中职对口升学量子力学模拟试题(3).doc

合集下载

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学试卷三份合集

量子力学试卷三份合集

A. ih(Jˆ1x + Jˆ1y ) . B. ihJˆ1z . C. Jˆ1z . D. 0.
共 11 页,第 2 页
河北师范大学考试命题专用纸
试卷代号
学院
专业
年级
姓名
学号
| | | | | | | | | 密 | | | | | | | | | 封 | | | | | | | | | 线线 | | | |
()
0
0
0
0
A.1.3 A . B. 0.9 A . C. 0.5 A . D. 1.8 A .
2.设粒子的波函数为 ψ (x, y, z) ,在 x − x + dx 范围内找到粒子的几率为
()
A. ψ (x, y, z) 2 dxdydz .
B. ψ (x, y, z) 2 dx .
∫∫ ∫ ∫ ∫ 2
∑ C.
h
∂ ∂t
Ψ(rr1 , rr2 , t)
=

2 i =1
h2 2μ i
∇ i 2 Ψ(rr1 , rr2 , t)
+U (rr1, rr2 ,t)Ψ(rr1, rr2 ,t)
∑ D.
ih
∂ ∂t
Ψ(rr1 , rr2 , t) = − 2
i =1
h2 2μ i
∇ i 2 Ψ(rr1 , rr2 , t)
2 i =1
h2 2μ
∇i 2Ψ(rr1, rr2 , t)
+U (rr1 , rr2 , t)Ψ(rr1 , rr2 , t)
∑ B. h
∂ ∂t
Ψ(rr1 , rr2 , t)
=
2 i =1
h2 2μ
∇ i 2 Ψ(rr1 , rr2 , t)

量子力学模拟试题及答案

量子力学模拟试题及答案

量子力学模拟试题及答案一、选择题1. 根据量子力学,以下哪个选项描述了波函数的物理意义?A. 粒子的位置B. 粒子的动量C. 粒子在空间中某点出现的概率密度D. 粒子的质量答案:C2. 海森堡不确定性原理表明,粒子的什么两个物理量不能同时准确测量?A. 位置和动量B. 能量和时间C. 质量与速度D. 动量与能量答案:A二、填空题1. 量子力学中的波函数通常用符号________表示。

答案:Ψ2. 薛定谔方程是量子力学的基本方程,它描述了波函数随时间的________。

答案:演化三、简答题1. 简述量子力学中的叠加原理。

答案:量子力学中的叠加原理表明,如果一个量子系统可以处于多个可能状态中的任何一个,那么它实际上可以处于这些状态的任意线性组合,即叠加态。

这意味着,除非进行测量,否则系统的行为不能被归结为单一确定的状态。

四、计算题1. 假设一个粒子在一维无限深势阱中,其势阱宽度为L。

求该粒子的基态能量。

答案:基态能量可以通过以下公式计算:E0 = (h^2 / (8mL^2)),其中h是普朗克常数,m是粒子质量,L是势阱宽度。

五、论述题1. 论述量子纠缠现象及其在量子信息科学中的应用。

答案:量子纠缠是量子力学中的一种非经典现象,其中两个或多个量子系统处于一种特殊的关联状态,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

