(完整)上海高中数学三角函数大题压轴题练习

合集下载

上海高考数学函数压轴题解析详解

上海高考数学函数压轴题解析详解
代入③,得

化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得

即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .

∴ ,(5分)

而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .

,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,

∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习

完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。

Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。

解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。

2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。

2020-2021学年上海高一数学下册第7章 三角函数【真题训练】解析版(沪教版2020)

2020-2021学年上海高一数学下册第7章 三角函数【真题训练】解析版(沪教版2020)

第7章 三角函数【真题训练】一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(2020·上海高一课时练习)函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域是_________.【答案】[3,1]-【分析】根据x ∈R ,得到[]cos 1,14π⎛⎫+∈- ⎪⎝⎭x ,从而求得函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域. 【详解】因为x ∈R ,所以4x R π+∈,所以[]cos 1,14π⎛⎫+∈- ⎪⎝⎭x ,所以[]2cos 13,14π⎛⎫=+-∈- ⎪⎝⎭y x ,所以函数2cos 14⎛⎫=+- ⎪⎝⎭y x π的值域是[3,1]-. 故答案为:[3,1]-【点睛】本题主要考查余弦函数的性质,还考查了运算求解的能力,属于中档题.2.(2020·上海高一课时练习)函数2sin )=-y x 的定义域为________________.【答案】4|22,33⎧⎫-<<+∈⎨⎬⎩⎭x k x k k Z ππππ【分析】解正弦不等式sin x <,即可得出其定义域.2sin 0x >sin 2x ∴<422,33k x k k Z ππππ∴-<<+∈∴该函数的定义域为4|22,33⎧⎫-<<+∈⎨⎬⎩⎭x k x k k Z ππππ故答案为:4|22,33⎧⎫-<<+∈⎨⎬⎩⎭x k x k k Z ππππ 【点睛】本题主要考查了求具体函数的定义域,涉及了解正弦不等式,属于中档题. 3.(2020·上海高一课时练习)函数2sin 1sin 2+=+x y x 的值域为___________.【答案】[1,1]-【分析】由题得32sin 2y x =-+,设sin ,[1,1]t x t =∈-,再求函数3()2,[1,1]2f t t t =-∈-+的值域得解.【详解】由题得函数的定义域为R , 由题得2sin 12(sin 2)332sin 2sin 2sin 2x x y x x x ++-===-+++,设sin ,[1,1]t x t =∈-,所以3()2,[1,1]2f t t t =-∈-+. 由复合函数单调性得函数()f t 在[1,1]-上单调递增,所以min 3()(1)21,12f t f =-=-=--+ max 3()(1)2 1.12f t f ==-=+ 所以函数2sin 1sin 2+=+x y x 的值域为[1,1]-.故答案为:[1,1]-.【点睛】本题主要考查正弦函数的图象和性质,考查函数值域的求法,意在考查学生对这些知识的理解掌握水平.4.(2020·徐汇区·上海中学高一期中)若函数()2sin 21()6f x x a a R π⎛⎫=++-∈ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点12,x x ,则12x x a +-的取值范围是______________. 【答案】,133ππ⎡⎫+⎪⎢⎣⎭【分析】令()2sin 2106f x x a π⎛⎫=++-= ⎪⎝⎭,转化为2sin 2,16y x y a π⎛⎫=+=- ⎪⎝⎭的交点问题,分别作出两个函数的图象,根据三角函数的对称性求解. 【详解】令()2sin 2106f x x a π⎛⎫=++-= ⎪⎝⎭得2sin 216x a π⎛⎫+=- ⎪⎝⎭如图所示:因为()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点12,x x , 所以12,1[1,2)26x x a π+=-∈ 12,[0,1)3x x a π∴+=-∈∴12,133x x a ππ⎡⎫+-∈+⎪⎢⎣⎭故答案为:,133ππ⎡⎫+⎪⎢⎣⎭【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想和运算求解的能力,属于中档题.5.(2020·上海市七宝中学高一期中)已知函数()3sin 4cos f x x x =+,[]12,0,x x ∈π,则()()12f x f x -的最大值是________.【答案】9【分析】先将函数()f x 转化成正弦函数的形式,然后结合正弦函数的图象判断出函数()f x 在区间[]0,π上的最大值和最小值,从而得出结果. 【详解】由题意可得:()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭. 由[0,]x π∈,[,]x ϕϕπϕ+∈+,3,2ππϕπ⎛⎫∴+∈ ⎪⎝⎭, 4()5sin()5sin 545min f x πϕϕ∴=+=-=-⨯=-,()5sin 52max f x π==, 当12,[0,]x x π∈时,()()()12()5)49(max min f x f x f x f x -=-=--=. 故答案为:9【点睛】本题考查了三角函数的恒等变化,以及正弦函数图象的性质,正弦函数的最值,把函数化简()()5sin f x x ϕ=+是解题的关键,属于中档题.6.(2020·上海市青浦高级中学高一期末)若不等式(1)sin 10a x --<对于任意x ∈R 都成立,则实数a 的取值范围是____________.【答案】(0,2)【分析】利用换元法令sin t x =([1,1]t ∈-),将不等式左边构造成一次函数()(1)1f t a t =--,根据一次函数的性质列不等式组,解不等式组求得a 的取值范围. 【详解】令sin t x =,x ∈R ,则 [1,1]t ∈-.由已知得,不等式(1)10a t --<对于任意[1,1]t ∈-都成立.又令 ()(1)1f t a t =--,则 (1)0(1)0f f -<⎧⎨<⎩,即 (1)(1)10(1)110a a -⋅--<⎧⎨-⋅-<⎩,解得 02a <<.所以所求实数a 的取值范围是02a <<. 故答案为:(0,2)【点睛】本小题主要考查不等式恒成立问题的求解策略,考查三角函数的取值范围,考查一次函数的性质,考查化归与转化的数学思想方法,属于中档题.7.(2020·上海高一课时练习)函数y =________.【答案】72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【分析】根据使函数有意义必须满足12sin 0x -≥,再由正弦函数的性质得到x 的范围. 【详解】由题意得:12sin 0x -≥1sin 2x ∴≤722,66k x k k ππππ∴-≤≤+∈Z 即72,2,66x k k k ππππ⎡⎤∈-+∈⎢⎥⎣⎦Z 故答案为72,2,66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【点睛】本题考查关于三角函数的定义域问题,属于基础题.8.(2020·上海市行知中学高一期末)已知函数()sin 2sin 23f x x x π⎛⎫=++⎪⎝⎭,将其图象向左平移(0)ϕϕ>个单位长度后,得到的图象为偶函数,则ϕ的最小值是_______【答案】6π 【分析】先利用两角和的正弦公式化简()f x 的解析式,然后再利用图象平移变换的规律求平移后的解析式,最后由奇偶性可得ϕ的最小值.【详解】1()sin 2sin 2sin 2sin 22322f x x x x x x π⎛⎫=++=++ ⎪⎝⎭3sin 22226x x x π⎛⎫==+ ⎪⎝⎭ , 将其图象向左平移(0)ϕϕ>个单位长度后,得()22266y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭的图象,由图象为偶函数图象可得262k ππϕπ+=+()k Z ∈所以62k ϕππ=+ ()k Z ∈ 令0k =,得6π=ϕ. 故答案为:6π 【点睛】本题主要考查了三角函数图象的平移变换,以及三角函数的奇偶性,属于中档题.9.(2020·上海市川沙中学高一期末)将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.【答案】35,22⎛⎤ ⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围.【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+ ⎪⎝⎭,函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x ,3242,解得3522. 故答案为:35,22⎛⎤ ⎥⎝⎦.【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题. 10.(2020·上海徐汇区·位育中学高一月考)将函数()2sin(2)f x x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b ∈R ,且a b <)满足:()y g x =在[,]a b 上至少含有100个零点,在所有满足上述条件的[,]a b 中,则b a -的最小值为________【答案】1483π 【分析】根据sin()y A x ωϕ=+的图象变换规律求得()y g x =的解析式,再根据零点的定义求得()y g x =的零点,再使区间端点取特殊值,计算即可求解最小值. 【详解】∵函数()2sin(2)f x x =,将函数的图像向左平移6π个单位,再向上平移1个单位得到函数()2sin 2()12sin(2)163g x x x ππ=++=++ 令()0g x =,得1sin(2)32x π+=-,则72236x k πππ+=+或112236x k πππ+=+ 即512x k π=π+或34x k ππ=+,k Z ∈根据()y g x =在[,]a b 上至少含有100个零点,不妨假设512a π=,此时0k = 则此时b 的最小值为3494ππ+,此时49k = 则35148(49)4123b a ππππ-=+-= 故答案为:1483π 【点睛】本题考查三角函数平移变换和零点问题,考查计算能力,属于中等题型. 11.(2020·上海浦东新区·华师大二附中高一月考)已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.【答案】34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得 12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π-【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.12.(2019·宝山区·上海交大附中高一期末)如图ABC ∆中,90ACB ∠=︒,30CAB ∠=︒,1BC =,M 为AB 边上的动点,MD AC ⊥,D 为垂足,则MD MC + 的最小值为______;【答案】32【分析】以C 为坐标原点建立平面直角坐标系,用坐标表示出MD MC +的值,然后利用换元法求解出MD MC +对应的最小值即可.【详解】如图所示,设(),M x y ,所以MD MC x +=根据条件可知:((),1,0A B ,所以y =,设cos x r θ=,sin y r θ=,()0,,0,2r πθ⎡⎤∈∈+∞⎢⎥⎣⎦,cos sin r θθ+=r =,所以()1cos 1cosMD MC x rθθ+=+ =+=22221tan211tan22tan2223221tan1tan22θθθθθ⎛⎫-⎪+⎪⎪+⎝⎭==++[]21tan0,1212tan223θθ⎛⎫=∈⎪⎝⎭⎛--+⎝⎭所以当tan2θ=MD MC+有最小值,最小值为32.故答案为:32.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:22tan2sin 1tan 2θθθ=+,221tan 2cos 1tan 2θθθ-=+. 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(2020·上海浦东新区·华师大二附中高一期中)已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π【答案】C【分析】令()262x k k Z πππ-=+∈,求出在130,3⎡⎤π⎢⎥⎣⎦的对称轴,由三角函数的对称性可得122315232,2,...,2366n n x x x x x x -πππ+=⨯+=⨯+=⨯,将式子相加并整理即可求得123122...2n n x x x x x -+++++的值.【详解】令()262x k k Z πππ-=+∈,得()123x k k Z π=π+∈,即对称轴为()123x k k Z π=π+∈. 函数周期T π=,令113233k ππ+=π,可得8k .则函数在130,3x ⎡⎤∈π⎢⎥⎣⎦上有8条对称轴. 根据正弦函数的性质可知122315232,2,...,2366n n x x x x x x -πππ+=⨯+=⨯+=⨯, 将以上各式相加得:12312582322...2...26666n n x x x x x -ππππ⎛⎫+++++=++++⨯⎪⎝⎭()2238100323+⨯ππ=⨯=故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为1223341...n n x x x x x x x x -++++++++的形式. 14.(2020·徐汇区·上海中学高一期中)函数()()sin 0,2f x A x A πωϕϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到()f x 的图象,则只要将()cos2g x x =的图象( )A .向左平移6π个单位长度 B .向右平移6π个单位长度 C .向左平移12π个单位长度 D .向右平移12π个单位长度 【答案】D【分析】先根据图象确定A 的值,进而根据三角函数结果的点求出求ϕ与ω的值,确定函数()f x 的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【详解】由题意,函数()()sin 0,2f x A x A πωϕϕ⎛⎫=+><⎪⎝⎭的部分图象, 可得11,43124A T πππ==-=,即T π=,所以2ω=,再根据五点法作图,可得2122ππϕ⨯+=,求得3πϕ=,故()sin 23f x x π⎛⎫=+ ⎪⎝⎭.函数()y f x =的图象向左平移12π个单位,可得sin[2()]sin(2)1232y x x πππ=++=+cos2x =的图象,则只要将()cos2g x x =的图象向右平移12π个单位长度可得()f x 的图象,故选D .【点睛】本题主要考查了三角函数sin()y A x ωϕ=+的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.15.(2020·上海市实验学校高一期末)将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点P',若P'位于函数sin 2y x =的图象上,则( )A .12t =,s 的最小值为6πB .t =,s的最小值为6πC .12t =,s 的最小值为3πD .t =,s的最小值为3π【答案】A【详解】由题意得,1sin(2)432t ππ=⨯-=,可得,因为 P'位于函数sin 2y x =的图象上,所以,可得,s 的最小值为,故选A.【名师点睛】三角函数图象的变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意:①平移变换时,当自变量x 的系数不为1时,要将系数先提出;②翻折变换要注意翻折的方向;③三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换.16.(2020·上海高一课时练习)关于函数5()4cos 26⎛⎫=- ⎪⎝⎭f x x π,有以下四个命题:①函数43y f x π⎛⎫=+ ⎪⎝⎭是偶函数;②()y f x =的图像关于直线12x π=-对称;③要得到函数4sin 2y x =的图像只需将()y f x =的图像向右平移3π个单位;④()y f x =在区间[0,]π内的单调递增区间是50,12π⎡⎤⎢⎥⎣⎦和11,12⎡⎤⎢⎥⎣⎦ππ.其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】B【分析】代入解析式,利用函数的奇偶性即可判断①;根据函数的对称性可判断②;根据三角函数的平移变换原则可判断③;根据单调区间可判断④.【详解】对于①,因为函数5()4cos 26⎛⎫=- ⎪⎝⎭f x x π,所以4454cos 2336y f x x πππ⎡⎤⎛⎫⎛⎫=+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦114cos 24cos 66x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,函数不是偶函数,故①不正确;对于②,12x π=-时,()5()4cos 24cos 412126f ππππ⎡⎤⎛⎫-=⨯--=-=- ⎪⎢⎥⎝⎭⎣⎦, 所以函数图像关于12x π=-对称,故②正确;对于③,将()y f x =的图像向右平移3π个单位, 得到5()4cos 236f x x ππ⎡⎤⎛⎫=-- ⎪⎢⎥⎝⎭⎣⎦ 334cos 24cos 24sin 222x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭,故③不正确;对于④,5()4cos 26⎛⎫=- ⎪⎝⎭f x x π,由()52226k x k k Z ππππ-≤-≤∈, 解得()51212k x k k Z ππππ-≤≤+∈, 当0k =时,()51212x k Z ππ-≤≤∈, 当1k =时,()11171212x k Z ππ≤≤∈, 所以()y f x =在区间[0,]π内的单调递增区间是50,12π⎡⎤⎢⎥⎣⎦和11,12⎡⎤⎢⎥⎣⎦ππ,故④正确.所以②④正确.故选:B【点睛】本题考查了三角函数的图像与性质,掌握三角函数的图像与性质是解题的关键,属于中档题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(2019·上海市文来中学高一期末)已知1l ,2l ,3l 是同一平面内自上而下的三条不重合的平行直线.(1)如图1,如果1l 与2l 间的距离是1,2l 与3l 间的距离也是1,可以把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,求这个正三角形ABC 的边长.(2)如图2,如果1l 与2l 间的距离是1,2l 与3l 间的距离是2,能否把一个正三角形ABC 的三顶点分别放在1l ,2l ,3l 上,如果能放,求BC 和3l 夹角θ的正切值并求该正三角形边长;如果不能,试说明理由.(3)如果边长为2的正三角形ABC 的三顶点分别在1l ,2l ,3l 上,设1l 与2l 间的距离为1d ,2l 与3l 间的距离为2d ,求12d d ⋅的取值范围.【答案】(1)2 ;(2)能放,tan 2θ=边长为3;(3)(]0,1 【分析】(1)根据,A C 到直线2l 的距离相等,可得2l 过AC 的中点M ,2l AC ⊥,从而求得边长2AC AM =的值.(2)假设能放,设边长为a ,BC 与3l 的夹角θ,不妨设060θ<≤,可得sin 2a θ=,()sin 601a θ-=,两式相比化简可得sin θ=,由此能求出a 的值,从而得出结论. (3)利用两角和差的正弦、余弦公式化简()124sin 60sin d d θθ⋅=-为()2sin 2301θ+-,再根据正弦函数的定义和值域求出12d d ⋅的取值范围. 【详解】(1),A C 到直线2l 的距离相等,∴2l 过AC 的中点M ,∴2l AC ⊥,∴边长22AC AM ==(2)假设能放,设边长为a ,BC 与3l 的夹角θ, 由对称性,不妨设060θ<≤,∴sin 2a θ=,()sin 601a θ-=,两式相比可得:()sin 2sin 60θθ=-,即sin sin θθθ=-,2sin θθ∴=,tan2θ∴=,sin θ∴=,故边长a==,综上可得,能放.(3)()1214sin60sin4cos sin sin22d dθθθθθ⎛⎫⋅=-=-⎪⎪⎝⎭()1cos2222sin23012θθθ⎫+=-=+-⎪⎪⎝⎭.060θ<≤,30230150θ∴<+≤,()1sin23012θ≤+≤,所以()02sin23011θ≤+-≤,又1d>,2d>,所以(]120,1d d⋅∈.【点睛】本题是一道考查三角函数应用的题目,解题的关键是掌握等边三角形的性质以及三角函数的恒等变换,属于中档题.18.(2019·上海市宜川中学高一期中)已知函数()sin0032f x A x x R Aππφφ⎛⎫=+∈⎪⎝⎭,,>,<<,函数()y f x=的部分图像如图所示,P,Q分别是该图像的最高点和最低点,点P的坐标是(1,A),点R的坐标是(1,0),∠PRQ=2.3π(1)求()f x的最小正周期与φ的值;(2)求A的值,并写出函数()f x的单调递增区间;(3)若函数()()112g x f x f x ⎛⎫=-++ ⎪⎝⎭,请判断函数()g x 的奇偶性,并写出()g x 的最小正周期和单调递增区间. 【答案】(1)T=6,=6πφ(2)A =单调递增区间为[]62,61,k k k Z -+∈(3)偶函数;增区间为33,3,4k k k Z ⎡⎤+∈⎢⎥⎣⎦和393,3,24k k k Z ⎡⎤++∈⎢⎥⎣⎦【分析】(1)根据周期公式求出函数f (x )的最小正周期,由图象利用点P 在函数图像上求得φ(2)由条件设出点Q 的坐标,再过点Q 做x 轴的垂线,设垂足为M ,根据条件求出A ,利用正弦函数单调区间列不等式求解得函数单调区间(3)利用奇偶函数定义判断为偶函数;去绝对值得函数解析式,求单调区间即可【详解】(1)由题意得,函数f (x )的最小正周期T23ππ==6,由点P 的坐标为(1,A ),则sin 3x πφ⎛⎫+ ⎪⎝⎭=1,0=26ππφφ∴<<,(2)设点Q 的坐标为(4,﹣A ), 过点Q 做x 轴的垂线,设垂足为M ,则RM =3, ∵∠PRQ 23π=,∴∠MRQ 2326πππ=-=, ∴|MQ |=A =3×tan6π=A =()6in 3f x x ππ⎛⎫=+ ⎪⎝⎭,令222362k x k ππππππ-≤+≤+,解得6261k x k -≤≤+故函数()f x 的单调递增区间为[]62,61,k k k Z -+∈(3)()()11sin cos 233g x f x f x x x ππ⎫⎛⎫=-+++ ⎪⎪⎝⎭⎭()()sin cos 33g x x x g x ππ⎫-=+=⎪⎭,故()()112g x f x f x ⎛⎫=-++ ⎪⎝⎭为偶函数(Ⅰ)当sin0,cos033x x ππ≥≥ 即2232k x k ππππ≤≤+①()sin +cos3334g x x x x ππππ⎫⎛⎫+⎪ ⎪⎭⎝⎭②令222342k x k ππππππ-≤+≤+,①②联立得52234k x k πππππ+≤≤+,增区间为1563,6,4k k k Z ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)当sin0,cos033x x ππ≤≤ 即32+232k x k πππππ≤≤+③ ()=sin +cos=3334g x x x x ππππ⎫⎛⎫-+⎪ ⎪⎭⎝⎭④令3222342k x k ππππππ+≤+≤+,③④联立,得2234k x k ππππ≤≤+,解得增区间为36,6,4k k k Z ⎡⎤+∈⎢⎥⎣⎦ (Ⅲ)当sin0,cos033x x ππ≥≤ 即2223k x k πππππ+≤≤+⑤()sin cos3334g x x x x ππππ⎫⎛⎫--⎪ ⎪⎭⎝⎭⑥令222342k x k ππππππ-≤-≤+,联立⑤⑥,得322234k x k πππππ+≤≤+,故单调增区间为396,6,24k k k Z ⎡⎤++∈⎢⎥⎣⎦; (Ⅳ)当sin0,cos033x x ππ≤≥ 即2223k x k ππππ-≤≤⑦()==3334g x x x x ππππ⎛⎫-- ⎪⎝⎭⑧ 令3222342k x k ππππππ+≤-≤+,⑦⑧联立得3722434k x k πππππ+≤≤+,故单调增区间为9216,6,24k k k Z ⎡⎤++∈⎢⎥⎣⎦; 综上:故()()112g x f x f x ⎛⎫=-++ ⎪⎝⎭的增区间为33,3,4k k k Z ⎡⎤+∈⎢⎥⎣⎦和393,3,24k k k Z ⎡⎤++∈⎢⎥⎣⎦ 【点睛】本题考查了y =A sin (ωx +φ)的周期和图象的关系,以及A 的几何意义,考查分段函数的单调性,构造直角三角形和求角是关键,考查识图能力,属于中档题.19.(2020·上海高一课时练习)已知2()2cos cos f x x x x a =++(a 为实常数). (1)当定义域为R 时,求()f x 的单调递增区间;(2)当定义域为0,2π⎡⎤⎢⎥⎣⎦时,()f x 的最大值为4,求实数a 的值. 【答案】(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)1 【分析】(1)利用倍角公式和辅助角公式化简函数()f x ,进而求得单调递增区间;(2)由(1)得()2sin(2)16f x x a π=+++,再求出26x π+的取值范围,进而得到函数的最大值,从而求得实数a 的值.【详解】(1)2()2cos cos f x x x x a =++22cos 112x x a =-++2cos 21x x a =+++2sin(2)16x a π=+++, ∴222,,26236k x k x k k k Z πππππππππ⎡⎤-≤+≤+⇒∈-+∈⎢⎥⎣⎦, ∴()f x 的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2) 0,2x π⎡⎤∈⎢⎥⎣⎦,∴72666x πππ≤+≤, ∴当262x ππ+=,即6x π=时,∴max ()2141f x a a =++=⇒=.【点睛】本题考查三角恒等变换、正弦函数的单调区间、由函数的最值求参数的值等,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.20.(2019·上海虹口区·上外附中高一期末)已知函数()2sin()2cos ,[,]62f x x x x πππ=+-∈. (1)若4sin 5x =,求函数()f x 的值;(2)求函数()f x 的值域.【答案】(1)35;(2)[]1,2.【详解】(1)43sin ,[,],cos 525x x x ππ=∈∴=-,1()cos )2cos cos 2f x x x x x x ⇒=+-=-=.(2)由(1)()2sin()6f x x π=-,51,sin()1236626x x x ππππππ≤≤∴≤-≤⇒≤-≤, ∴函数()f x 的值域为[1,2].21.(2020·上海浦东新区·华师大二附中高一月考)对于定义域为R 的函数()y f x =,部分x 与y 的对应关系如表:(1)求[]{}(0)f f f :(2)数列{}n x 满足12x =,且对任意*n N ∈,点1(,)n n x x +都在函数()y f x =的图象上,求1234n x x x x +++⋅⋅⋅⋅⋅⋅+(3)若()sin()y f x A x b ωϕ==++,其中0,0,0,03A b ωπϕπ><<<<<<,求此函数的解析式,并求*(1)(2)(3)()f f f n n N ++⋅⋅⋅+∈.【答案】(1)2;(2)4n ;(3)见解析【分析】(1)由内往外计算即可;(2)由已知,通过计算易得数列{}n x 是以4为周期的周期数列,先计算1234x x x x +++的值,利用1234n x x x x n +++⋅⋅⋅⋅⋅⋅+=1234()x x x x +++即可得到答案;(3)代入表中数据即可得到()y f x =的解析式,再分n 为奇数、偶数讨论求和即可.【详解】(1)由表中数据可得[]{}(0)f f f =((3))(1)2f f f =-=.(2)12x =,由于1()n n x f x +=,则21()(2)0x f x f ===,32()(0)3x f x f ===, 43()(3)1x f x f ===-,54()(1)2x f x f ==-=,所以15,x x =,依次递推可得数列 {}n x 的周期为4,又12344x x x x +++=,所以12344n x x x x n +++⋅⋅⋅⋅⋅⋅+=.(3)由题意得(1)2(1)2(0)3(2)0f f f f -=⎧⎪=⎪⎨=⎪⎪=⎩,由(1)(1)f f -=,得sin()sin()ωϕωϕ+=-+,即sin cos 0ωϕ=,又0ωπ<<,则sin 0ω≠,从而cos 0ϕ=,而0ϕπ<<,所以2ϕπ=,故(0)3(2)cos 20(1)cos 2f A b f A b f A b ωω=+=⎧⎪=+=⎨⎪=+=⎩,消b ,得2cos 32(2cos 1)30A A A A ωω+-=⎧⎨-+-=⎩ 所以22242230A A A A -+-+=,解得12,1,cos 2A b ω===,又0ωπ<<, 所以3πω=,所以()2sin()12cos 1323f x x x πππ=++=+, 此函数有最小正周期6,且(6)(0)3f f ==,(1)(2)(3)(4)(5)(6)6f f f f f f +++++=, 当*2,n k k N =∈时,(1)(2)(3)f f f n ++⋅⋅⋅+=(1)(2)(6)[(1)(2)(6)]63f f f k k f f f k n +++=+++==;当*21,n k k N =-∈时,(1)(2)(3)f f f n ++⋅⋅⋅+=(1)(2)(6)(62)(61)(6)[(1)(2)(6)]5f f f k f k f k f k k f f f +++-----=+++- 6532k n =-=-.【点睛】本题考查三角函数与数列的综合应用,涉及到求三角函数的解析式、周期数列的和,是一道中档题.。

上海高中数学三角函数大题压轴题练习

上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,当12x π=-时,()f x 取最小值-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()222x f x x ωω-=+112cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-= 由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

上海高考数学压轴题50道(有答案-精品).

上海高考数学压轴题50道(有答案-精品).

