14,故答案为:14.4.设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=﹣6056.【解答】解:∵α、β是方程x2+2013x﹣2=0的两实数根,∴α2+2013α﹣2=0,β2+2013β﹣2=0,α+β=﹣2013,αβ=﹣2,则(α2+2016α﹣1)(β2+2016β﹣1)=(α2+2013α﹣2+3α+1)(β2+2013β﹣2+3β+1)=(3α+1)(3β+1)=9αβ+3(α+β)+1=﹣18﹣6039+1=﹣6056.故答案为:﹣6056.二.解答题(共23小题)5.已知关于x的一元二次方程|x2﹣1|=(x﹣1)(kx﹣2):(1)若k=3,求方程的解;(2)若方程恰有两个不同解,求实数k的取值范围.【解答】解:(1)把k=3代入|x2﹣1|=(x﹣1)(kx﹣2)中,得|x2﹣1|=(x﹣1)(3x﹣2),当x2>1,即x>1或x<﹣1时,原方程可化为:x2﹣1=(x﹣1)(3x﹣2),解得,x=1(舍),或x=;当x2≤1,即﹣1≤x≤1时,原方程可化为:1﹣x2=(x﹣1)(3x﹣2),解得,x=1,或x=;综上,方程的解为x1=,x2=1,x3=;(2)∵x=1恒为方程|x2﹣1|=(x﹣1)(kx﹣2)的解,∴当x≠1时,方程两边都同时除以x﹣1得,,要使此方程只有一个解,只需函数y=与函数y=kx﹣2的图象只有一个交点.∵函数:,作出函数图象,由图象可知,当k<0时,直线y=kx﹣2与函数y=图象只有一个交点;当k=0时,直线y=kx﹣2=﹣2与函数y=图象只有一个交点;当k=1时,y=kx﹣2=x﹣2与y=x+1平行,则与函数y=图象只有一个交点;∵当直线y=kx﹣2过(1,2)点时,2=k﹣2,则k=4,∴函数图象可知,当k≥4时,直线y=kx﹣2与函数y=图象也只有一个交点,∴要使函数图象与y=kx﹣2图象有且只有一个交点,则实数k的取值范围是k≤0或k=1或k≥4.综上,实数k的取值范围:k≤0或k=1或k≥4.6.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?【解答】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.7.边长为整数的直角三角形若其两直角边长是方程x2﹣(k+2)x+4k=0的两根,求k的值并确定直角三角形三边之长.【解答】解:设直角边为a,b(a<b),则a+b=k+2,ab=4k,因方程的根为整数,故其判别式为平方数,设△=(k+2)2﹣16k=n2⇒(k﹣6+n)(k﹣6﹣n)=1×32=2×16=4×8,∵k﹣6+n>k﹣6﹣n,∴或或,解得k1=(不是整数,舍去),k2=15,k3=12,当k2=15时,a+b=17,ab=60⇒a=5,b=12,c=13,当k3=12时,a+b=14,ab=48⇒a=6,b=8,c=10.∴当k=15时,三角形三边的长为:5,12,13.当k=12时,三角形三边的长为:6,8,10.8.某汽车销售公司2017年10月份销售一种新型低能耗汽车20辆,由于该型号汽车经济适用性强,销量快速上升,12月份该公司销售该型号汽车达45辆.(1)求11月份和12月份的平均增长率;(2)该型号汽车每辆的进价为10万元,且销售a辆汽车,汽车厂队销售公司每辆返利0.03a万元,该公司这种型号汽车的售价为11万元/辆,若使2018年1月份每辆汽车盈利不低于2.6万元,那么该公司1月份至少需要销售该型号汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)【解答】解:(1)设11月份和12月份的平均增长率为x,根据题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(舍去).答:11月份和12月份的平均增长率为50%.(2)根据题意得:11﹣10+0.03a≥2.6,解得:a≥53.∵a为整数,∴a≥54.∴此时总盈利为54×(11﹣10+0.03×54)=141.48(万元).答:该公司1月份至少需要销售该型号汽车54辆,此时总盈利至少是141.48万元.9.已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴▱ABCD的周长是2×(2+)=5.10.某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,得x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:要使每盆的盈利达到10元,每盆应植4株或者5株.11.已知关于x的一元二次方程(a+b)x2+2cx+(b﹣a)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是等腰三角形,理由:当x=﹣1时,(a+b)﹣2c+(b﹣a)=0,∴b=c,∴△ABC是等腰三角形,(2)△ABC是直角三角形,理由:∵方程有两个相等的实数根,∴△=(2c)2﹣4(a+b)(b﹣a)=0,∴a2+c2=b2,∴△ABC是直角三角形;(3)∵△ABC是等边三角形,∴a=b=c,∴原方程可化为:2ax2+2ax=0,即:x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,即:这个一元二次方程的根为x1=0,x2=﹣1.12.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的,且乙种树木每棵80元,共用去资金6160元.(1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了,且总费用为6804元,求a的值.【解答】解:(1)设甲种树木的数量为x棵,乙种树木的数量为y棵,由题意得:,解得:,答:甲种树木的数量为40棵,乙种树木的数量为32棵;(2)由题意得甲种树木单价为×80(1+a%)=90(1+a%)元,乙种树木单价为80×(1﹣),由题意得:90(1+a%)×40+80×(1﹣)×32=6804,解得:a=25,答:a的值为25.13.已知关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2.(1)求m的取值范围.(2)若|x1|=|x2|,求m的值及方程的根.【解答】解:(1)∵关于x的一元二次方程(m﹣2)x2+(2m+1)x+m=0有两个实数根x1,x2,∴,解得:m≥﹣且m≠2.(2)由|x1|=|x2|,可得:x1=x2或x1=﹣x2.当x1=x2时,△=(2m+1)2﹣4m(m﹣2)=0,解得:m=﹣,此时x1=x2=﹣=;当x1=﹣x2时,x1+x2=﹣=0,∴m=﹣,∵m≥﹣且m≠2,∴此时方程无解.综上所述:若|x1|=|x2|,m的值为﹣,方程的根为x1=x2=.14.已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围:(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.【解答】解:(1)依题意得△=22﹣4(2k﹣4)>0,解得:k<:(2)因为k<且k为正整数,所以k=1或2,当k=1时,方程化为x2+2x﹣2=0,△=12,此方程无整数根;当k=2时,方程化为x2+2x=0 解得x1=0,x2=﹣2,所以k=2,方程的有整数根为x1=0,x2=﹣2.15.某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?【解答】解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.16.如图1,某小区的平面图是一个占地长500米,宽400米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形,如果要使四周的空地所占面积是小区面积的19%,南北空地等宽,东西空地等宽.(1)求该小区四周的空地的宽度;(2)如图2,该小区在东、西、南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东、西两侧绿化带完全相同,其长均为200米,南侧绿化带的长为300米,绿化面积为5500平方米,请算出小区道路的宽度.【解答】解:(1)建筑区的面积是500×400×(1﹣19%)=162000(平方米).设建筑区的长度为5x米,则宽为4x米.根据题意得:5x•4x=162000,整理得x2=8100,解得x1=90,x2=﹣90(不合题意),则东西两侧道宽:(500﹣5x)÷2=25(米),南北两侧道宽:(400﹣4x)÷2=20(米).答:小区的东西两侧道宽为25米,南北两侧道宽为20米;(2)设小区道路的宽度为z米,则(20﹣z)×300+2×(25﹣z)×200=5500,解得z=15.答:小区道路的宽度是15米.17.随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车81辆,2009年底家庭轿车的拥有量达到144辆.(1)若该小区2007年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.【解答】解:(1)设家庭轿车拥有量的年平均增长率为x,根据题意得:81(1+x)2=144,解得:x1=,x2=﹣(不合题意,舍去),∴144×(1+)=192,答:该小区到2010年底家庭轿车将达到192辆;(2)设建造室内车位a个,可建车位总数为w个,则建造室外车位(125﹣3a)个,根据题意得:3a≤125﹣3a≤4.5a,解得:≤a≤∵w=a+125﹣3a=﹣2a+125,∴当整数a取最小值17时,w取最大值,最大值为91,答:该小区最多可建车位总共91个.18.已知实数a、b满足a2+ab+b2=1,且t=ab﹣a2﹣b2,求t的取值范围.【解答】解:由已知得,(a+b)2﹣ab=1,t=﹣(a+b)2+3ab,由此可得:ab=,a+b=(t≥﹣3),∴a,b是关于方程x2x+=0的两个实根,由△=﹣2(t+1)≥0,解得t≤﹣,故t的取值范围是﹣3≤t≤﹣.故答案为:﹣3≤t≤﹣.19.已知k为非负实数,关于x的方程x2﹣(k+1)x+k=0和kx2﹣(k+2)x+k=0.(1)试证:前一个方程必有两个非负实数根;(2)当k取何值时,上述两个方程有一个相同的实数根.【解答】(1)证明:x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,即方程关于x的方程x2﹣(k+1)x+k=0一定有两个实数根;设方程的两根为x1,x2,则根据根与系数的关系得:x1+x2=k+1,x1•x2=k,∵k为非负实数,∴x1+x2=k+1>0,x1•x2=k≥0,∵由x1•x2=k≥0得出方程有同号两个根或有一个根为0;∴由x1+x2=k+1>0,x1•x2=k≥0得出方程有两个正实数根或有一个根为0,所以方程x2﹣(k+1)x+k=0必有两个非负实数根;(2)x2﹣(k+1)x+k=0,△=[﹣(k+1)]2﹣4k=k2﹣2k+1=(k﹣1)2≥0,方程的根为,即方程的根为k和1;当相同的根是k时,把x=k代入方程kx2﹣(k+2)x+k=0得:k3﹣(k+2)k+k=0,解得:k=0或k=或k=,∵k为非负实数,∴k=舍去,k=符合题意;当相同的根是1时,把x=1代入方程kx2﹣(k+2)x+k=0得:k﹣(k+2)+k=0,解得:k=2;所以当k=2或0或时,述两个方程有一个相同的实数根.20.已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1.又∵,且,∴解得m≥﹣3且m≠﹣1.又∵方程mx2﹣3mx+m﹣1=0为一元二次方程,∴m≠0.综上可得:m≥﹣3且m≠﹣1,m≠0(2)∵一元二次方程mx2﹣3mx+m﹣1=0有两个整数根x1、x2,m为整数,∴x1+x2=3,,∴为整数,∴m=1或﹣1,又∵m≥﹣3且m≠﹣1,m≠0,∴m=1,∴方程为x2﹣3x=0,解得:x=3或x=021.某电器商社从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)【解答】解:元,根据题意得:=,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.22.已知实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,求的值.【解答】解:若m≠n,∵实数m、n满足3m2+6m﹣5=0,3n2+6n﹣5=0,∴m、n是方程3x2+6x﹣5=0的两根,∴m+n=﹣=﹣2,mn=﹣,∴====﹣;若m=n,则=1+1=2;综上可知的值为﹣或2.23.已知关于x的方程x2﹣(m﹣2)x﹣=0.(1)求证:无论m为何值,方程总有两个不相等实数根.(2)设方程的两实数根为x1,x2,且满足(x1+x2)2=|x1|﹣|x2|+2,求m的值.【解答】解:(1)∵△=[﹣(m﹣2)]2﹣4(﹣)=2m2﹣4m+4=2(m﹣1)2+2>0,∴方程总有两个不相等的实数根;(2)∵x1•x2=﹣≤0,∴x1,x2至少有一个为0或不同号,当x2<0,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=x1+x2+2,∴x1+x2=2,或x1+x2=﹣1,∴m﹣2=2,或m﹣2=﹣1,∴m=4,或m=1;当x1<0时,∵(x1+x2)2=|x1|﹣|x2|+2,∴(x1+x2)2=﹣x1﹣x2+2,∴x1+x2=﹣2,或x1+x2=1∴m﹣2=﹣2,或m﹣2=1,∴m=0,或m=3.故m的值为m=4或m=1或m=0或m=3.24.某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.25.已知方程x2+px+q=0的两个根是x1,x2,那么x1+x2=﹣p,x1x2=q,反过来,如果x1+x2=﹣p,x1x2=q,那么以x1,x2为两根的一元二次方程是x2+px+q=0.请根据以上结论,解决下列问题:(1)已知关于x的方程x2+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数.(2)已知a、b满足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.【解答】解:(1)设x2+mx+n=0(n≠0)的两根为x1,x2,则x1+x2=﹣m,x l x2=n,则所求新方程的两根为,.∵+==﹣,×==.所以,所求的方程为y2+y+=0,即ny2+my+1=0.(2)从a,b满足的同一种关系可知:①当a≠b时,a、b是一元二次方程x2﹣15x﹣5=0的两根,所以a+b=15,ab=﹣5,从而====﹣47.②当a=b时,从而=1+1=2.所以的值为﹣47或2.(3)由a+b+c=0,abc=16,得a+b=﹣c.ab=,因此,由给出的结论,得a、b是方程x2+cx+=0的实数根,所以△=c2﹣4×≥0,因为c>0,所以c3≥64,所以c≥4,故c的最小值为4.26.解方程:(1)﹣1(2)4x(x﹣3)=x2﹣9【解答】解:(1)方程两边都乘以3(x﹣2)得:3(5x﹣4)=4x+10﹣3(x﹣2),解得:x=2,检验:当x=2时,3(x﹣2)=0,所以x=2不是原方程的解,即原方程无解;(2)4x(x﹣3)=x2﹣9,4x(x﹣3)﹣(x+3)(x﹣3)=0,(x﹣3)[4x﹣(x+3)]=0,x﹣3=0,4x﹣(x+3)=0,x1=3,x2=1.27.已知关于x的一元二次方程mx2﹣(4m+1)x+3m+3=0的两个不等实数根分别为x1,x2,n=x2﹣x1﹣2,设点A(1,a),B(b,2)两点在动点P(m,n)所形成的曲线上.(1)求P点所在的曲线解析式;(2)求直线AB的解析式;【解答】解:令y=mx2﹣(4m+1)x+3m+3=0,则mx2﹣(4m+1)x+3m+3=0,∴x=3或x=,①当3﹣=n+2时,即n=﹣,P点所在的曲线解析式为y=﹣,把A(1,a),B(b,2)代入n=﹣中,∴A(1,﹣1),B(﹣,2),设直线AB的解析式为y=kx+b,代入得:,解得:,∴直线AB的解析式为y=﹣2x+1;②当﹣3=n+2时,即n=﹣4,P点所在的曲线解析式为y=﹣4,同理可求A(1,﹣3),B(,2),同理可得:直线AB的解析式为y=﹣6x+3.三.选择题(共3小题)28.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③【解答】解:①若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知△=b2﹣4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实根,∴△=b2﹣4ac=0﹣4ac>0,∴﹣4ac>0,则方程ax2+bx+c=0的判别式△=b2﹣4ac>0,∴方程ax2+bx+c=0必有两个不相等的实根,故②正确;③∵c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,∴c(ac+b+1)=0若c=0,等式仍然成立,但ac+b+1=0不一定成立,故③不正确;④若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=或x0=∴2ax0+b=或2ax0+b=﹣∴故④正确.故选:B.29.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,则方程a(x+m﹣2)2+n=0(a≠0)的两根分别为()A.1,5B.﹣1,3C.﹣3,1D.﹣1,5【解答】解:∵一元二次方程a(x+m)2+n=0(a≠0)的两根分别为﹣3,1,∴方程a(x+m﹣2)2+n=0(a≠0)中x﹣2=﹣3或x﹣2=1,解得:x=﹣1或3,即方程a(x+m﹣2)2+n=0(a≠0)的两根分别为﹣1和3,故选:B.30.若关于x的一元二次方程kx2﹣x+1=0有实数根,则k的取值范围是()A.k>且k≠0B.k<且k≠0C.k≤且k≠0D.k<【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有实数根,∴k≠0且△=(﹣1)2﹣4k≥0,解得:k≤且k≠0.故选:C.。