在量子信息科学中,量子纠缠是实现量子通信、量子计算和量子密钥分发等技术的关键资源。

例如,在量子密钥分发中,纠缠粒子可以用来生成和共享密钥,确保通信的安全性。

六、实验题1. 设计一个实验来验证海森堡不确定性原理。

答案:一个简单的实验设计是使用双缝干涉实验。

通过测量通过双缝的粒子的位置和动量,可以观察到当一个物理量被更精确地测量时,另一个物理量的不确定性会增加,从而验证海森堡不确定性原理。

实验中,可以使用光电探测器来测量粒子通过特定缝隙的位置,然后通过测量粒子在屏幕上的分布来估算其动量的不确定性。

量子力学练习题

量子力学练习题

量子力学练习题随着科学技术的不断进步,量子力学作为近代物理学的基石,在我们生活中扮演着越来越重要的角色。

量子力学的概念和理论模型不仅用于解释微观世界的现象,还应用于信息处理、材料科学等领域。

为了加深对量子力学的理解,本文将为读者提供一些量子力学练习题,请认真思考并尽力解答。

题目一:平面上的单粒子态考虑一个二维平面上的单粒子,其波函数为Ψ(x, y)。

假设该波函数可以展开为以下形式:Ψ(x, y) = A(xe^(-λx) + ye^(-λy))其中,A和λ均为实常数。

1. 请计算波函数Ψ(x, y)的归一化常数A。

2. 求解波函数Ψ(x, y)对应的概率密度函数|Ψ(x, y)|^2。

3. 计算算符x和y对该波函数的期望值<x>和<y>。

题目二:自旋1/2粒子的测量考虑一个自旋1/2粒子,其自旋算符的本征态为|+⟩和|-⟩,对应自旋向上和向下的状态。

现在进行如下测量:1. 如果对该粒子的自旋以z方向为测量方向,求测量得到自旋向上状态的概率。

2. 假设在z方向上测量得到自旋向上状态后,立即进行对z方向自旋的再次测量,求再次测量得到自旋向上状态的概率。

3. 如果对该粒子的自旋以任意方向为测量方向,求测量得到自旋向上状态的概率。

题目三:简谐振子的能量本征态考虑一个一维简谐振子,其能量本征态可由波函数Ψ_n(x)表示,n 为非负整数。

波函数Ψ_n(x)的表达式为:Ψ_n(x) = N_n H_n(x) e^(-x^2/2)其中,N_n为归一化常数,H_n(x)为Hermite多项式。

1. 请计算波函数Ψ_0(x)的归一化常数N_0。

2. 求解波函数Ψ_1(x)对应的薛定谔方程解,并给出其归一化常数N_1。

3. 计算简谐振子的能量本征值E_n,其中n = 0, 1, 2。

题目四:双缝干涉实验考虑一个双缝干涉实验,光源发射频率为f,波速为v。

光通过双缝后形成干涉条纹,条纹之间的间距为d。

中职对口升学量子力学模拟试题(2)

中职对口升学量子力学模拟试题(2)