20 11高考压轴题目选(5 0题)1 .(函数)设32(log (f x x x =++,则对任意实数,a b , “Oa b +艺是“((Ofafb +扌的条件。

2.(函数)设22,22(,(yxyxyxf+2定义在平面上的函数,且+=2,{(xyxA}0,0, 12*yxy,令) , (, ({Ay xy x fB €=,则 B 所覆盖的面积为3.(函数)老师在黑板上写岀了若干个幕函数。

他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(,-妍8上是增函数;(3)函数图像经过原点。

小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写岀的幕函数共有个。

4.(函数)已知定义在R上的奇函数(xf,满足(4(fxfx=,且在区间[0,2] 上是増函数,若方程f(x=m(m>0在区间[]& 8-上有四个不同的根1234,..xxxx,则1234X xxx +++=5.(函数)已知函数(1. fxa =\/x2+1女在区间(KM上是减函数,则实数a的取值范围是6.(函数)方程x22x-l = 0的解可视为函数y=x2的图像与函数ylx横坐标,若x4+ax -4=0的各个实根xl, x2, xk (k <4所对应的点(xi,(i=12,“k)均在直线y=x的同侧,则实数a的取值范围是7.(函数)如图放置的边长为1的正方形PABC沿x轴滚动。

设顶点p (x , y )的轨迹方程是(y f x =,则(fx的最小正周期为;(yfx地其两个相邻零点间的图像与x轴所围区域的面积为O8.(三角函数)已知(sin (0 363f x x f f ©coiunifn 1(i =+>=i I I u u u,,且(fx 在区间637mf ] I U有最小值,无最大值,则3=9.(三角函数)已知函数271(sin sin 2cos 662x fxxxxococof1 *+-e I I U U R.(其中g>),若对任意的aER,函数(yfx=, (7i]xaae+,的图像与直线l=y交点个数的最大值为2,则co的取值范围为1 0.(三角函数)已知方程x 2+3x+4=0的两个实根分别是xl, x2,则21arct anarc tanxx+ 1 1 .(数列)设定义在*N上的函数:(21(((22nnkfnnfnk=-[ | =| =| [,其中*kN € ,记(1(2(3(4(2n naf ffff=+++++ ,则In n a a +=1 2.(数列)在m (m>2)个不同数的排列PlP2…Pn中,若<j <m 时Pi>Pj (即前面某数大于后面某数),则称Pi与Pj构成一个逆序。

第7章 三角函数(章节压轴题专练)高一数学(沪教版2020必修第二册)

第7章 三角函数(章节压轴题专练)高一数学(沪教版2020必修第二册)

第7章 三角函数章节压轴题专练一、单选题 1.(2020·上海市青浦高级中学高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中m 、n 、α、β为已知实常数,x ∈R ,有下列四个命题:(1)若(0)02f f ⎛⎫== ⎪⎝⎭π,则()0f x =对任意实数x 恒成立;(2)若(0)0f =,则函数()f x 为奇函数;(3)若02f ⎛⎫=⎪⎝⎭π,则函数()f x 为偶函数;(4)当22(0)02f f ⎛⎫=≠⎪⎝⎭π时,若12()()0f x f x ==,则122x x k π-=(k Z ∈);则上述命题中,正确的个数是( ) A .1个 B .2个C .3个D .4个【答案】C【分析】利用两角和的余弦公式化简()f x 表达式. 对于命题(1),将(0)0,02f f π⎛⎫== ⎪⎝⎭化简得到的表达式代入上述()f x 表达式,可判断出(1)选项的真假;对于命题(2)选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出(2)选项的真假;对于命题(3)选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出(3)选项的真假;对于命题(4)选项,根据22(0)02f f π⎛⎫+≠⎪⎝⎭、()()120f x f x ==,求得()f x 的零点的表达式,进而判断出(4)选项的真假.【详解】()(cos cos sin sin )(cos cos sin sin )f x m x x n x x ααββ=-+-(cos cos )cos (sin sin )sin m n x m n x αβαβ=+-+不妨设 ()()11221122()cos cos cos sin sin sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得 1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)02f f ⎛⎫== ⎪⎝⎭π时,()0f x =对任意实数x 恒成立,即命题(1)是真命题;当(0)0f =时,()1122()sin sin sin f x k k x αα=-+,它为奇函数,即命题(2)是真命题;当()02f π=时,()1122()cos cos cos f x k k x αα=+,它为偶函数,即命题(3)是真命题;当22(0)02f f π⎛⎫+≠ ⎪⎝⎭时,令()0f x =,则()()11221122cos cos cos sin sin sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠. 将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠), 则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取 11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈), 则()1212x x k k π-=-,即12x x k π-= (k Z ∈),所以命题(4)是假命题. 故选:C【点睛】本题考查两角和差公式,三角函数零点,三角函数性质,重点考查读题,理解题和推理变形的能力,属于中档题型.2.(2017·上海嘉定区·高一期末)设函数()cos()cos()f x m x n x αβ=+++,其中,,,m n αβ为已知实常数,x ∈R ,则下列命题中错误的是( ) A .若(0)()02f f π==,则()0f x =对任意实数x 恒成立;B .若(0)0f =,则函数()f x 为奇函数;C .若()02f π=,则函数()f x 为偶函数;D .当22(0)()02f f π+≠时,若12()()0f x f x ==,则122x x k π-= (k ∈Z ).【答案】D【分析】利用两角和的余弦公式化简()f x 表达式.对于A 选项,将(0)0,()02f f π==化简得到的表达式代入上述()f x 表达式,可判断出A 选项为真命题.对于B 选项,将(0)0f =化简得到的表达式代入上述()f x 表达式,可判断出()f x 为奇函数,由此判断出B 选项为真命题.对于C 选项,将()02f π=化简得到的表达式代入上述()f x 表达式,可判断出()f x 为偶函数,由此判断出C 选项为真命题.对于D 选项,根据22(0)()02f f π+≠、12()()0f x f x ==,求得()f x 的零点的表达式,由此求得12x x k π-= (k Z ∈),进而判断出D 选项为假命题. 【详解】()()()cos cos sin sin cos cos sin sin f x m x x n x x ααββ=-+-()()cos cos cos sin sin sin m n x m n x αβαβ=+-+.不妨设 11221122()(cos cos )cos (sin sin )sin f x k k x k k x αααα=+-+.1212,,,k k αα为已知实常数.若(0)0f =,则得 1122cos cos 0k k αα+=;若()02f π=,则得1122sin sin 0k k αα+=.于是当(0)()02f f π==时,()0f x =对任意实数x 恒成立,即命题A 是真命题;当(0)0f =时,1122()(sin sin )sin f x k k x αα=-+,它为奇函数,即命题B 是真命题;当()02f π=时,1122()(cos cos )cos f x k k x αα=+,它为偶函数,即命题C 是真命题;当22(0)()02f f π+≠时,令()0f x =,则11221122(cos cos )cos (sin sin )sin 0k k x k k x αααα+-+=,上述方程中,若cos 0x =,则sin 0x =,这与22cos sin 1x x +=矛盾,所以cos 0x ≠. 将该方程的两边同除以cos x 得11221122cos cos tan sin sin k k x k k αααα+=+,令11221122cos cos sin sin k k t k k αααα+=+ (0t ≠), 则 tan x t =,解得 arctan x k t π=+ (k Z ∈).不妨取 11arctan x k t π=+,22arctan x k t π=+ (1k Z ∈且2k Z ∈), 则1212()x x k k π-=-,即12x x k π-= (k Z ∈),所以命题D 是假命题. 故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.3.(2019·上海复旦附中高一期中)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫⎪⎝⎭C .28,33ππ⎛⎫⎪⎝⎭D .416,33ππ⎛⎫⎪⎝⎭【答案】C【分析】设()()2h x f x =-,可得()h x 为奇函数,进而得到4M m +=,从而得到()g x 解析式;根据()4sin 4s x x x =+的对称中心,平移可得()g x 对称中心的坐标;再分别对应四个选项,当k 不是整数时,则不可能为对称中心,由此可得选项. 【详解】设()()24sin 21x x h x f x x +=-=+,则()()24sin 1x xh x h x x ---==-+ 即()h x 为奇函数 ()()224M m h x h x ∴+=++-+=()4sin 44sin 43333g x x x x x ππππ⎛⎫⎛⎫⎛⎫∴=+-=-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()4sin 4s x x x =+ 则()()4sin 44sin 24222k k s x s x x x x k x k ππππ⎛⎫⎛⎫+-=++-+-=⎪ ⎪⎝⎭⎝⎭,k Z ∈ 可知()4sin 4s x x x =+的对称中心为(),4k k k Z ππ⎛⎫∈ ⎪⎝⎭将()4sin 4s x x x =+的图象向右平移12π个单位,再向上平移3π个单位得()g x 的图象 ()g x ∴的对称中心为(),4123k k k Z ππππ⎛⎫++∈⎪⎝⎭ 当24123k πππ+=时,73k =,不合题意,可知不可能为C又当1,0,5k =时分别对应选项,,A B D ,可知,,A B D 均为()g x 的对称中心 本题正确选项:C【点睛】本题考查函数性质的综合应用问题,涉及到利用奇偶性求解最值、与三角函数有关的对称中心的求解、函数图象平移变换问题,对于学生函数性质的掌握要求较高,属于偏难题. 二、填空题4.(2017·上海市七宝中学高一期中)已知02πθ<<,若2cos 2sin 220m m θθ+--<对任意实数θ恒成立,则实数m 应满足的条件是__________. 【答案】12m ≥-【分析】不等式2cos 2sin 220m m θθ+--<变形为2sin 2sin 210m m θθ-+--<令()sin 01x x θ=<<,即上式变形为关于x 的一元二次不等式22210x mx m -+--<,对应的二次函数为2()21f x x m =-+-,根据题意,若满足02πθ<<时不等式2cos 2sin 220m m θθ+--<恒成立,则需01x <<时,()0f x <恒成立,分类讨论,当0x m =≤或01x m <=<或1x m =≥时,判断函数单调性,解不等式,求解即可.【详解】2cos 2sin 220m m θθ+--<221sin 2sin 22sin 2sin 210m m m m θθθθ∴-+--=-+--<.设()sin 01x x θ=<<,2()221f x x mx m =-+--. 由题意可知,01x <<时,()0f x <恒成立. 当对称轴0x m =≤时()f x 在(0,1)x ∈上单调递减, 则()(0)210f x f m <=--≤,即102m -≤≤ 当对称轴01x m <=<时,222()()221210f x f m m m m m m ≤=-+--=--<解得11m <<01m <<当对称轴1x m =≥时()f x 在(0,1)x ∈上单调递增, 则()(1)122120f x f m m <=-+--=-<,即m 1≥ 综上所述:12m ≥- 故答案为:12m ≥-【点睛】本题考查一元二次不等式恒成立问题,同时也考查同角三角函数基本关系,属于难题.5.(2018·宝山区·上海交大附中高一期中)设函数f(x)=a 1⋅sin (x +α1)+a 2⋅sin (x +α2)+⋯+a n ⋅sin (x +αn ),其中a i 、αi (i =1,2,⋯,n,n ∈N ∗,n ≥2)为已知实常数,x ∈R . 下列所有正确命题的序号是____________.①若f(0)=f(π2)=0,则f(x)=0对任意实数x 恒成立;②若f(0)=0,则函数f(x)为奇函数;③若f(π2)=0,则函数f(x)为偶函数;④当f2(0)+f2(π2)≠0时,若f(x1)=f(x2)=0,则x1−x2=kπ(k∈Z).【答案】①②③④.【分析】对于①,由f(0)=f(π2)=0,证明函数f(x)既是奇函数又是偶函数即可得出f(0)=0;对于②,根据奇函数的定义可得出结论;对于③,根据偶函数的定义进行判断即可得出结论;对于④,根据f(x1)=f(x2)=0得(sin x1−sin x2)(a1cosα1+a2cosα2+⋯+a n cosαn)+(cos x1−cos x2)(a1sinα1+a2sinα2+⋯+a n sinαn)=0,于此得出结论.【详解】对于命题①,若f(0)=0,则f(0)=a1sinα1+a2sinα2+⋯+a n sinαn=0,则f(−x)+f(x)=a1sin(−x+α1)+a2sin(−x+α2)+⋯+a n sin(−x+αn)+a1sin(x+α1)+a2sin(x+α2)+⋯+a n sin(x+αn)=cos x⋅(a1sinα1+a2sinα2+a n sinαn)=0,∴函数f(x)为奇函数,若f(π2)=0,则f(π2)=a1sin(π2+α1)+a2sin(π2+α2)+⋯+a n sin(π2+αn)=−a1cosα1−a2cosα2−⋯−a n cosαn=0,∴f(−x)−f(x)=a1sin(−x+α1)+a2sin(−x+α2)+⋯+a n sin(−x+αn)−a1sin(x+α1)−a2sin(x+α2)−⋯−a n sin(x+αn)=sin x⋅(a1cosα1+a2cosα2+⋯+a n cosαn)=0,∴函数f(x)为偶函数,若f(0)=f(π2)=0,则函数f(x)既是奇函数,又是偶函数,即f(x)=0,命题①正确;对于命题②,由①的证明过程可知,当f(0)=0时,函数f(x)为奇函数,命题①正确;对于命题③,由①的证明过程可知,当f(π2)=0时,函数f(x)为偶函数,命题②正确;对于命题④,当f2(0)+f2(π2)≠0时,∵f(x)=a1⋅sin(x+α1)+a2⋅sin(x+α2)+⋯+a n⋅sin(x+αn)=(a1cosα1+a2cosα2+⋯+a n cosαn)sin x+(a1sinα1+a2sinα2+a n sinαn)cos x,令a=a1cosα1+a2cosα2+⋯+a n cosαn=f(π2),b =a 1sin α1+a 2sin α2+a n sin αn =f(0),则a 2+b 2=f 2(0)+f 2(π2)≠0, 由辅助角公式得f (x )=a sin x +b cos x =√a 2+b 2sin (x +φ), 其中cos φ=√,sin φ=,∵f (x 1)=f (x 2)=0,则(x 1,0)、(x 2,0)是函数y =f (x )的两个对称中心点,函数y =f (x )的最小正周期为2π,该函数的两个相邻对称中心之间的距离为周期的一半, 因此,x 1−x 2=kπ (k ∈Z ),命题④正确. 故答案为①②③④.【点睛】本题的考点是三角形与数列的综合,主要考查三角函数的化简,考查新定义与三角函数性质的判断,解题的关键就是利用三角函数基本性质的定义来进行计算,从而判断结论的正误,运算量较大,综合性较强,属于难题.三、解答题6.(2020·徐汇区·上海中学高一期中)某公司要在一条笔直的道路边安装路灯,要求灯柱AB 与底面垂直,灯杆BC 与灯柱AB 所在的平面与道路走向垂直,路灯C 采用锥形灯罩,射出的管线与平面ABC 部分截面如图中阴影所示,2,,33ABC ACD ππ∠=∠=路宽AD =24米,设.126BAC ππθθ⎛⎫∠=≤≤ ⎪⎝⎭(1)求灯柱AB 的高h (用θ表示);(2)此公司应该如何设置θ的值才能使制作路灯灯柱AB 和灯杆BC 所用材料的总长度最小?最小值为多少?【答案】(1)32sin θsin θ36h ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤ ⎪⎝⎭;(2) 12πθ=时,所用材料的总长度最小,最小值为8+【分析】(1)分别在△ABC 和△ACD 中,利用正弦定理即可解出答案;(2)在△ABC 中,利用正弦定理求出BC ,再利用(1)的结果和三角函数的和差公式即可求得答案. 【详解】(1)由题意可得∠ADC=π-∠CAD -∠ACD =(θ)θ236ππππ---=+,∠BCA=θ3π-,在△ACD 中,由正弦定理可得:AD ACsin ACD sin ADC∠∠=,则AC=AD sin ADC θsin ACD 6π∠∠⎛⎫⨯=+ ⎪⎝⎭,在△ABC 中,由正弦定理可得:AB ACsin BCA sin ABC∠∠=,则AB=AC sin BCA sin BCA sin ABC 3∠∠∠⨯=⨯32sin θsin θ36ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤ ⎪⎝⎭.即得32sin θsin θ36h ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭126ππθ⎛⎫≤≤⎪⎝⎭.(2)由(1)得AC=θ6π⎛⎫+⎪⎝⎭,AB=32sin θsin θ36ππ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭, 在△ABC 中,由正弦定理可得:AC BCsin ABC sin BAC∠∠=,则AC BC sin BAC 32sin θsin θsin ABC 6π∠∠⎛⎫=⨯=+ ⎪⎝⎭,所以AB BC 32sin θsin θ32sin θsin θ16sin 2366πππθ⎛⎫⎛⎫⎛⎫+=-+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由126ππθ≤≤可得263ππθ≤≤,可得当26πθ=,即12πθ=时()AB BC 8min +=+即当公司设置θ的值为12π时,灯柱AB 和灯杆BC 所用材料的总长度最小,最小值为8+【点睛】本题借助实际应用考查了利用正弦定理解三角形,考查了三角函数的和差公式及其应用,属于中档题.7.(2018·上海长宁区·高一期末)已知函数()()()1122()sin sin sin (0)n n n f x a x a x a x ωϕωϕωϕω=++++++>,其中数列{}n a 是公比为2的等比数列,数列{}n ϕ是公差为2π的等差数列. (1)若11a =,12ϕπ=,分别写出数列{}n a 和数列{}n ϕ的通项公式; (2)若2()f x 是奇函数,且1(0,)ϕ∈π,求1ϕ;(3)若函数()n f x 的图像关于点(,0)2π对称,且当x π=时,函数()n f x 取得最小值,求ω的最小值. 【答案】(1)12n na ,2n n ϕπ=;(2)1arctan 2ϕ=π-;(3)1 【分析】(1)根据等差数列、等比数列的通项公式111,(1)n n n a a q b b n d -==+-即可求解;(2)根据奇函数的定义得出22()()0f x f x -+=,化简得1111sin 2cos 0a a ϕϕ+=,解方程可得1arctan 2ϕ=π-(3)将()n f x 化成()sin cos )n m x n x f x x ωωωϕ=+=+的形式,依题意有()02n f π=,从而得到11,2k k ωϕπ+=π∈Z ,因为当x π=时,函数()n f x 取得最小值,所以222,2k k ωϕ3ππ+=π+∈Z ,两式相减即可求解. 【详解】(1)由等差数列、等比数列的通项公式111,(1)n n n a a q b b n d -==+-可得12n n a ,2n n ϕπ=; (2)()()211221122()cos cos sin sin sin cos f x a a x a a x ϕϕωϕϕω=+++ 因为22()()0f x f x -+=,所以1122sin sin 0a a ϕϕ+= 即1111sin 2cos 0a a ϕϕ+=,所以1tan 2ϕ=- 又由1(0,)ϕ∈π,得1arctan 2ϕ=π-(3)()()()1122()sin sin sin n n n f x a x a x a x ωϕωϕωϕ=++++⋅⋅⋅++()()11221122cos cos cos sin sin sin sin cos n n n n a a a x a a a x ϕϕϕωϕϕϕω=++⋅⋅⋅++++⋅⋅⋅+记1122cos cos cos n n a a a m ϕϕϕ++⋅⋅⋅+=,1122sin sin sin n n a a a n ϕϕϕ++⋅⋅⋅+=则()sin cos )n m x n x f x x ωωωϕ=+=+,其中220m n +≠;因为()n f x 的图像关于点(,0)2π对称,所以11,2k k ωϕπ+=π∈Z ①因为当x π=时,函数()n f x 取得最小值,所以222,2k k ωϕ3ππ+=π+∈Z ② ②-①得21423k k ω=-+,因为12,k k Z ∈,0>ω 当20k =,11k =时,ω取得最小值为10【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.8.(2019·上海市向明中学高一期中)如图,点A ,B 单位圆O 上的两点,点C 是圆O 与x 轴正半轴的交点,将锐角α的终边OA 按逆时针方向旋转3π到OB .(1)若点A 的坐标为34,55⎛⎫ ⎪⎝⎭,求1sin 21cos 2αα++的值;(2)若ABC ∆α的大小; (3)用锐角α表示BC ,并求BC 的取值范围. 【答案】(1)4918;(2)3π;(3)⎛ ⎝⎭. 【分析】(1)由三角函数的定义,得sin cos αα,的值,再对原式化简计算即可; (2)考虑将ABC ∆进行分割,再用三角形面积公式in 12s S ab C =求解; (3)先用余弦定理写出BC 关于α的表达式,再求BC 的取值范围. 【详解】(1)因为锐角α的终边OA ,点A 的坐标为34,55⎛⎫ ⎪⎝⎭,所以434355sin cos 1515αα====,, 所以224324347sin 22cos 255255525αα⎛⎫⎛⎫=⋅⋅==-=- ⎪ ⎪⎝⎭⎝⎭,,所以2411sin 2492571cos 218125αα++==+-. (2)所以11sin sin 22344παα⎛⎫++=- ⎪⎝⎭,所以sin sin 3παα⎛⎫=+ ⎪⎝⎭,因为α是锐角,所以3πααπ⎛⎫++= ⎪⎝⎭, 所以3πα=.(3)在OBC ∆中,222=2cos BC OB OC OB OC BOC +-⋅⋅∠,所以222=11211cos 22cos 33BC ππαα⎛⎫⎛⎫+-⋅⋅⋅+=-+ ⎪ ⎪⎝⎭⎝⎭, 因为α是锐角,所以02πα<<,所以5336πππα, 所以1cos 32πα⎛⎫<+< ⎪⎝⎭, 所以212BC <<+,所以BC ⎛∈ ⎝⎭. 【点睛】本题考查三角函数的定义、三角形的面积公式、求三角函数值域,将三角函数的性质与解三角形结合,综合性较强,同时考查学生的推理和计算能力,属于难题. 9.(2018·上海普陀区·曹杨二中高一期中)已知函数()cos sin .333x x x f x ⎛⎫=⋅+ ⎪⎝⎭(1)将()f x 化为()sin 0022A x H A ππωφωφ⎛⎫⎛⎫++∈-⎪ ⎪⎝⎭⎝⎭>,>,,的形式,并写出其最小正周期和图象对称轴方程,并判断函数的奇偶性(不需证明); (2)若三角形三边a b c 、、满足2b ac b =,所对为B ,求B 的范围; (3)在(2)的条件下,求()f B 的取值范围. 【答案】(1)()23332f x sin x T ππ⎛⎫=++=⎪⎝⎭,对称轴方程为()342x k k Z ππ=+∈,非奇非偶;(2)(0,]3π;(3)12⎤+⎥⎦. 【分析】(1)根据三角恒等变换化简,由正弦型函数的图象与性质求解(2)利用余弦定理及均值不等式求解(3)由(1)(2)及正弦函数的性质可求出.【详解】(1)()212cos sin sin 333233x x x x f x x ⎛⎫=⋅+= ⎪⎝⎭1222sin (1cos )sin()2323332x x x π=+=+++, 所以2323T ππ==,由2,332x k k Z πππ+=+∈, 知对称轴方程为()342x k k Z ππ=+∈, 函数是非奇非偶函数.(2)由余弦定理得222221211cos 222222a cb ac ac B ac ac ac +-+==-≥-=,当且仅当a c =时取等号,因为0B π<<, 所以03B π<≤.(3)由()23,332f x sin x π⎛⎫=++ ⎪⎝⎭03B π<≤,所以()233f B sin B π⎛⎫=+ ⎪⎝⎭03B π<≤,因为253339B πππ<+≤,2133sin B π⎛⎫<+≤ ⎪⎝⎭()1f B <≤+,所以()f B 的取值范围为12⎤+⎥⎦. 【点睛】本题主要考查了三角恒等变换,正弦型函数的图象与性质,余弦定理,均值不等式,由角的范围求函数值域,属于中档题.10.(2018·上海普陀区·曹杨二中高一期中)已知函数()sin 210.3f x x πωω⎛⎫=+- ⎪⎝⎭,> (1)当12ω=时,求函数()f x 的单调递减区间; (2)对于(]x a a a π∈+,,为任意实数,关于x 的方程()1f x =-恰好有两个不等实根,求实数ω的值;(3)在(2)的条件下,若不等式()1f x t +<在03x π⎡⎤∈⎢⎥⎣⎦,内恒成立,求实数t 的取值范围.【答案】(1)72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)1;(3) (0,1). 【分析】(1)当12ω=时,写出函数解析式,由正弦型函数性质可求解(2)由题意可知sin 203x πω⎛⎫+= ⎪⎝⎭在(]x a a a π∈+,,为任意实数,有两不等实根,知其周期为π,即可求解(3)求出()f x 的值域,原不等式可转化为1()1t f x t --<<-恒成立,()f x 的值域是(1,1)t t ---的子集即可.【详解】(1)当12ω=时,()sin 13f x x π⎛⎫=+- ⎪⎝⎭,令322232k x k πππππ+≤+≤+,k Z ∈, 解得722,66k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)因为对于(]x a a a π∈+,,为任意实数,关于x 的方程()1f x =-恰好有两个不等实根, 所以sin 203x πω⎛⎫+= ⎪⎝⎭在(]x a a a π∈+,,为任意实数,有两不等实根, 所以22T ππω==,即1ω=. (3)因为()sin 213f x x π⎛⎫=+- ⎪⎝⎭,03x π⎡⎤∈⎢⎥⎣⎦,, 所以233x πππ≤+≤,0sin 213x π⎛⎫≤+≤ ⎪⎝⎭, 故1()0f x -≤≤,又因为()1f x t +<恒成立, 所以1()1t f x t --<<-恒成立,所以1110t t --<-⎧⎨->⎩,解得01t <<.【点睛】本题主要考查了正弦型函数的单调性,周期,值域,绝对值不等式恒成立,属于难题.11.(2019·上海杨浦区·复旦附中高一期末)设函数()5sin()f x x ωϕ=+,其中0>ω,(0,)2πϕ∈.(1)设2ω=,若函数()f x 的图象的一条对称轴为直线35x π=,求ϕ的值; (2)若将()f x 的图象向左平移2π个单位,或者向右平移π个单位得到的图象都过坐标原点,求所有满足条件的ω和ϕ的值; (3)设4ω=,6π=ϕ,已知函数()()3F x f x =-在区间[0,6]π上的所有零点依次为123,,,,n x x x x ,且1231n n x x x x x -<<<<<,*n N ∈,求123212222n n n x x x x x x --+++++的值.【答案】(1)310π;(2)643n ω+=,13ϕπ=;(3)3913π 【分析】(1)根据对称轴对应三角函数最值以及(0,)2πϕ∈计算ϕ的值;(2)根据条件列出等式求解ω和ϕ的值;(3)根据图象利用对称性分析待求式子的特点,然后求值. 【详解】(1)()5sin(2)f x x ϕ=+,因为35x π=是一条对称轴,36()2sin()55f ππϕ=+对应()f x 最值;又因为(0,)2πϕ∈,所以6617()(,)5510πππϕ+∈,所以63()52πϕπ+=,则310πϕ=;(2)由条件知:5sin((0))025sin((0))0πωϕωπϕ⎧++=⎪⎨⎪-+=⎩ ,可得1122,2,k k Z k k Zπωϕππωϕπ⎧+=∈⎪⎨⎪-+=∈⎩,则1212(2)(,)3k k k k Z πϕ+=∈,又因为(0,)2πϕ∈,所以3πϕ=,则1122,23,3k k Z k k Zππωπππωπ⎧+=∈⎪⎪⎨⎪-+=∈⎪⎩,故有:112262,313,3k k Z k k Z ωω-⎧=∈⎪⎪⎨-⎪=∈⎪⎩,当2k 为奇数时,令221()k m m Z =-∈,所以 13(21)46,33m mm Z ω---==∈,当2k 为偶数时,令22()k m m Z =∈,所以13(2)16,33m m m Z ω--==∈,当11k m +=-时,1116(1)26446(,)333k k m m k Z +-+-==∈,又因为0>ω,所以64()3n n N ω+=∈;(3)分别作出()f x (部分图像)与35y =图象如下:因为242T ππ==,故[0,6]π共有12个T ;记()f x 对称轴为(1,2,3...,23)i x a i ==,据图有:1212x x a +=,2322x x a +=,3432x x a +=,......,232423x x a +=,则12321122322222(...)n n n x x x x x x a a a --+++++=+++,令4,62x k k Z πππ+=+∈,则,412k x k Z ππ=+∈,又因为[0,6]x π∈,所以[0,23]k ∈,由于()f x 与35y =仅在前半个周期内有交点,所以max 22k =, 则1232101221139122222(...)223444123n n n x x x x x x πππ--+++++=++++⋅⋅=.【点睛】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.12.(2019·上海中学高一期中)已知函数()()()sin 20f x x φφπ=+<<,其图像的一个对称中心是012π⎛⎫- ⎪⎝⎭,,将()f x 的图像向左平移3π个单位长度后得到函数()g x 的图像.(1)求函数()g x 的解析式;(2)若对任意[]120x x t ∈,,,当12x x <时,都有()()()()1212f x f x g x g x --<,求实数t 的最大值;(3)若对任意实数()()0a y g x ωω=,>在4a a π⎡⎤+⎢⎥⎣⎦,上与直线12y 的交点个数不少于6个且不多于10个,求正实数ω的取值范围.【答案】(1)()5sin 26g x x π⎛⎫=+⎪⎝⎭; (2)4π; (3)[)12,20. 【分析】(1)由图像的一个对称中心是012π⎛⎫- ⎪⎝⎭,列方程012f π⎛⎫-= ⎪⎝⎭即可求得6π=ϕ,即可求得()sin 26f x x π⎛⎫=+⎪⎝⎭,利用平移规律得()3g x f x π⎛⎫=+⎪⎝⎭,问题得解. (2)由题可得()()f x g x -在[]0,t 上单调递增,求得()()f x g x -的增区间为(),44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,利用[]()0,,44t k k k Z ππππ⎡⎤⊆-+∈⎢⎥⎣⎦即可求得0,4t π⎛⎤∈ ⎥⎝⎦,问题得解.(3)()y g x ω=的最小正周期为T πω=,由题可得:4a a π⎡⎤+⎢⎥⎣⎦,的区间长度满足3454T T ππ⎧≤⎪⎪⎨⎪>⎪⎩,解不等式即可.【详解】(1)由题意,得sin 0126f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 解得()6k k Z πϕπ=+∈,又0ϕπ<<,∴6π=ϕ, ∴()sin 26f x x π⎛⎫=+⎪⎝⎭, 从而()3g x f x π⎛⎫=+ ⎪⎝⎭5sin 2sin 2366x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦; (2)对任意[]12,0,x x t ∈,且12x x <,()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,即()()f x g x -在[]0,t 上单调递增,()()5sin 2sin 266f x g x x x x ππ⎛⎫⎛⎫-=+-+= ⎪ ⎪⎝⎭⎝⎭, 易得其单调增区间为(),44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,由于[]()0,,44t k k k Z ππππ⎡⎤⊆-+∈⎢⎥⎣⎦,∴当0k =时,[]0,,44t ππ⎡⎤⊆-⎢⎥⎣⎦,从而0,4t π⎛⎤∈ ⎥⎝⎦,∴实数t 的最大值为4π;(3)()5sin 26y g x x πωω⎛⎫==+⎪⎝⎭,其最小正周期为22T ππωω==,而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π, 要满足题意,则3454T T ππ⎧≤⎪⎪⎨⎪>⎪⎩,∴2012T πππω<=≤,解得[)12,20ω∈. 【点睛】本题主要考查了三角函数的图象特点及函数图象平移规律,还考查了函数单调性概念及求三角函数的增区间知识,考查复合函数的单调性规律,属于难题. 13.(2017·上海松江区·高一期末)若函数()f x 满足()32f x f x π⎛⎫=+⎪⎝⎭且()44f x f x x R ππ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,则称函数()f x 为“M 函数”. (1)试判断()4sin3f x x =是否为“M 函数”,并说明理由; (2)函数()f x 为“M 函数”,且当,4x ππ⎡⎤∈⎢⎥⎣⎦时,()sin f x x =,求()y f x =的解析式,并写出在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间; (3)在(2)的条件下,当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,关于x 的方程()(f x a a =为常数)有解,记该方程所有解的和为()S k ,求()S k . 【答案】(1)不是“M 函数”;(2),42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦;(3)()()()()222341,(01)223341,423411k k a a S k k k a k k a πππ⎧++≤<=⎪⎪⎪⎪=++=⎨⎪⎪++<<⎪⎪⎩.【分析】()1由不满足()44f x f x x R ππ⎛⎫⎛⎫+≠-∈ ⎪ ⎪⎝⎭⎝⎭,得()4sin 3f x x =不是“M 函数”,()2可得函数()f x 的周期32T π=,()()2f x f x x R π⎛⎫=-∈ ⎪⎝⎭, ①当33,242x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()33sin 22f x f x k x k ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ②当33,2224x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时,()33cos 222f x f x k x k πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间:,42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦()3由()2可得函数()f x 在,2ππ⎡⎤-⎢⎥⎣⎦上的图象,根据图象可得:①当02a ≤<或1时,()(f x a a =为常数)有2个解,其和为2π②当2a =时,()(f x a a =为常数)有3个解,其和为34π.③1a <<时,()(f x a a =为常数)有4个解,其和为π 即可得当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,记关于x 的方程()(f x a a =为常数)所有解的和为()S k ,【详解】()()41sin3f x x =不是“M 函数”. 44sin sin 43433f x x x πππ⎛⎫⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,44sin sin 43433f x x x πππ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()44f x f x x R ππ⎛⎫⎛⎫∴+≠-∈ ⎪ ⎪⎝⎭⎝⎭,()4sin3f x x ∴=不是“M 函数”. ()2函数()f x 满足()32f x f x π⎛⎫=+ ⎪⎝⎭,∴函数()f x 的周期32T π=()44f x f x x R ππ⎛⎫⎛⎫+=-∈ ⎪ ⎪⎝⎭⎝⎭,()()2f x f x x R π⎛⎫∴=-∈ ⎪⎝⎭, ①当33,242x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,()33sin 22f x f x k x k ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭②当33,2224x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时,()33cos 222f x f x k x k πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()333,22224333,2242cos x k k x k f x sin x k k x k ππππππππππ⎧⎛⎫⎛⎫--≤≤+ ⎪ ⎪⎪⎪⎝⎭⎝⎭∴=⎨⎛⎫⎛⎫⎪-+≤≤+ ⎪ ⎪⎪⎝⎭⎝⎭⎩,在30,2π⎡⎤⎢⎥⎣⎦上的单调递增区间:,42ππ⎡⎤⎢⎥⎣⎦,3,2ππ⎡⎤⎢⎥⎣⎦; ()3由()2可得函数()f x 在,2ππ⎡⎤-⎢⎥⎣⎦上的图象为:①当0a ≤<或1时,()(f x a a =为常数)有2个解,其和为2π.②当2a =时,()(f x a a =为常数)有3个解,其和为34π.③当12a <<时,()(f x a a =为常数)有4个解,其和为π ∴当()3,22k x k N πππ⎡⎤∈-+∈⎢⎥⎣⎦时,记关于x 的方程()(f x a a =为常数)所有解的和为()S k ,则()()()()222341,(01)223341,43411k k a a S k k k a k k a πππ⎧++≤<=⎪⎪⎪⎪=++=⎨⎪⎪++<<⎪⎪⎩. 【点睛】本题考查了三角函数的图象、性质,考查了三角恒等变形,及三角函数型方程问题,属于难题.14.(2015·上海金山区·高一期中)某种波的传播是由曲线()sin()(0)f x A x A ωϕ=+>来实现的,我们把函数解析式()sin()f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波11()sin()f x x ϕ=+与22()sin()f x x ϕ=+叠加后仍是“1类波”,求12ϕϕ-的值;(2)在“A 类波“中有一个波是,从A 类波中再找出两个不同的波(每两个波的初相ϕ都不同),使得这三个不同的波叠加之后是平波,即叠加后是0y =,并说明理由. 【答案】(1)1222,3k k Z πϕϕπ-=±∈(2)2324()sin(),()sin(),33f x A x f x A x ππ=+=+ 试题分析:(1)将两函数式相加化简找到最大值为1,建立关于12,ϕϕ的关系式,进而求得角12ϕϕ-的大小;(2)中首先设出所找的波,采用待定系数法,将三个不同的波叠加化简后与0y =对比,找到满足的条件,求出对应的ϕ值,从而确定所求的波试题解析:(1)1212()()sin()sin()f x f x x x ϕϕ+=+++1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ=+++=1=,即121cos(),2ϕϕ-=-所以1222,3k k Z πϕϕπ-=±∈ (2)设2132()sin(),()sin(),f x A x f x A x ϕϕ=+=+则12312()()()sin sin()sin()f x f x f x A x A x A x ϕϕ++=++++ =1212sin (1cos cos )cos (sin sin )0A x A x ϕϕϕϕ++++=恒成立则12121cos cos 0{sin sin 0ϕϕϕϕ++=+=,消去2ϕ可得11cos 2ϕ=-若取12,3πϕ=可取243πϕ=(或223πϕ=-等) 此时12312()()()sin sin()sin()0f x f x f x A x A x A x ϕϕ++=++++=是平波 考点:1.三角函数式的化简;2.三角函数求最值15.(2019·上海市实验学校高一期末)已知对任意x R ∈,cos cos210a x b x ++≥恒成立(其中0b >),求的最大值.【答案】+a b 的最大值为2.试题分析:利用二倍角公式2cos 22cos 1x x =-,利用换元法()cos 11t x t =-≤≤,将原不等式转化为二次不等式2210bt at b ++-≥在区间[]1,1-上恒成立,利用二次函数的零点分布进行讨论,从而得出+a b 的最大值,但是在对01b <≤时的情况下,主要对二次函数的对称轴4at b=-是否在区间[]1,1-进行分类讨论,再将问题转化为2288a b b ≤-的条件下,求+a b 的最大值,试题解析:由题意知,令cos x t =,[]1,1t ∈-,则当()2210f t bt at b =++-≥,[]1,1t ∈-恒成立,开口向上,①当1b >时,()010f b =-<,不满足()2210f t bt at b =++-≥,[]1,1t ∈-恒成立,②当01b <≤时,则必有()()()1101{{11101f a b a b a b f b a a b =++≥≥-+⇒⇒≤+-=-+≥≤+(1) 当对称轴[]1,14at b=-∉-时,即14a b ≥,也即4a b ≥时,有41b a b ≤≤+, 则13b ≤,413a b ≤+≤,则53a b +≤,当43a =,13b =时,()max 53a b +=. 当对称轴[]1,14at b=-∈-时,即14a b ≤,也即4a b ≤时, 则必有()2810a b b ∆=--≤,即()228188a b b b b ≤-=-,又由(1)知()221a b ≤+,则由于()()()2222188961310b b b b b b +--=-+=-≥,故只需2288a b b ≤-成立即可,问题转化为2288a b b ≤-的条件下,求+a b 的最大值,然后利用代数式的结构特点或从题干中的式子出发,分别利用三角换元法、导数法以及柯西不等式法来求+a b 的最大值.法一:(三角换元)把条件配方得:2214122a b ⎛⎫+-≤ ⎪⎝⎭,()cos {011sin 2a r r b θθ=≤≤+=,所以()sin 13131cos sin 2222222r a b r r θθθϕ+=++=++≤+≤, ()max 2a b ∴+=;法二:(导数)令则即求函数的导数,椭圆的上半部分;法三:(柯西不等式)由柯西不等式可知:,当且仅当,即及时等号成立.即当时,+a b 最大值为2.综上可知.考点:1.二倍角;2.换元法;3.二次不等式的恒成立问题;4.导数;5.柯西不等式 16.(2020·上海浦东新区·华师大二附中高一月考)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的最小正周期为π,且直线2x π=-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且A B C <<,cos a B =,若C 角满足()1f C =-,求a b c ++的取值范围;(3)将函数()y f x =的图象向右平移4π个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数R λ∈,*n N ∈,且函数()()()F x f x g x λ=+在(0,)n π内恰有2021个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =;(2)()1;(3)1λ=-,1347n =. 【分析】(1)由函数的周期公式可求出ω的值,求出函数()y f x =的对称轴方程,结合直线2x π=-为一条对称轴结合ϕ的范围可得出ϕ的值,于此得出函数()y f x =的解析式; (2)由()1f C =-得出2C π=,再由cos a B =结合锐角三角函数得出1c =,利用正弦定理以及内角和定理得出14a b c A π⎛⎫++=++ ⎪⎝⎭,由条件得出04A π<<,于此可计算出a b c ++的取值范围;(3)令()0F x =,得22sin sin 10x x λ--=,换元得出[]sin 1,1t x =∈-,得出方程2210t t λ--=,设该方程的两根为1t 、2t ,由韦达定理得出1212t t =-,分(ii )101t <<、202t <<;(ii )11t =,2102t -<<;(iii )11t =-,2102t <<三种情况讨论,计算出关于x 的方程22sin sin 10x x λ--=在一个周期区间()0,2π上的实根个数,结合已知条件得出λ与n 的值. 【详解】(1)由三角函数的周期公式可得22πωπ==,()()sin 2f x x ϕ∴=+, 令()22x k k Z πϕπ+=+∈,得()422k x k Z πϕπ=-+∈, 由于直线2x π=-为函数()y f x =的一条对称轴,所以,()2422k k Z ππϕπ-=-+∈, 得()32k k Z πϕπ=+∈,由于0ϕπ<<,1k ∴=-,则2ϕπ=, 因此,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭; (2)A B C <<,由三角形的内角和定理得3A B C C π=++<,3C ππ∴<<.()cos21f C C ==-,且2223C ππ<<,2C π∴=,2C π∴=. cos cos sin 2B A A π⎛⎫∴=-= ⎪⎝⎭,由cos a B =,得sin a A =,由锐角三角函数的定义得sin a A c =,1sin ac A∴==,由正弦定理得1sin sin b a B A ==,sin sin cos 2b B A A π⎛⎫∴==-= ⎪⎝⎭,sin cos 114a b c A A A π⎛⎫∴++=++=++ ⎪⎝⎭,2C π=,且22A B A π+=>,04A π∴<<,442A πππ∴<+<,sin 124A π⎛⎫∴<+< ⎪⎝⎭.21a b c ∴<++<,因此,a b c ++的取值范围是()1;(3)将函数()y f x =的图象向右平移4π个单位, 得到函数cos 2cos 2sin 242y x x x ππ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得2210t t λ--=,280λ∆=+>,则关于t 的二次方程2210t t λ--=必有两不等实根1t 、2t ,则1212t t =-,则1t 、2t 异号, (i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()0,n n N π*∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()0,n n N π*∈也有偶数个根,不合乎题意;(ii )当11t =,则2102t -<<,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202136732=⨯+,则方程22sin sin 10x x λ--=在()0,1346π上有36732019⨯=个根,由于方程1sin x t =在区间()1346,1367ππ上只有一个根,在区间()1367,1368ππ上无实解,方程2sin x t =在区间()1346,1367ππ上无实数解,在区间()1367,1368ππ上有两个根,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1347π上有2020个根,在区间()0,1348π上有2022个根,不合乎题意;(iii )当11t =-时,则2102t <<,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202136732=⨯+,则方程22sin sin 10x x λ--=在()0,1346π上有36732019⨯=个根,由于方程1sin x t =在区间()1346,1367ππ上无实数根,在区间()1367,1368ππ上只有一个实数根,方程2sin x t =在区间()1346,1367ππ上有两个实数解,在区间()1367,1368ππ上无实数解, 因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1347π上有2021个根,在区间()0,1348π上有2022个根,此时,()()2211110λλ⨯--⨯--=+=,得1λ=-.综上所述:1λ=-,1347n =.【点睛】本题考查利用三角函数的性质求三角函数的解析式,以及三角形中的取值范围问题,以及三角函数零点个数问题,同时也涉及了复合函数方程解的个数问题,考查分类讨论思想的应用,综合性较强,属于难题.17.(2017·上海市实验学校高一期中)已知函数()()sin2R x x f xπ=∈,任取t R ∈,若函数()f x 在区间[],1t t +上的最大值为()M t ,最小值为()m t ,记()()()g t M t m t =-. (1)求函数()f x 的最小正周期及对称轴方程; (2)当[]2,0t ∈-时,求函数()g t 的解析式; (3)设函数()2x kh x -=,()28H x x x k k =-+-,其中k 为参数,且满足关于t的不等式()40g t -≤有解,若对任意[)14,x ∈+∞,存在(]2,4x ∈-∞,使得()()21h x H x =成立,求实数k 的取值范围.【答案】(1)4T =,21x k =+(k Z ∈); (2)()[]3sin 1,2,223cos 1,,122cos sin ,1,022t t g t t t t t t ππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫=+∈--⎨⎪⎢⎣⎭⎪⎪-∈-⎪⎩. (3)7,2k ⎛⎤∈-∞ ⎥⎝⎦.【分析】(1)根据正弦型函数()f x 的解析式求出它的最小正周期和对称轴方程;(2)分类讨论32,2t ⎡⎫∈--⎪⎢⎣⎭、3,12t ⎡⎫∈--⎪⎢⎣⎭、[]1,0t ∈-时,求出对应函数()g t 的解析式;(3)根据()f x 的最小正周期求出函数()g t 的最小正周期,研究函数()g t 在一个周期内的性质,求出()g t 的解析式,画出()g t()40g t -≤求出k 的取值范围,再把“若对任意[)14,x ∈+∞,存在(]2,4x ∈-∞,使得()()21h x H x =成立”转化为“()H x 在[)4,+∞上的值域是()h x 在(],4-∞上的值域的子集”,从而求出k 的取值范围. 【详解】(1)函数()f x 的最小正周期为242T ππ==,令()22x k k Z πππ=+∈,解得对称轴为21()x k k Z =+∈;(2)①当3[2,)2t ∈--时,在区间[],1t t +上,()()sin2M t f t t π==,()(1)1m t f =-=-,所以()()()1sin2g t M t m t t π=-=+②当3[,1)2t ∈--时,在区间[],1t t +上,()(1)sin[(1)]cos22M t f t t t ππ=+=+=,()(1)1m t f =-=-,所以()()()1cos2g t M t m t t π=-=+,③当[1,0]t ∈-时,在区间[],1t t +上,()(1)sin[(1)]cos22M t f t t t ππ=+=+=,()()sin2m t f t t π==,所以()()()cossin22g t M t m t t t ππ=-=-,所以当[]2,0t ∈-时,()[]3sin 1,2,223cos 1,,122cos sin ,1,022t t g t t t t t t ππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫=+∈--⎨⎪⎢⎣⎭⎪⎪-∈-⎪⎩;(3)因为函数()f x 的最小正周期为4,所以()4(),(4)()M t M t m t m t +=+=,所以(4)(4)(4)()()()g t M t m t M t m t g t +=+-+=-=即函数()g t 的周期为4,由(2)可得3sin1,2,223cos1,,122cos sin,[1,0)22()11sin,[0,)2211cos,[,1)22sin cos,[1,2]22t tt tt t tg tt tt tt t tππππππππ⎧⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪⎡⎫+∈--⎪⎪⎢⎣⎭⎪⎪-∈-⎪=⎨⎪-∈⎪⎪⎪-∈⎪⎪⎪-∈⎩,画出函数()g t的部分图像如图所示,函数()g t的值域为[12-,()40g t-≤max4()g t≤=,则4k≤,若对任意[)14,x∈+∞,存在(]2,4x∈-∞,使得()()21h x H x=成立,则()H x在[)4,+∞上的值域是()h x在(],4-∞上的值域的子集,()2,22,x kx kk xx kh xx k---⎧≥==⎨<⎩,当4k≤时,()h x在(,)k-∞上单调递减,在(,4]k上单调递增,所以min()()1h x h k==,因为()28H x x x k k=-+-在[)4,+∞上单调递增,所以min()(4)82H x H k==-,所以821k-≥,即72k≤.【点睛】本题考查正弦型函数的图像与性质,涉及周期性、对称性与单调性,考查不等式恒成立问题,分段函数的单调性与值域,属于难题.。