初二数学一元二次方程试题答案及解析

初二数学一元二次方程试题答案及解析

初二数学一元二次方程试题答案及解析1.解一元二次方程:2x2+4x+1=0.【答案】【解析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.试题解析:这里a=2,b=4,c=1,∵△=16﹣8=8,∴.【考点】解一元二次方程-公式法.2.若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.B.C.D.【答案】C【解析】∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值范围是m≤1.故选:C.【考点】根的判别式3.若x=2是关于x的方程x2﹣x﹣a2+5=0的一个根,则a的值为.【答案】±【解析】把x=2代入方程x2﹣x﹣a2+5=0得:4﹣2﹣a2+5=0,解得:a=±.【考点】一元二次方程的解4.解下列一元二次方程(1)(2)【答案】(1)x1=4,x2=0;(2)x1=2,x2=5.【解析】(1)利用分解因式法即可.(2)去括号、移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析:(1),x 1=4,x2=0;(2),,,x 1=2,x2=5.【考点】解一元二次方程.5.如图,两个边长均为2的正方形ABCD和正方形CDEF,点B、C、F在同一直线上,一直角三角板的直角顶点放置在D点处,DP交AB于点M,DQ交BF于点N.(1)求证:△DBM≌△DFN;(4分)(2)延长正方形的边CB和EF,分别与直角三角板的两边DP、DQ(或它们的延长线)交于点G和点H,试探究下列问题:①线段BG与FH相等吗?说明理由;(4分)②当线段FN的长是方程的一根时,试求出的值.(4分)【答案】(1)证明见解析;(2)①BG=FH.理由见解析;②.【解析】(1)如图1,根据正方形的性质就可得出BD=FD,∠ADB=∠CDF=∠ADB=∠CFD=45°,由直角三角形的性质就可以得出∠1=∠ADM,进而得出∠3=∠4,由ASA就可以得出结论;(2)①如图1,根据正方形的性质及直角三角形的性质就可以得出△GCD≌△HED就有CG=EH,由等式的性质就可以得出结论;②先解方程x2+2x﹣3=0就可以求出FN=1,得出CN=1,如图2,就可以得出△CND≌△FNH,得出CD=FH=2,就可以得出GB=2,GN=5,由勾股定理就可以求出NH的值,进而得出结论.试题解析:(1)如图1,∵四边形ABCD和四边形CDEF是正方形,∴BC=FC,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠E=∠HFN=∠ADC=90°.∴∠ADM+∠CDM=90°,∵∠PDQ=90°,∴∠CDM+∠CDN=90°.∴∠ADM=∠CDN.∴∠ADB﹣∠ADM=∠CDF﹣∠CDN,∴∠MDB=∠NDF.在△DBM和△DFN中,,∴△DBM≌△DFN(ASA);(2)①四边形ABCD和四边形CDEF是正方形,∴BC=FC=EF,BD=FD,∠ABD=∠ADB=∠CDF=∠ADB=∠CFD=45°,∠DCB=∠DEF=∠CDE=∠E=∠HFN=∠ADC=90°.∴∠EDH+∠1=90°,∵∠PDQ=90°,∴∠CDM+∠1=90°.∴∠CDM=∠EDH.在△CDG和△EDH中,,∴△CDG≌△EDH(ASA),∴CG=EH,∴CG﹣CB=EH﹣EF,∴BG=FH.②∵x2+2x﹣3=0,∴x1=1,x2=﹣3.∵FN的长是方程x2+2x﹣3=0的一根,∴FN=1.∴CN=1,∴CN=FN.如图2,在△CND和△FNH中,,∴△CND≌△FNH(ASA),∴CD=FH=2,∴GB=2,∴GN=5.在Rt△FNH中,由勾股定理,得NH=.∴.【考点】四边形综合题.6.商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A.0.64B.0.8C.8D.6.4【答案】C.【解析】根据已知中连续的打折问题,注意在打a折的基础上再打a折销售,可以得出等式方程,进而求出a的值.根据题意得:200××=128,即a 2=64,解得:a=8.故选C.【考点】一元二次方程的应用.7.如图,在一次函数的图象上取点P,作PA⊥轴于A,PB⊥轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A.4B.3C.2D.1【答案】A.【解析】设点P的坐标为(x,y),由图象得|x||y|=6,再将y=-x+5代入,得x(-x+5)=±6,则x2-5x+6=0或x2-5x-6=0,∴每个方程有两个不相等的实数根故选A.【考点】一次函数综合题.8.用配方法解一元二次方程,则方程可变形为()A.B.C.D.【答案】C.【解析】∵x2﹣6x﹣7=0,∴x2﹣6x=7,∴x2﹣6x+9=7+9,∴(x﹣3)2=16.故选C.【考点】解一元二次方程-配方法.9.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.【答案】(1)16;(2);(3).【解析】(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P 在线段CD上,根据三种情况点的位置,可以确定t的值.(1)如图,过点A作AM⊥CD于M,根据勾股定理,AD=10,AM=BC=8,∴.∴CD=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-3t,DQ=2t,∴10-3t=2t,解得t=2.此时,BP=DQ=4,CQ=12,∴.∴四边形PBQD的周长=2(BP+BQ)=.(3)①当点P在线段AB上时,即时,如图,,解得.②当点P在线段BC上时,即时,如图,BP=3t-10,CQ=16-2t,∴,化简得:3t2-34t+100=0,△=-44<0,∴方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即,则有PQ=34-5t,,解得<6,舍去.若点P在Q的左侧,即,则有PQ=5t-34,,解得.综上所述,满足条件的t存在,其值分别为.【考点】1.双动点问题;2.平行四边形的性质;3.一元二次方程的应用;4.直角梯形的性质;5.勾股定理;6.分类思想的应用.10.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送1035份小礼品,如果全班有x名同学,根据题意列出方程为()A.B.C.D.【答案】C.【解析】全班有x名同学,则每人送(x-1)份小礼品,共送x(x-1)份小礼品,进而可列出方程:.故选C.【考点】由实际问题抽象出一元二次方程.11.根据下面表格中的取值,方程有一个根的近似值(精确到0.1)是()A.1.5B.1.2C.1.3D.1.4【答案】C【解析】由表格可得:当x的值是1.3时,的值与0最接近.因而方程的解是1.3.故选C.【考点】方程的近似解.12.已知b2-4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.B.C.D.【答案】C.【解析】一元二次方程ax2+bx+c=0的解是,所以或者.以为例,设=y,则,解得.则,从而求出.【考点】①一元二次方程的解;②根的判别式.13.解下列方程与不等式(1)3x(7-x)=18-x(3x-15);(2) (x+3)(x-7)+8>(x+5)(x-1).【答案】(1)x=3;(2)x<-1.【解析】解方程与不等式的步骤是先化简方程,去括号,移项,合并同类项,系数化为1,值得注意的是不等式两边同时乘以或除以负数时,不等式方向要改变,(1)先去括号,21x-3x2=18-3x2+15x,移项, 21x-3x2+3x2-15x =18,合并同类项,6x="18," x=3;(2)先去括号,x2-7x+3x-21+8>x2-x+5x-5,移项,x2-7x+3x -x2+x-5x>-5+21-8,合并同类项,-8x>8,系数化为1,注意要改变不等式的方向,x<-1.试题解析:(1)先去括号,21x-3x2=18-3x2+15x,移项, 21x-3x2+3x2-15x =18,合并同类项,6x=18,x=3;(2)先去括号,x2-7x+3x-21+8>x2-x+5x-5,移项,x2-7x+3x -x2+x-5x>-5+21-8,合并同类项,-8x>8,系数化为1,注意要改变不等式的方向,x<-1.【考点】解方程与不等式.14.关于的一元二次方程有一个根为0,则.【答案】【解析】由题意把代入方程即可得到关于a的方程,再结合一元二次方程的二次项系数不为0求解即可.解:由题意得,,则.【考点】方程的根的定义点评:解题的关键是熟练掌握方程的根的定义:方程的根就是使方程左右两边相等的未知数的值.15.解下列一元二次方程:(1);(2)【答案】(1),;(2),【解析】(1)先把方程移项整理为一般式,再根据公式法解一元二次方程即可;(2)先移项,再提取公因式即可根据因式分解法解一元二次方程.解:(1)△=∴∴,;(2)∴或∴,.【考点】解一元二次方程点评:解一元二次方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.16.某商场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。