单项选择题51.设体系处于ψ=--123231102111R Y R Y 状态,则该体系的能量取值及取值几率分别为A.E E 321434,;,.B.E E 321232,;,-. C.E E 321232,;,. D.E E 323414,;,. 52.53.54.55.56.体系处于ψ=C kx cos 状态,则体系的动量取值为A. k k ,-.B. k .C. - k .D. 12k . 57.58.59.一振子处于ψψψ=+c c 1133态中,则该振子能量取值分别为A.3252 ωω,.B. 1252ωω,. C. 3272 ωω,. D. 1252ωω,. 60.接上题,该振子的能量取值E E 13,的几率分别为 A.2321,c c . B.232121c c c +,232123c c c +. C.23211c c c +,23213c c c +. D. 31,c c .61.62.对易关系[ ,()]pf x x 等于(f x ()为x 的任意函数) A.i f x '().B.i f x ().C.-i f x '(). D.-i f x ().63. 对易关系[ ,exp()]piy y 等于 A.)exp(iy . B. i iy exp().C.- exp()iy .D.-i iy exp().64.对易关系[, ]x px 等于 A.i . B. -i . C. . D. - .65. 对易关系[, ]L yx 等于 A.i z. B. z . C.-i z . D.- z . 66. 对易关系[, ]L zy 等于 A.-i x. B. i x . C. x . D.- x . 67. 对易关系[, ]L zz 等于 A.i x. B. i y . C. i . D. 0. 68. 对易关系[, ]x py 等于A. .B. 0.C. i .D. - .69. 对易关系[ , ]pp y z 等于 A.0. B. i x. C. i p x . D. p x . 70. 对易关系[ , ]L L x z等于 A.i L y . B. -i L y . C. L y . D. - L y. 71. 对易关系[ , ]L L z y等于 A.i L x . B. -i L x . C. L x . D. - L x. 72. 对易关系[ , ]L L x2等于 A. L x . B. i L x . C. i L L z y( )+. D. 0. 73. 对易关系[ , ]L L z2等于 A. L z . B. i L z . C. i L L x y( )+. D. 0. 74. 对易关系[, ]L px y 等于 A.i L z . B. -i L z. C. i p z . D. -i p z . 75. 对易关系[ , ]p L z x等于 A.-i p y . B. i p y . C.-i L y . D. i L y. 76. 对易关系[ , ]L p zy 等于 A.-i p x . B. i p x . C. -i L x . D. i L x . 77.对易式[ , ]L x y 等于A.0.B. -i z. C. i z . D. 1. 78. 79.对易式[ , ]FG 等于 A. FG . B. GF . C. FG GF -. D. FG GF +. 80. .对易式[ ,]Fc 等于(c 为任意常数) A.cF . B. 0. C. c . D. F ˆ. 81.算符 F和 G 的对易关系为[ , ] F G ik =,则 F 、 G 的测不准关系是 A.( )( )∆∆F G k 2224≥. B. ( )( )∆∆F G k 2224≥. C. ( )( )∆∆F G k 2224≥. D. ( )( )∆∆F G k 2224≥. 82.已知[ , ]x p i x = ,则 x 和 p x 的测不准关系是 A.( )( )∆∆x p x 222≥ . B. ( )( )∆∆x p 2224≥ . C. ( )( )∆∆x p x 222≥ . D. ( )( )∆∆x p x 2224≥ . 83. 算符 L x 和 L y 的对易关系为[ , ] L L i L x y z = ,则 L x 、 L y 的测不准关系是 A.( )( ) ∆∆L L L x y z 22224≥ .B.( )( ) ∆∆L L L x y 22224≥ . C.( )( ) ∆∆F G L z 22224≥ . D.( )( ) ∆∆F G L 22224≥ . 84.电子在库仑场中运动的能量本征方程是A.[]-∇+= 2222μψψze r E s . B. []-∇+= 22222μψψze rE s . C.[]-∇-= 2222μψψze rE s . D.[]-∇-= 22222μψψze rE s . 85.类氢原子体系的能量是量子化的,其能量表达式为A.-μz e n s 22222. B. -μ224222z e n s . C.-μze n s 2222 . D. -μz e ns 24222 . 86. 在一维无限深势阱U x x a x x a (),,,=<<∞≤≥⎧⎨⎩000中运动的质量μ为的粒子,其状态为 ψππ=42a a x a x sin cos ,则在此态中体系能量的可测值为 A.22222229,2a a μπμπ , B. πμπμ2222222 a a , , C.323222222πμπμ a a ,, D.524222222πμπμ a a, . 87.88. 89.若一算符 F的逆算符存在,则[ , ]F F -1等于 A. 1. B. 0. C. -1. D. 2. 90.如果力学量算符 F和 G 满足对易关系[ , ]F G =0, 则 A. F和 G 一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值.B. F和 G 一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. F和 G 不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. F和 G 不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.91.一维自由粒子的能量本征值A. 可取一切实数值.B.只能取不为负的一切实数.C.可取一切实数,但不能等于零.D.只能取不为正的实数.92.对易关系式[ , ()]pp f x x x 2等于 A.-i pf x x '()2. B. i p f x x '()2 . C.-i pf x x ()2. D. i p f x x ()2. 93.定义算符yx L i L L ˆˆˆ±=±, 则[ , ]L L +-等于 A.z L ˆ . B.2 L z . C.-2 L z . D.zL ˆ -. 9495.96.氢原子的能量本征函数ψθϕθϕnlm nl lm r R r Y (,,)()(,)=A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.B.只是体系能量算符、角动量Z 分量算符的本征函数,不是角动量平方算符的本征函数.C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数.D.是体系能量算符、角动量平方算符、角动量Z 分量算符的共同本征函数.97.体系处于ψ=+c Y c Y 111210态中,则ψA.是体系角动量平方算符、角动量Z 分量算符的共同本征函数.B.是体系角动量平方算符的本征函数,不是角动量Z 分量算符的本征函数.C.不是体系角动量平方算符的本征函数,是角动量Z 分量算符的本征函数.D.即不是体系角动量平方算符的本征函数,也不是角动量Z 分量算符的本征函数.98.对易关系式[ , ]FGH 等于 A.[ , ] [ , ]FH G F G H +. B. [ , ] F H G C. [ , ]FG H . D. [ , ] [ , ]F H G F G H -. 99.动量为p '的自由粒子的波函数在坐标表象中的表示是)'exp(21)('x p i x Pπψ=,它在动量表象中的表示是 A.δ(')p p -. B.δ(')p p +. C.δ()p . D.δ(')p .100.力学量算符 x对应于本征值为x '的本征函数在坐标表象中的表示是 A.δ(')x x -. B.δ(')x x +. C.δ()x . D.δ(')x .。