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03 三角函数压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题03三角函数压轴题题型/考向一:三角函数的图像与性质题型/考向二:三角恒等变换题型/考向三:三角函数综合应用一、三角函数的图像与性质热点一三角函数图象的变换1.沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右减”,即φ>0,左移;φ<0,右移.沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下减”,即k>0,上移;k<0,下移.2.沿x轴伸缩:若ω>0,A>0,由y=f(x)变为y=f(ωx)时,点的纵坐标不变,横坐标变为原来的1ω倍.沿y轴伸缩:由y=f(x)变为y=Af(x)时,点的横坐标不变,纵坐标变为原来的A 倍.热点二三角函数的图象与解析式已知图象求函数y =A sin(ωx +φ)+B (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最高点、最低点或特殊点求A ,B ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.热点三三角函数的性质1.单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间;由π2+2k π≤ωx+φ≤3π2+2k π(k ∈Z )可得单调递减区间.2.对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.3.奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx +φ)为偶函数.二、三角恒等变换热点一化简与求值(角)1.同角三角函数的基本关系:sin 2α+cos 2α=1,sin αcos α=tan ≠π2+k π,k ∈2.诱导公式的记忆口诀:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.3.熟记三角函数公式的两类变形:(1)和差角公式的变形;(2)倍角公式的变形.热点二三角函数恒等式的证明三角恒等式常从复杂一边向简单的一边转化,或者两边同时推出一个相同式子,有时要证等式先进行等价交换,进而证明其等价命题.○热○点○题○型一三角函数的图像与性质一、单选题1.将函数()sin cos f x x x =-的图象向左平移7π12个单位长度,得到函数()y g x =的图象,关于函数()y g x =的下列说法中错误的是()A .周期是2πB .非奇非偶函数C .图象关于点5π,03⎛⎫⎪⎝⎭中心对称D .在π0,2⎛⎫⎪⎝⎭内单调递增【答案】D【详解】()πsin cos 2sin 4f x x x x ⎛⎫=-=-⎪⎝⎭,则()7πππ2sin 2sin 1243g x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,则2πT =,故A 正确;因为()π2sin 3g x x ⎛⎫-=-+ ⎪⎝⎭,则()()()(),g x g x g x g x -≠-≠-,故函数()g x 是非奇非偶函数,故B 正确;2.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .11sin sin 2sin 323=++y x x xB .11sin 2sin 323y x x x=--C .11sin cos 2cos323y x x x=++D .11cos cos 2cos323y x x x=++3移()0ϕϕ>个单位长度,再向下平移1个单位长度得到函数()g x 的图象.若对于任意的1π0,4x ⎡⎤∈⎢⎥⎣⎦,总存在2π,04x ⎡⎤∈-⎢⎥⎣⎦,使得()()12f x g x =,则ϕ的值可能是()A .π6B .5π24C .π4D .2π3A.B.C .D .5.已知函数()()2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则满足()()5π605π12f x f f x f ⎛⎫- ⎪⎝⎭>⎛⎫- ⎪⎝⎭的正整数x 的最小值为()A .1B .2C .3D .4二、多选题6.已知函数2π()cos (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且曲线()y f x =关于点π,03⎛⎫- ⎪⎝⎭对称,则()A .()f x 以2π为周期B .()f x 的图象关于直线2π3x =对称C .将()f x 的图象向右平移π3个单位长度后对应的函数为偶函数D .函数9()10y f x =+在[0,π]上有两个零点故选:BD.7.已知函数()()()sin 0,0π,f x A x b A b ωϕϕ=++><<∈R 的部分图像如图,则()A .5πb ωϕ=B .π23f ⎛⎫= ⎪⎝⎭C .将曲线()y f x =向右平移π9个单位长度得到曲线4cos 32y x =-+D .点11π,218⎛⎫-⎪⎝⎭为曲线()y f x =的一个对称中心8.已知函数()f x 的定义域为()1,1-,对任意的(),1,1x y ∈-,都有()()1f x f y f xy ⎛⎫--= ⎪-⎝⎭,且112f ⎛⎫= ⎪⎝⎭,当()0,1x ∈时,()0f x >,则()A .()f x 是偶函数B .()00f =C .当A ,B 是锐角ABC 的内角时,()()cos sin f B f A <D .当0n x >,且21112n n n x x x ++=,112x =时,()12n n f x -=【答案】BCD【详解】令0x y ==,得()00f =,故B 正确;9.已知某游乐场循环观光车路线近似为一个半径为1km 的圆,观光车从起始站点P 出发,沿图中顺时针方向行驶,记观光者从某次出发开始,行驶的时间为t 小时.A ,B 是沿途两个站点,C 是终点站,D 是该游乐场的观景点之一.已知该观光车绕行一圈的时间是固定的,且π,,6BOA OA OC OA OD ∠=⊥⊥.若要求起始站点P 无论位于站台B ,C 之间的任何位置(异于B ,C ),观光车在ππ,124t ⎛⎫∈ ⎪⎝⎭的时间内,都要至少经过两次终点站C ,则下列说法正确的是()A .该观光车绕行一周的时间小于π6B .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内不一定会经过终点站C C .该观光车的行驶速度一定大于52km /h3D .该观光车在π0,12t ⎛⎫∈ ⎪⎝⎭内一定会经过一次观景点Ds t 于平衡位置的高度()cm h 可以田ππ2sin 24h t ⎛⎫=+ ⎪⎝⎭确定,则下列说法正确的是()A .小球运动的最高点与最低点的距离为2cmB .小球经过4s 往复运动一次C .()3,5t ∈时小球是自下往上运动D .当 6.5t =时,小球到达最低点【答案】BD【详解】小球运动的最高点与最低点的距离为()224cm --=,所以选项A 错误;因为2π4π2=,所以小球经过4s 往复运动一次,因此选项B 正确;当()3,5t ∈时,ππ7π11π,2444t ⎛⎫+∈ ⎪⎝⎭,所以是自下往上到最高点,再往下运动,因此选项C 错误;当 6.5t =时,ππ2sin 6.5224h ⎛⎫=⨯+=- ⎪⎝⎭,所以选项D 正确,故选:BD○热○点○题○型二三角恒等变换一、单选题1.已知π0,2α⎛⎫∈ ⎪⎝⎭,cos 22sin 21αα+=,则sin α=()A .15B 5C .45D 25【答案】D【详解】π0,2α⎛⎫∈ ⎪⎝⎭,cos 0,sin 0αα∴>>22cos 22sin 2cos sin 4sin cos 1αααααα+=-+= ①,又22sin cos 1αα+=②,由①②得25sin 5α=.故选:D.23,5,…,记BAC α∠=,DAC β∠=,则()cos αβ+=()A 24-B 36C 36D 24+【答案】B⎝⎭A.-B.C.9D.9 94.人脸识别技术应用在各行各业,改变着人类的生活,而所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份.在人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用的测量距离的方式有曼哈顿距离和余弦距离.假设二维空间中有两个点()()1122,,,A x y B x y ,O 为坐标原点,余弦相似度similarity 为向量,OA OB夹角的余弦值,记作()cos ,A B ,余弦距离为()1cos ,A B -.已知()sin ,cos P αα,()sin ,cos Q ββ,()sin ,cos R αα-,若P ,Q 的余弦距离为13,Q ,R 的余弦距离为12,则tan tan αβ⋅=()A .7B .17C .4D .145.已知函数()()*sin cos n n n f x x x n =+∈N ,函数()4324y f x =-在3π0,8⎡⎤⎢⎥⎣⎦上的零点的个数为()A .2B .3C .4D .56.已知函数())2sin 02f x x x ωω⎛⎫=-> ⎪⎝⎭的图像如图所示,则ω的值为()A .13B .43C .16D .76二、多选题7.已知函数2()sin cos f x x x x =-+,则下列说法正确的是()A .π()sin(2)3f x x =-B .函数()f x 的最小正周期为πC .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈D .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到【答案】ABD中所示的建筑对应的黄金三角形,它的底角正好是顶角的两倍,且它的底与腰之比为黄金分割比(黄金分割比=).在顶角为BAC ∠的黄金ABC 中,D 为BC 边上的中点,则()A .cos 342AD AC︒=B .cos 27sin 27cos 27sin 27AD CD ︒+︒=︒-︒C .AB在ACACD .cos BAC ∠是方程324231x x x +-=的一个实根则AB在AC 上的投影向量为设cos x θ=,则()()222212121x x x x x -=--+-,整理得324231x x x +-=,D 正确.故选:ABD9.已知()cos 4cos 3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则()A .{}123π,,7∈θθθB .123π++=θθθC .1231cos cos cos 8θθθ=-D .1231cos cos cos 2θθθ++=民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中2π3COD ∠=,33OC OA ==,动点P 在 CD 上(含端点),连结OP 交扇形OAB 的弧 AB 于点Q ,且OQ xOC yOD =+,则下列说法正确的是()A .若y x =,则23x y +=B .若2y x =,则0OA OP ⋅=C .2AB PQ ⋅≥-D .112PA PB ⋅≥则13(1,0),(3,0),(,),(22A C B D --设()2πcos ,sin ,0,3Q θθθ⎡⎤∈⎢⎥⎣⎦,则由OQ xOC yOD =+ 可得cos θ=○热○点○题○型三三角函数综合应用1.已知函数2()cos 2cos 1f x x x x =-+.(1)求函数()f x 的最小正周期及单调递增区间;(2)求函数()f x 在区间5ππ[,]126-的值域;2.已知2,1,cos ,cos 2m x n x x ⎛⎫=-=+ ⎪⎝⎭,设函数()f x m n =⋅.(1)当π5π,1212x ⎡⎤∈-⎢⎥⎣⎦时,分别求函数()f x 取得最大值和最小值时x 的值;(2)设ABC 的内角,,A B C 的对应边分别是,,,a b c 且a =,6,12A b f ⎛⎫==- ⎪⎝⎭,求c 的值.3.已知函数()()21cos cos 02f x x x x ωωωω=+->.(1)若1ω=,求函数()f x 的最小正周期;(2)若()y f x =图象在0,4π⎛⎫ ⎪⎝⎭内有且仅有一条对称轴,求8f π⎛⎫⎪⎝⎭的取值范围.4.已知函数()()2sin f x x ωϕ=+(0ω>,2ϕ<)的部分图象如图所示.(1)求()f x 的解析式,并求()f x 的单调递增区间;(2)若对任意π,3x t ⎡⎤∈⎢⎥⎣⎦,都有()π116f x f x ⎛⎫--≤ ⎪⎝⎭,求实数t 的取值范围.结合图像可知:5ππ7π4666t ≤-<,解得所以实数t 的取值范围为ππ,43⎡⎫⎪⎢⎣⎭.5.若实数,,且满足,则称、是“余弦相关”的.(1)若2x π=,求出所有与之“余弦相关”的实数y ;(2)若实数x 、y 是“余弦相关”的,求x 的取值范围;(3)若不相等的两个实数x 、y 是“余弦相关”的,求证:存在实数z ,使得x 、z 为“余弦相关”的,y 、z 也为“余弦相关”的.【答案】(2)由()cos cos cos x y x y +=+得cos cos sin sin cos cos x y x y x y -=+,()1sin sin cos cos cos x y x y x +-=-,()cos y x ϕ+=-,故cos x -≤,222cos cos x x ≤-,11cos x -≤≤,))121arccos ,arccos x π⎡⎤∈-⎣⎦(3)证明:先证明3x y ππ≤+≤,反证法,假设x y π+<,则由余弦函数的单调性可知()cos cos x y x +≤,()0cos cos cos y x y x ∴=+-≤,2y π∴≥,同理2x π≥,相加得x y π+≥,与假设矛盾,故x y π+≥.[]2202,,x y πππ--∈Q ,且()()()()()2222cos cos cos cos cos cos x y x y x y x y ππππ⎡⎤-+-=+=+=-+-⎣⎦故22,x y ππ--也是余弦相关的,()()22x y πππ∴-+-≥,即3x y π+≤.记()3,z x y π=-+则[]02,z π∈.()()3cos cos cos x z y y π+=-=-,()()()3cos cos cos cos cos cos cos cos cos cos x z x x y x x y x x y y π+=+--=-+=-+=-()cos cos cos x z x z ∴+=+,故x 、z 为“余弦相关”的;同理y 、z 也为“余弦相关”的。