全国中考数学一元二次方程的综合中考真题汇总及详细答案

全国中考数学一元二次方程的综合中考真题汇总及详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的一元二次方程x 2﹣x+a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4【解析】分析:(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.详解:(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,.∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-, 代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.2.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭. 【答案】x=15或x=1 【解析】【分析】 设321x y x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】 解:设321x y x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321x x =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.3.从图象来看,该函数是一个分段函数,当0≤x≤m 时,是正比例函数,当x >m 时是一次函数.【小题1】只需把x 代入函数表达式,计算出y 的值,若与表格中的水费相等,则知收取方案.4.有一个人患了流感,经过两轮传染后共有36人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?【答案】(1)5;(2)180【解析】【分析】(1)设平均一人传染了x 人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.【详解】(1)设每轮传染中平均一个人传染了x 个人,根据题意得:x+1+(x+1)x =36,解得:x =5或x =﹣7(舍去).答:每轮传染中平均一个人传染了5个人;(2)根据题意得:5×36=180(个),答:第三轮将又有180人被传染.【点睛】本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.5.关于x 的方程()2204k kx k x +++=有两个不相等的实数根.()1求实数k 的取值范围;()2是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.【答案】(1)1k >-且0k ≠;(2)不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【解析】【分析】()1由于方程有两个不相等的实数根,所以它的判别式0>,由此可以得到关于k 的不等式,解不等式即可求出k 的取值范围. ()2首先利用根与系数的关系,求出两根之和与两根之积,再由方程的两个实数根之和等于两实数根之积的算术平方根,可以得出关于k 的等式,解出k 值,然后判断k 值是否在()1中的取值范围内.【详解】解:()1依题意得2(2)404k k k =+-⋅>, 1k ∴>-,又0k ≠,k ∴的取值范围是1k >-且0k ≠;()2解:不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根,理由是:设方程()2204k kx k x +++=的两根分别为1x ,2x , 由根与系数的关系有:1212214k x x k x x +⎧+=-⎪⎪⎨⎪=⎪⎩, 又因为方程的两个实数根之和等于两实数根之积的算术平方根,212k k +∴-=, 43k ∴=-, 由()1知,1k >-,且0k ≠,43k ∴=-不符合题意, 因此不存在符合条件的实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根.【点睛】本题重点考查了一元二次方程的根的判别式和根与系数的关系。

初一数学一元二次方程试题答案及解析

初一数学一元二次方程试题答案及解析

初一数学一元二次方程试题答案及解析1.已知:关于x的方程mx2+(m﹣3)x﹣3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果m为正整数,且方程的两个根均为整数,求m的值.【答案】(1)详见解析;(2)m=1或3【解析】(1)根据判别式得到△=(m﹣3)2﹣4m•(﹣3)=(m+3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x1=,x2=﹣1,然后利用整除性即可得到m的值.试题解析:(1)证明:∵m≠0,∴方程mx2+(m﹣3)x﹣3=0(m≠0)是关于x的一元二次方程,∴△=(m﹣3)2﹣4m•(﹣3)=(m+3)2,∵(m+3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x=,∴x1=,x2=﹣1,∵m为正整数,且方程的两个根均为整数,∴m=1或3.【考点】根的判别式2.方程的解是.【答案】【解析】二次方程的解可利用公式==,即.本题涉及了二次方程解的公式,该题较为简单,是常考题,主要考查学生对二次方程根的公式的应用,另外其他求根的方法,都要求学生熟记。

3.下列是二元一次方程的是()A.B.C.D.【答案】B【解析】A、未知数的项的次数是2,不符合二元一次方程的定义;B、符合二元一次方程的定义;C、x2是二次,不是二元一次方程,故此选项错误;D、不是整式方程,不符合二元一次方程的定义;故选B.【考点】一元二次方程的定义.4.下列算式能用平方差公式计算的是()A.B.C.D.【答案】C【解析】平方差公式为;选项A中,不满足平方差公式的结构特点,所以不能用平方差公式来计算;选项B中,其不符合平方差公式的特点,所以不能用平方差公式进行计算;选项C中,所以选C;选项D中,不符合平方差公式的结构特点,所以不能用其进行计算【考点】平方差公式点评:本题考查平方差公式,解答本题需要考生掌握平方差公式,熟悉平方差公式的结构,会灵活运用平方差公式5.若是一个完全平方式,那么的值是()A.2B.±2C.4D.±4【答案】D【解析】若是一个完全平方式,因为,它要是完全平方式,那么,即,所以M=±4【考点】完全平方式点评:本题考查完全平方式,解答本题需要考生掌握完全平方式,及其完全平方式的结构。

全国中考数学一元二次方程的综合中考真题汇总附详细答案

全国中考数学一元二次方程的综合中考真题汇总附详细答案

一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.解方程:(2x+1)2=2x+1.【答案】x=0或x=12-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.试题解析:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣12.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34 ;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根.∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0.解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0.则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去),∴k=﹣13.将m 看作已知量,分别写出当0<x<m 和x>m 时,与之间的函数关系式;4.解下列方程:(1)2x 2-4x -1=0(配方法);(2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32. ∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0.∴x +1=0或x +1-6=0.∴x 1=-1,x 2=5.5.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x (元)之间的关系式为y =﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x ﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w 元,根据题意得:w =(x ﹣30)y =(x ﹣30)(﹣10x+700)=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000.∵a =﹣10<0,∴当x =50时,w 取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为 x .40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.5,2y =2.5,∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.7.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1.【解析】【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.8.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件?【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【解析】【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=.解得110x =,230x =.经检验,110x =,230x =都符合题意.当10x =时,5060x +=,50010400x -=;当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件.【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解9.解方程:x 2-2x =2x +1.【答案】x 1=2-5 ,x 2=2+5.【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式24b b ac x -±-=求解即可. 试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x =420±=2±5 , ∴x 1=2-5 ,x 2=2+5.10. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的),五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】。

中考试题含参一元二次方程的解法课后练习二及详解.docx

中考试题含参一元二次方程的解法课后练习二及详解.docx

学科:数学专题:含参一元二次方程的解法主讲教师:黄炜 北京四中数学教师重难点易错点解析题一: 题面: 当n ≤0时,方程(x -p )2+n =0为一元二次方程,其解为 .金题精讲题一: 题面:用因式分解法解关于x 的一元二次方程x 2-mx -6m 2=0的根是 .满分冲刺题一:题面:解关于x 的方程:2()0(0)mx m n x n m ---==/.题二:题面:解方程:mx 2-3=x 2+2(m ≠1).题三:题面:已知关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,则a 的值是()A . 1B .-1C .D .-课后练习详解重难点易错点解析题一: 答案:x =±n -+p .详解:当n ≤0时,方程(x -p )2+n =0为一元二次方程,(x -p )2+n =0移项得:(x -p )2=-n ,两边直接开平方得:x -p =±n -,x =±n -+p .金题精讲题一:答案:x 1=3m ,x 2= -2m .详解:∵(x -3m )(x +2m )=0,∴x -3m =0或x +2m =0,∴x 1=3m ,x 2= -2m .满分冲刺题一:答案:121nx x m ==-,.详解:原方程化为(1)()010x mx n x -+=-=,或0mx n +=,120,1,nm x x m =∴==-/Q .题二:答案:当m <1时,无解;当m>1时,x=()511mm-±-详解:移项得:mx2-x2=2+3,化简得:(m-1)x2=5,∵m≠1,∴x2=51 m-,当m-1<0时,x2=51m-<0,∴原方程无实数解,当m-1>0时,x2=51m->0,∴x=()51511mm m-±=±--,所以m>1时原方程的解是x=()511mm-±-,m<1时原方程无实数解.题三:答案:B详解:∵关于x的一元二次方程x2+2x-a=0有两个相等的实数根,∴△=22+4a=0,解得a= -1.故选B.初中数学试卷鼎尚图文**整理制作。