量子力学考试题讲解及答案

量子力学考试题讲解及答案

量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,粒子的波动性由哪个物理量描述?A. 动量B. 位置C. 能量D. 波函数答案:D2. 海森堡不确定性原理表明,哪两个物理量的乘积不能同时精确确定?A. 位置和动量B. 能量和时间C. 电荷和质量D. 速度和加速度答案:A3. 薛定谔方程是描述量子系统时间演化的基本方程,它属于以下哪种类型的方程?A. 线性微分方程B. 非线性微分方程C. 代数方程D. 积分方程答案:A4. 在量子力学中,哪个原理表明一个量子系统的状态可以表示为不同状态的叠加?A. 叠加原理B. 波粒二象性原理C. 不确定性原理D. 泡利不相容原理答案:A5. 量子力学中的“隧道效应”是指什么现象?A. 粒子通过势垒的概率不为零B. 粒子在势垒中的速度增加C. 粒子在势垒中的动能减少D. 粒子在势垒中的势能增加答案:A二、填空题(每题2分,共10分)1. 量子力学中的波函数必须满足______条件,即波函数的平方模表示粒子在空间某点的概率密度。

答案:归一化2. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,这四个量子数分别是主量子数n、角量子数l、磁量子数m和______。

答案:自旋量子数3. 在量子力学中,粒子的动量和位置不能同时被精确测量,这是由______不确定性原理所描述的。

答案:海森堡4. 量子力学中的波函数ψ(r,t)描述了粒子在空间位置r和时间t的概率分布,其中ψ*(r,t)ψ(r,t)表示粒子在位置r的概率密度,这里的ψ*(r,t)表示波函数的______。

答案:复共轭5. 量子力学中的粒子波动性可以通过德布罗意波长λ来描述,其公式为λ=h/p,其中h是普朗克常数,p是粒子的______。

答案:动量三、简答题(每题10分,共20分)1. 简述量子力学中的波粒二象性。

答案:量子力学中的波粒二象性指的是微观粒子既表现出波动性也表现出粒子性。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。

答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。

答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。

答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。

答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。

答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。

求该粒子在基态时的能量和波函数。

答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。

2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。

求该粒子的能级和相应的波函数。

答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。

2023年中职对口高考物理模拟试题

2023年中职对口高考物理模拟试题

2023年中职对口高考物理模拟试题一、选择题1. 在钟摆的最高点,它的重力势能为$10J$,则它在最低处的动能为?A. $10J$B. $5J$C. $20J$D. $无法确定$2. 在空气中,物体做自由落体运动的加速度大小为A. $9.8m/s^2$B. $10m/s^2$C. $6m/s^2$D. $无法确定$3. 如图,在光滑的水平面上有一个质量为$m$的物块,另有一相同物块放在它前方静止着,则使第一个物块向右运动的最小斜面角为A. $\tan^{-1}\left(\frac{g}{2a}\right)$B. $\tan^{-1}\left(\frac{g}{a}\right)$C. $\tan^{-1}\left(\frac{g}{3a}\right)$D. $\tan^{-1}\left(\frac{g}{4a}\right)$4. 离心力是指一物体在作匀速圆周运动时所受到的力,它与物体的哪个性质有关?A. 质量B. 重量C. 直径D. 运动速度5. 某弹簧振子的劲度系数为$k$,若质量加倍,运动周期将会A. 加倍B. 减半C. 不变D. 无法确定二、填空题1. 按照能量转化的原则,机械能守恒定律可以用来计算自由落体运动的()以及摆锤在极点处的动能。

2. 把一物块沿倾角为$\theta$的斜面向上推,则斜面对它的切向速度抵消了部分的(),只剩下一个大小为$gsin\theta$的向下加速度。

3. 两个质量分别为$m_1$、$m_2$的物块,用一个轻弹簧连接,在水平面上做简谐振动,它们连同弹簧组成的系统的振动周期为$T$,则弹簧的劲度系数为()。

4. 一单摆长度为$l$,摆球置于离开垂线40cm 的位置,其重力势能为$0.2mg$,则摆球运动到最低点时动能的大小为()。

5. 质量绳长均为$l$的三根单摆和一根质量绳长为$2l$的单摆,组成了图中的系统。

已知其中最小周期为$T$,则$T$的大小为()。

量子力学必考题

量子力学必考题

量子力学必考题第二章 微扰理论3.5 一刚性转子转动惯量为I ,它的能量的经典表示式是IL H 22=,L 为角动量,求与此对应的量子体系在下列情况下的定态能量及波函数:(1) 转子绕一固定轴转动: (2) 转子绕一固定点转动:(考一问) 解:(1)设该固定轴沿Z 轴方向,则有 22Z L L =哈米顿算符 22222ˆ21ˆϕd d I L I H Z -== 其本征方程为 (t H与ˆ无关,属定态问题))(2)( )()(2222222ϕφϕϕφϕφϕφϕIE d d E d d I -==-令 222IEm =,则 0)()( 222=+ϕφϕϕφm d d 取其解为 ϕϕφim Ae =)( (m 可正可负可为零) 由波函数的单值性,应有ϕπϕϕφπϕφim im e e =⇒=++)2()()2( 即 12=πm i e∴m= 0,±1,±2,…转子的定态能量为Im E m 222 = (m= 0,±1,±2,…)可见能量只能取一系列分立值,构成分立谱。