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角函数(解析版)

专题02三角函数一、填空题高三校考期中)函数的最小正周期为【答案】由题意可得:函数的最小正周期.故答案为:.高三同济大学第一附属中学校考期中)已知函数,则函数的【答案】因为,所以的最小正周期为.故答案为:.高三上海市回民中学校考期中)函数的定义域为【答案】【分析】定义域满足.【解析】的定义域满足,即.故答案为:.高一校考期中)是由解析式得的定义域为,关于原点对称,且,故为奇函数,高一格致中学校考期中)函数的一个对称中心是(....【分析】求解出对称中心为,对赋值则可判断令,解得,所以函数图象的对称中心是,令,得函数图像的一个对称中心是,高一闵行中学校考期中)函数的值域是【答案】【解析】,因为所以函数的值域为.故答案为:.若,则的取值范围是【答案】【分析】通过讨论的取值范围,即可得出,进而求出的取值范围由题意,,而,则,当时,解得或;当时,解得,综上:.故答案为:.高一上海市进才中学校考期中)函数的严格增区间是【答案】【分析】根据正切型函数的图象与性质,得到,即可求解由题意,函数,令,解得,即函数的递增区间为.故答案为:.高一上海市大同中学校考期中)函数(,)的,最小正周期是,初相是【答案】【分析】根据函数的性质求出,即得函数的解析式因为函数(,)的振幅是因为函数的最小正周期是,所以.,所以.所以函数的解析式为.故答案为高一华东政法大学附属中学校考期中)函数,的最小正周期为,则实数【答案】/0.5【分析】由周期公式求出的值由题可知,,∴.故答案为:.高一上海市青浦高级中学校考期中)已知函数是偶函数,则的取值是【答案】【分析】根据余弦函数的性质求得的值令,则,所以的值为.故答案为:.高一上海市嘉定区第一中学校考期中)已知函数的最,则正整数的取值是解:因为函数的最小正周期不小于所以(),得,所以正整数的取值为高一上海市进才中学校考期中)若函数的图像关于直线对称,则【分析】根据三角函数的对称性,得到,即可求出结果因为函数的图像关于直线对称,所以,即.故答案为:.高一校考期中)若函数的最小正周期是,则【答案】【分析】根据三角函数的最小正周期公式列方程,解方程求得的值由于,依题意可知.故答案为:高一校考期中)若函数的最大值为,则的值为【答案】【分析】由三角函数辅助角公式可得,由三角函数的有界性可得函数的最大值为,再结合已知条件运算即可得解解:因为,即函数的最大值为,由已知有,即,故答案为.高一校考期中)函数(其中)为奇函数,则【答案】/函数是奇函数,则,而,所以.故答案为:高三校考期中)若将函数向右平移个单位后其图像关于轴对称,则【答案】易知函数向右平移个单位后得函数,此时函数关于轴对称,则,又,所以时,.故答案为:.函数图像上一个最高点为,相邻的一个最低点为,则【答案】【分析】由题知,,即,从而利用周期公式求出.由三角函数的图象与性质可知,,则,又,所以,.故答案为:.高三上海市建平中学校考期中)关于的不等式对任意恒成立,则实数的最大值为【答案】/令,,将不等式转化成关于的一元二次不等式,因为,所以,即,令,,有令,,要使不等式对于任意恒成立,只需满足,,函数在上单调递减,在上单调递增,所以时,即,得或,有最小值,,得,所以实数的最大值为.故答案为:.高一校考期中)若、是函数两个不同的零点,则的最【答案】【解析】、是函数的零点满足,所以,由于所以的最小值为.故答案为:.的部分图像,【答案】【分析】由图象,首先得出的值,然后根据的值运用周期公式求出值,再将最高点的坐标代入函数式中求解的值即可得出表达式【解析】由图象可知,,,,,将,又故答案为:.图像如图,则函数的解析式为【答案】【分析】根据函数图象得到,根据周期求出,再根据函数过点,代入求出,即可得解;【解析】解:由图可知,,所以,解得,所以,又函数过点,所以,所以,,解得,,又,所以,所以;故答案为:23.(2023下·上海长宁·高一上海市第三女子中学校考期中)函数的部分图像如图所示,则的单调减区间为(A.B.【答案】B【分析】由图象得出函数的周期,从而可得减区间.【解析】由题意周期是,,,所以减区间是,故选:B.24.(2023下·上海黄浦·高一上海市大同中学校考期中)设是某地区平均气温(摄氏度)关于时间(月份)的函数.下图显示的是该地区1月份至12月份的平均气温数据,函数近似满足.下列函数中,最能近似表示图中曲线的函数是()A.B.【答案】A【分析】结合题意和函数图象,结合三角函数的性质求解即可.【解析】由题意,,即.由图可知,,解得,,此时,将点代入解析式,可得,即,所以,,即,取,,所以.故选:A.25.(2021下·上海浦东新·高一华师大二附中校考期中)函数的部分图象如图,轴,当时,若不等式恒成立,则m的取值范围是()A.B.C.D.【答案】A【分析】利用函数的图象,求出对称轴方程,从而求出函数的周期,由此求得的值,再利用特殊点求出的值,得到函数的解析式,然后利用参变量分离以及正弦函数的性质,即可求出的取值范围.因为轴,所以图象的一条对称轴方程为,所以,则,所以,又,,且,所以,故,因为当时,不等式恒成立,所以,令,因为,则,所以所以的最小值为,所以,即.故选:.把函数按进行平移,得到函数,且满足,则使得最小时,【答案】【分析】根据三角函数的变换规则得到的解析式,依题意为奇函数,解得的取值,再求出的最小值,即可得解;解:把函数按进行平移得到,即,又,即为奇函数,所以,解得,又,要使最小,即取得最小,所以;故答案为:高一上海市南洋模范中学校考期中)函数的最小,则实数的最小值为【答案】由题意利用正弦函数的周期性,结合题意即可求得实数的最小值.解:函数的最小正周期不大于所有,,则实数的最小值为,故答案为:.高三校考期中)若函数在上单调递增,则的最大值【答案】【分析】由正弦函数的性质,令可得函数的单调增区间,结合题设给定递增区间求由正弦函数的性质知:在上递增,在上递减,对于,有,可得;有,可得,所以题设函数在上递增,在上递减,要使其在上单调递增,则,故的最大值为.故答案为:.已知函数,,则的最小值是【答案】的最小值等于,进而可以求出结果因为,所以,,所以,故答案为:.高三上海市七宝中学校考期中)已知函数(其中为常数,且)有且仅有个零点,则的最小值为【解析】由得,,设,则作出与的图象如图则,得,即的最小值是,故答案为:.高三校考期中)记函数的最小正周期,若,为的零点,则的最小值为【答案】【分析】首先表示出,根据求出,再根据为函数的零点,即可求出的取值,从而因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:高一上海市七宝中学校考期中)对于函数,有以下函数的图象是中心对称图形;任取,恒成立;函数的图象与轴有无穷多个交点,且任意两相邻交点的距离相等;函数与直线的图象有无穷多个交点,且任意两相邻交点间的距离相等:因为,:因为,所以,因此不成立,所以本结论不正确;:令,即,或,当,显然成立,当时,,显然函数的图象与轴有无穷多个交点,且任意两相邻交点④:,或,当,显然成立,当时,,,,显然任意两相邻交点间的距离相等不正确,因此本结论不正确;故答案为:①③二、解答题已知向量,,函数.求函数的单调递增区间;若,求函数的值域(1);(2).)由向量数量积的坐标表示及倍角正余弦公式、辅助角公式得,)由题设,令,则,所以函数的单调递增区间为.)由,则,故,可得,所以的值域为.34.(2023上·上海静安·高三上海市回民中学校考期中)已知函数.(1)求函数的最小正周期及最大值;(2)令,①判断函数的奇偶性,并说明理由;②若,求函数的严格增区间.【答案】(1),最大值为(2)①偶函数,理由见解析;②【分析】(1)根据二倍角公式化简的表达式,即可根据三角函数的性质求解,(2)利用奇偶性的定义即可判定奇偶性,根据整体法即可求解单调区间.【解析】(1),,当时,即时,(2),是偶函数,理由如下:由于的定义域为,关于原点对称,且,所以是偶函数;令,所以,取,则单调递增区间为,当,则单调递增区间为,由于,所以单调递增区间为的严格增区间为35.(2023上·上海黄浦·高三上海市向明中学校考期中)已知函数.(1)求函数的最小正周期和单调区间;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.【答案】(1)最小正周期;单调递增区间为;单调递减区间为.(2)【分析】(1)利用降幂公式和辅助角公式化简函数解析式,用周期公式求周期,整体代入法求函数单调区间;(2)由区间内函数的单调性和函数值的变化范围求解实数的取值范围.【解析】(1),则函数的最小正周期;令,解得,可得函数的单调递增区间为·令,解得,可得因数的单调递减区间为;(2)由(1)可知,时,在上单调递增,在上单调递减,当,,由增大到1,当,,由1减小到,若关于的方程在上有两个不同的实数解,则实数的取值范围为36.(2023下·上海青浦·高一上海市青浦高级中学校考期中)已知函数.(1)求的单调递增区间;(2)若对任意都有,求实数t的取值范围.【答案】(1)单增区间为(2)【分析】(1)利用倍角正余弦公式、辅助角公式化简函数式,由整体法求增区间;(2)由题设知,结合给定闭区间列不等式求参数范围.【解析】(1)由,令,则,所以的单调递增区间为.(2)由,则,故,又,则,所以,即.37.(2023下·上海闵行·高一校考期中)已知函数(1)当时,求函数的最大值,并求出取得最大值时所有的值;(2)若为偶函数,设,若不等式在上恒成立,求实数m 的取值范围;(3)若过点,设,若对任意的,,都有,求实数a 的取值范围.【答案】(1)1,(2)(3)【分析】(1)由题意可得,由正弦函数的性质求解即可;(2)由题意可得,,将问题转化为,且在上恒成立,结合正弦函数的性质即可求解;(3)由题意可得将问题转化为结合正弦函数的性质及二次函数性质求解.【解析】(1)当时,,所以当,即时,所以,此时;(2)因为为偶函数,所以,所以,所以,又因为在上恒成立,即在上恒成立,所以在上恒成立,所以,且在上恒成立,因为,所以,所以,解得所以m的取值范围为;(3)因为过点,所以所以,又因为,所以,所以,又因为对任意的,,都有成立,所以,因为,所以,设,则有图像是开口向下,对称轴为的抛物线,当时,在上单调递增,所以,所以,解得所以;当时,在上单调递减,所以,所以,解得所以;当时,,所以,解得所以,综上所述:所以实数a 的取值范围为【点睛】关键点点睛:关键点是把恒成立转化为结合正弦函数的性质及二次函数性质求解即可.一、填空题由上图可知:两个图象交点个数为4个,即函数()()lg 1,1sin ,0x x f x x x ⎧->⎪=⎨≤⎪⎩,则y =故答案为:4.2.(2023上·上海浦东新·高三上海市洋泾中学校考期中)已知关于6.(2023下·上海闵行·高一上海市文来中学校考期中)已知()[)[)π4sin ,0,4428,4,8x x f x x x ⎧∈⎪=⎨⎪-∈⎩,若函数(g 实数a 的取值范围为.因为[2()()()1g x f x af x a =+--=故()0g x =时,即()1f x =或()f x 则()g x 在[8,8]x ∈-上恰有八个不同的零点,即等价于同的交点,由图象可知,1y =和()f x 的图象有则(1)y a =-+和()f x 的图象需有2故95a -<<-,则实数a 的取值范围为(9,5)--,故答案为:(9,5)--【点睛】方法点睛:根据函数的周期以及解析式,可作出函数的图象,将零点问题转化为函数图象的交点问题,数形结合,列出不等式,即可求解二、单选题7.(2023上·上海松江·高三校考期中)已知函数的是()A .()f x 的最大值为2B .()f x 在[]0,π上有4个零点。

上海高中数学三角函数大题压轴题练习

上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 222x x x =+- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()12222f f ππ-=-<=,当12x π=-时,()f x 取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-=由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

上海高考数学(函数)经典压轴题解析详解

上海高考数学(函数)经典压轴题解析详解

上海高考数学压轴题系列训练含答案及解析详解1. (本小题满分12分) 已知常数a > 0, n 为正整数,f n ( x ) = x n – ( x + a)n ( x > 0 )是关于x 的函数. (1) 判定函数f n ( x )的单调性,并证明你的结论. (2) 对任意n ³ a , 证明证明f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) 解: (1) f n `( x ) = nx n – 1 – n ( x + a)n – 1 = n [x n – 1 – ( x + a)n – 1 ] , ∵a > 0 , x > 0, ∴ f n `( x ) < 0 , ∴ f n ( x )在(0,+∞)单调递减. 4分(2)由上知:当x > a>0时, f n ( x ) = xn – ( x + a)n是关于x 的减函数, ∴ 当n ³ a 时, 有:(n + 1 )n – ( n + 1 + a)n £ n n– ( n + a)n. 2分 又 ∴f `n + 1 (x ) = ( n + 1 ) [x n –( x+ a )n ] , ∴f `n + 1 ( n + 1 ) = ( n + 1 ) [(n + 1 )n –( n + 1 + a )n ] < ( n + 1 )[ n n – ( n + a)n ] = ( n + 1 )[ n n– ( n + a )( n + a)n – 1 ] 2分 ( n + 1 )f n `(n) = ( n + 1 )n[n n – 1 – ( n + a)n – 1 ] = ( n + 1 )[n n – n( n + a)n – 1 ], 2分 ∵( n + a ) > n , ∴f `n + 1 ( n + 1 ) < ( n + 1 )f n `(n) . 2分 2. (本小题满分12分) 已知:y = f (x) 定义域为[–1,1],且满足:f (–1) = f (1) = 0 ,对任意u ,v Î[–1,1],都有|f (u) – f (v) | ≤ | u –v | . (1) 判断函数p ( x ) = x 2 – 1 是否满足题设条件?是否满足题设条件?(2) 判断函数g(x)=1,[1,0]1,[0,1]x x x x +Î-ìí-Îî,是否满足题设条件?,是否满足题设条件?解:解: (1) 若u ,v Î [–1,1], |p(u) – p (v)| = | u 2 – v 2 |=| (u + v )(u – v) |,取u = 43Î[–1,1],v = 21Î[–1,1], 则 |p (u) – p (v)| = | (u + v )(u – v) | = 45| u – v | > | u – v |,所以p( x)不满足题设条件. (2)分三种情况讨论:)分三种情况讨论:10. 若u ,v Î [–1,0],则|g(u) – g (v)| = |(1+u) – (1 + v)|=|u – v |,满足题设条件;,满足题设条件; 20. 若u ,v Î [0,1], 则|g(u) – g(v)| = |(1 – u) – (1 – v)|= |v –u|,满足题设条件;,满足题设条件; 30. 若u Î[–1,0],v Î[0,1],则:,则:|g (u) –g(v)|=|(1 – u) – (1 + v)| = | –u – v| = |v + u | ≤| v – u| = | u –v|,满足题设条件; 40 若u Î[0,1],v Î[–1,0], 同理可证满足题设条件. 综合上述得g(x)满足条件. 3. (本小题满分14分) 已知点P ( t , y )在函数f ( x ) = 1x x +(x ¹ –1)的图象上,且有t 2 – c 2at + 4c 2 = 0 ( c ¹ 0 ). (1) 求证:| ac | ³ 4; (2) 求证:在(–1,+∞)上f ( x )单调递增. (3) (仅理科做)求证:f ( | a | ) + f ( | c | ) > 1. 证:(1) ∵ t ÎR, t ¹–1, ∴ ⊿ = (–c 22a)22– 16c 22 = c 44a 22– 16c 22³ 0 , ∵ c ¹ 0, ∴c 2a 2 ³ 16 , ∴| ac | ³ 4. (2) 由 f ( x ) = 1 – 1x 1+, 法1. 设–1 < x 1 < x 2, 则f (x 2) – f ( x 1) = 1– 1x 12+–1 + 1x 11+= )1x )(1x (x x 1221++-. ∵ –1 < x 1 < x 2, ∴ x 1 – x 2 < 0, x 1 + 1 > 0, x 2 + 1 > 0 , ∴f (x 2) – f ( x 1) < 0 , 即f (x 2) < f ( x 1) , ∴x ³ 0时,f ( x )单调递增. 法2. 由f ` ( x ) = 2)1x (1+> 0 得x ¹–1, ∴x > –1时,f ( x )单调递增. (3)(仅理科做)∵f ( x )在x > –1时单调递增,| c | ³|a |4> 0 , ∴f (| c | ) ³ f (|a |4) = 1|a |4|a |4+= 4|a |4+ f ( | a | ) + f ( | c | ) = 1|a ||a |++ 4|a |4+> 4|a ||a |++4|a |4+=1. 即f ( | a | ) + f ( | c | ) > 1. 4.(本小题满分15分)分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x= -1时,f (x)取得极大值23,并且函数y=f (x+1)的图象关于点(-1,0)对称.)对称. (1) 求f (x)的表达式;的表达式;(2) 试在函数f f (x)(x)的图象上求两点,使这两点为切点的切线互相垂直,且切点的横坐标都在区间2,2éù-ëû上;上;(3) 若+212(13),(N )23nnn n n nx y n --==Î,求证:4()().3n n f x f y -< 解:(1)31().3f x x x =-…………………………5分(2)()20,0,2,3æö-ç÷ç÷èø或()20,0,2,.3æö-ç÷ç÷èø…………10分 (3)用导数求最值,可证得4()()(1)(1).3n n f x f y f f -<--<……15分5.(本小题满分13分)分)设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ¹则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ì+=ïïíï+=ïî ………………………………………………………3分由(1)-(2)可得1.3MN QN k k ·=-………………………………6分 又MN ⊥MQ ,111,,MN MQ MN x k k k y ×=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.xy x y =- (10)分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=¹此即为所求的轨迹方程.………………13分6.(本小题满分12分)分)过抛物线y x 42=上不同两点A 、B 分别作抛物线的切线相交于P 点,.0=×PB PA(1)求点P 的轨迹方程;的轨迹方程;(2)已知点F (0,1),是否存在实数l 使得0)(2=+×FP FB FA l 若存在,?若存在,求出求出l 的值,若不存在,请说明理由. 解法(一):(1)设)(),4,(),4,(21222211x x x x B x x A ¹由,42y x =得:2'x y =2,221x k x k PB PA ==\ 4,,021-=\^\=×x x PB PA PB PA ………………………………3分直线P A 的方程是:)(241121x x x x y -=-即42211x x x y -= ①同理,直线PB 的方程是:42222x xx y -=②由①②得:ïîïíìÎ-==+=),(,142212121R x x x x y x x x∴点P 的轨迹方程是).(1R x y Î-=……………………………………6分 (2)由(1)得:),14,(211-=x x FA ),14,(222-=x x FB )1,2(21-+xx P4),2,2(2121-=-+=x x xx FP 42)14)(14(2221222121x x x x x x FB FA +--=--+=× …………………………10分2444)()(22212212++=++=x x x x FP所以0)(2=+×FP FB FA故存在l =1使得0)(2=+×FP FB FA l …………………………………………12分 解法(二):(1)∵直线P A 、PB 与抛物线相切,且,0=×PB PA ∴直线P A 、PB 的斜率均存在且不为0,且,PB PA ^ 设P A 的直线方程是)0,,(¹Î+=k R m k m kx y由îíì=+=y x m k x y 42得:0442=--m kx x016162=+=D \m k 即2k m -=…………………………3分即直线P A 的方程是:2k k x y -= 同理可得直线PB 的方程是:211kx k y --= 由ïîïíì--=-=2211k x k y k k x y 得:ïîïíì-=Î-=11y R k k x 故点P 的轨迹方程是).(1R x y Î-=……………………………………6分 (2)由(1)得:)1,1(),1,2(),,2(22---kk P k k B k k A )11,2(),1,2(22--=-=kk FB k k FA )2,1(--=kk FP)1(2)11)(1(42222kk k k FB FA +--=--+-=×………………………………10分)1(24)1()(2222kk k k FP ++=+-=故存在l =1使得0)(2=+×FP FB FA l …………………………………………12分 7.(本小题满分14分)分)设函数x axxx f ln 1)(+-=在),1[+¥上是增函数. (1) 求正实数a 的取值范围;的取值范围;(2) 设1,0>>a b ,求证:.ln 1bb a b b a b a +<+<+ 解:(1)01)(2'³-=axax x f 对),1[+¥Îx 恒成立,恒成立, xa 1³\对),1[+¥Îx 恒成立恒成立又11£x1³\a 为所求.…………………………4分 (2)取b ba x +=,1,0,1>+\>>b b a b a ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+¥上是增函数,上是增函数,0)1()(=>+\f b b a f0ln 1>+++×+-\bb a bb a a bb a 即ba b ba +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G∴)(x G 在),1(+¥上是增函数且在0x x =处连续,又01)1(>=G∴当1>x 时,0)1()(>>G x G∴x x ln > 即b b a b ba +>+ln综上所述,.ln 1b b a b b a b a +<+<+………………………………………………14分8.(本小题满分12分) 如图,直角坐标系xOy 中,一直角三角形ABC ,90C Ð= ,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,3BD DC =,ABC !的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.两点.(1) 求双曲线E 的方程;的方程;(2) 若一过点(,0)P m (m 为非零常数)的直线l 与双曲线E相交于不同于双曲线顶点的两点M 、N ,且MP PN l=,问在x 轴上是否存在定xyDO CAB点G ,使()BC GM GN l^- ?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.请说明理由.解:(1) 设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =. ∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ì-=ï+=-íï-=î(3分)解之得1a =,∴2,3c b ==. ∴双曲线E 的方程为2213y x -=. (5分)分)(2) 设在x 轴上存在定点(,0)G t ,使()BC GM GN l ^-.设直线l 的方程为x m ky -=,1122(,),(,)M x y N x y . 由MP PN l = ,得120y y l +=.即12y y l =-① (6分)分)∵(4,0)BC =,1212(,)GM GN x t x t y y l l l l -=--+-, ∴()BC GM GN l^- 12()x t x t l Û-=-. 即12()ky m t ky m t l +-=+-. ② (8分)分)把①代入②,得把①代入②,得12122()()0ky y m t y y +-+= ③(9分)分)把x m ky -=代入2213y x -=并整理得并整理得222(31)63(1)0k y kmy m -++-=其中2310k -¹且0D >,即213k ¹且2231k m +>. 212122263(1),3131km m y y y y k k --+==--. (10xyDO CAB NBCOyxGMP(m 1C C C n n n nn a a a ++++11p p ++1211n n p p 1p +)())êú222(1)(1)2(1)2(1)k n kk k n k n kp p p p ---++×--…212(1)12(1)(1)nnkn k p p p p --+--222(1)121n nnkn k p p p p -+--+n n…。