中考真题一元二次方程专题(详细答案)

中考真题一元二次方程专题(详细答案)

一元二次方程专题练习1、(2013•自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.2、(2013•自贡)已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是.(填上你认为正确结论的所有序号)3、(2013•珠海)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解4、(2013•珠海)某渔船出海捕鱼,20XX年平均每次捕鱼量为10吨,20XX年平均每次捕鱼量为8.1吨,求20XX年-20XX年每年平均每次捕鱼量的年平均下降率.5、(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑1/2m次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.6、(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)7、(2013•新疆)方程x2-5x=0的解是()A.x1=0,x2=-5B.x=5 C. x1=0,x2=5D.x=08、(2013•新疆)如果关于x的一元二次方程x2-4x+k=0有实数根,那么k的取值范围是9、(2013•孝感)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2−x12−x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.10、(2013•厦门)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k 是整数),称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x−27/4=0,x2+6x-27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.11、(2013•黔东南州)若两个不等实数m、n满足条件:m2-2m-1=0,n2-2n-1=0,则m2+n2的值是12、(2013•平凉)现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是13、(2013•攀枝花)设x1,x2是方程2x2-3x-3=0的两个实数根,则的值为14、(2013•南充)关于x的一元二次方程为(m-1)x2-2mx+m+1=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?15、(2013•绵阳)已知整数k<5,若△ABC的边长均满足关于x的方程x2-3x+8=0,则△ABC的周长是16、(2013•六盘水)已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<-2B.k<2C.k>2D.k<2且k≠117、(2013•临沂)对于实数a,b,定义运算“﹡”:a﹡b=例如4﹡2,因为4>2,所以4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2=18、(2013•乐山)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,当△ABC 是等腰三角形时,求k的值.19、(2013•荆门)设x1,x2是方程x2-x-2013=0的两实数根,则20、(2013•江西)若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程21、(2013•呼和浩特)(非课改)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是()A.3或-1B.3C.1-3或122、(2013•衡阳)某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128B.168(1-x)2=128C.168(1-2x)=128D.168(1-x2)=12823、(2013•桂林)已知关于x的一元二次方程x2+2x+a-1=0有两根为x1和x2,且x12-x1x2=0,则a的值是()A.a=1B.a=1或a=-2C.a=2D.a=1或a=224、(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断25、(2013•德宏州)如图,要建造一个直角梯形的花圃.要求AD边靠墙,CD⊥AD,AB:CD=5:4,另外三边的和为20米.设AB的长为5x米.(1)请求出AD的长(用含字母x的式子表示);(2)若该花圃的面积为50米2,且周长不大于30米,求AB的长.26、(2013•成都)一元二次方程x2+x-2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根27、(2013•北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.28、(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.。

自学初中数学资料 一元二次方程及其应用(资料附答案)

自学初中数学资料 一元二次方程及其应用(资料附答案)

自学资料一、一元二次方程【知识探索】1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.【说明】只有满足下列四个条件的方程才是一元二次方程:(1)整式方程,即方程的左右两边都是整式;(2)含有一个未知数;(3)未知数的最高次数是2;(4)二次项的系数不为0.2.公式法解一元二次方程:在求一元二次方程时,只要把方程化为一般式(),如果,把、、的值代入求根公式,就可以求得方程的实数根;如果,那么原方程无实根.这种解一元二次方程的方法称为公式法.3.一元二次方程,当时,它有两个实数根,.这就是一元二次方程的求根公式.4.因式分解法解一元二次方程:通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,从而把解一元二次方程的问题转化为解一元一次方程的问题,像这样解一元二次方程的方法叫做因式分解法.第1页共15页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页 共页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第3页共15页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第4页共15页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第5页共15页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训∴m=−3n±√9n2−4×2(−2n2)2×2=−3n±5n4,∴m1=12n,m2=-2n,∴x+1=12(x-2)或x+1=-2(x-2)∴x1=-4,x2=1.例11.已知关于x的一元二次方程x2-(k+2)x+2k=0(1)求证:无论k取任何实数,方程总有实数根.(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明:△=[-(k+2)]2-4•2k=(k-2)2,∵(k-2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:由x2-(k+2)x+2k=0,得:(x-2)(x-k)=0,此方程的两根为x1=k,x2=2.若x1≠x2,则x1=5,此等腰三角形的三边分别为5,5,2,周长为12.若x1=x2=2,等腰三角形的三边分别为2,2,5,不存在此三角形,所以,这个等腰三角形的周长为12.例12.某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为()A. x(27-3x)=75B. x(3x-27)=75C. x(30-3x)=75D. x(3x-30)=75【解答】解:设矩形宽为xm,则矩形的长为(30-3x)m,根据题意得:x(30-3x)=75.故选:C.【答案】C例13.如图,某小区有一块长为18m,宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人形通道,若设人形道的宽度为xm,则可以列出关于x的方程是()第6页共15页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训A. x2+9x-8=0B. x2-9x+8=0C. x2-9x-8=0D. 2x2-9x+8=0【解答】解:设人行道的宽度为x米,根据题意得,(18-3x)(6-2x)=60,化简整理得,x2-9x+8=0.故选:B.【答案】B例14.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,问他降价多少元时,才能使每天所赚的利润最大?并求出最大利润.【答案】解:设每件衬衫应降价x元,利润为w元,根据题意,商场降价后每天盈利=每件的利润×卖出的件数,则有w=(20+2x)(40-x)=-2x2+60x+800=-2(x-15)2+1250即当x=15时,w有最大值,为1250,答:每件衬衫应降价15元,可获得最大利润,最大利润为1250.【举一反三】1.用配方法将方程x2+6x-7=0化为(x+m)2=n的形式为______.【解答】解:移项,得x2+6x=7,在方程两边加上一次项系数一半的平方得,x2+6x+9=7+9,(x+3)2=16.故答案为:(x+3)2=16.【答案】(x+3)2=162.已知a、b、c是等腰三角形ABC的三条边,其中a=3,如果b,c是关于x的一元二次方程x2-9x+m=0第7页共15页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第8页共15页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第9页共15页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训第10页共15页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训13.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm(已标注在图中),则可以列出关于x的方程是()A. x(26-2x)=80B. x(24-2x)=80C. (x-1)(26-2x)=80D. x(25-2x)=80【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(26-2x)m,根据题意得:x(26-2x)=80.故选:A.【答案】A14.将方程x2-6x-5=0化为(x+m)2=n的形式,则m,n的值分别是()A. 3和5B. -3和5C. -3和14D. 3和14【解答】解:∵x2-6x-5=0,∴x2-6x=5,∴x2-6x+9=5+9,∴(x-3)2=14,∴m=-3,n=14.故选:C.【答案】C1.已知关于x的一元二次方程ax2+bx+c=0(a≠0),则下列判断中不正确的是()A. 若方程有一根为1,则a+b+c=0B. 若a、c异号,则方程必有解C. 若b=0,则方程两根互为相反数D. 若c=0,则方程有一根为0【解答】解:A、把x=1代入关于x的一元二次方程ax2+bx+c=0得到a+b+c=0,故本选项错误;B、若a、c同号,则△=b2-4ac≥0,即方程有解,故本选项正确;C、若b=0时,方程有可能有相等的两根,它们都是0,故本选项错误;D、根据根与系数的关系得到:两根之积=ca=0,则方程有一根为0,故本选项错误;又∵当m=0时,方程解为x=1∴无论m取何值,方程都有一个整数根x=1,即②错误,③正确.【答案】①③6.某工厂一月份产值是5万元,二、三月份的月平均增长率为x.(1)若三月份的产值是11.25万元,则可列方程为______;(2)若前三个月份的总产值是11.25万元,则可列方程为______.【解答】解:(1)由题意得:5(1+x)2=11.25;(2)由题意得:5+5(1+x)+5(1+x)2=11.25,故答案为:5+5(1+x)+5(1+x)2=11.25.【答案】5(1+x)2=11.255+5(1+x)+5(1+x)2=11.257.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),求方程a(x+m+2)2+b=0的解.【答案】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.。