定态波函数为 ϕφim m Ae = A 为归一化常数,由归一化条件ππϕϕφφππ2121 220220*=⇒===⎰⎰A A d A d m m∴ 转子的归一化波函数为ϕπφim m e 21=综上所述,除m=0外,能级是二重简并的。

(2)取固定点为坐标原点,则转子的哈米顿算符为2ˆ21ˆL IH= t H与ˆ无关,属定态问题,其本征方程为),(),(ˆ212ϕθϕθEY Y L I= (式中),(ϕθY 设为Hˆ的本征函数,E 为其本征值) ),(2),(ˆ2ϕθϕθIEY Y L= 令 22 λ=IE ,则有),(),(ˆ22ϕθλϕθY Y L= 此即为角动量2ˆL的本征方程,其本征值为 ) ,2 ,1 ,0( )1(222 =+==λL其波函数为球谐函数ϕθϕθim m m m e P N Y )(cos ),( = ∴ 转子的定态能量为2)1(2IE +=可见,能量是分立的,且是)12(+ 重简并的。

量子力学练习题题库(可编辑)

量子力学练习题题库(可编辑)

量子力学练习题题库量子力学练习题本练习题共352道,其中(一)单项选择题 145题,(二)填空题100题,(三) 判断题50题,(四) 名词解释32题,(五)证明题25题,(六)计算题40题。