上海市2024年高考二模分类汇编:三角函数

上海市2024年高考二模分类汇编:三角函数

三角函数汇编一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D ππ=-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题5.(2024·上海松江·二模)已知点A 的坐标为12⎛ ⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ= ,(cos ,3sin )b θθ= ,其中R θ∈,则a b ⋅=.12.(2024·上海青浦·二模)已知向量()1,1a =- ,()3,4b = ,则,a b <>=.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin23cos2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π218.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.19.(2024·上海嘉定·二模)已知()22sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭,则函数()y f x =的最小值为.20.(2024·上海崇明·二模)已知A 、B 、C 是半径为1的圆上的三个不同的点,且AB = ,则AB AC ⋅的最小值是.21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;25.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,2AB AC ⋅=,求ABC 的面积.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 30b A a =.(1)求角B ;(2)求sin sin A C +的取值范围.29.(2024·上海松江·二模)设2()sin3sin(0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t ,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t 最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:0031.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.33.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP的最大值为.34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.36.(2024·上海闵行·二模)双曲线22:16y x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅=.37.(2024·上海虹口·二模)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,且60BAD ∠= .若12AB AA ==,点M 为棱1CC 的中点,点P 在1A B 上,则线段,PA PM 的长度和的最小值为.38.(2024·上海黄浦·二模)在ABC 中,3cos 5A =-,1AB =,5AC =,则BC =.39.(2024·上海金山·二模)某临海地区为保障游客安全修建了海上救生栈道,如图,线段BC 、CD 是救生栈道的一部分,其中300BC m =,800CD m =,B 在A 的北偏东30︒方向,C 在A 的正北方向,D 在A 的北偏西80︒方向,且90B Ð=°.若救生艇在A 处载上遇险游客需要尽快抵达救生栈道B C D --,则最短距离为m .(结果精确到1m)40.(23-24高三下·上海浦东新·期中)已知双曲线()222210,0x y a b a b-=>>的焦点分别为1F 、2F ,M 为双曲线上一点,若122π3F MF ∠=,213OM =,则双曲线的离心率为.41.(2024·上海普陀·二模)设函数()sin()f x x ωϕ=+,0ω>,0πϕ<<,它的最小正周期为π.(1)若函数π12y f x ⎛⎫=- ⎪⎝⎭是偶函数,求ϕ的值;(2)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2a =,π6A =,324B f c ϕ-⎛⎫= ⎪⎝⎭,求b 的值.42.(2024·上海杨浦·二模)已知()sin (0)f x x ωω=>.(1)若()y f x =的最小正周期为2π,判断函数)()()π(2F x f x f x =++的奇偶性,并说明理由;(2)已知2ω=,ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若π()03f A +=,2a =,3b =,求c 的值.参考答案一、题型一:三角函数1.(2024·上海徐汇·二模)已知函数()y f x =,其中()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭,实数0ω>,下列选项中正确的是()A .若2ω=,函数()y f x =关于直线5π12x =对称B .若12ω=,函数()y f x =在[]0,π上是增函数C .若函数()y f x =在[]π,0-上最大值为1,则43ω≤D .若1ω=,则函数()y f x =的最小正周期是2π2.(2024·上海奉贤·二模)已知函数()y f x =,其中21y x =+,()y g x =,其中()4sin g x x =,则图象如图所示的函数可能是().A .()()g x y f x =B .()()f x yg x =C .()()1y f x g x =+-D .()()1y f x g x =--【答案】A【分析】根据函数图象和()(),f x g x 的奇偶性判断.【详解】易知()21f x x =+是偶函数,()4sin g x x =是奇函数,给出的函数图象对应的是奇函数,A.()()()24sin 1g x xy h x f x x ==+=,定义域为R ,又()()()()224si 11n 4sin x xh x h x x x =+--+-=-=-,所以()h x 是奇函数,符合题意,故正确;B.()()24n 1si f x y g x x x+==,π,Z x k k ≠∈,不符合图象,故错误;C.()()()2214sin 14si1n y h x f x g x x x x x ++==+-=-=+,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误;D.()()()2214sin 14si 1n y h x f x g x x xx x +-==--=-=-,定义域为R ,但()()()(),h x h x h x h x -≠-≠-,故函数是非奇非偶函数,故错误,故选:A3.(2024·上海闵行·二模)已知()sin f x x =,集合[,]22D =-,()()()Γ{,|20,,}x y f x f y x y D =+=∈,()()()Ω{,|20,,}x y f x f y x y D =+≥∈.关于下列两个命题的判断,说法正确的是()命题①:集合Γ表示的平面图形是中心对称图形;命题②:集合Ω表示的平面图形的面积不大于2512π.A .①真命题;②假命题B .①假命题;②真命题C .①真命题;②真命题D .①假命题;②假命题代入点,22ππ⎛⎫⎪⎝⎭可得2sin sin 2π+面积为正方形面积的一半,即集合故选:A.【点睛】方法点睛:确定不等式表示的区域范围第一步:得到等式对应的曲线;第二步:任选一个不在曲线上的点,若原点不在曲线上,一般选择原点,检验它的坐标是否符合不等式;第三步:如果符合,则该点所在的一侧区域即为不等式所表示的区域;若不符合,则另一侧区域为不等式所表示的区域.4.(2024·上海嘉定·二模)已知函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>,对于命题甲:函数()()()y f x g x x =+∈R 可能不是周期函数;命题乙:若函数()()()y f x g x x =+∈R 的最小正周期是3T ,则31T T ≥.下列选项正确的是()A .甲和乙均为真命题B .甲和乙均为假命题C .甲为真命题且乙为假命题D .甲为假命题且乙为真命题【答案】C【分析】利用三角函数的周期性,选用特殊函数验证两个命题.【详解】函数()()y f x x =∈R 的最小正周期是1T ,函数()()y g x x =∈R 的最小正周期是2T ,且()121T kT k =>当()sin f x x =时,12πT =,()sin πg x x =时,22T =,满足条件,但函数()()sin sin πy f x g x x x =+=+就不是周期函数,命题甲正确;当()cos 2cos3f x x x =+时,12πT =,()cos 2g x x =-时,2πT =,满足条件,函数()()cos3y f x g x x =+=,32π3T =,有31T T <,命题乙错误.故选:C5.(2024·上海松江·二模)已知点A 的坐标为1322⎛⎫ ⎪ ⎪⎝⎭,将OA 绕坐标原点O 逆时针旋转π2至OP ,则点P 的坐标为.【答案】3,221⎛⎫- ⎪ ⎪⎝⎭【分析】由题意可求π3xOA ∠=,5π326ππxOP ∠=+=,利用任意角的三角函数的定义即可求解.【详解】因为点A 的坐标为13,22⎛⎫ ⎪⎪⎝⎭,可得π3xOA ∠=,6.(2024·上海崇明·二模)已知实数1212,,,x x y y 满足:2222112212121,1,1x y x y x y y x +=+=-=,则112222x y x y +-++-的最大值是.【答案】6【分析】根据已知条件及三角换元,利用三角方程的解法及三角函数的性质即可求解7.(2024·上海奉贤·二模)函数sin()y wx ϕ=+π0,2w ϕ⎛⎫>< ⎪⎝⎭的图像记为曲线F ,如图所示.A ,B ,C 是曲线F 与坐标轴相交的三个点,直线BC 与曲线F 的图像交于点M ,若直线AM 的斜率为1k ,直线BM 的斜率为2k ,212k k ≠,则直线AB 的斜率为.(用1k ,2k 表示)【答案】12122k k k k -【分析】根据正弦函数的图象与性质写出,,,A B C M 的坐标,求出12,,k k k ,然后确定它们的关系.【详解】由题意2π,Z C wx k k ϕ+=∈,2πC k x w ϕ-=,则2ππ,Z A wx k k ϕ+=+∈,2ππA k x wϕ+-=,(0,sin )B ϕ,由π2ϕ<得π02ϕ<<,则2(2π)(,sin )k M wϕϕ--,1sin 2ππw k k ϕϕ=-+,2sin 2πw k k ϕϕ=-,sin 2ππAB w k k ϕϕ=--,所以21211AB k k k -=,又212k k ≠,所以12122AB k k k k k =-,故答案为:12122k k k k -.8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ∠ODF ∠均为直角.若1AB =百米,则此步道的最大长度为百米.【答案】2π42+【分析】设半圆步道直径为x 百米,连接,AE BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接,AE BE ,显然90AEB ∠= ,由点O 为线段,AB CD 的中点,得两个半圆步道及直道,CE DF 都关于过点O 垂直于AB 的直线对称,则11,22AC x BC x =-=+,又CE AB ⊥,则Rt ACE ∽Rt ECB V ,有2CE AC BC =⋅,即有214DF CE x ==-,因此步道长221()2π14π4f x x x x x =-+=-+,102x <<,求导得24()π14x f x x '=-+-,由()0f x '=,得2π2π4x =+,29.(2024·上海闵行·二模)始边与x 轴的正半轴重合的角α的终边过点(3,4)-,则sin(π)α+=.【答案】45/0.8【分析】结合三角函数的诱导公式,以及任意角的三角函数的定义,即可求解.10.(2024·上海虹口·二模)已知集合{}2|tan 0,0x A x x B x x ⎧⎫-=<=≤⎨⎬⎩⎭,则A B = .故答案为:π22x x ⎧⎫<≤⎨⎬⎩⎭.11.(2024·上海黄浦·二模)若(3cos ,sin )a θθ=,(cos ,3sin )b θθ=,其中R θ∈,则a b ⋅=.【答案】3【分析】利用平面向量数量积的坐标表示公式,结合同角的三角函数关系式进行求解即可.【详解】223cos 3sin 3a b θθ⋅=+=,故答案为:312.(2024·上海青浦·二模)已知向量()1,1a =-,()3,4b = ,则,a b <>=.【答案】2arccos10【分析】由向量的数量积公式求两个向量的夹角即可.【详解】由向量的夹角公式得342cos ,1025a b a b a b⋅-+<>===⨯ ,又因为[],0,πa b <>∈ ,所以2,arccos 10a b <>= .故答案为:2arccos10.13.(2024·上海闵行·二模)已知定义在0+∞(,)上的函数()y f x =的表达式为()sin cos f x x x x =-,其所有的零点按从小到大的顺序组成数列{}n x (1,N n n ≥∈).(1)求函数()y f x =在区间()0,π上的值域;(2)求证:函数()y f x =在区间()()π,1πn n +(1,N n n ≥∈)上有且仅有一个零点;(3)求证:()11ππn n n x x n++<-<.【答案】(1)()0,π(2)证明见解析(3)证明见解析【分析】(1)求得()f x 的导数,判断()f x 的单调性,可得所求值域;(2)讨论n 为奇数,或偶数时,()f x 的单调性,结合函数零点存在定理,可得证明;(3)由(2)可知函数()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,再由零点存在定理、以②因为()()112222133ππ3π22tan π1π2πn n n n n n n x x x x x x x n n n +++--+=<<=<+⋅由(1)可知,当π0,2x ⎛⎫∈ ⎪⎝⎭时,有tan x x<故()()()11ππtan πn n n n x x x x n ++-+<-+<,所以1ππn n x x n+-<+;由①②可知()11ππn n n x x n++<-<.【点睛】关键点点睛:本题第三问,借助()f x 在()()π,1πn n +(1,N n n ≥∈)上且仅有一个零点n x ,利用正切函数的性质和不等式的性质求解.14.(2024·上海金山·二模)已知函数()y f x =,记()()sin f x x ωϕ=+,0ω>,0πϕ<<,x ∈R .(1)若函数()y f x =的最小正周期为π,当(1π6f =时,求ω和ϕ的值;(2)若1ω=,π6ϕ=,函数2()2()y f x f x a =--有零点,求实数a 的取值范围.【答案】(1)2ω=,π6ϕ=(2)[1,3]a ∈-【分析】(1)利用三角函数的周期公式求得ω,再利用三角函数的值域与周期性求得ϕ,从而得解;(2)根据题意,利用换元法将问题转化为220t t a --=在[1,1]x ∈-有解,从而利用参变分离法或二次函数根的布分即可得解.【详解】(1)因为函数()y f x =的最小正周期2ππω=,所以2ω=,则当π6x =时,sin 13πϕ⎫⎛+= ⎪⎝⎭,所以ππ2π(Z)32k k ϕ+=+∈,得π2π(Z)6k k ϕ=+∈,因为0πϕ<<,所以取0k =得π6ϕ=,(2)解法一:当1ω=,π6ϕ=时,()πsin 6f x x ⎛⎫=+ ⎪⎝⎭,x ∈R ,设()πsin [1,1]6t f x x ⎛⎫==+∈- ⎪⎝⎭,由题意得,220t t a --=在[1,1]x ∈-有解,化简得22a t t =-,又()22()211g t t t t =-=--在[1,1]t ∈-上单调递减,15.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.所以当()1πZ a k k =∈时,{}n a 是周期为1的周期数列,②当()1πZ a k k ≠∈时,记()sin f x x x =+,则1()n n a f a +=,()1cos 0f x x '=+≥,当且仅当()()1121πZ x k k =+∈时等号成立,即()1cos 0f x x =+>',所以()f x 在R 上严格增,若12a a <,则12()()f a f a <,即23a a <,进而可得1234a a a a <<<< ,即{}n a 是严格增数列,不是周期数列;同理,若12a a >,可得{}n a 是严格减数列,不是周期数列.综上,当1π()a k k =∈Z 时,{}n a 是周期为1的周期数列;当1π()a k k ≠∈Z 时,{}n a 不是周期数列.(3)必要性:若存在1a ,使得{}n a 是周期数列,设{}n a 的周期为0T ,则00011sin sin n T n T n T n n n b a a a a b +++++=-=-=,所以{}n b 是周期为0T 的周期数列,充分性:若{}n b 是周期数列,设它的周期为T ,记1a x =,则10()a f x x==211()sin a f x b x ==+,是关于x 的连续函数;3221()sin ()a f x b f x ==+,是关于x 的连续函数;…1()T T a f x -=,是关于x 的连续函数;11sin ()T T T a b f x +-=+,令1()sin ()T T g x x b f x -=--,则()g x 是连续函数,且1(2)2sin ()0T T g b f x -+=->,1(2)2sin ()0T T g b f x --=--<,所以()g x 存在零点c ,于是1sin ()0T T c b f c ---=,取1a c =,则111sin ()T T T a b f c c a +-=+==,从而211112sin sin T T T a b a b a a +++=+=+=,322223sin sin T T T a b a b a a +++=+=+=,……一般地,n T n a a +=对任何正整数n 都成立,即{}n a 是周期为T 的周期数列.(说明:关于函数连续性的说明不作要求)【点睛】方法点晴:对于数列的新定义问题,解决问题的关键在于准确理解定义,并结合定义进行判断或转化条件.二、题型二:三角恒等变换16.(2024·上海虹口·二模)设()sin2f x x x =,将函数()y f x =的图像沿x 轴向右平移π6个单位,得到函数()y g x =的图像,则()A .函数()y g x =是偶函数B .函数()y g x =的图像关于直线π2x =对称C .函数()y g x =在ππ,42⎡⎤⎢⎥⎣⎦上是严格增函数D .函数()y g x =在π2,6π3⎡⎤⎢⎥上的值域为⎡⎤⎣⎦则()3,2g x ⎡⎤∈-⎣⎦,即函数()y g x =在π2,6π3⎡⎤⎢⎥⎣⎦上的值域为3,2⎡⎤-⎣⎦,故D 正确.故选:D17.(2024·上海静安·二模)函数2sin cos (R)y x x x =-∈的最小正周期为()A .2πB .πC .3π2D .π2【答案】A【分析】利用辅助角公式将函数化成()sin y A ωx φ=+的形式,代入周期公式可得结论.【详解】易知()2sin cos 5sin y x x x ϕ=-=+,其中1tan 2ϕ=-,由周期公式可得其最小正周期为2π2πT ω==.故选:A18.(2024·上海长宁·二模)直线230x y --=与直线350x y --=的夹角大小为.【答案】4π/45︒【分析】先由斜率的定义求出两直线的倾斜角,然后再利用两角差的正切展开式计算出夹角的正切值,最后求出结果.【详解】设直线230x y --=与直线350x y --=的倾斜角分别为,αβ,则1tan 2,tan 3αβ==,且[),0,παβ∈,所以αβ>,因为()12tan tan 3tan 121tan tan 13αβαβαβ---===++,所以π4αβ-=,即两条直线的夹角为π4,故答案为:π4.19.(2024·上海嘉定·二模)已知()sin cos f x x x =+,π0,2x ⎛⎫∈ ⎪,则函数()y f x =的最小值为.【答案】42【分析】令πsin cos 2sin()4t x x x =+=+,可求t 的范围,利用同角的基本关系对已知函数化简计算,结合函数的单调性即可求解.【详解】由题意知,222(sin cos )()sin cos sin cos x x f x x x x x+=+=,20.(2024·上海崇明·二模)已知A、B、C是半径为1的圆上的三个不同的点,且AB=,则AB AC⋅的最小值是.所以πcos 32sin cos 3AB AC bc A A A⎛⎫⋅==⨯-⨯ ⎪⎝⎭3123cos sin cos 22A A A ⎛⎫=⨯- ⎪ ⎪⎝⎭23cos 3sin cos A A A=-()31cos 23sin 222A A+=-π33sin 232A ⎛⎫=--+ ⎪⎝⎭,π0,3A ⎛⎫∈ ⎪⎝⎭,则πππ2,333A ⎛⎫-∈- ⎪⎝⎭,则AB AC ⋅无最值;综上所述,AB AC ⋅ 的最小值是332-故答案为:332-21.(2024·上海奉贤·二模)已知[]0,πα∈,且2cos 23cos 5αα-=,则α=.【答案】π【分析】由倍角公式化简方程,解出cos α,得α的值.【详解】已知2cos 23cos 5αα-=,由倍角公式得()()24cos 3cos 74cos 7cos 10αααα--=-+=,由[]0,πα∈,[]cos 1,1α∈-,解得cos 1α=-,则πα=.故答案为:π.22.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.【答案】1(arccos ,π)8【分析】设等差数列,,a b c 的公差为m ,根据给定条件,结合三角恒等变换化简得tan 3tan 2mb =,由正切函数性质可得m 随b 增大而增大,再由c 的临界值点得π2ab =+,代入利用二倍角的余弦求解即得.【详解】设等差数列,,a b c 的公差为m ,,a b m c b m =-=+,依题意,cos cos cos cos a b c a -=-,于是cos()cos cos()cos()b m b b m b m --=+--,整理得22sin sin 2sin sin 22b m mb m ---=-,即sin()sin sin sin 2sin sin cos 2222m m m m b b m b -==,因此sin cos cos sin 2sin cos 222m m mb b b -=,即有tan3tan 2mb =,则m 随b 增大而增大,而0m >当(0,π)a ∈,3(π,π)2b ∈时,c 到达2π时是临界值点,此时π2ab =+,23.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程(e e )2xx ccc y -+=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x xx -+=,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:22sin cos 1x x +=;②两角和公式:()cos cos cos sin sin x y x y x y +=-,③导数:(sin )cos ,(cos )sin ,x x x x =⎧⎨=-''⎩定义双曲正弦函数()e e sh 2x xx --=.(1)直接写出()sh x ,()ch x 具有的类似①、②、③的三种性质(不需要证明);(2)当0x >时,双曲正弦函数()y x =sh 的图像总在直线y kx =的上方,求直线斜率k 的取值范围;(3)无穷数列{}n a 满足1a a =,2121n n a a +=-,是否存在实数a ,使得202454a =?若存在,求出a 的值,若不存在,说明理由.【详解】(1)平方关系:()()22chsh 1x x -=;和角公式:()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;和角公式:()e e ch 2x y x yx y +--++=,()()()()e e e e e e e e ch ch sh sh 2222x x y y x yy x x y x y ----++--+=⋅+⋅e e e e e e e e 44x y x y x y x y x y x y x y x y+--+--+--+--+++--+=+e e 2x y x y+--+=故()()()()()ch ch ch sh sh x y x y x y +=+;导数:()()e e ee sh()ch 22x xxx x x ----+'===,()e e ch()sh 2x x x x --'==;(2)构造函数()()sh F x x kx =-,[)0,x ∈+∞,由(1)可知()()ch F x x k '=-,①当1k ≤时,由e e ch()e e 12x xx x x --+=≥⋅=,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()x kx >sh 恒成立,满足题意;②当1k >时,令()()(),0,G x F x x '=∈+∞,则()()sh 0G x x =>',可知()G x 是严格增函数,由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F F x <=,即()x kx >sh ,矛盾;(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.24.(2024·上海长宁·二模)某同学用“五点法”画函数()()sin (0)f x x ωϕω=+>在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0π2π3π22πx∆π65π122π311π12()sin x ωϕ+01∆1-0(1)请在答题卷上将上表Δ处的数据补充完整,并直接写出函数()y f x =的解析式;(2)设()()()2ππ1,0,0,22g x f x f x f x x ωϕ⎛⎫⎛⎫⎡⎤===+-∈ ⎪⎪⎢⎥⎝⎭⎣⎦⎝⎭,求函数()y g x =的值域;【答案】(1)补充表格见解析,()πsin 26f x x ⎛⎫=+ ⎪⎝⎭(2)210,2⎡⎤+⎢⎥⎢⎥⎣⎦【分析】(1)由表得ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解方程组即可得,ωϕ,进一步可据此完成表格;(2)由题意结合二倍角公式、诱导公式以及辅助角公式先化简()g x 的表达式,进一步通过整体换元法即可求解.【详解】(1)由题意ππ622π3π32ωϕωϕ⎧⋅+=⎪⎪⎨⎪⋅+=⎪⎩,解得π2,6ωϕ==,所以函数()y f x =的解析式为()πsin 26f x x ⎛⎫=+ ⎪⎝⎭,令π206x +=时,解得π12x =-,当5π12x =时,ππ2π,sin 2066x x ⎛⎫+=+= ⎪⎝⎭,将表中Δ处的数据补充完整如下表:x ωϕ+0π2π3π22πxπ12-π65π122π311π12()sin x ωϕ+011-025.(2024·上海青浦·二模)对于函数()y f x =,其中()22sin cos f x x x x =+-x ∈R .(1)求函数()y f x =的单调增区间;(2)在锐角三角形ABC 中,若()1f A =,AB AC ⋅=,求ABC 的面积.所以函数()f x 的单调增区间是()5πππ,π+,Z 1212k k k ⎡⎤-∈⎢⎥⎣⎦.(2)(2)由已知π()2sin 213f A A ⎛⎫=+= ⎪⎝⎭,所以π1sin 232A ⎛⎫+= ⎪⎝⎭,因为π02A <<,所以ππ4π2333A <+<,即π5π236A +=,所以π4A =,又cos 2AB AC AB AC A ⋅=⋅=,所以2AB AC ⋅=,所以ABC 的面积1122sin 22222S AB AC A =⋅=⨯⨯=.26.(2024·上海嘉定·二模)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若3b =ABC 是锐角三角形,求2a c +的最大值.【答案】(1)π3或2π3;当π3B =时,πsin 16B ⎛⎫+= ⎪⎝⎭;当2π3B =时,π1sin 62B ⎛⎫+= ⎪⎝⎭(2)27【分析】(1)由题意,根据同角的平方关系可得cos 21B =±,求出B ,进而求出πsin()6B +即可;(2)由题意可得π3B =,求出C 的范围,根据正弦定理可得2sin ,2sin a A c C ==,利用三角恒等变换化简计算得227sin()a c C ϕ+=+(3tan 5ϕ=),结合ϕ的范围和正弦函数的性质即可求解.【详解】(1)由2222cos sin 11cos sin 2B B B B ⎧+=⎪⎨-=-⎪⎩,得21cos 4B =,则cos 21B =±,又0πB <<,所以π3B =或2π3.当π3B =时,ππsin()sin 162B +==;当2π3B =时,π5π1sin()sin 662B +==.(2)若ABC 为锐角三角形,则π3B =,有π022ππ032C A C ⎧<<⎪⎪⎨⎪<=-<⎪⎩,解得ππ62C <<.由正弦定理,得32sin sin sin 32a c bA C B====,则2sin ,2sin a A c C ==,27.(2024·上海静安·二模)在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知3a =,5b =,7c =.(1)求角C 的大小;(2)求sin()A C +的值.28.(2024·上海闵行·二模)在锐角ABC 中,角、、A B C 所对边的边长分别为a b c 、、,且2sin 0b A =.(1)求角B ;(2)求sin sin A C +的取值范围.【答案】(1)π3(2)3(,3]2.【分析】(1)由已知结合正弦定理可得结果;(2)根据ABC 为锐角三角形求出ππ(,)62A ∈,利用两角差的正弦公式及辅助角公式化简2πsin sin sin sin()3A C A A +=+-,根据正弦函数性质可得结果.【详解】(1)2sin 30b A a -= ,2sin sin 3sin 0A B A ∴-=,又 π0,,sin 02A A ⎛⎫∈∴≠ ⎪⎝⎭,3πsin ,0,22B B ⎛⎫∴=∈ ⎪⎝⎭,∴π3B =.(2)由(1)可知,π3B =,且ABC 为锐角三角形,所以π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩,A ∴ππ(,)62∈,则2πsin sin sin sin()3A C A A +=+-33sin cos 22A A =+π3sin()6A =+,因为ππ2π363A <+<,sin sin A C ∴+3(,3]2∈.29.(2024·上海松江·二模)设2()sin 3sin (0)222f x x x x ωωωω=>,函数()y f x =图象的两条相邻对称轴之间的距离为π.(1)求函数()y f x =的解析式;(2)在ABC 中,设角A 、B 及C 所对边的边长分别为a 、b 及c ,若3a =2b =,3()2f A =,求角C .【答案】(1)π1()sin()62f x x =-+(2)π12【分析】(1)根据降幂公式,二倍角公式及辅助角公式化简()f x ,再根据()y f x =图象的两条相邻对称轴三、题型三:解三角形30.(2024·上海嘉定·二模)嘉定某学习小组开展测量太阳高度角的数学活动.太阳高度角是指某时刻太阳光线和地平面所成的角.测量时,假设太阳光线均为平行的直线,地面为水平平面.如图,两竖直墙面所成的二面角为120°,墙的高度均为3米.在时刻t,实地测量得在太阳光线照射下的两面墙在地面的阴影宽度分别为1米、1.5米.在线查阅嘉定的天文资料,当天的太阳高度角和对应时间的部分数据如表所示,则时刻t最可能为()太阳高度角时间太阳高度角时间43.13°08:3068.53°10:3049.53°09:0074.49°11:0055.93°09:3079.60°11:3062.29°10:0082.00°12:00A .09:00B .10:00C .11:00D .12:00【答案】B【分析】作出示意图形,在四边形ABCD 中利用正弦定理与余弦定理,算出四边形ABCD 的外接圆直径大小,然后在Rt BDE △中利用锐角三角函数定义,算出DBE ∠的大小,即可得到本题的答案.【详解】如图所示,设两竖直墙面的交线为DE ,点E 被太阳光照射在地面上的影子为点B ,点,A C 分别是点B 在两条墙脚线上的射影,连接AC ,BD ,BE ,由题意可知DBE ∠就是太阳高度角.∵四边形ABCD 中,90BAD BCD ∠=∠=o ,120ADC ∠= ,∴()36060ABC BAD BCD ADC ∠=-∠+∠+∠= ,∴ABC 中,2222212cos60 1.5121.51 1.752AC AB BC AB BC =+-⋅=+-⨯⨯⨯= ,可得 1.75 1.32AC =≈,∵四边形ABCD 是圆内接四边形,BD 是其外接圆直径,31.(2024·上海嘉定·二模)已知()11,OA x y =,()22,OB x y =,且OA 、OB 不共线,则OAB 的面积为()A .121212x x y y -B .122112x y x y -C .121212x x y y +D .122112x y x y +32.(2024·上海虹口·二模)已知一个三角形的三边长分别为2,3,4,则这个三角形外接圆的直径为.即这个三角形外接圆的直径为161515.故答案为:16151533.(2024·上海徐汇·二模)如图所示,已知ABC 满足8,3BC AC AB ==,P 为ABC 所在平面内一点.定义点集13,3D P AP AB λλλ⎧⎫-==+∈⎨⎬⎩⎭R .若存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0||AP 的最大值为.【答案】3【分析】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,由向量共线定理得,,P M N 三点共线,从而0AP 表示AMN 的边MN 上的高,利用正弦定理求得AMN 的面积的最大值,从而可得结论.【详解】延长AB 到M 满足3AM AB = ,取AC 的靠近A 的三等分点N ,连接MN ,如图,3(1)133(1)3AC AP AB AC AB AM AN λλλλλλ=⋅+-++--== ,所以,,P M N 三点共线,又存在点0P D ∈,使得对任意P D ∈,满足0||||AP AP ≥ 恒成立,则0AP 的长表示A 到直线MN 的距离,即AMN 的边MN 上的高,设0AP h =,由3AC AB =得AC AM =,AB AN =,A ∠公用,因此ABC ANM ≅ ,所以8MN BC ==,AMN 中,设ANM θ∠=,由正弦定理得sin sin sin AM AN MN M Aθ==,MAN ∠记为角A ,所以sin 3sin M θ=,8sin sin AM A θ=,8sin sin M AN A =,所以2132sin sin 96sin sin 2sin sin()ABC AMN M M S S AM AN A A M θθ====+ 2296sin 96sin sin cos cos sin sin cos 3cos sin M M M M M M M θθθ==++96sin cos 3cos M Mθ=+,若θ不是钝角,则222296sin 96sin 1sin 31sin 19sin 99sin ABC MMS M M M θ==-+--+-!,【点睛】方法点睛:本题考查向量的线性运算,考查三角形的面积,解题方法其一是根据向量共线定理得出P点在一条直线,问题转化为求三角形高的最大值,从而求三角形面积的最大值,解题方法其二是利用正弦定理求三角形的面积,本题中注意在用平方关系转化时,34.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l相交于点O,一根长度为8的直杆AB的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ⊥,则OAP △面积的取值范围是.【答案】(0,63]【分析】令π(0)2OAB x x ∠=<<,利用直角三角形边角关系及三角形面积公式求出OAP △的面积函数,再利用导数求出值域即得.【详解】依题意,设π(0)2OAB x x ∠=<<,则2cos 8cos ,cos 8cos OA AB x x AP OA x x ====,因此OAP △的面积31()sin 32sin cos 2f x OA AP x x x =⋅=,π02x <<,求导得42242()32(cos 3sin cos )32cos (13tan )f x x x x x x '=-=-,当π06x <<时,()0f x '>,当ππ62x <<时,()0f x '<,即函数()f x 在(0,)6π上递增,在ππ(,)62上递减,因此3max π31()()32()63622f x f ==⨯⨯=,而π(0)()02f f ==,则0()63f x <≤,所以OAP △面积的取值范围是(0,63].故答案为:(0,63]35.(2024·上海徐汇·二模)在ABC 中,1AC =,2π3C ∠=,π6A ∠=,则ABC 的外接圆半径为.【答案】1【分析】由正弦定理求解.【详解】由已知π6B ∠=,设三角形外接圆半径为R ,则122πsin sin 6AC R B ===,所以1R =.故答案为:1.36.(2024·上海闵行·二模)双曲线2:16x Γ-=的左右焦点分别为12F F 、,过坐标原点的直线与Γ相交于A B 、两点,若112F B F A =,则22F A F B ⋅= .【答案】4。