2024年中考数学《一元二次方程及其应用》真题含解析

2024年中考数学《一元二次方程及其应用》真题含解析

专题09 一元二次方程及其应用(33题)一、单选题1.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x −=− B .()220x −= C .()221x −= D .()222x −=【答案】B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x −=−<,故该方程无实数解,故本选项不符合题意; B 、()220x −=,解得:122x x ==,故本选项符合题意; C 、()221x −=,21x −=±,解得123,1x x ==,故本选项不符合题意;D 、()222x −=,2x −,解得1222x x 故选:B .2.(2024·黑龙江绥化·中考真题)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A .2650x x ++= B .27100x x −+= C .2520x x −+= D .26100x x −−=【答案】B【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵小冬写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .3.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1−C 1+D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键. 由题意得方程221a a +=,利用公式法求解即可. 【详解】解:由题意得:221a a +=,解得:1a =1a = 故选:C .4.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x −++=有两个实数根,则m 的取值范围是( ) A .4m ≤ B .4m ≥ C .4m ≥−且2m ≠ D .4m ≤且2m ≠【答案】D【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=−的意义得到20m −≠且0∆≥,即244(2)20m −×−×≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x −++=有实数根, 20m ∴−≠且0∆≥,即244(2)20m −×−×≥, 解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠. 故选:D .5.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( ) A .20%B .22%C .25%D .28%【分析】本题考查一元二次方程的实际应用,设每次降价的百分率为x ,根据原价每盒48元,经过两次降价后每盒27元,列出方程进行求解即可.【详解】解:设每次降价的百分率为x ,由题意,得:()248127x −=, 解得:121725%,44x x ===(舍去); 故选C .6.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++−=的一个根是0x =,则a 的值为( ) A .2 B .2− C .2或2−D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++−=可得240a −=,即可求答案.【详解】解:()22240a x x a +++−=是关于x 的一元二次方程, 20a ∴+≠,即2a ≠−①由一个根0x =,代入()22240a x x a +++−=, 可得240a −=,解之得2a =±;② 由①②得2a =; 故选A7.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( ) A .()67012780x ×+=B .()26701780x ×+= C .()26701780x ×+=D .()6701780x ×+=【答案】B【分析】本题主要考查一元二次方程的应用,正确理解题意、列出方程是解题的关键. 设该村水稻亩产量年平均增长率为x ,根据题意列出方程即可.【详解】解:根据题意得:()26701780x ×+=.8.(2024·北京·中考真题)若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( ) A .16− B .4− C .4 D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =−=−−××=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c −+=有两个相等的实数根,1,4,a b c c ==−=, ∴()22Δ44410b ac c =−=−−××=, ∴416c =, 解得4c =. 故选C .9.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( ) A .260x x −= B .290x -= C .2660x x −+= D .2690x x −+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=−>时,方程有两个不相等实数根;当240b ac ∆=−=时,方程的两个相等的实数根;当24<0b ac ∆=−时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=−−××=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=−××−=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=−−××=> ,该方程有两个不相等实数根,故C 选项不符合题意; D .()2Δ64190=−−××= ,该方程有两个相等实数根,故D 选项不符合题意; 故选:D .10.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠−B .0m ≥C .0m ≤且1m ≠−D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx ca ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根, ∴()()22410m ∆=−−+>, 解得:0m <,10m +≠ , 1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−. 故选:A .11.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x += C .()0.64120.69x +=D .()20.64120.69x +=【答案】B【分析】本题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件.设年平均增长率为x ,根据2023年底森林覆盖率=2021年底森林覆盖率()21x ×+,据此即可列方程求解.【详解】解:根据题意,得()264%169%x += 即()20.6410.69x +=, 故选:B .12.(2024·贵州·中考真题)一元二次方程220x x −=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =−D .12x =−,21x =−【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可. 【详解】解∶ 220x x −=,∴()20x x −=,∴0x =或20x −=, ∴12x =,20x =, 故选∶B .13.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23−B .23C .6−D .6【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=≠根与系数的关系:若方程的两实数根为12,x x ,则1212,b x x x x a+=−⋅ca =.根据一元二次方程20(0)ax bx c a ++=≠根与系数的关系得到121222,1x x x x p +=−=−⋅=,然后通分,11x +1221212x x x x x p+−==,从而得到关于p 的方程,解方程即可. 【详解】解:121222,1x x x x p +=−=−⋅= , 121212112x x x x x x p+−∴+==, 而12113x x +=, 23p−∴=, 23p ∴=−,故选:A .14.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x −=B .()280160x −=C .()80160x −=D .()801260x −=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年×(1−平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x −=, 故选:B .二、填空题15.(2024·山东·中考真题)若关于x 的方程2420x x m −+=有两个相等的实数根,则m 的值为 . 【答案】14/0.25【分析】本题考查了根的判别式,牢记“当Δ0=时,方程有两个相等的实数根”是解题的关键. 根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=−=−××=,解之即可得出结论. 【详解】解:∵关于x 的方程2420x x m −+=有两个相等的实数根, ∴2242444160b ac m m ∆=−=−××=−=, 解得:14m =. 故答案为:14.16.(2024·广东深圳·中考真题)已知一元二次方程230x x m −+=的一个根为1,则m = . 【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m −+=的一个根为1,1x ∴=满足一元二次方程230x x m −+=, 130m ∴−+=,解得,2m =. 故答案为:2.17.(2024·江苏连云港·中考真题)关于x 的一元二次方程20x x c −+=有两个相等的实数根,则c 的值为 . 【答案】14/0.25【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得2Δ14c 0=−=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c −+=有两个相等的实数根,2140c ∆=−=,14c ∴=,故答案为:14.18.(2024·四川凉山·中考真题)已知2220330y x x y x −=−+−=,,则x 的值为 . 【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 将2y x =代入22330x y x −+−=,转化为解一元二次方程,20y x =≥,要进行舍解. 【详解】解:∵20y x −=, ∴2y x =,将2y x =代入22330x y x −+−=得,2330x x x −+−=, 即:2230x x −−=,()()310x x −+=, ∴3x =或=1x −, ∵20y x =≥, ∴=1x −舍, ∴3x =, 故答案为:3.19.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k −+=有两个相等的实数根,则k 的值为 . 【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=−>;有两个相等的实数根,则240b ac ∆=−=;没有实数根,则24<0b ac ∆=−.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=−=−−××=, 解得:2k = 故答案为:220.(2024·河南·中考真题)若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx ca ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可.【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=,∴12c =, 故答案为:12.21.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 . 【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解. 【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =−(不符合题意,舍去); 故答案为:10%.22.(2024·四川南充·中考真题)已知m 是方程2410x x −=+的一个根,则(5)(1)m m +−的值为 . 【答案】4−【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x −=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解. 【详解】解:∵m 是方程2410x x −=+的一个根, ∴241m m +=(5)(1)m m +−255m m m −+− 245m m =+−15=−4=−,故答案为:4−.23.(2024·广东广州·中考真题)定义新运算:()()200a b a a b a b a −≤ ⊗= −+> 例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为 . 【答案】12−或74【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a −≤ ⊗=−+>, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−;②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74,故答案为:12−或74.24.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为 . 【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可. 【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根, ∴2520n n −+=,5bm n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+ 2m n =++ 52=+7=故答案为:725.(2024·山东烟台·中考真题)若一元二次方程22410x x −−=的两根为m ,n ,则2234m m n −+的值为 . 【答案】6【分析】本题考查了根与系数的关系及利用完全平方公式求解,若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,bc x x x x a a+=−=,熟练掌握一元二次方程根与系数的关系是解题关键.根据根与系数的关系得122m n mn +==−,,2241m m −=,再把2234m m n −+变形为22224m m m n −++,然后利用整体代入的方法计算,再利用完全平方公式求解即可. 【详解】解:∵一元二次方程22410x x −−=的两个根为m ,n ,∴122m n mn +==−,,2241m m −=∴2234m m n −+22224m m m n −++= 221m n =++2()21m n mn =+−+2122()12=−×−+6=故答案为:6.26.(2024·四川眉山·中考真题)已知方程220x x +−=的两根分别为1x ,2x ,则1211+x x 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程的根与系数的关系,若一元二次方程()200ax bx ca ++=≠的两根分别为1x ,2x ,则12bx x a +=−,12c x x a=,掌握一元二次方程根与系数的关系是解题的关键.先根据根与系数的关系得到121x x +=−,122x x =−,然后把1211+x x 化简为1212x x x x +然后整体代入即可. 【详解】解: 方程220x x +−=的两根分别为1x ,2x , 121x x ∴+=−,122x x =−,121212111122x x x x x x +−∴+===−. 故答案为:12.27.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x −−=的两个实数根,则()212123x x x x −+的值是 . 【答案】14【分析】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形求值.对于一元二次方程,若该方程的两个实数根为1x ,2x ,则12b x x a +=−,12cx x a=.先根据根与系数的关系得到123x x +=,125x x =−,再根据完全平方公式的变形()22212112229x x x x x x +=++=,求出()21229x x −=,由此即可得到答案. 【详解】解: 1x ,2x 是一元二次方程2350x x −−=的两个实数根,123x x ∴+=,125x x =−,()22212112229x x x x x x ∴+=++=,∴()2221211221229492029x x x x x x x x −=−+=−=+=, ∴()()212123293514x x x x −+=+×−=.故答案为:14.三、解答题28.(2024·上海·中考真题)解方程组:2234026x xy y x y −−= += ①②.【答案】4x =,1y =或者6x =−,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y −−= += ①②,由②得:62x y =−代入①中得:()()226236240y y y y −−−−=,()2223624418640y y y yy −+−+−=,2642360y y −+=,()26760y y −+=,()()6610y y −−=解得:1y =或6y =, 当1y =时,6214x =−×=, 当6y =时,6266x =−×=−, ∴方程组的解为4,1x y ==或者6,6x y =−=. 29.(2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n 行有n 个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前n 行的点数之和为______(2)体验:三角点阵中前n 行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第n 排2n 盆的规律摆放而成,则一共能摆放多少排? 【答案】(1)36;120;()112n n +(2)不能(3)一共能摆放20排.【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. (1)根据图形,总结规律,列式计算即可求解;(2)根据前n 行的点数和是500,即可得出关于n 的一元二次方程,解之即可判断;(2)先得到前n 行的点数和是()1n n +,再根据题意得出关于n 的一元二次方程,解之即可得出n 的值. 【详解】(1)解:三角点阵中前8行的点数之和为()112345678188362+++++++=+×=, 前15行的点数之和为()11231415115151202+++++=+×= , 那么,前n 行的点数之和为()()111231122nn nn n ++++=+×=+ ; 故答案为:36;120;()112n n +;(2)解:不能, 理由如下:由题意得()115002n n +=, 得210000n n +−=,()21410004001∆=−×−=,∴此方程无正整数解,所以三角点阵中前n 行的点数和不能是500; 故答案为:不能;(3)解:同理,前n 行的点数之和为()()124622112n n n n n ++++=×+×=+ , 由题意得()1420n n +=, 得24200n n +−=,即()()21200n n +−=, 解得20n =或21n =−(舍去), ∴一共能摆放20排.30.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________; (2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值. 【答案】(1)p ,1; (2)1211p x x +=,111x p x +=; (3)3p =.【分析】本题考查了一元二次方程根和系数的关系,根的判别式,掌握一元二次方程根和系数的关系是解题的关键.(1)利用根和系数的关系即可求解;(2)1211+x x 变形为()21212122x x x x x x +−,再把根和系数的关系代入计算即可求解,由一元二次方程根的定义可得21110x px −+=,即得1110x p x −+=,进而可得111x p x +=; (3)把方程变形为()21212221x x x x p +−=+,再把根和系数的关系代入得2221p p −=+,可得1p =−或3p =,再根据根的判别式进行判断即可求解.【详解】(1)解:由根与系数的关系得,12x x p +=,121=x x , 故答案为:p ,1;(2)解:∵12x x p +=,121=x x , ∴12121211x x p x x x x ++==, ∵关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x , ∴21110x px −+=, ∴1110x p x −+=, ∴111x p x +=; (3)解:由根与系数的关系得,12x x p +=,121=x x ,∵221221x x p +=+,∴()21212221x x x x p +−=+, ∴2221P p −=+, ∴2230P p −−=, 解得1p =−或3p =,∴一元二次方程210x px −+=为210x x ++=或2310x x −+=, 当1p =−时,2141130∆=−××=−<,不合题意,舍去; 当3p =时,()2Δ341150=−−××=>,符合题意; ∴3p =.31.(2024·广东广州·中考真题)关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+. 【答案】(1)3m > (2)2−【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【详解】(1)解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−××−>, 解得:3m >; (2)解:∵3m >, ∴2113|3|21m m m m m −−−÷⋅−+ ()()1123311m m m m m m −+−−⋅⋅−−+ 2=−;32.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根. (1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值. 【答案】(1)1k > (2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k −+−+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.【详解】(1)解:∵1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根, ∴0∆>,∴()()2222Δ24114444440k k k k k k k =−−××−+=−+−=−>,解得:1k >;(2)解:∵5k <,由(1)得1k >, ∴15k <<,∴整数k 的值有2,3,4,当2k =时,方程为2430x x −+=,解得:11x =,23x =(都是整数,此情况符合题意); 当3k =时,方程为2670x x −+=,解得:3x =±(不是整数,此情况不符合题意); 当4x =时,方程为28130x x −+=,解得:4x =(不是整数,此情况不符合题意); 综上所述,k 的值为2.33.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m −++−=. (1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +−=,求m 的值. 【答案】(1)证明见解析; (2)11m =或22m =−.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=−x x m ,进行变形后代入即可求解. 【详解】(1)证明:()()22Δ24118m m m =−+−××−=+ , ∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m −++−=的两个实数根, ∴122x x m +=+,121⋅=−x x m ,∴()()()22221212121232319x x x x x x x x m m +−=+−=+−−=,解得:11m =或22m =−.。