做题时应注意的几个问题:1.强调对量子力学概念、知识体系的整体理解。

2.注重量子力学基本原理的理解及其简单的应用,如:无限深势阱、谐振子和氢原子等重要问题的求解及其结论,并与其对应的经典理论进行比较,力争把量子力学理论融汇贯通。

3.数学手段上,应多看示例,尽量避免陷入过多的、繁难的数学计算中。

4.通过完成练习题,使自己加深对理论内容的理解,通过把实际物理过程用数学模型求解,培养自己独立解决实际问题的能力。

(一) 单项选择题 (共145题)1.能量为100ev的自由电子的De Broglie 波长是A. 1.2B. 1.5C.2.1D. 2.5.2. 能量为0.1ev的自由中子的De Broglie 波长是 A.1.3 B.0.9C. 0.5D. 1.8.D. 2.0.4.温度T1k时,具有动能为Boltzeman常数的氦原子的De Broglie 波长是A.8B. 5.6C. 10D. 12.6.5.用Bohr-Sommerfeld的量子化条件得到的一维谐振子的能量为()AB C D6.在0k附近,钠的价电子的能量为3ev,其De Broglie波长是A.5.2B. 7.1C. 8.4D. 9.4.7.钾的脱出功是2ev,当波长为3500的紫外线照射到钾金属表面时,光电子的最大能量为C. 0.25JD. 1.25J.8.当氢原子放出一个具有频率的光子,反冲时由于它把能量传递给原子而产生的频率改变为ABC D9pton 效应证实了A.电子具有波动性B. 光具有波动性.C.光具有粒子性D. 电子具有粒子性.10.Davisson 和Germer 的实验证实了电子具有波动性. B. 光具有波动性. C. 光具有粒子性 D. 电子具有粒子性.11.粒子在一维无限深势阱中运动,设粒子的状态由描写,其归一化常数C为A BC D12. 设,在范围内找到粒子的几率为A B C D13. 设粒子的波函数为 ,在范围内找到粒子的几率为ABCD14.设和分别表示粒子的两个可能运动状态,则它们线性迭加的态的几率分布为 A B. + C. + D. +.A.单值、正交、连续B.归一、正交、完全性C.连续、有限、完全性D.单值、连续、有限.A.波动性是由于大量的微粒分布于空间而形成的疏密波B.微粒被看成在三维空间连续分布的某种波包C.单个微观粒子具有波动性和粒子性D. A, B, C.17.已知波函数, ,,其中定态波函数是A B.和C D.和.18.若波函数归一化,则19.波函数、为任意常数,A.与描写粒子的状态不同 B.与所描写的粒子在空间各点出现的几率的比是1: C.与所描写的粒子在空间各点出现的几率的比是 D.与描写粒子的状态相同.20.波函数的傅里叶变换式是A BC D21.量子力学运动方程的建立,需满足一定的条件:1方程中仅含有波函数关于时间的一阶导数. 2方程中仅含有波函数关于时间的二阶以下的导数.3方程中关于波函数对空间坐标的导数应为线性的. 4 方程中关于波函数对时间坐标的导数应为线性的.5 方程中不能含有决定体系状态的具体参量. 6 方程中可以含有决定体系状态的能量. 则方程应满足的条件是A. 1、3和6B. 2、3、4和5. C. 1、3、4和5. D.2、3、4、5和6.22.两个粒子的薛定谔方程是A B C D.23.几率流密度矢量的表达式为 A B CD24.质量流密度矢量的表达式为A B C D25. 电流密度矢量的表达式为AB CD26.下列哪种论述不是定态的特点A.几率密度和几率流密度矢量都不随时间变化 B.几率流密度矢量不随时间变化 C.任何力学量的平均值都不随时间变化 D.定态波函数描述的体系一定具有确定的能量.27.在一维无限深势阱中运动的质量为的粒子的能级为A.,B.,C., D28. 在一维无限深势阱中运动的质量为的粒子的能级为 A., B., C., D29. 在一维无限深势阱中运动的质量为的粒子的能级为A.,B., C., D30. 在一维无限深势阱中运动的质量为的粒子处于基态,其位置几率分布最大处是 A., B.,C.,D31. 在一维无限深势阱中运动的质量为的粒子处于第一激发态,其位置几率分布最大处是A., B., C., D32.在一维无限深势阱中运动的粒子,其体系的A.能量是量子化的,而动量是连续变化的 B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.AB C D34.线性谐振子的第一激发态的波函数为,其位置几率分布最大处为ABCD35.线性谐振子的 A.能量是量子化的,而动量是连续变化的B.能量和动量都是量子化的 C.能量和动量都是连续变化的D.能量连续变化而动量是量子化的.36.线性谐振子的能量本征方程是AB C D37.氢原子的能级为A..B..CD38.在极坐标系下,氢原子体系在不同球壳内找到电子的几率为AB C D39. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为A B C D40.波函数和是平方可积函数,则力学量算符为厄密算符的定义是A B C D41. 和是厄密算符,则A.必为厄密算符.B.必为厄密算符C.必为厄密算符D. 必为厄密算符42.已知算符和,则A.和都是厄密算符B.必是厄密算符C.必是厄密算符D.必是厄密算符.43.自由粒子的运动用平面波描写,则其能量的简并度为A.1B. 2C. 3D. 4.A B C D.45.角动量Z分量的归一化本征函数为A BC D是的本征函数,不是的本征函数 B.不是的本征函数,是的本征函数.C 是、的共同本征函数. D. 即不是的本征函数,也不是的本征函数.47.若不考虑电子的自旋,氢原子能级n3的简并度为 A. 3 B. 6 C.9 D. 12.48.氢原子能级的特点是 A.相邻两能级间距随量子数的增大而增大 B.能级的绝对值随量子数的增大而增大 C.能级随量子数的增大而减小 D.相邻两能级间距随量子数的增大而减小.49一粒子在中心力场中运动,其能级的简并度为,这种性质是库仑场特有的B.中心力场特有的. C.奏力场特有的 D.普遍具有的.50.对于氢原子体系,其径向几率分布函数为,则其几率分布最大处对应于Bohr原子模型中的圆轨道半径是 A B C D51.设体系处于状态,则该体系的能量取值及取值几率分别为 A BC D52.接51题,该体系的角动量的取值及相应几率分别为 A B C D53. 接51题,该体系的角动量Z分量的取值及相应几率分别为 A BC D54. 接51题,该体系的角动量Z分量的平均值为A B C D55. 接51题,该体系的能量的平均值为A..B..CD56.体系处于状态,则体系的动量取值为A B C D57.接上题,体系的动量取值几率分别为 A. 1,0. B. 1/2,1/2C. 1/4,3/4/ D. 1/3,2/3.58.接56题, 体系的动量平均值为A B C D59.一振子处于态中,则该振子能量取值分别为A BC D60.接上题,该振子的能量取值的几率分别为A B. ,. C.,D61.接59题,该振子的能量平均值为 B C D62.对易关系等于为的任意函数 A..B..CD63. 对易关系等于 A BC D64.对易关系等于A B CD65. 对易关系等于A B C D66. 