上海高考数学压轴题50道(有答案-精品)

上海高考数学压轴题50道(有答案-精品)

2 0 11高考压轴题目选(5 0题)1 .(函数)设/(x) = ^ + log2(x+^?+i),则对任意实数。

力,膈+论0”是5o)+y0)NO” 的M件。

2.(函数)设/(X,y)=G/2x-41y,41x+ 72y)为定义在平面上的函数,且以={(歪),)尸+ y2<Kx>0t y>0},令5 = {/(x,y)|(x,y)e 则3所覆盖的面积为3.(函数)老师在黑板上写出了若干个慕函数。

他们都至少具备一下三条性质中的一条:(1)是奇函数3 (2)在(T»,+oo)上是增函数;<3)函数图像经过原点。

小明统计了一T,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幕函数共有个。

4 .(函数)已知定义在R上的奇函数,(对,满足/(x-4)= -/(x)且在区间[0,2止是増函数,若方程f(x>m(m>0)在区间[-8,8]上有四个不同的根如巧,与,则+ X4 = .5.(函数)已知函数/(对=吏三3*1).在区间(0』上是诚函数,则实数a的a —1取值范围是6.(函数)方程2*-1=0的解可视为函数年"的图像与函数尸地图像交点的X 横坐标,若*4=0的各个实根药,z, 3W4)所对应的点("勻(2-X' 1,2,•••,*)均在直线尸*的同侧,则实数a的取值范围是(函数)如图放置的边长为1的正方形PABC 沿x 轴滚 动。

设顶点P (x, y )的轨迹方程是y = /(x ),则/(x ) 的最小正周期为 ; V = /(X )在其两个相邻零 点间的图像与X 轴所围区域的面积为 O(三角函数)已知 /(x) = sinLx+^(®>0), 有最小值,无最大值,则9.(三角函数)已知函数/(x ) = sin^tyx+^j + sin^<yx-^j-2cos 2^, xeR (其 中刃>0),若对任意的a&R,函数v = /(x ), xe (a t 。

(压轴题)高中数学必修四第一章《三角函数》测试(答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(答案解析)

一、选择题1.已知函数()sin()(f x A x A ωϕ=+,ω,ϕ是常数,0A >,0>ω,0)2πϕ<<的部分图象如图所示.为了得到函数()f x 的图象,可以将函数2sin y x =的图象( )A .先向右平移6π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变 B .先向左平移6π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 C .先向左平移3π个单位长度,再将所得图象的横坐标伸长为原来的2倍,纵坐标不变 D .先向左平移3π个单位长度,再将所得图象的横坐标缩短为原来的12,纵坐标不变2.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+3.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞ B .(4,)+∞ C .(0,2)D .(0,4)4.已知函数()sin 26f x x π⎛⎫=- ⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( ) A .35B .45-C .23-D .3-5.如图,一个质点在半径为1的圆O 上以点P 为起始点,沿逆时针方向旋转,每2s 转一圈,由该质点到x 轴的距离y 关于时间t 的函数解析式是( )A .2sin()3y t ππ=+ B .2sin()3y t ππ=- C .2sin()3y t ππ=-D .2sin()3y t ππ=+6.将函数sin()y x ϕ=+的图像上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将所得图像向左平移12π个单位后得到的函数图像关于原点中心对称,则sin 2ϕ=( )A .12-B .12C .3D 37.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 8.函数()3sin 22xf x x =-的部分图象大致为( )A .B .C .D .9.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .231610.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( ) A .1B 151+C .1916D .3411.有以下四种变换方式: ①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍; ③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④12.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠< ⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( )A .6π B .6π-C .3π D .3π-二、填空题13.将函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位,再将横坐标缩短到原来的一半(纵坐标不变)后,得到函数()g x 的图像,则函数()g x 的解析式为_________. 14.已知函数()22cos f x x ω=-(0>ω)的图象关于点3,04π⎛⎫⎪⎝⎭对称,且()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,则ω的值为______. 15.已知sin 78a =︒,cos10b =︒,tan55c =︒,则a ,b ,c 的大小关系为______. 16.函数y =的定义域为________.17.若函数()cos()(0)4f x wx w π=+>在[]0,π的值域为21⎡⎤-⎢⎥⎣⎦,,则w 的取值范围是______18.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__.19.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.某同学用“五点法”画函数()() sin ωϕ=++f x A x B (其中A >0,0>0,||)2πϕ<在某一个周期内的图象时,列表并填入部分数据,如表: ωx +φπ2 π3π22π xπ35π6A sin(ωx +φ)+B3-1f (x )的解析式; (2)若定义在区间,44ππ⎡⎤-⎢⎥⎣⎦上的函数g (x )=af (x )+b 的最大值为7,最小值为1,求实数a ,b 的值.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x 的解析式;(2)将()f x 的图象上所有的点横坐标缩短到原来的12,纵坐标不变,得到函数()g x 的图象求方程()12g x =在[]0,π的实数解. 25.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: 时刻 0:00 1:00 2:00 3:00 4:00 5:00 水深 5.000 6.250 7.165 7.500 7.165 6.250 时刻6:007:008:009:0010:0011:00(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据函数图象求出函数()f x 的解析式,由三角函数图象的变换即可求解. 【详解】 由图可知,1741234A T πππ==-=,, 所以T π=,即2ππω=,解得2ω=.当712x π=时,73π22π,122k k Z πϕ⨯+=+∈, 所以 2,3k k Z πϕπ=+∈又2πϕ<,所以3πϕ=.所以()23f x x π⎛⎫=+ ⎪⎝⎭.将y x =的图象先向左平移3π个单位长度,得到)3y x π=+,.再将所得图象的横坐标缩短为原来的12,纵坐标不变,得到())3f x x π=+.故选:D 【点睛】易错点点睛:图象变换的两种方法的区别,由sin y x =的图象,利用图象变换作函数()()()sin 0,0y A x A x R ωϕω=+>>∈的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x 轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是|φ|个单位,而先周期变换(伸缩变换)再平移变换,平移的量是ϕω个单位. 2.D解析:D 【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D 【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.3.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数, (0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】首先根据图象理解t 秒后23POx t ππ∠=+,再根据三角函数的定义求点P 的纵坐标和该质点到x 轴的距离y 关于时间t 的函数解析式. 【详解】由题意可知点P 运动的角速度是22ππ=(弧度/秒) 那么点P 运动t 秒后23POx t ππ∠=+, 又三角函数的定义可知,点P 的纵坐标是2sin 3t ππ⎛⎫+ ⎪⎝⎭,因此该质点到x 轴的距离y 关于时间t 的函数解析式是2sin 3y t ππ⎛⎫=+ ⎪⎝⎭. 故选:A 【点睛】关键点点睛:本题的关键是理解三角函数的定义,并正确表示点23POx t ππ∠=+,即可表示函数的解析式.6.C解析:C 【分析】先根据条件写出图像变换后的函数解析式,然后根据图像关于原点中心对称可知函数为奇函数,由此得到ϕ的表示并计算出sin 2ϕ的结果. 【详解】因为变换平移后得到函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由条件可知sin 26y x πϕ⎛⎫=++ ⎪⎝⎭为奇函数,所以6k πϕπ+=,3sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.故选C . 【点睛】本题考查三角函数的图像变换以及根据函数奇偶性判断参数值,难度一般.正弦型函数()()sin f x A x =+ωϕ为奇函数时,k k Z ϕπ=∈,为偶函数时,2k k Z πϕπ=+∈.7.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 8.A解析:A 【分析】求得函数()y f x =的定义域,分析函数()y f x =的奇偶性,结合2f π⎛⎫⎪⎝⎭的值以及排除法可得出合适的选项. 【详解】对于函数()3sin 22xf x x =-,20x -≠,得2x ≠±,所以,函数()y f x =的定义域为{}2x x ≠±.()()()sin 2sin 222x xf x f x x x --==-=----,函数()y f x =为奇函数,图象关于原点对称,排除B 、D 选项;又02f ⎛⎫= ⎪⎝⎭π,排除C 选项. 故选:A. 【点睛】本题考查利用函数的解析式选择图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9.B解析:B 【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.10.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=-⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=-⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .12.A解析:A 【分析】由正切函数的图象性质,得出相邻两个对称中心之间的距离为半个周期,可求出T ,然后由T πω=求出ω,然后再代点讨论满足题意的ϕ,即可得出答案. 【详解】由正切函数图象的性质可知相邻两个对称中心的距离为2T ,得72263T πππ⎛⎫=-= ⎪⎝⎭. 则由1T πω==得1ω=,即得1ω=±. 由2πϕ<,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则可得1ω=-, ∴()()()tan tan f x x x ϕϕ=-+=--. 由2,32k k Z ππϕ-=∈得2,32k k Z ππϕ=-∈,因2πϕ<,可得6π=ϕ或3π-,当3πϕ=-时,()tan +3f x x π⎛⎫=- ⎪⎝⎭,由+,232k x k k Z πππππ-<<+∈,得5,66k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由54,63ππ⎛⎫ ⎪⎝⎭7,66ππ⎛⎫ ⎪⎝⎭⊄,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上不是单调递减, 所以3πϕ=-不满足题意;当6π=ϕ时,()tan 6f x x π⎛⎫=-- ⎪⎝⎭,由,262k x k k Z πππππ-<-<+∈,得2,33k x k k Z ππππ-<<+∈, 则函数()f x 的单调减区间为2,,33k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 令1k =,由25,3354,63ππππ⎛⎫⊂⎛⎫ ⎪⎝ ⎪⎝⎭⎭,得函数()f x 在54,63ππ⎛⎫⎪⎝⎭上单调递减, 所以6π=ϕ满足题意; 综上可得:6π=ϕ满足题意. 故选:A.【点睛】关键点睛:正切型函数的对称中心和单调性的问题,通常采用代入检验法,注意正切函数的对称中心为0,2k k Z π⎛⎫∈⎪⎝⎭,. 二、填空题13.【分析】利用函数的图象变换规律即可得到的解析式【详解】函数的图像先向右平移个单位后解析式变为:再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:所以故答案为:【点睛】方法点睛:函数的图像与函数的 解析:cos4x -【分析】利用函数()()sin f x A x =+ωϕ的图象变换规律,即可得到()g x 的解析式. 【详解】函数()sin 24f x x π⎛⎫=-⎪⎝⎭的图像先向右平移8π个单位后解析式变为: sin 2sin 2co 288s 2y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标缩短到原来的一半(纵坐标不变)后解析式变为:()cos 22x y -=⨯,所以()cos 4g x x =-. 故答案为:cos4x -. 【点睛】方法点睛:函数sin ωφf xA xB 的图像与函数sin y x =的图像两者之间可以通过变化A ,ω,φ,B 来相互转化,A 、ω影响图像的形状,φ、B 影响图像与x 轴交点的位置,由A 引起的变换称为振幅变换,由ω引起的变换称为周期变换,它们都是伸缩变换;由φ引起的变换称为相位变换,由B 引起的变换称为上下平移变换,它们都是平移变换.三角函数图像变换的两种方法为先平移后伸缩和先伸缩后平移.14.【分析】根据函数图像的对称点得到的表达式根据在区间上单调得到的范围从而得到的范围再得到的值【详解】函数的图像关于点对称所以即得到在区间上单调所以即所以所以而所以故答案为:【点睛】本题考查根据余弦型函解析:23【分析】根据函数图像的对称点,得到ω的表达式,根据()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,得到T 的范围,从而得到ω的范围,再得到ω的值. 【详解】函数()f x x ω=-的图像关于点3,04π⎛⎫⎪⎝⎭对称,所以304πω⎛⎫-= ⎪⎝⎭,即342k ππωπ=+,k ∈Z ,得到4233k ω=+,k ∈Z , ()f x 在区间20,3π⎛⎫⎪⎝⎭上单调, 所以223T π≥,即43T π≥, 所以243ππω≥,所以32ω≤,而0>ω,所以0k =,23ω=.故答案为:23.【点睛】本题考查根据余弦型函数的对称中心求参数的值,根据余弦型函数的周期求参数的值,属于中档题.15.【分析】同角三角函数关系知又由的区间单调性知根据的区间单调性知即可知的大小关系【详解】而∴故答案为:【点睛】本题考查了比较三角函数值的大小根据正弦函数正切函数的区间单调性及正弦函数的值域范围比较函数 解析:c b a >>【分析】同角三角函数关系知sin80b =︒,又由sin y x =的区间单调性知b a >,根据tan y x =的区间单调性知1c>,即可知a,b,c的大小关系【详解】cos10cos(9080)sin80sin78b a=︒=︒-︒=︒>=︒,而tan55tan451c=︒>︒=∴c b a>>故答案为:c b a>>【点睛】本题考查了比较三角函数值的大小,根据正弦函数、正切函数的区间单调性及正弦函数的值域范围,比较函数值的大小16.(k∈Z)【分析】解不等式2cosx-1≥0即得函数的定义域【详解】∵2cosx-1≥0∴cosx≥由三角函数线画出x满足条件的终边的范围(如图阴影所示)∴x∈(k∈Z)故答案为(k∈Z)【点睛】(解析: (k∈Z)【分析】解不等式2cos x-1≥0即得函数的定义域.【详解】∵2cos x-1≥0,∴cos x≥.由三角函数线画出x满足条件的终边的范围(如图阴影所示).∴x∈ (k∈Z).故答案为 (k∈Z)【点睛】(1)本题主要考查三角函数线和解三角不等式,意在考查学生对这些知识的掌握水平和分析推理能力.(2)三角函数线是解三角不等式较好的工具,要理解掌握并灵活运用. 17.【分析】先根据题意计算出的范围再根据函数的单调性结合值域列出不等式即可求得【详解】因为且故可得因为在区间单调递减在单调递增且故要满足题意只需解得故答案为:【点睛】本题考查由余弦型函数在区间上的值域求解析:33 42⎡⎤⎢⎥⎣⎦,【分析】先根据题意计算出4wx π+的范围,再根据函数的单调性,结合值域,列出不等式,即可求得. 【详解】因为[]0,x π∈,且0w >, 故可得1,444wx w πππ⎡⎤⎛⎫+∈+ ⎪⎢⎥⎝⎭⎣⎦, 因为y cosx =在区间,4ππ⎡⎤⎢⎥⎣⎦单调递减,在7,4ππ⎡⎤⎢⎥⎣⎦单调递增,且7coscos424ππ==,1cos π=-, 故要满足题意,只需1744w πππ⎛⎫≤+≤ ⎪⎝⎭ 解得33,42w ⎡⎤∈⎢⎥⎣⎦. 故答案为:3342⎡⎤⎢⎥⎣⎦,.【点睛】本题考查由余弦型函数在区间上的值域,求参数范围的问题,属中档题.18.【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数的奇偶性【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 19.【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)答案见解析;(2)34k x ππ=+,k Z ∈. 【分析】(1)分别令x 等于0、6π、512π、23π、1112π、π,求得对应的纵坐标,确定点的坐标,列表、描点、作图即可;(2)利用放缩变换与平移变换法则可得到()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭,再令5462x k k Z πππ-=+∈,可得答案. 【详解】(1)由题意可得表格如下:()f x141212- 014(2)将()y f x =的图象向上平移1个单位得到1sin 2126y x π⎛⎫=++ ⎪⎝⎭的图象,再横坐标缩短为原来的12可得到1sin 4126y x π⎛⎫=++ ⎪⎝⎭的图象,再向右平移4π个单位可得115sin 41sin 412626y x x πππ⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎝⎭⎝⎭的图象, 即()15sin 4126g x x π⎛⎫=-+ ⎪⎝⎭, 令5462x k πππ-=+,解得34k x k Z ππ=+∈,, 所以()g x 的对称轴方程是34k x ππ=+,k Z ∈. 【点睛】方法点睛:“五点法”作一个周期上的图象,主要把握三处主要位置点:1、区间端点;2、最值点;3、零点.22.(1)()2sin 213f x x π⎛⎫=++ ⎪⎝⎭;(2)2,1a b ==或2,7a b =-=.【分析】(1)由表中数据可得周期及A 、B 、ϕ的值; (2)()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭,讨论a 的正负,根据()g x 的最大值、最小值可得答案. 【详解】(1)由题,函数()f x 的周期5263T πππ⎛⎫=⨯-= ⎪⎝⎭, 所以22Tπω==, 由31A B A B +=⎧⎨-+=-⎩,得21A B =⎧⎨=⎩,故()2sin(2)1f x x ϕ=++,由表可知,23πϕπ⨯+=,得3πϕ=,所以()2sin 213f x x π⎛⎫=++ ⎪⎝⎭. (2)由(1)可知()2sin 23g x a x a b π⎛⎫=+++ ⎪⎝⎭, 由44x ππ-≤≤,得52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭;当0a >时,()g x 的最大值是37a b +=,最小值是1b =, 解得2,1a b ==;当0a <时,()g x 的最大值是7b =,最小值是31a b +=, 解得2,7a b =-=,综上,2,1a b ==;或2,7a b =-=. 【点睛】本题考查了由三角函数图象上的点求解析式及利用单调性参数的问题,要正确分析表中数据,熟练掌握三角函数的性质是解题的关键,考查了学生的计算能力. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=,∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦,则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)0或3π或π. 【分析】(1)先根据函数图象确定出()f x 的最小正周期,再根据最小正周期的计算公式2T ωπ=求解出ω的值,然后代入点,13π⎛⎫⎪⎝⎭结合ϕ的范围求解出ϕ的值,从而()f x 的解析式可求;(2)先根据图象变换求解出()g x 的解析式,然后根据()12g x =得到关于x 的方程,结合[]0,x π∈,求解出x 的值即为方程的实数解. 【详解】(1)因为由图象可知4362T πππ⎛⎫=--= ⎪⎝⎭,所以22T ππω==且0>ω,所以1ω=, 所以()()sin f x x ϕ=+,代入点,13π⎛⎫⎪⎝⎭,所以sin 13πϕ⎛⎫+= ⎪⎝⎭且2πϕ<,所以6π=ϕ,所以()sin 6f x x π⎛⎫=+ ⎪⎝⎭;(2)()f x 的图象上所有的点横坐标缩短到原来的12后得到的函数解析式为:()sin 26g x x π⎛⎫=+ ⎪⎝⎭,因为[]0,x π∈,所以132,666x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,又因为()12g x =,所以1sin 262x π⎛⎫+= ⎪⎝⎭,所以266x ππ+=或56π或136π,所以0x =或3π或π, 所以方程()12g x =在[]0,π的实数解为:0或3π或π. 【点睛】思路点睛:根据()sin y A ωx φ=+的图象求解函数解析式的步骤: (1)根据图象的最高点可直接确定出A 的值;(2)根据图象的对称轴、对称中心确定出函数的最小正周期,再利用最小正周期的计算公式求解出ω的值;(3)代入图象中非平衡位置的点,结合ϕ的范围求解出ϕ,则函数解析式可求. 25.(1)[1,2]-; (2)1(0,]4. 【分析】(1)由5·,46k k Z ππωπ+=∈,可得4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,结合()0,1ω∈,得23ω=,所以()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,由30,4x π⎡⎤∈⎢⎥⎣⎦,利用正弦定理的单调性可得函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域;(2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+, 由函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,可得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭,列不等式求解即可. 【详解】(1)由题意得:5·,46k k Z ππωπ+=∈,∴4156k ω⎛⎫=- ⎪⎝⎭,k Z ∈,∵()0,1ω∈,∴23ω=,∴()42sin 22sin 636f x x x ππω⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,∵30,4x π⎡⎤∈⎢⎥⎣⎦,∴47,3666x πππ⎡⎤+∈⎢⎥⎣⎦,∴41sin ,1362x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 故函数()f x 在30,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2-. (2)令222,262k x k k Z ππππωπ-+≤+≤+∈,解得36k k x ππππωωωω-≤≤+,∵函数()f x 在2,33ππ⎛⎫ ⎪⎝⎭上单调递增,∴002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪⎪⎝⎭⎝⎭,0k Z ∈,∴0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩,又212·3322πππω-≤,∴302ω<≤,∴01566k -<≤,∴00k =, ∴104ω<≤,即ω的取值范围为10,4⎛⎤⎥⎝⎦. 【点睛】本题主要考查三角函数的单调性、三角函数的图象对称性,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:(1) 代换法:①若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,2222k x k πππωϕπ-+≤+≤+求得增区间;②若0,0A ω><,则利用诱导公式先将ω的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间. 26.(1) 2.5sin()56y x π=+;(2)该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【分析】(1)由表格中数据可得, 2.5,5,12A B T ===,26T ππω==,取3x =代入可得2,k k Z ϕπ=∈,则解析式可得;(2)由(1)得计算2.5sin()5 6.256x π+≥解x 范围即可得结果.【详解】解:(1)由表格中数据可得, 2.5,5,12A B T ===. 因为0>ω,所以22126T πππω===. 因为3x =时y 取得最大值,所以32,62k k Z ππϕπ⨯+=+∈,解得2,k k Z ϕπ=∈.所以这个函数解析式为 2.5sin()56y x π=+(2)因为货船的吃水深度为5米,安全间隙至少要有1.25米, 所以2.5sin()5 6.256x π+≥,即1sin()562x π+≥, 所以522,666m x m m N πππππ+≤≤+∈,解得112512,m x m m N +≤≤+∈.取0,1,m m ==得15,1317x x ≤≤≤≤.答:该船1:00至5:00和13:00至17:00期间可以进港,在港口最多能呆4个小时. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=2T即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.。