(完整版)初中数学用因式分解法解一元二次方程及答案

(完整版)初中数学用因式分解法解一元二次方程及答案

初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。

中考数学《一元二次方程》解答题及答案 (127)

中考数学《一元二次方程》解答题及答案 (127)

中考数学《一元二次方程》解答题
1.某中学课外兴趣活动小组准备围建一个矩形苗圃,其中边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃垂直于墙的一边长为x米.(1)若苗圃的面积为72平方米,求x的值;
(2)这个苗圃的面积能否是120平方米?请说明理由.
【解答】解:(1)根据题意得x(30﹣2x)=72,
化简得x2﹣15x+36=0,
即(x﹣12)(x﹣3)=0
∴x﹣12=0或x﹣3=0
∴x1=12,x2=3
当x=12时,平行于墙的一边为30﹣2x=6<18,符合题意;
当x=3时,平行于墙的一边为30﹣2x=24>18,不符合题意,舍去.
故x的值为12;
(2)根据题意得x(30﹣2x)=120,
化简得x2﹣15x+60=0
∵△=(﹣15)2﹣4×1×60=﹣15<0,
∴方程无实数根
故这个苗圃的面积不能是120平方米.
1/ 1。

【精品】初中数学 一元二次方程应用题(含答案)整理版

【精品】初中数学  一元二次方程应用题(含答案)整理版

一元二次方程应用题1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为85.用一个白铁皮做罐头盒,每张铁皮可制作25个盒身,或制作盒底40个,一个盒身和两个盒底配成一套罐头盒。

初二数学一元二次方程试题答案及解析

初二数学一元二次方程试题答案及解析

初二数学一元二次方程试题答案及解析1.将方程x2+4x+2=0配方后,原方程变形为()A.(x+4)2=2B.(x+2)2=2C.(x+4)2=-3D.(x+2)2=-5【答案】A【解析】∵x2+4x+2=0,∴x2+4x=﹣2,∴x2+4x+4=﹣2+4,∴(x+2)2=2.故选A.【考点】解一元二次方程2.解方程:【答案】∴x1=2+,x2=2﹣【解析】用配方法解这个方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.试题解析:∵2x2﹣8x+3=0∴2x2﹣8x=﹣3∴x2﹣4x+4=﹣+4∴(x﹣2)2=,∴x=2±,∴x1=2+,x2=2﹣【考点】解一元二次方程3.已知:关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)如果该方程有两个不同的整数根,且m为正整数,求m的值;(3)在(2)的条件下,令y=mx2+(3m+1)x+3,如果当x1=a与x2=a+n(n≠0)时有y1=y2,求代数式4a2+12an+5n2+16n+8的值.【答案】(1)证明见解析;(2)m=1;(3)4a2+12an+5n2+16n+8=24.【解析】(1)分类讨论:当m=0时,原方程化为x+3=0,解得x=﹣3;当m≠0时,计算判别式得△=(3m﹣1)2,由于(3m﹣1)2≥0,则不论m为任何实数时总有两个实数根,所以不论m 为任何实数时,方程 mx2+(3m+1)x+3=0总有实数根;(2)先解方程mx2+(3m+1)x+3=0得到x1=﹣3,x2=,由于方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,易得m=1;(3)当m=1时得到y=x2+4x+3,当x1=a时,y1=a2+4a+3,当x2=a+n时,y2=(a+n)2+4(a+n)+3,则a2+4a+3=(a+n)2+4(a+n)+3,变形得n(2a+n+4)=0,由于n≠0,所以2a=﹣n﹣4,然后变形4a2+12an+5n2+16n+8得到(2a)2+2a•6n+5n2+16n+8,再利用整体代入的方法计算.试题解析:(1)当m=0时,原方程化为x+3=0,此时方程有实数根 x=﹣3;当m≠0时,∵△=(3m+1)2﹣12m=9m2﹣6m+1=(3m﹣1)2.∵(3m﹣1)2≥0,∴不论m为任何实数时总有两个实数根,综上所述,不论m为任何实数时,方程 mx2+(3m+1)x+3=0总有实数根;(2)当m≠0时,解方程mx2+(3m+1)x+3=0得 x1=﹣3,x2=,∵方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,∴m=1;(3)∵m=1,y=mx2+(3m+1)x+3,∴y=x2+4x+3,又∵当x1=a与x2=a+n(n≠0)时有y1=y2,∴当x1=a时,y1=a2+4a+3,当x2=a+n时,y2=(a+n)2+4(a+n)+3,∴a2+4a+3=(a+n)2+4(a+n)+3,化简得 2an+n2+4n=0,即 n(2a+n+4)=0,又∵n≠0,∴2a=﹣n﹣4,∴4a2+12an+5n2+16n+8=(2a)2+2a•6n+5n2+16n+8=(n+4)2+6n(﹣n﹣4)+5n2+16n+8=24.【考点】1、根的判别式;2、根与系数的关系;3、整体思想4.解一元二次方程:2x2+4x+1=0.【答案】【解析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.试题解析:这里a=2,b=4,c=1,∵△=16﹣8=8,∴.【考点】解一元二次方程-公式法.5.方程x2-5x=0的解是.【答案】x1=0,x2=5【解析】x(x-5)=0 x=0或x-5=0所以x1=0,x2=5【考点】解一元二次方程6.如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是.【答案】:c>9【解析】∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,∴△=(﹣6)2﹣4c<0,即36﹣4c<0,解得:c>9.故答案为:c>9.【考点】根的判别式7.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1B.﹣1C.0D.无法确定【解析】根据题意得:(m-1)+1+1=0,解得:m=-1.故选B.【考点】一元二次方程的解;一元二次方程的定义.8.已知是关于的一元二次方程的根,则常数的值为()A.0或1B.1C.-1D.1或-1【答案】C.【解析】把x=0代入到方程得:k2-1=0解得:k=±1又1-k≠0解得:k≠1∴k=-1故选C.【考点】1.一元二次方程根的定义;2.一元二次方程成立的条件.9.若方程是关于的一元二次方程,则=__________【答案】﹣2.【解析】由一元二次方程的特点得,解得m=﹣2.故答案是﹣2.【考点】一元二次方程的定义.10.【答案】.【解析】先乘开,再整理,然后用因式分解法即可.试题解析:.【考点】解一元二次方程—因式分解法.11.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?【答案】她购买了20件这种服装.【解析】先判断购买件数超过10件,再列方程即可.试题解析:设购买了x件这种服装,根据题意,得[80-2(x-10)]x=1200,解得x1=20,x2=30.当x=30时,80-2(30-10)=40<50,不合题意,舍去.答:她购买了20件这种服装.【考点】一元二次方程.12.把方程化成的形式,则m、n的值是()A.2, 7B.-2,11C.-2,7D.2,11【解析】,∴.故选D.【考点】配方法.13.选用适当的方法解下列方程:(1)(2)【答案】(1);(2).【解析】(1)应用因式分解法(或开平方法)解方程即可.(2)应用公式法(或因式分解法)求解即可.(1)由左边因式分解得,即,∴或.∴原方程的解为.(2),∵,∴.∴原方程的解为.【考点】解一元二次方程.14.根据下面表格中的取值,方程有一个根的近似值(精确到0.1)是()A.1.5B.1.2C.1.3D.1.4【答案】C【解析】由表格可得:当x的值是1.3时,的值与0最接近.因而方程的解是1.3.故选C.【考点】方程的近似解.15.如图,在△ABC中,∠B=90°,AB=BC=10cm,点P从A出发沿射线AB 以1cm/s的速度作直线运动,点Q从C出发沿边BC的延长线以2cm/s的速度作直线运动.如果P,Q分别从A,B同时出发,经过几秒,△PCQ的面积为24cm2 ?【答案】4、6或12.【解析】分两种情况:P在线段AB上;P在线段AB的延长线上;进行讨论即可求得P运动的时间.设当点P运动x秒时,△PCQ的面积为24cm2,①P在线段AB上,此时CQ=2x,PB=10-x,S△PCQ=•2x•(10-x)=24,化简得 x2-10 x+24=0,解得x=6或4;②P在线段AB的延长线上,此时CQ=2x,PB=x-10S△PCQ=•2x•(x-10)=24 ,化简得 x2-10 x-24=0,解得x=12或-2,负根不符合题意,舍去.所以当点P运动4秒、6秒或12秒时△PCQ的面积为24cm2.【考点】1.双动点问题;2.一元二次方程的应用;3.分类思想的应用.16.关于x的一元二次方程的根的情况是( )A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.以上答案都不对【答案】A【解析】一元二次方程根的情况与判别式△的关系:(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根.解:∵△∴方程没有实数根故选A.【考点】一元二次方程根的判别式点评:本题属于基础应用题,只需学生熟练掌握一元二次方程根的判别式,即可完成.17.已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为()A.b=﹣1,c=2B.b=1,c=﹣2C.b=1,c=2D.b=﹣1,c=﹣2【答案】D【解析】一元二次方程根与系数的关系:,.由题意得,,故选D.【考点】一元二次方程根与系数的关系点评:本题属于基础应用题,只需学生熟练掌握一元二次方程根与系数的关系,即可完成.18.某商场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

初三数学一元二次方程练习题及答案

初三数学一元二次方程练习题及答案

初三数学一元二次方程练习题及答案一元二次方程是初中数学中重要的内容之一,它包括一个未知数的二次项、一次项和常数项,形如ax²+bx+c=0。

在初三数学中,学生需要熟练掌握一元二次方程的解法,能够灵活运用相关的知识进行问题的求解。

下面将给出一些初三数学一元二次方程的练习题及答案,供同学们参考练习。

练习题1:解下列方程:1. x² + 5x + 6 = 02. 2x² - 4x - 3 = 03. x² + 8x + 15 = 0解答:1. 对于方程x² + 5x + 6 = 0,我们可以通过分解因式的方法进行求解。