对易关系等于A B C D67. 对易关系等于A B CD68. 对易关系等于A B CD69. 对易关系等于A B C D70. 对易关系等于A B C D71. 对易关系等于A B C D72. 对易关系等于A B C D73. 对易关系等于A B C D74. 对易关系等于A B C D75. 对易关系等于A B C D76. 对易关系等于A B C DA B C D78. 对易式等于m,n为任意正整数A B C DA B C D80对易式等于c为任意常数A B C D81.算符和的对易关系为,则、的测不准关系是A BC D82.已知,则和的测不准关系是A B C D83. 算符和的对易关系为,则、的测不准关系是A B CD84.电子在库仑场中运动的能量本征方程是A BC D85.类氢原子体系的能量是量子化的,其能量表达式为A B C D86. 在一维无限深势阱中运动的质量为的粒子,其状态为,则在此态中体系能量的可测值为A., B,C., D87.接上题,能量可测值、出现的几率分别为 A.1/4,3/4B. 3/4,1/4C.1/2, 1/2D. 0,1.88.接86题,能量的平均值为A., B., C., D89.若一算符的逆算符存在,则等于A. 1B. 0C. -1D. 2.90.如果力学量算符和满足对易关系, 则A. 和一定存在共同本征函数,且在任何态中它们所代表的力学量可同时具有确定值B. 和一定存在共同本征函数,且在它们的本征态中它们所代表的力学量可同时具有确定值.C. 和不一定存在共同本征函数,且在任何态中它们所代表的力学量不可能同时具有确定值.D. 和不一定存在共同本征函数,但总有那样态存在使得它们所代表的力学量可同时具有确定值.可取一切实数值 B.只能取不为负的一切实数 C.可取一切实数,但不能等于零. D.只能取不为正的实数.92.对易关系式等于A BCD93.定义算符, 则等于A B C D94.接上题, 则等于AB C D95. 接93题, 则等于AB C D96.氢原子的能量本征函数A.只是体系能量算符、角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 B.只是体系能量算符、角动量Z分量算符的本征函数,不是角动量平方算符的本征函数 C.只是体系能量算符的本征函数,不是角动量平方算符、角动量Z 分量算符的本征函数 D.是体系能量算符、角动量平方算符、角动量Z分量算符的共同本征函数.97.体系处于态中,则A.是体系角动量平方算符、角动量Z分量算符的共同本征函数 B.是体系角动量平方算符的本征函数,不是角动量Z分量算符的本征函数 C.不是体系角动量平方算符的本征函数,是角动量Z分量算符的本征函数 D.即不是体系角动量平方算符的本征函数,也不是角动量Z分量算符的本征函数.98.对易关系式等于A B C D99.动量为的自由粒子的波函数在坐标表象中的表示是,它在动量表象中的表示是ABCD100.力学量算符对应于本征值为的本征函数在坐标表象中的表示是AB C D101.一粒子在一维无限深势阱中运动的状态为,其中、是其能量本征函数,则在能量表象中的表示是A..B..C..D102.线性谐振子的能量本征函数在能量表象中的表示是 A B CD103. 线性谐振子的能量本征函数在能量表象中的表示是 A B C D104.在的共同表象中,波函数,在该态中的平均值为AB CD. 0.105.算符只有分立的本征值,对应的本征函数是,则算符在表象中的矩阵元的表示是以本征值为对角元素的对角方阵B一个上三角方阵. C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符在动量表象中的微分形式是 ABCD108.线性谐振子的哈密顿算符在动量表象中的微分形式是 A B CD109.在表象中,其本征值是 AB0 C D110.接上题, 的归一化本征态分别为 A BC D111.幺正矩阵的定义式为 ABCD112.幺正变换 A.不改变算符的本征值,但可改变其本征矢. B.不改变算符的本征值,也不改变其本征矢 C.改变算符的本征值,但不改变其本征矢D.即改变算符的本征值,也改变其本征矢.113.算符,则对易关系式等于 ABC D114.非简并定态微扰理论中第个能级的表达式是考虑二级近似ABC D115. 非简并定态微扰理论中第个能级的一级修正项为 A BC D116. 非简并定态微扰理论中第个能级的二级修正项为 A B C D 117. 非简并定态微扰理论中第个波函数一级修正项为 ABC D118.沿方向加一均匀外电场,带电为且质量为的线性谐振子的哈密顿为 A BCD119.非简并定态微扰理论的适用条件是A B C D 120.转动惯量为I,电偶极矩为的空间转子处于均匀电场中,则该体系的哈密顿为A B C D121.非简并定态微扰理论中,波函数的一级近似公式为A B C D122.氢原子的一级斯塔克效应中,对于的能级由原来的一个能级分裂为五个子能级 B. 四个子能级C. 三个子能级 D. 两个子能级.123.一体系在微扰作用下,由初态跃迁到终态的几率为A BC D写出体系的哈密顿 B选取合理的尝试波函数.C 计算体系的哈密顿的平均值 D体系哈密顿的平均值对变分参数求变分.电子具有波动性B.光具有波动性. C. 原子的能级是分立的. D. 电子具有自旋.126.为自旋角动量算符,则等于A BC .D127. 为Pauli算符,则等于A B CD128.单电子的自旋角动量平方算符的本征值为A B C D129.单电子的Pauli算符平方的本征值为A0 B1 C. 2D. 3.130.Pauli算符的三个分量之积等于A. 0 B1CD131.电子自旋角动量的分量算符在表象中矩阵表示为A B C D 132. 电子自旋角动量的y分量算符在表象中矩阵表示为A B C D 133. 电子自旋角动量的z分量算符在表象中矩阵表示为A B C D 134.是角动量算符,,则等于A BC. 1 D. 0135.接上题, 等于A B C D. 0.136.接134题, 等于A B C D. 0.137.一电子处于自旋态中,则的可测值分别为A B .C D138.接上题,测得为的几率分别是A B CD139.接137题, 的平均值为0 B C D140.在表象中,,则在该态中的可测值分别为 ABC D141.接上题,测量的值为的几率分别为A B.1/2,1/2. C.3/4,1/4. D.1/4, 3/4.142.接140题,的平均值为A B C D143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系 B.氢原子中的电子、质子、中子组成的体系是全同粒子体系 C.光子和电子组成的体系是全同粒子体系 D.粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数 A.是对称的 B.是反对称的 C.具有确定的对称性. D.不具有对称性.145.分别处于态和态的两个电子,它们的总角动量的量子数的取值是0,1,2,3,4B.1,2,3,4. C. 0,1,2,3 D.1,2,3.(二) 填空题(共100题)1pton效应证实了。