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角(解析版)

2024年高一数学真题分类汇编(沪教版2020必修第二册,上海专用)三角(解析版)

专题01三角的顶点为坐标原点,始边与,则tansin2所以此时B 有两解.故答案为:2.35.(2023下·上海奉贤·高一校考期中)题正确的序号是.①.若2a b c +>,则π3C <②.若222a b c +>,则ABC 是锐角三角形③.若2cos 22A b c c+=,则ABC 是直角三角形④.若cos cos a b B A=,则ABC 为等腰三角形⑤.若锐角ABC 中,则sin sin A +【答案】①③【分析】根据正弦定理,余弦定理,三角函数恒等变换的应用逐一判断各个选项即可.经测量知(1)霍尔顿发现无论BD 多长,(2)霍尔顿发现小麦的生长和发育与分割土地面积的平方和呈正相关关系分别为1S 和2S ,为了更好地规划麦田,请你帮助霍尔顿求出【答案】(1)证明见解析,(2)3132【分析】(1)利用余弦定理,整理等式,可得答案;(2)利用三角形面积公式,结合三角函数恒等式,可得答案【解析】(1)在ABD △中,在BCD △中,2BD CD =4cos 32cos A C ∴-=,则2cos (2)2221214S S AB AD +=⋅(2211sin cos 1A C =+-=一、填空题cos【点睛】本题考查解三角形中的正弦定理的应用,关键在于由反射的条件得出边、角之间的关系,再由302,AP <≤建立不等式,求得范围,属于难度题二、单选题7.(2023上·上海杨浦·高三上海市控江中学校考期中)设集合2π4πsin sin sin 20232023A x x ⎧==++⎨⎩|A .1011B .1012【答案】B的取值会随着三、解答题ABC方案一:在墙壁OB 上取两点P 、Q ,用长度为20m 的移动围挡围成一个以(只有MP ,MQ 两边为移动围挡);方案二:在墙壁OA 、OB 上分别取点E 、F 用长度为20m 别求出两个方案下展台面积的最大值;若现有材料下所围成展台的面积越大方案越好,请问选择哪个方案?【答案】MPQ 的面积的最大值为250m ,EOF 的面积的最大值为【分析】设m,m MP x MQ y ==,表示出MPQ 的面积,利用基本不等式可求出其最大值,设从而可求出,比较可知存在。

上海各高中历年学校学生练习卷及期中期末试卷三角函数题目汇总

上海各高中历年学校学生练习卷及期中期末试卷三角函数题目汇总

【题目】若 sin

2

5 12 , cos ,则角 的终边在__________________ 13 2 13
A. 第一象限 C. 第三象限
B. 第二象限 D. 第四象限
【题目】已知扇形半径为 2,圆心角为
,则扇形的面积为_____________ 3
返回首页
2、诱导公式
1 【题目】若 sin ,则 cos _________________ 2 4
5 / 28
【题目】已知 ,2 ,则
A. sin
1 1 cos ______________________ 2 2

2
B. sin

2
C. cos

2
D. cos

2
3 5 【题目】 ABC 中, cos A ,cos B 则 sin C ______________ 5 13
4 【题目】已知 sin , 是第三象限角,则 sin 2 __________ 5
【题目】若 cos
1 2 3 则 sin __________________ 3 2【题目】若 sin 2
4 ,则 cos4 ______________________ 5
三角函数题目汇总 知识点分布: 1、角度制与弧度制 3、同角的三角变换 5、正余弦定理与解三角形 6、三角函数 6.0 定义域与值域 6.2 解析式 6.4 奇偶性 6.6 周期性 6.8 凹凸性 6.10 三角不等式 6.12 函数性质综合题目 文档结尾 题目分类汇编: 返回首页 1、角度制与弧度制 【题目】一个扇形的半径是 1,圆心角为 4 弧度,则此扇形的面积为_______________ 6.1 图像 6.3 单调性 6.5 对称性 6.7 有界性 6.9 三角方程 6.11 反三角函数 2、诱导公式 4、三角变换

(压轴题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)

(压轴题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)

一、选择题1.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .452.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( )A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称6.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π7.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A B C D 8.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C9.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3410.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 12.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭二、填空题13.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.14.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又()20f =,则不等式sin ()0x f x ⋅>,[,]x ππ∈-的解集为_________.15.已知定义在R 上的奇函数()f x 满足()()20f x f x -+=,且当(]0,1x ∈时,()21log f x x=,若函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点,则实数m 的取值范围是__________. 16.已知3cos 6απ⎛⎫-= ⎪⎝⎭,则54cos sin 63ππαα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值为_____.17.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .18.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号).①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数;④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 19.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.20.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数()()cos[6]1,2,...,126y A x B x π=-+=来表示.已知6月份的平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温为______℃. 三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间. 23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值.25.已知函数2()22cos 1f x x x =+-.(I )求函数()f x 的最小正周期; (II )求函数()f x 的单调增区间; (III )当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最小值. 26.已知函数()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,x ∈R . (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 在区间06,π⎡⎤⎢⎥⎣⎦上的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 2.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=;当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A5.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.6.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+ ⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.8.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.9.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫ ⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 2.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .83.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .4.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭5.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A .3310- B .3310+ C .3310D .43310- 6.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称;③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④10.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1311.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.14.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____. 18.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围.22.已知函数2()3sin cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.23.如图所示,摩天轮的半径为50m ,最高点距离地面高度为110m ,摩天轮的圆周上均匀地安装着24个座舱,并且运行时按逆时针匀速旋转,转一周大约需要12min .甲,乙两游客分别坐在P ,Q 两个座舱里,且他们之间间隔2个座舱(本题中将座舱视为圆周上的点).(1)求劣弧PQ 的弧长l (单位:m );(2)设游客丙从最低点M 处进舱,开始转动min t 后距离地面的高度为m H ,求在转动一周的过程中,H 关于时间t 的函数解析式;(3)若游客在距离地面至少85m 的高度能够获得最佳视觉效果,请问摩天轮转动一周能有多长时间使甲,乙两位游客都有最佳视觉效果.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为()g x ,若不等式()0g x m -≤在[]0,6x ∈恒成立,求实数m 的取值范围.26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.2.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.3.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.4.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增,因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.5.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯310-=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.6.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-, 由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).10.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确. 又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+.故答案为:(40π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.14.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确. ④24πα⎛⎫+ ⎪⎝⎭2322<,所以④错误.故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.18.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误; ③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n 2]i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =322m -<,即123m <≤12m ∴<≤m ∴的取值范围是12⎛ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()3cos cos f x x x x ωωω=-312(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 23.(1)252m π;(2)50sin()6062H x ππ=-+,其中012t ≤≤;(3)5min 2. 【分析】(1)根据弧长的计算公式可求PQ 的长度.(2)建立如图所示的平面直角坐标系,利用三角函数的定义可求H 关于时间t 的函数解析式.(3)利用(2)中所得的解析式并令85H ≥,求出不等式的解后可得甲,乙两位游客都有最佳视觉效果的时间长度. 【详解】(1)因为摩天轮的圆周上均匀地安装着24个座舱,故每个座舱与中心连线所成的扇形的圆心角为22412ππ=, 故25350122lm ππ. (2)建立如图所示的平面直角坐标系,设sin()H A wx B ϕ=++, 由题意知,12T =,所以26w T ππ==, 又由50,1105060A r B ===-=,所以50sin()606H x πϕ=++,当0x =时,可得sin 1ϕ=-,所以2πϕ=-,故H 关于时间t 的函数解析式为50sin()6062H x ππ=-+,其中012t ≤≤.(3)令50sin()608562H x ππ=-+≥,即1sin()622x ππ-≥, 令522,6626k x k k Z ππππππ+≤-≤+∈,解得412812,k x k k Z +≤≤+∈, 因为甲乙两人相差3312min 242⨯=, 又由354min 22-=,所以有5min 2甲乙都有最佳视觉效果. 【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=-⎪⎝⎭, 则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;。

专题2 三角函数压轴小题(解析版)

专题2 三角函数压轴小题(解析版)