将方程转化为(x + 2)(x + 3) = 0,所以x + 2 = 0或x + 3 = 0,解得x = -2或x = -3。

2. 对于方程2x² - 4x - 3 = 0,我们可以使用求根公式进行求解。

由求根公式x =(-b±√(b^2-4ac))/2a,带入a=2,b=-4,c=-3,解得x=3/2或x=-1。

3. 对于方程x² + 8x + 15 = 0,我们可以再次使用求根公式进行求解。

带入a=1,b=8,c=15,解得x=-3或x=-5。

练习题2:解下列方程:1. 3x² - 2x + 1 = 02. 4x² + 12x - 9 = 03. 5x² + 7x + 2 = 0解答:1. 对于方程3x² - 2x + 1 = 0,我们可以使用求根公式进行求解。

带入a=3,b=-2,c=1,解得x=1或x=1/3。

2. 对于方程4x² + 12x - 9 = 0,我们可以通过分解因式的方法进行求解。

将方程转化为(2x - 1)(2x + 9) = 0,所以2x - 1 = 0或2x + 9 = 0,解得x=1/2或x=-9/2。

3. 对于方程5x² + 7x + 2 = 0,我们同样可以通过分解因式的方法进行求解。

2020年九年级中考数学专题复习:配方法解一元二次方程(含解析)

2020年九年级中考数学专题复习:配方法解一元二次方程(含解析)

九年级中考数学专题训练:配方法解一元二次方程(含解析)班级:姓名:一、单选题1.将方程化成的形式是( )A. B. C. D.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=13.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定4.用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A. (x-2)2=1B. (x-2)2=-1C. (x-2)2=3D. (x+2)2=35.用配方法解方程:x2-4x+2=0,下列配方正确的是( )A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=66.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A. (x+1)2=7B. (x﹣1)2=7C. (x+2)2=10D.(x﹣2)2=107.用配方法解方程x2+4x﹣1=0,下列配方结果正确的是()A. (x+2)2=5B. (x+2)2=1C. (x﹣2)2=1D.(x﹣2)2=58.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A. (x+3)2=14B. (x﹣3)2=14C. (x+3)2=4D.(x﹣3)2=49.用配方法解方程x2+8x+7=0,则配方正确的是( )A. B. C. D.10.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是( )A. (x﹣2)2=3B. (x+2)2=3C. (x﹣2)2=1D.(x﹣2)2=﹣1二、填空题11.方程x2+4x﹣1=0的解是:________.12.把方程变形为的形式后,h=________,k=________.13.用配方法解方程x2+6x+3=0,方程可变为(x+3)2=________.14.解方程x2﹣4x+4=0,得________.15.将方程x2+2x﹣7=0配方为(x+m)2=n的形式为________ .16.用配方法解方程x2﹣4x﹣5=0,则x2﹣4x+________=5+________,所以x1=________,x2=________.17.一元二次方程x2﹣6x+1=0的根为________18.把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=________.三、计算题19.解方程:①4x2-4x+1=0 ②x2+2=4x20.x2﹣4x+1=0(用配方法)21.解方程:x(x﹣4)=1.22.解方程:x2+4x﹣4=0.23.配方法解:x2+3x﹣4=0.24.解方程:.四、解答题25.解方程:x2+4x=5.26.请选择适当的方法解下列一元二次方程:(1)x2﹣4=0(2)x(x﹣6)=5.答案解析部分一、单选题1.将方程化成的形式是( )A. B. C. D.【答案】D【考点】解一元二次方程-配方法【解析】【分析】先移项,然后方程两边同加一次项系数一半的平方,最后根据完全平方公式因式分解即可.【解答】故选D.【点评】配方法是初中数学学习中的重要方法,尤其在二次函数的应用问题中极为重要,因而是中考的热点,一般难度不大,需熟练掌握.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=1【答案】A【考点】解一元二次方程-配方法【解析】【解答】x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22 ,(x+2)2=9,故答案为:A.【分析】首先将常数移到等号的右边,然后,方程两边同时加上一次项系数一半的平方,最后,利用完全平方公式进行变形即可.3.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定【答案】B【考点】配方法解一元二次方程【解析】【解答】解:- +6x-10=-(-6x)-10=-(-6x+9-9)-10=- -1,∵-(≤0,∴- -1<0,即多项式- +6x-10的值是一个负数.故答案为:B【分析】根据配方法的特征,将代数式的二次项系数化为1,再配一个适当的常数项即加一次项系数一半的平方,结合平方的非负性即可求解。

初中数学解题模型之一元二次方程的应用(单循环问题)(含答案)

初中数学解题模型之一元二次方程的应用(单循环问题)(含答案)