专题2三角函数压轴小题一、单选题 1.(2021·上海市吴淞中学高三期中)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是( )A .B .C .D .【答案】D 【分析】根据给定条件求出函数()y f x =的解析式,再借助函数性质即可判断作答. 【详解】依题意,正ABC 的高为1,则其边长BC =如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则FOG x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2x OM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x =,0πx <<,显然()f x 在(0,)π上单调递增,且图象是曲线,排除选项A ,B ,而2312432fππ+⎛⎫==<=⎪⎝⎭⎭,C选项不满足,D选项符合要求,所以函数()y f x=的图像大致是选项D.故选:D【点睛】方法点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.2.(2021·上海市晋元高级中学高三期中)已知(){}|sin,A y y n n Zωϕ==+∈,若存在ϕ使得集合A中恰有3个元素,则ω的取值不可能是()A.27πB.25πC.2πD.23π【答案】A【分析】利用赋值法逐项写出一个周期中的元素,再结合三角函数诱导公式判断是否存在ϕ符合题意即可.【详解】解:对A,当2=7πω,27siny nϕπ⎛⎫=+⎪⎝⎭,函数的周期为22727Tπππω===在一个周期内,对n赋值当0n=时,sinyϕ=;当1n=时,27sinyπϕ⎛⎫=+⎪⎝⎭;当2n=时,47sinyπϕ⎛⎫=+⎪⎝⎭;当3n=时,67sinyπϕ⎛⎫=+⎪⎝⎭;当4n=时,867s n si7i nyϕππϕ⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭-;当5n=时,10s4n7i n7siyππϕϕ⎛⎫⎛⎫=+=+⎪-⎪⎝⎭⎝⎭;当6n=时,12s2n7i n7siyππϕϕ⎛⎫⎛⎫=+=+⎪-⎪⎝⎭⎝⎭;令2ϕπ=时,sin sin12πϕ==sin sin cos27722227πππππ-⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭sin sin cos47724247πππππ-⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭sin sin cos 67726267πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭所以存在ϕ使得1n =时的y 值等于6n =时的y 值,2n =时的y 值等于5n =时的y 值,3n =时的y 值等于4n =时的y 值.但是当n 等于0、1、2、3时,不存在ϕ使得这个y 值中的任何两个相等 所以当2=7πω时,集合A 中至少有四个元素,不符合题意,故A 错误; 对B ,当2=5πω,25sin y n ϕπ⎛⎫=+ ⎪⎝⎭,函数的周期为22525T πππω=== 在一个周期内,对n 赋值当0n =时,sin y ϕ=;当1n =时,25sin y πϕ⎛⎫=+ ⎪⎝⎭; 当2n =时,45sin y πϕ⎛⎫=+ ⎪⎝⎭;当3n =时,645s n si 5i n y ϕππϕ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭-; 当4n =时,825s n si 5i n y ϕππϕ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭-; 令2ϕπ=,sin 12π= sin sin cos 25522225πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭sin sin cos 45524245πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭所以当2=5πω时,符合题意,故B 正确; 对C ,当=2πω,2sin y n πϕ⎛⎫=+ ⎪⎝⎭,函数的周期为2242T πππω=== 在一个周期内,对n 赋值 当0n =时,sin y ϕ=;当1n =时,sin cos 2y πϕϕ⎛⎫=+= ⎪⎝⎭;当2n =时,()sin sin y ϕπϕ=+=-; 当3n =时,sin os 3c 2y πϕϕ⎛⎫=+=- ⎪⎝⎭; 令0ϕ=,则sin0sin00=-=,cos01=,cos01-=- 所以当=2πω时,符合题意,故C 正确;对D ,当32=πω,23sin y n ϕπ⎛⎫=+ ⎪⎝⎭,函数的周期为22323T πππω=== 在一个周期内,对n 赋值当0n =时,sin y ϕ=;当1n =时,23sin y πϕ⎛⎫=+ ⎪⎝⎭; 当2n =时,43sin y πϕ⎛⎫=+ ⎪⎝⎭; 令0ϕ=,sin00=,2sin 3π=4sin 3π= 所以当32=πω时,符合题意,故D 正确. 故选:A. 【点睛】方法点睛:本题一共有三个变量:ω,n ,ϕ.属于多变量题目,对于该题,要先确定一个变量,再对第二个变量赋值,然后再对第三个变量赋值,以此分类讨论即可.3.(2021·广西南宁·高三月考(文))已知函数f (xx +4cos x )+2sin x ,则f (x )的最大值为( ) A .B .172C .6D .【答案】B 【分析】先将sin 2x 展开,提公因式并结合拼凑法可得())()21sin 24f x x x =++-,结合22a b ab +⎛⎫≤ ⎪⎝⎭放缩,联立辅助角公式化简,即可求解. 【详解】()))sin 24cos 2sin 2sin cos 4cos 2sin f x x x x x x x x ++++()())()sin 22sin 2421sin 24x x x x x =+++-=++-,由sin 20x +>可知,要求()f x最大值,只需10x +>即可,结合基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭可得())()222sin 3321sin 242442x f x x x π⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=++-≤⋅-=-⎝⎭172≤,当且仅当1sin 2sin 13x x x π+=+⎨⎛⎫+=⎪ ⎪⎝⎭⎩,即62,x k k Z ππ=+∈时等号成立,因此当62,x k k Z ππ=+∈时()f x的最大值为172. 故选:B4.(2021·江苏扬州·高三月考)已知△ABC 的内角,,A B C 所对的边分别为,,a b c 若sin sin 2B Cb a B +=,且△ABC 内切圆面积为9π,则△ABC 面积的最小值为( )AB .C .D .【答案】D 【分析】根据已知条件及正弦定理可得3A π=,由内切圆的面积可得内切圆半径3r =,最后根据()1sin 22ABCr a b c Sbc A ++==及余弦定理,并结合基本不等式求bc 的范围,进而求△ABC 面积的最小值. 【详解】 由题设,sin sin sin sin 2B C B A B +=,而sin 0B ≠且222B C Aπ+=-, ∴cos sin 2sin cos 222A A A A ==,022A π<<,则1sin 22A =,∴3A π=,由题设△ABC 内切圆半径3r =,又()1sin 22ABCr a b c Sbc A ++==,∴)a b c bc ++=,而222222cos a b c bc A b c bc bc =+-=+-≥,即a ≥∴bc ≥108bc ≥,当且仅当a b c ===.∴1sin 2ABCSbc A =≥ 故选:D5.(2021·四川绵阳·高三月考(理))函数()()3sin x x f ωϕ=+(0>ω,2πϕ<),已知||33f π⎛⎫= ⎪⎝⎭,且对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】D 【分析】结合正弦函数的最值,对称性求ϕ的值,再结合单调性确定ω的最大值. 【详解】∵ ||33f π⎛⎫= ⎪⎝⎭,()()3sin x x f ωϕ=+,∴32k ππωϕπ+=+,k Z ∈,又对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭, ∴ 6m πωϕπ-+=,m Z ∈,∴ 3(2)2k m πϕπ=++,又2πϕ<,∴ 6π=ϕ或6πϕ=-,当6π=ϕ时, 31w k =+,k Z ∈且61w m =-+, 当7w =时,()3sin 76f x x π⎛⎫ ⎪⎝=⎭+,若52,369x,则4131736618x πππ≤+≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上不单调,C 错误, 当6πϕ=-时, 32w k =+,k Z ∈且61w m =--,当11w =时,()3sin 116f x x π⎛⎫ ⎪⎝-⎭=,若52,369x,则49411136618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫ ⎪⎝⎭上不单调,A 错误, 当5w =时,()3sin 56f x x π⎛⎫ ⎪⎝=⎭-,若52,369x,则1917536618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,D 正确, 故选:D. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的性质求函数解析式的关键在于转化为正弦函数的问题.6.(2021·河北·邯郸市肥乡区第一中学高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .⎣D .32⎡⎢⎣【答案】A 【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C b c C⎛⎫++= ⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案. 【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos B C b c +=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin cos cos sin C B C B +∴sin()sin B C A +==∴b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin )326a c A C A A A A A ππ+=+=+-=+=+203A π<<∴5666A πππ<+<∴)6A π<+≤a c <+≤故选:A .【点睛】方法点睛:边角互化的方法 (1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边: ①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r= ②利用余弦定理:222cos 2b c a A bc+-=7.(2021·四川·绵阳中学实验学校模拟预测)某城市要在广场中央的圆形地面设计一块浮雕,彰显城市积极向上的活力.某公司设计方案如图,等腰PMN 的顶点P 在半径为20m 的大⊙O 上,点M ,N 在半径为10m 的小⊙O 上,点O ,点P 在弦MN 的同侧.设2(0)2MON παα=<<∠,当PMN 的面积最大时,对于其它区域中的某材料成本最省,则此时cos α=( )A .12B C D 【答案】C 【分析】用α表示出PMN 的面积为()S α,求导()S α',令()0S α'=求得极值点,从而求得PMN 面积最大时对应的cos α值. 【详解】如图所示,等腰PMN 中,2(0)2MON παα=<<∠设PMN 的面积为()S α, 则()2OPN OMNS SSα=⨯+1122010sin()1010sin 222παα⎡⎤=⨯⨯⨯⨯-+⨯⨯⨯⎢⎥⎣⎦200sin 50sin 2,(0)2πααα=+<<求导()200cos 250cos 2200cos 100cos 2S ααααα'=+⨯=+22200cos 100(2cos 1)100(2cos 2cos 1)αααα=+-=+-令()0S α'=,即22cos 2cos 10αα+-=,解得:1cos 2α=-记01cos 2α=-, 00,2πα⎛⎫∈ ⎪⎝⎭当()00,αα∈,()0S α'>,函数单调递增;当 0,2παα⎛⎫∈ ⎪⎝⎭,()0S α'<,函数单调递减;故当0αα=时,即1cos 2α=-, ()S α取得极大值,即最大值.故选:C8.(2021·北京八中高三月考)已知()()3sin 2f x x ϕ=+(ϕ∈R )既不是奇函数也不是偶函数,若()y f x m =+的图像关于原点对称,()y f x n =+的图像关于y 轴对称,则m n +的最小值为( ) A .π B .2π C .4π D .8π 【答案】C 【分析】结合五点作图法及函数图象进行计算求解即可. 【详解】可设0ϕ满足00,22ππϕπ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭,, 且02t ϕπϕ=+(t Z ∈),则()()03sin 2f x x ϕ=+,注意到五点作图法的最左边端点为0,02ϕ⎛⎫- ⎪⎝⎭,而22T π=,44T π=,故有0000min ,min ,2222m ϕπϕϕπϕ--⎛⎫⎛⎫=- ⎪ ⎪⎝=⎭⎝⎭,002244n ϕππϕ-=-+=, 当002πϕ⎛⎫∈ ⎪⎝⎭,时,02m ϕ=,024n πϕ-=,此时4m n π+=;当0,2πϕπ⎛⎫∈ ⎪⎝⎭时,02m πϕ-=,024n ϕπ-=,此时002244m n πϕϕππ--+=+=, 故选:C .9.(2021·吉林·梅河口市第五中学高三月考(理))已知点,024A π⎛⎫⎪⎝⎭在函数()()cos f x x ωϕ=+(0>ω且,*ω∈N ,0ϕπ<<)的图像上,直线6x π=是函数()f x 图像的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭上单调,则ϕ=( ) A .6πB .4πC .3π D .23π【答案】C 【分析】由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出ω的范围,先由函数零点与对称轴之间的关系求出周期,进而求得ω,利用对称轴即可求出ϕ. 【详解】∵()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,3662T πππ∴-=≤,得1226ππω⨯≥,所以06ω<≤ ∵24x π=是函数()()cos f x x ωϕ=+的零点,直线6x π=是函数()f x 的图象的一条对称轴,∴6248πππ-=,若84T π=,则2T π=,此时22ππω=,得4ω=,满足条件,若384T π=,则6T π=,此时26ππω=,得12ω=,不满足条件, 综上可知,函数()()cos 4f x x ϕ=+, ∵6x π=是函数()f x 的图象的一条对称轴,∴4,6k k Z πϕπ⨯+=∈,即2,3k k Z πϕπ=-∈, ∵0ϕπ<<,∴3πϕ=,故选:C 【点睛】关键点点睛:本题主要考查三角函数性质的应用,结合的单调区间以及对称轴对称中心之间的关系求出周期和ω是解决本题的关键,属于一般题.10.(2021·浙江·高三专题练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D 【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出220tan 225x x θ-=+利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ++,可得当454x =时,函数取得最大值;结合两种情况的结果,即可得出结论. 【详解】 解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=', 设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '2320tan 225x x θ-∴=+令y ,则函数在[0x ∈,20]单调递减,0x ∴=若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '2320tan 225x x θ+∴=+令22(20)225x y x +=+,则0y '=可得454x =..11.(2021·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan 2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形【答案】B 【分析】若三角形各边长为a 、b 、c 且内切圆半径为r , 法一:由内切圆的性质有tan2A a b c =+、tan 2B ba c=+,根据边角关系可得a b =或222+=a b c ,注意讨论所得关系验证所得关系的内在联系;法二:由半角正切公式、正弦定理可得A B =或π2A B +=,结合三角形内角的性质讨论所得关系判断三角形的形状. 【详解】 设()12P a b c =++,△ABC 的内切圆半径为r ,如图所示,法一: ∴tan2A r a p a b c ==-+①;tan 2B r b p b a c==-+②. ①÷②,得:p b a a cp a b c b -+=⋅-+,即()()()()22p b a a c p a b b c -+=-+. 于是()()()()b b c c a b a a c b c a ++-=++-,232232ab b bc a b a ac -+=-+,()()2220a b a b c -+-=,从而得a b =或222+=a b c ,∴A B ∠=∠或90C ∠=︒.故△ABC 为等腰三角形或直角三角形, (1)当a b =时,内心I 在等腰三角形CAB 的底边上的高CD 上,12ABCS AB CD c =⋅△,从而得2S r a b c ==++. 又()1122p a b c a c -=+-=()22a abc a ca c c ==+++⋅a a c=+, 上式两边同时平方,得:()2222a c a a c a c -=++,化简2220c a -=,即c .即△ABC 直角三角形, ∴△ABC 为等腰直角三角形.(2)当222+=a b c 时,易得()12r a b c =+-.代入②式,得()()1212a b c b a c a c b +-=++-,此式恒成立, 综上,△ABC 为直角三角形. 法二: 利用sin tan21cos A A A =+,sin tan 21cos B B B =+及正弦定理和题设条件,得sin sin 1cos sin sin A A A B C=++①,sin sin 1cos sin sin B B B A C=++②.∴1cos sin sin A B C +=+③;1cos sin sin B A C +=+④.由③和④得:1cos sin 1cos sin A B B A +-=+-,即sin cos sin cos A A B B +=+,ππsin sin 44A B ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,因为,A B 为三角形内角, ∴ππ44A B +=+或πππ44A B +=--,即A B =或π2A B+=.(1)若A B =,代入③得:1cos sin sin A B C +=+⑤又ππ2C A B A =--=-,将其代入⑤,得:1cos sin sin 2A A A +=+. 变形得()()2sin cos sin cos 0A A A A ---=, 即()()sin cos sin cos 10A A A A ---=⑥,由A B =知A 为锐角,从而知sin cos 10A A --≠. ∴由⑥,得:sin cos 0A A -=,即π4A =,从而π4B =,π2C =.因此,△ABC 为等腰直角三角形. (2)若π2A B +=,即π2C =,此时③④恒成立, 综上,△ABC 为直角三角形. 故选:B12.(2021·河北·石家庄一中高三月考)在锐角ABC 中,角、、A B C 所对的边分别为,,a b c ,若22a c bc -=,则113sin tan tan A C A-+的取值范围为( )A .)+∞B .C .(6D .)6【答案】C 【分析】根据余弦定理以及正弦定理化简条件得A 、C 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】∵22a c bc -=,∴所以22cos 2cos sin 2sin cos sin ,b bc A bc b c A c B C A C -=∴-=∴-=sin()2sin cos sin ,sin()sin ,2A C C A C A C C A C C A C +-=∴-=∴-==因此22111111tan 1tan 3sin =3sin 3sin 3sin tan tan tan tan 2tan 2tan 2tan C CA A A A C A C C C C C-+-+-+=-+=+ 113sin 3sin 2sin cos sin A A C C A=+=+设sin A t =,∵ABC 是锐角三角形,∴(0,),(0,),(0,)22222A A A C B A ππππ∈=∈=--∈,∴(,)32A ππ∈∴sin A t =∈,1+3t t 在t ∈上单调递增,∴1113sin +34)tan tan A t C A t -+=∈, 故选:C13.(2021·贵州遵义·高三月考(文))已知函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,再向上平移1个单位长度得到曲线()y g x =,若关于x 的方程()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则实数m 的取值范围是( )A .[]0,3B .[)0,3C .[)2,3D .)1,3【答案】C 【分析】本题首先可根据函数()f x 是偶函数得出33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,通过计算得出1a =-,然后通过转化得出()2sin 2f x x π⎛⎫=- ⎪⎝⎭,通过图像变换得出()2sin 213g x x π⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数对称性得出52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,通过求出此时()g x 的值域即可得出结果. 【详解】因为函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数,所以33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,即22cos 00cos 33a a ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭, 1322a a =--,解得1a =-,()cos 33f x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,则()1cos 2cos 33323f x x x x x ππππ⎤⎛⎫⎛⎫⎛⎫⎛⎫---=---⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2sin 32sin 62x x πππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭=,则()22sin 22y f x x π⎛⎫==- ⎪⎝⎭,向左平移12π个单位长度后,得到2sin 23y x π⎛⎫=- ⎪⎝⎭, 向上平移1个单位长度,得到()2sin 213y g x x π⎛⎫- ⎝=+⎪⎭=,当70,12x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数对称性易知,()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,此时()[)2,3g x ∈,实数m 的取值范围是[)2,3,故选:C. 【点睛】关键点点睛:本题考查三角函数图像变换、正弦函数性质、偶函数的性质的应用以及两角差的正弦公式,能够根据偶函数的性质求出1a =-是解决本题的关键,考查计算能力,考查化归与转化思想,体现了综合性,是难题.14.(2021·全国·高三专题练习(文))在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且22CD BD ==,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BCD【答案】B 【分析】根据()sin sin sin A B B C -+=,利用两角和与差的正弦公式化简得到sin 2cos sin B A B =,进而求得A ,根据点D 在边BC 上,且2CD BD =,得到sin 3sin ABD AD AD k BAD BD BC∠===∠,再由余弦定理结合2133AD AB AC =+两边平方,得到2222242421c b c b bc b c k c b c b bc b c ++++==+-+-,令c t b =,得到()222142421111t t t t k f t t t t t ++++===-++-,用基本不等式法或者导数法求得最大值时a ,b ,c 的关系,再利用正弦定理求解. 【详解】因为()sin sin sin A B B C -+=,所以()()sin sin sin A B B A B -+=+,即sin 2cos sin B A B =, 因为()0,B π∈, 所以sin 0B ≠,1cos 2A =, 因为()0,A π∈, 所以3A π=,因为点D 在边BC 上,且2CD BD =, 所以sin 3sin ABD AD ADk BAD BD BC∠===∠,设,,AB c AC b BC a ===,则13AD ak =,在ABC 中,由余弦定理得222222cos a c b bc A c b bc =+-=+-,()121333AD AB BD AB BA AC AB AC =+=++=+, 所以222133AD AB AC ⎛⎫=+ ⎪⎝⎭,即22221414cos 9999a k c b bc BAC =++∠, 即222242a k c b bc =++,所以222222224242421c bc b bc c b bc b c k c b a c b bc b c++++++===+-+-,令c t b =,得()222142421111t t t t k f t t t t t ++++===-++-,下面采用基本不等式和导数两种方法求解: 方法一:利用基本不等式求解:222211426()4212411311()24t t t t t k t t t t t ++-++===+-++--+,要使k 最大,需2k 最大,当2k 取最大值时,必有102t ->,2216()6244441313()()12424()2t k t t t -=+=+≤+=+-+-+-当且仅当13124()2t t -==-t所以t 2224211t t k t t ++=-+有最大值4+k的最大值为1c b =所以)1b c =,解得a ==,在ABC 中,由正弦定理得sin sin a cA C=,解得sin sin c A C a ==,即sin ACD ∠=下面采用导数的方法求解:求导得()()2226631t t f t tt -++'=-+,令()0f t '=,解得t =,当0t <<()0f t '>,当t >()0f t '<,所以当t =时,()f t 取得最大值,此时c b =,所以)1b c =,解得a ==, 在ABC 中,由正弦定理得sin sin a cA C=,解得sin sin c A C a ==,即sin ACD ∠= 故选:B. 【点睛】关键点点睛:本题关键是利用正弦定理得到sin 3sin ABD AD ADk BAD BD BC∠===∠,然后利用余弦定理表示BC ,利用平面向量表示AD 而得解.15.(2021·新疆·莎车县第一中学高三期中)已知函数()()sin 02f x x πωω⎛⎫=+> ⎪⎝⎭,将()f x 的图象向右平移3ωπ个单位得到函数()g x 的图象,点A ,B ,C 是()f x 与()g x 图象的连续相邻的三个交点,若ABC 是钝角三角形,则ω的取值范围是( )A .,⎫+∞⎪⎪⎝⎭B .,⎫+∞⎪⎪⎝⎭C .⎛⎫⎪ ⎪⎝⎭ D .⎛⎫⎪ ⎪⎝⎭【答案】D 【分析】由函数图象的平移可得()πcos 3g x x ω⎛⎫=- ⎪⎝⎭,作出函数的图象,结合三角函数的图象与性质、平面几何的知1<,即可得解. 【详解】由条件可得,()πcos 3g x x ω⎛⎫=- ⎪⎝⎭,作出两个函数图象,如图:A ,B ,C 为连续三交点,(不妨设B 在x 轴下方),D 为AC 的中点,.由对称性可得ABC 是以B 为顶角的等腰三角形,2π2AC T CD ω===,由πcos cos 3x x ωω⎛⎫=- ⎪⎝⎭,整理得cos x x ωω=,得cos x ω=,则C B y y =-=2B BD y = 要使ABC 为钝角三角形,只需π4ACB ∠<即可,由tan 1BD ACB DC ∠==<,所以0ω<<.故选:D. 【点睛】关键点点睛:解决本题的关键是准确把握三角函数的图象与性质,合理转化条件,得到关于ω的不等式,运算即可.16.(2021·全国·高三专题练习(理))已知2()2sin 1(0)3f x x πωω⎛⎫=+-> ⎪⎝⎭,给出下列结论:①若f (x 1)=1,f (x 2)=﹣1,且|x 1﹣x 2|min =π,则ω=1;②存在ω∈(0,2),使得f (x )的图象向左平移6π个单位长度后得到的图象关于y 轴对称; ③若f (x )在[0,2π]上恰有7个零点,则ω的取值范围为4147,2424⎡⎤⎢⎥⎣⎦;④若f (x )在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤⎥⎝⎦.其中,所有正确结论的编号是( )A .①②B .②③C .①③D .②④【答案】D 【分析】对函数()f x 化简可得()sin 26f x x πω⎛⎫=+ ⎪⎝⎭,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案. 【详解】∵22()2sin 1cos 2sin 2336f x x x x πππωωω⎛⎫⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴()f x 的最小正周期为22ππωω=. 对于① :因为f (x 1)=1,f (x 2)=﹣1,且|x 1﹣x 2|min =π,所以()f x 的最小正周期为T =2π,122ππωω∴=⇒=. 故① 错误; 对于② :图象变换后所得函数为sin 236y x ωππω⎛⎫=++ ⎪⎝⎭, 若其图象关于y 轴对称,则362k ωππππ+=+,k ∈Z ,解得ω=1+3k ,k ∈Z ,当k =0时,1(0,2)ω=∈.故② 正确;对于③ :设26t x πω=+,当[]0,2x π∈时,2,4666t x πππωωπ⎡⎤=+∈+⎢⎥⎣⎦. ()f x 在[0,2]π上有7个零点,即sin y t =在,466t ππωπ⎡⎤∈+⎢⎥⎣⎦上有7个零点.则7486ππωππ≤+<,解得41472424ω≤<. 故③错误; 对于④ :由222,262k x k k Z ππππωπ-+++∈,得,,36k k xk Z ππππωωωω-++∈, 取k =0,可得36x ππωω-, 若f (x )在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则3664ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得203ω<.故④ 正确. 故选:D. 【点睛】关键点睛:本题考查三角函数的恒等变形和正弦函数的单调性、周期性、奇偶性、零点等知识,解答③的关键是先化简函数不等式得()sin 26f x x πω⎛⎫=+ ⎪⎝⎭,设26t x πω=+,当[]0,2x π∈时,2,4666t x πππωωπ⎡⎤=+∈+⎢⎥⎣⎦,将问题转化为sin y t =在,466t ππωπ⎡⎤∈+⎢⎥⎣⎦上有7个零点.17.(2021·浙江·高三专题练习)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0 B .1 C .2 D .3【答案】C 【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C. 【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.视频18.(2021·天津市天津中学高三月考)函数()()2sin (0,0)f x x ωϕωϕπ=+><<的图象如图,把函数()f x 的图象上所有的点向右平移6π个单位长度,可得到函数()y g x =的图象,下列结论中: ①3πϕ=;②函数()g x 的最小正周期为π;③函数()g x 在区间,312ππ⎡⎤-⎢⎥⎣⎦上单调递增;④函数()g x 关于点,03π⎛-⎫⎪⎝⎭中心对称其中正确结论的个数是( ).A .4B .3C .2D .1【答案】C 【分析】对①,先根据图象分析出ω的取值范围,然后根据()0f ϕ的可取值,然后分类讨论ϕ的可取值是否成立,由此确定出,ωϕ的取值;对②,根据图象平移确定出()g x 的解析式,利用最小正周期的计算公式即可判断;对③,先求解出()g x 的单调递增区间,然后根据k 的取值确定出,312ππ⎡⎤-⎢⎥⎣⎦是否为单调递增区间;对④,根据3g π⎛⎫- ⎪⎝⎭的值是否为0,即可判断.【详解】解:由图可知: 1112113124T T ππ⎧<⎪⎪⎨⎪>⎪⎩,11211129πππω∴<<, 即18241111ω<<, 又()02sin f ϕ==0ϕπ<<,由图可知:23ϕπ=, 又11112sin 21212f ππωϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 112,122k k Z ππωϕπ∴+=+∈, 且113,2122ππωπ⎛⎫∈ ⎪⎝⎭, 113,3122ππωϕπ⎛⎫⎛⎫∴+∈ ⎪ ⎪⎝⎭⎝⎭, 故1k =, 当23ϕπ=时,1111126πωπ=,解得:2ω=,满足条件, ()22sin 23f x x π⎛⎫∴=+⎪⎝⎭, 故()22sin 22sin 2633g x x x πππ⎛⎫⎛⎫⎛⎫=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对①,由上述可知①错误; 对②,()2sin 23g x x π⎛⎫=+ ⎪⎝⎭,()g x ∴的最小正周期为2=2ππ,故②正确; 对③,令222,232k x k k Z πππππ-≤+≤+∈,即5,1212k x k k Z ππππ-≤≤+∈, 令0k =,此时单调递增区间为5,1212ππ⎡⎤-⎢⎥⎣⎦,且5,,3121212ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,故③正确; 对④,2sin 20333g πππ⎛⎫⎛⎫⎛⎫-=⨯-+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,03π⎛⎫∴- ⎪⎝⎭不是对称中心,故④错误; 故选:C. 【点睛】方法点睛:已知函数()()sin g x A x ωϕ=+()0ω>, 若求函数()g x 的单调递增区间,则令ππ2π2π22k x k ωϕ-<+<+,Z k ∈; 若求函数()g x 的单调递减区间,则令π3π2π2π22k x k ωϕ+<+<+,Z k ∈; 若求函数()g x 图象的对称轴,则令ππ2x k ωϕ+=+,Z k ∈; 若求函数()g x 图象的对称中心或零点,则令πx k ωϕ+=,Z k ∈.19.(2021·山西太原·三模(理))在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且2CD BD =,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BCD.(36【答案】B 【分析】根据()sin sin sin A B B C -+=,利用两角和与差的正弦公式化简得到sin 2cos sin B A B =,进而求得A ,根据点D 在边BC 上,且2CD BD =,得到sin 3sin ABD AD AD k BAD BD BC∠===∠,再由余弦定理结合2133AD AB AC =+两边平方,得到2222242421c b c b bc b c k c b c b bc b c ++++==+-+-,令c t b =,得到()222142421111t t t t k f t t t t t ++++===-++-,用导数法求得最大值时a ,b ,c 的关系,再利用正弦定理求解. 【详解】因为()sin sin sin A B B C -+=,所以()()sin sin sin A B B A B -+=+,即sin 2cos sin B A B =, 因为()0,B π∈, 所以sin 0B ≠,1cos 2A =, 因为()0,A π∈,所以3A π=,因为点D 在边BC 上,且2CD BD =, 所以sin 3sin ABD AD ADk BAD BD BC∠===∠,设,,AB c AC b BC a ===,则13AD ak =,在ABC 中,由余弦定理得222222cos a c b bc A c b bc =+-=+-,()121333AD AB BD AB BA AC AB AC =+=++=+, 所以222133AD AB AC ⎛⎫=+ ⎪⎝⎭,即22221414cos 9999a k c b bc BAC =++∠, 即222242a k c b bc =++,所以222222224242421c bc b bc c b bc b c k c b a c b bc b c++++++===+-+-, 令c t b =,得()222142421111t t t t k f t t t t t ++++===-++-,则()()2226631t t f t tt -++'=-+,令()0f t '=,解得t当0t <<()0f t '>,当t >()0f t '<,所以当t =时,()f t取得最大值,此时c b =,所以)1b c =,解得a ==, 在ABC 中,由正弦定理得sin sin a c A C =,解得sin sin c A C a ==即sin ACD ∠= 故选:B 【点睛】关键点点睛:本题关键是利用正弦定理得到sin 3sin ABD AD ADk BAD BD BC∠===∠,然后利用余弦定理表示BC ,利用平面向量表示AD 而得解.20.(2021·山西太原·一模(理))已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于3x π=-对称,且06f π⎛⎫= ⎪⎝⎭,()f x 在11,324ππ⎡⎤⎢⎥⎣⎦上单调递增,则ω的所有取值的个数是( ) A .3 B .4 C .1 D .2【答案】D 【分析】直接利用正弦型函数的性质对称性和单调性的应用求出结果. 【详解】由于函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于3x π=-对称,则:132k ππωϕπ-+=+,()1k ∈Z ①,由于06f π⎛⎫= ⎪⎝⎭,所以2()6k k πωϕπ+=∈Z ②,-②①得:()2122k k ππωπ=--,所以()()211221k k k k ω=---∈Z , 故ω为奇数,且()f x 在11,324ππ⎡⎤⎢⎥⎣⎦上单调递增,所以112243T πππω=≥-,解得08ω<≤. 当211,2,3,4k k -=,故ω的取值为:1,3,5,7,当1ω=时,可以求得()sin()6f x x π=-,11,324x ππ⎡⎤∈⎢⎥⎣⎦时,7[,][,]662422x πππππ-∈⊆-,满足条件; 当3ω=时,因为2πϕ<,所以不满足条件;当5ω=时,()sin(5)6f x x π=+,11,324x ππ⎡⎤∈⎢⎥⎣⎦时,1159355[,][,]662422x πππππ+∈⊆,满足条件;当7ω=时,()sin(7)6f x x π=-,13737[,]6624x πππ-∈,既有增区间,又有减区间, 所以不满足条件;所以满足条件的ω的所有取值的个数是2, 故选:D . 【点睛】关键点点睛:该题考查的是有关正弦型函数的性质,正确解题的关键是要明确正弦型函数的对称性与单调性.21.(2021·江西鹰潭·一模(理))函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .185【答案】A 【分析】由一条对称轴和一个对称中心可以得到131264T kT ππ+=+或133,1264T kT k ππ+=+∈Z ,由() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减可以得到191312122Tππ-≤,算出ω的大致范围,验证即可. 【详解】 由题意知:131264T kT ππ+=+或133,1264TkT k ππ+=+∈Z ∴51244k ππω⎛⎫=+⋅ ⎪⎝⎭或53244k ππω⎛⎫=+⋅ ⎪⎝⎭ ∴2(14)5k ω=+或2(34),5k k Z ω=+∈∵()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴191312122T ππ-≤ ∴12222ππωω≤⋅⇒≤①当2(14)5k ω=+时,取0k =知25ω=此时2()sin 515f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,27,515210x πππ⎡⎤+∈⎢⎥⎣⎦满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴25ω=符合 取1k =时,2ω=,此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,572,322x πππ⎛⎫+∈ ⎪⎝⎭满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴2ω=符合当1k ≤-时,0ω<,舍去,当2k ≥时,2ω>也舍去②当2(34)5k ω=+时,取0k =知65ω=此时6()sin 55f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,6321,55210x πππ⎡⎤+∈⎢⎥⎣⎦,此时()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,舍去 当1k ≤-时,0ω<,舍去,当1k 时,2ω>也舍去综上:25ω=或2,212255S =+=.故选:A. 【点睛】本题考查三角函数的图象与性质,难度较大,易错点在于已知一条对称轴和一个对称中心要分两种情况分析.22.(2021·山东·模拟预测)函数()sin 24cos f x x x =-的最大值为( )A B .C D 【答案】A 【分析】根据周期性只需考虑[]0,2x π∈函数最值,结合()()sin 24cos 2cos sin 2f x x x x x =-=-得3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值,利用导函数分析单调性,结合隐零点求解最值. 【详解】由题()()sin 24cos 2f x x x f x π=-=+,只需考虑[]0,2x π∈函数最值即可,()()sin 24cos 2cos sin 2f x x x x x =-=-,所以当sin 0,cos 0x x <<即3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值, ()()222cos 24sin 212sin 4sin 4sin 4sin 2f x x x x x x x '=+=-+=-++,考虑函数()()2442,1,0h t t t t =-++∈-,()()10,00h h -<>, 所以必存在唯一零点0t ,()2000210,2t h t t +==, 且()01,t t ∈-()2442h t t t =-++递减,()0,0t t ∈()2442h t t t =-++递增,记00sin t x =,由正弦函数单调性可得:()0,x x π∈函数()f x 递增,03,2x x π⎛⎫∈ ⎪⎝⎭函数()f x 递减,所以函数()()()000max 2cos sin 2f x f x x x ==-2002sin 1sin 2x x +=,解得00sin x x ==所以()()()000max 2cos sin 222f x f x x x ⎛⎫ ==-=⨯=⎪⎪ ⎝⎭⎝ 故选:A 【点睛】此题考查求函数的最值,关键在于准确分析函数的周期性和单调性,结合导函数解决隐零点问题求解最值,属于难题.二、多选题23.(2021·全国·模拟预测)已知函数()44sin cos 66f x x x ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=+-⎭+在区间(),88t t t R ππ⎡⎤-+∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()m t ,令()()()h t M t m t =-,则下列结论中正确的是( )A .2h π⎛⎫= ⎪⎝⎭B .()h tC .()h t 的最小值为1D .当()1h t =时,()5Z 6t k k ππ=+∈ 【答案】AB【分析】应用同角平方关系、二倍角余弦公式得()sin(2)6f x x π=-,A 将2t π=代入求区间,根据正弦型函数的性质即可求2h π⎛⎫ ⎪⎝⎭,B 、C 讨论(),88t t t R ππ⎡⎤-+∈⎢⎥⎣⎦与()f x 的递增区间的关系,结合已知区间的长度为4T ,分析不同情况下的()h t 的取值范围,进而确定最大、小值,D 由题设知()1M t =,()0m t =或()0M t =,()1m t =-,结合区间长度即可求t . 【详解】()4422sin cos sin cos cos 266663f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭sin 2sin 266x x ππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.A :当2t π=时,由,88x t t ππ⎡⎤∈-+⎢⎥⎣⎦,得35,88x ππ⎡⎤∈⎢⎥⎣⎦,此时7132,61212x πππ⎡⎤-∈⎢⎥⎣⎦,∴()7sin 12M t π=,()13sin 12m t π=,于是()()()713sin sin cos sin 12121212124h t M t m t ππππππ⎛⎫=-=-=++ ⎪⎝⎭3π==由()222262k x k k Z πππππ-≤-≤+∈可得()63k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 当()6883k t t k k Z ππππππ-≤-<+≤+∈,即()52424k t k k Z ππππ-≤≤+∈时,则有()()()88h t M t m t f t f t ππ⎛⎫⎛⎫=-=+--= ⎪ ⎪⎝⎭⎝⎭sin 2sin 28686t t ππππ⎡⎤⎡⎤⎛⎫⎛⎫+---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦5sin 2sin 2sin 2121212t t t πππ⎛⎫⎛⎫⎛⎫=+--=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 22123t t ππ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,而()3222434k t k k Z πππππ+≤+≤+∈,23t π⎛⎫⎡+∈ ⎪⎣⎝⎭,即()h t ⎡∈⎣. 当()8823t t k k Z ππππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=+∈,即()3t k k Z ππ=+∈时,()()()5324h t M t m t f k f k ππππ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭5sin 2sin 21362462k k ππππππ⎡⎤⎡⎤⎛⎫⎛⎫+--+-=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. ∵函数()f x 的最小正周期T π=,而区间,88t t ππ⎡⎤-+⎢⎥⎣⎦的长度为4π,即4T ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 222x x x =+- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,当12x π=-时,()f x 取最小值-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()sin 222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-=由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()sin()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。

5.已知函数17()()cos (sin )sin (cos ),(,).12f tg x x f x x f x x ππ==⋅+⋅∈ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.解.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分) 解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos xxg x xxx x--=+++2222(1sin )(1cos )cos sin cos sin x x xxx x--=+1sin 1cos cos sin .cos sin x xxx x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x xg x xx x x--∴=+--sin cos 2x x =+-2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即1sin()2)23424x x ππ-≤+-≤+--<,<, 故g (x )的值域为)2,3.⎡-⎣6.(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c解:由tantan 422A B C ++=得cot tan 422C C+= ∴cos sin224sin cos22C C C C+= ∴14sin cos 22C C = ∴1sin 2C =,又(0,)C π∈∴566C C ππ==,或由2sin cos sin B C A =得 2sin cos sin()B B B C =+ 即sin()0B C -= ∴B C =6B C π==2()3A B C ππ=-+=由正弦定理sin sin sin a b cA B C ==得1sin 2sin 2Bb c a A ====7.在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.⑴若ABC △求,a b ;⑵若sin sin()2sin 2C B A A +-=,求ABC △的面积.说明:本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解析:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ························ 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································· 8分 当cos 0A =时,2A π=,6B π=,a =b =,当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =.所以ABC △的面积1sin 2S ab C == ····················································· 12分 1.已知函数()sin()sin()cos (,)66f x x x x a a R a ππ=++-++∈为常数. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若函数()f x 在[-2π,2π]上的最大值与最小值之和为3,求实数a 的值. 解:(Ⅰ)∵()2sin cos cos 6f x x x a π=++cos x x a =++2sin 6x a π⎛⎫=++ ⎪⎝⎭……………………5分∴函数()f x 的最小正周期2T π=………………………7分(Ⅱ)∵,22x ππ⎡⎤∈-⎢⎥⎣⎦,∴2363x πππ-≤+≤()min 2f x f a π⎛⎫=-= ⎪⎝⎭……9分()max 23f x f a π⎛⎫==+ ⎪⎝⎭……11分由题意,有()(2)a a ++=∴1a =……12分2.(本小题12分)已知函数.21)4(,23)0(,23cos sin cos 2)(2==-+=πf f x x b x a x f 且 (1)求)(x f 的最小正周期;(2)求)(x f 的单调增区间;解:(1)由⎪⎪⎩⎪⎪⎨⎧==21)4(23)0(πf f 得⎪⎩⎪⎨⎧==123b a …………3分)32sin(2sin 212cos 2323cos sin cos 3)(2π+=+=-+=x x x x x x x f ……6分 故最小正周期π=T (2)由)(223222Z k k x k ∈+≤+≤-πππππ得 )(12125Z k k x k ∈+≤≤-ππππ 故)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ …………12分3.已知x x a x x f cos sin 34cos 4)(2+-=,将)(x f 的图象按向量)2,4(π-=→b 平移后,图象关于直线12π=x 对称.(Ⅰ)求实数a 的值,并求)(x f 取得最大值时x 的集合; (Ⅱ)求)(x f 的单调递增区间.解:(Ⅰ)22cos 22sin 32)(--=x x a x f ,将)(x f 的图象按向量)2,4(π-=→b 平移后的解析式为2)4()(++=πx f x g x a x 2cos 322sin 2+=.……………………………3分)(x g 的图象关于直线12π=x 对称,∴有)6()0(πg g =,即a a 3332+=,解得1=a . ……………………………5分则2)62sin(422cos 22sin 32)(--=--=πx x x x f .……………………………6分 当2262πππ+=-k x ,即3ππ+=k x 时,)(x f 取得最大值2.………………………7分因此,)(x f 取得最大值时x 的集合是},3{Z k k x x ∈+=ππ.…………………………8分(Ⅱ)由226222πππππ+≤-≤-k x k ,解得36ππππ+≤≤-k x k .因此,)(x f 的单调递增区间是]3,6[ππππ+-k k )(Z k ∈.……………………………12分4.已知向量=m (θθsin ,cos ) 和n =(θθcos ,sin 2-),θ∈[π,2π].(1) 求||n m +的最大值;(2)当||n m +=528时,求cos 28θπ⎛⎫+ ⎪⎝⎭的值.4.解:(1) ()cos sin sin m n θθθθ+=-++ (2分)(cos m n +=(4分)∵θ∈[π,2π],∴49445ππθπ≤+≤,∴)4cos(πθ+≤1 ||n m +max =22. (6分)(2) 由已知825m n +=,得7cos 425πθ⎛⎫+= ⎪⎝⎭ (8分) 又2cos 2cos ()1428πθπθ⎛⎫+=+- ⎪⎝⎭ ∴216cos ()2825θπ+= (10分) ∵θ∈[π,2π]∴898285ππθπ≤+≤,∴4cos 285θπ⎛⎫+=- ⎪⎝⎭. (12分) 。

相关文档
最新文档