初中数学解题模型之一元二次方程的应用(单循环问题)一.选择题(共9小题)1.(2021秋•包头期末)要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,赛程共7天,每天3场比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=212.(2021秋•南丹县期末)要组织一次篮球联赛,赛制为单循环形式,每两队之间都赛一场,计划安排21场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=213.(2021•南漳县模拟)参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有()A.9家B.10家C.10家或9家D.19家4.(2021秋•通辽期末)为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=155.(2021秋•大同期中)某兴趣学习小组组织一次围棋比赛,参赛选手每两人之间都要比赛一场,按计划需要进行28场比赛,则参赛的人数为()A.7人B.8人C.9人D.10人6.(2021秋•卢龙县期中)教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A.B.C.x(x﹣1)=45D.x(x+1)=457.(2021秋•正定县期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排55场比赛,则参加比赛的球队的个数是()A.8个B.9个C.10个D.11个8.(2021秋•惠安县期末)现有x支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=459.(2021秋•津南区期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请多少个队参加比赛.设应邀请x个队参加比赛,则x的值为()A.7B.8C.9D.10二.填空题(共16小题)10.(2021秋•朝阳县期末)为增强学生身体素质,某校开展篮球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排36场比赛,应安排多少个球队参赛?设安排x个球队参赛,根据题意,可列方程为.11.(2021秋•秀英区校级期中)若干支球队参加一次足球联赛,每两队之间都只打一场比赛,共有比赛55场,总共有支球队参加比赛.12.(2021秋•岷县期中)组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛,则这次参加比赛的球队个数为.13.(2021秋•平阴县期中)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为.14.(2020秋•东莞市月考)石龙三中组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则这次参加比赛的球队个数为.15.(2021春•徐汇区校级月考)八年级的一个兴趣小组新成员见面时相互握手表示友好,共握了15次手,则该小组共有成员人.16.(2021秋•蓬江区校级月考)学校组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则有支队伍参加该项比赛.17.(2021•柳南区校级模拟)要组织一次球赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,若参赛球队的个数为x个,则可列方程为.18.(2021秋•镇江月考)某校初三年级组织一次班级篮球赛,赛制为单循环(每两班之间都赛一场),需安排45场比赛,则共有个班级参加比赛.19.(2021秋•龙华区期中)某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其他的球队进行一场比赛,已知共举行了28场比赛,那么参加比赛的球队数共有个.20.(2021秋•东莞市月考)九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x 个班,根据题意列出的方程是.21.(2021秋•临川区校级月考)要组织一次篮球联赛,赛制为单循环比赛(每两队之间都赛一场),计划安排15场比赛,应邀请多少个队参加比赛?设应邀参加比赛的球队有x 个,则可以列方程为.22.(2020秋•禹州市期中)某市中学生篮球联赛实行单循环制,参加的每两支球队之间都要进行一场比赛,共要比赛45场,设参加比赛的球队有x支,根据题意,可列方程为.23.(2020秋•义马市期中)在某次聚会上,每两人都握了一次手,所有人共握手10次,那么共有多少人参加了这次聚会?设有x人参加这次聚会,则根据题意列出的方程是.24.(2021春•嘉兴期末)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有个班级.25.(2021秋•中山市期中)在某次聚会上每两人都握了一次手,所有的共握手28次,设有x人参加这次聚会,则列出方程正确的是.初中数学解题模型之一元二次方程的应用(单循环问题)参考答案与试题解析一.选择题(共9小题)1.(2021秋•包头期末)要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,赛程共7天,每天3场比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=21【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛队伍数×(参赛队伍数﹣1)÷2,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=3×7,即x(x﹣1)=3×7.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2.(2021秋•南丹县期末)要组织一次篮球联赛,赛制为单循环形式,每两队之间都赛一场,计划安排21场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21B.x(x﹣1)=21C.x(x+1)=21D.x(x﹣1)=21【考点】由实际问题抽象出一元二次方程.【专题】一次方程(组)及应用;应用意识.【分析】根据题意可知,这是一道典型的单循环比赛,然后根据计划安排21场比赛,即可得到x(x﹣1)=21,从而可以解答本题.【解答】解:由题意可得,x(x﹣1)=21,故选:B.【点评】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题目中的数量关系,列出相应的方程.3.(2021•南漳县模拟)参加一次绿色有机农产品交易会的每两家公司都签订了一份合同,所有公司共签订了45份合同,参加这次交易会的公司共有()A.9家B.10家C.10家或9家D.19家【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加这次交易会的公司共有x家,利用签订合同的总数=参加这次交易会的公司数×(参加这次交易会的公司数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加这次交易会的公司共有x家,依题意得:x(x﹣1)=45,整理得:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不合题意,舍去),∴参加这次交易会的公司共有10家.故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.(2021秋•通辽期末)为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=15【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用安排比赛的场次数=邀请参赛的队伍数×(邀请参赛的队伍数﹣1)÷2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=15.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.(2021秋•大同期中)某兴趣学习小组组织一次围棋比赛,参赛选手每两人之间都要比赛一场,按计划需要进行28场比赛,则参赛的人数为()A.7人B.8人C.9人D.10人【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力.【分析】设参赛的人数为x,由参赛的每两人之间都要比赛一场,即可得出关于x的一元二次方程,此题得解.【解答】解:设比赛组织者应邀请x支参赛队参与比赛,依题意,得:x(x﹣1)=28,解得:x1=8,x2=﹣7(不合题意,舍去).故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2021秋•卢龙县期中)教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A.B.C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.【点评】此题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.7.(2021秋•正定县期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排55场比赛,则参加比赛的球队的个数是()A.8个B.9个C.10个D.11个【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加比赛的球队有x个,则可表示出所比赛的场数,由条件可列出方程,可求得球队的个数.【解答】解:设参加比赛的球队有x个,根据题意可得x(x﹣1)=55,解得x1=11,x2=﹣10(舍去),即参加比赛的球队有11个,故选:D.【点评】本题主要考查一元二次方程的应用,根据题意,找到等量关系,列出方程是解题的关键.8.(2021秋•惠安县期末)现有x支球队参加篮球比赛,比赛采用单循环制即每个球队必须和其余球队比赛一场,共比赛了45场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1).∴共比赛了45场,∴x(x﹣1)=45,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(2021秋•津南区期中)要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请多少个队参加比赛.设应邀请x个队参加比赛,则x的值为()A.7B.8C.9D.10【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】根据赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛列出方程即可.【解答】解:设应邀请x个队参加比赛,则列方程为x(x﹣1)=21,解这个方程,得x1=7,x2=﹣6(舍去).即x的值为7.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共16小题)10.(2021秋•朝阳县期末)为增强学生身体素质,某校开展篮球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排36场比赛,应安排多少个球队参赛?设安排x个球队参赛,根据题意,可列方程为x(x﹣1)=36.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛队伍数×(参赛队伍数﹣1)÷2,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意得:x(x﹣1)=36.故答案为:x(x﹣1)=36.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.(2021秋•秀英区校级期中)若干支球队参加一次足球联赛,每两队之间都只打一场比赛,共有比赛55场,总共有11支球队参加比赛.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设共有x支球队参加比赛,利用比赛的总场次数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设共有x支球队参加比赛,依题意得:x(x﹣1)=55,整理得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).故答案为:11.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12.(2021秋•岷县期中)组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了15场比赛,则这次参加比赛的球队个数为6.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用进行比赛的总场次数=参赛球队的个数×(参赛球队的个数﹣1),即可得出关于x的一元二次方程,解之取其正值即可得出这次参加比赛的球队个数.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去).故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.(2021秋•平阴县期中)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为6.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设八年级有x个班,利用比赛的总场次数=八年级的班级数×(八年级的班级数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出八年级共有6个班.【解答】解:设八年级有x个班,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去).故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(2020秋•东莞市月考)石龙三中组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则这次参加比赛的球队个数为9.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用比赛的总场数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出这次共有9支队伍参赛.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).故答案为:9.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.(2021春•徐汇区校级月考)八年级的一个兴趣小组新成员见面时相互握手表示友好,共握了15次手,则该小组共有成员6人.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设该小组共有成员x人,利用握手的总次数=该小组成员人数×(该小组成员人数﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该小组共有成员x人,依题意得:x(x﹣1)=15,整理得:x2﹣x﹣30=0,解得:x1=6,x2=﹣5(不合题意,舍去),∴该小组共有成员6人.故答案为:6.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(2021秋•蓬江区校级月考)学校组织学生三人篮球比赛,赛制为单循环形式(每两队之间只赛一场),共进行了36场比赛,则有9支队伍参加该项比赛.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设这次参加比赛的球队个数为x,利用比赛的总场数=参赛球队数量×(参赛球队数量﹣1)÷2,即可得出关于x的一元二次方程,解之取其正值即可得出这次共有9支队伍参赛.【解答】解:设这次参加比赛的球队个数为x,依题意得:x(x﹣1)=36,整理得:x2﹣x﹣72=0,解得:x1=9,x2=﹣8(不合题意,舍去).答:有9支队伍参加该项比赛,故答案为:9.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.(2021•柳南区校级模拟)要组织一次球赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,若参赛球队的个数为x个,则可列方程为x(x﹣1)÷2=21.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=,即可列方程.【解答】解:若参赛球队的个数为x个,则每个队都要赛(x﹣1)场,但两队之间只有一场比赛,根据题意可得x(x﹣1)÷2=21,故答案为:x(x﹣1)÷2=21.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.18.(2021秋•镇江月考)某校初三年级组织一次班级篮球赛,赛制为单循环(每两班之间都赛一场),需安排45场比赛,则共有10个班级参加比赛.【考点】一元二次方程的应用.【分析】设共有x个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【解答】解:设共有x个班级参加比赛,根据题意得:=45,整理得:x2﹣x﹣90=0,即(x﹣10)(x+9)=0,解得:x=10或x=﹣9(舍去).则共有10个班级球队参加比赛.故答案为10.【点评】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排45场比赛”.19.(2021秋•龙华区期中)某年级举行篮球比赛,赛制为单循环赛,即每一个球队都和其他的球队进行一场比赛,已知共举行了28场比赛,那么参加比赛的球队数共有8个.【考点】一元二次方程的应用.【专题】一元二次方程及应用;应用意识.【分析】设参加比赛的球队数共有x个,由比赛共举行了28场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加比赛的球队数共有x个,依题意,得:x(x﹣1)=28,解得:x1=8,x2=﹣7(不合题意,舍去).故答案是:8.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.(2021秋•东莞市月考)九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行一场比赛),据统计,比赛共进行了28场,求九年级共有多少个班.若设九年级共有x个班,根据题意列出的方程是x(x﹣1)=28.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】设该中学九年级共有x个班级,赛制为单循环形式(每两班之间都赛一场),则每个队参加(x﹣1)场比赛,则共有x(x﹣1)场比赛,可以列出一元二次方程.【解答】解:设九年级共有x个班,每个班都要赛(x﹣1)场,但两班之间只有一场比赛,故x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】本题主要考查了一元二次方程的应用,根据比赛场数与参赛队之间的关系为:比赛场数=队数×(队数﹣1)÷2,进而得出方程是解题关键.21.(2021秋•临川区校级月考)要组织一次篮球联赛,赛制为单循环比赛(每两队之间都赛一场),计划安排15场比赛,应邀请多少个队参加比赛?设应邀参加比赛的球队有x个,则可以列方程为=15.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】根据赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛列出方程即可.【解答】解:设应邀请x个队参加比赛?则列方程为=15,故答案为:=15.【点评】考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.22.(2020秋•禹州市期中)某市中学生篮球联赛实行单循环制,参加的每两支球队之间都要进行一场比赛,共要比赛45场,设参加比赛的球队有x支,根据题意,可列方程为x(x﹣1)=45.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】利用比赛的总场次数=参赛的队伍数×(参赛的队伍数﹣1),即可得出关于x 的一元二次方程,此题得解.【解答】解:设参加比赛的球队有x支,依题意得:x(x﹣1)=45.故答案为:x(x﹣1)=45.【点评】本题考查了由实际问题抽象出一元二次方程,根据“比赛的总场次数=参赛的队伍数×(参赛的队伍数﹣1)”列出方程是解决问题的关键.23.(2020秋•义马市期中)在某次聚会上,每两人都握了一次手,所有人共握手10次,那么共有多少人参加了这次聚会?设有x人参加这次聚会,则根据题意列出的方程是=10.【考点】由实际问题抽象出一元二次方程.【专题】一元二次方程及应用;应用意识.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:(x﹣1)(次);依题意,可列方程为:=10.故答案为:=10.【点评】考查了由实际问题抽象出一元二次方程.理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.24.(2021春•嘉兴期末)某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有8个班级.【考点】一元二次方程的应用.【专题】应用题;一元二次方程及应用;运算能力.【分析】设八年级有x个班,根据“各班均组队参赛,赛制为单循环形式,且共需安排15场比赛”,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设八年级有x个班,依题意得:x(x﹣1)=28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).则该校八年级有8个班级.故答案为:8.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(2021秋•中山市期中)在某次聚会上每两人都握了一次手,所有的共握手28次,设有x人参加这次聚会,则列出方程正确的是x(x﹣1)=28.【考点】一元二次方程的应用.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:x(x﹣1)次;已知“所有人共握手28次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:(x﹣1)次,根据题意得:x(x﹣1)=28.故答案为:x(x﹣1)=28.【点评】此题主要考查了由实际问题抽象一元二次方程的应用,关键是理清题意,找对等量关系,需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.考点卡片1.由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地审清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.2.一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.(4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程和实际问题.6.答:写出答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学 一元二次方程解法及应用 中考试题(含答案)一、 填空题1.(2009重庆綦江)一元二次方程x 2=16的解是 .2.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.3.(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价由 3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .4.(2009年江苏省)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .5.(2009年甘肃庆阳)若关于x 的方程2210x x k ++-=的一个根是0,则k = .6.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是__________.7.(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.8.(2009年莆田)已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .9.(2009年莆田)出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y10.(2009年本溪)11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .11.(2009年温州)方程(x-1)2=4的解是12.(2009临沂)某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.13.(2009年哈尔滨)如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .14、(2009年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 15.(2009年宁德市)方程042=-x x 的解是______________.16.(2009年赤峰市)已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=17、(2009年崇左)分解因式:2242x x -+= .18.(2009年崇左)一元二次方程230x mx ++=的一个根为1-,则另一个根为 .19.(2009年湖北十堰市)方程(x +2)(x -1)=0的解为 .20.(2009年山东青岛市)某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .21.(2009年山西省)请你写出一个有一根为1的一元二次方程: .22.(2009年山西省)请你写出一个有一根为1的一元二次方程: .二、 选择题23.(2009年黄石市)三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对24.(2009年铁岭市)为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=25.(2009年安徽)某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=gD .2(112%)(17%)(1%)x ++=+26.(2009武汉)5.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或327.(2009成都)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠28.(2009年湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-29.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -= 30. (2009襄樊市)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为 ( )A .9%B .10%C .11%D .12%31(2009呼和浩特)用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -= C .2(31)1x -= D .22(1)3x -= 32(2009青海)方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定33(2009青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=34. (2009襄樊市)如图5,在ABCD Y 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A.4+ B.12+ C.2+ D.212+35.(2009年台州市)用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x36.(2009年甘肃庆阳)如图3,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米37.(2009年甘肃庆阳)方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x = 38.(2009年河南)方程2x =x 的解是 【 】(A )x =1 (B )x =0(C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=039.(2009年鄂州)10、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( )A 、182)1(502=+xB .182)1(50)1(50502=++++x xC 、50(1+2x)=182D .182)21(50)1(5050=++++x x40.(2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x += 41. (2009年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .200942.(2009年清远)方程216x =的解是( )A .4x =±B .4x =C .4x =-D .16x =43.(2009年衡阳市)两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( )A .相交B .外离C .内含D .外切44.(2009年日照)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为A.1B.2C.-1D.-245.(2009年长沙)已知关于x 的方程260x kx --=的一个根为,则实数k 的值为( )A .1B .1-C .2D .2-46.(2009年包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( C )A .1B .12C .13D .2547.(2009宁夏)2.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( )AAD C C B图5A .225(1)64x +=B .225(1)64x -=C .264(1)25x +=D .264(1)25x -=48.(2009眉山)若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3 C .13 D .13- 49.(2009东营)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )(A )1 (B )2 (C )-1 (D )-250.(2009年南充)方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =51.(2009年兰州)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=52.(2009年济南)若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .653.(2009年潍坊)已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .554.(2009年潍坊)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .955..(2009年咸宁市)方程3(1)33x x x +=+的解为( )A .1x =B .1x =-C .120-1x x ==,D .121-1x x ==,56.(2009年黄石市)三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对57. (2009年云南省)一元二次方程2520x x -=的解是( )A .x 1 = 0 ,x 2 =25B . x 1 = 0 ,x 2 =52- C .x 1 = 0 ,x 2 =52 D . x 1= 0 ,x 2 =25- 三、 解答题58.(2009仙桃)解方程:2420x x ++=.59.(2009年山西省)解方程:2230x x --= 60.(2009年赤峰市)某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率。

相关文档
最新文档