量子力学期中考试试题及答案.

量子力学期中考试试题及答案.

量子力学期中考试试题及答案1.(33分)一维无限深势阱,()()0,0,(),0,x a V x x a ∈⎧⎪=⎨∞∉⎪⎩,微观粒子质量为m , 能量本征值为:222n n E m a π⎛⎫= ⎪⎝⎭,相应本征函数为:()()2,sinE tE tn n iin x n n aax t x eeπψψ--==,1,2,...n =;已知0t =时,初态波函数为:()()()12,0x A x x ψψψ=+⎡⎤⎣⎦;1.1)将初态波函数:()()()12,0x A x x ψψψ=+⎡⎤⎣⎦归一化,求出归一化因子?A =;(5分) 1.2)求波函数(),?x t ψ=(5分) 1.3)求几率密度:()()()*,,,?w x t x t x t ψψ==(5分)1.4)求位置的平均值:()()()*0,,?ax t x t x x t dx ψψ==⎰(8分)1.5)求动量的平均值:()()()*ˆ,,?ap t x t px t dx ψψ==⎰;(ˆd idx p =)(5分)1.6)求能量平均值:()()*0ˆ,,?aH x t Hx t dx ψψ==⎰;(()22pH V x m=+)(5分) 解: 1.1)()()()2*0,0,0111ax x dx A ψψ=+=⎰;A =; 1.2)()()()1212,E t E t i i x t x e x e ψψψ--⎤=+⎥⎦ 1.3)()()()()()()()()()()()()()()12121222*1212212212121,,,212cos 2E E E E i t i t E E w x t x t x t x x x x e x x e x x x x t ψψψψψψψψψψψψ----⎡⎤==+++⎢⎥⎣⎦⎡⎤=++⎣⎦1.4)()()()()(){}()()()()()()1212***12120022**12122100001201201,,21212cos 222cos 2aa a a a a aE E t aE E t x t x t x x t dx x dx x dx x dx x dx x dxa a x x x dx a x x x dxψψψψψψψψψψψψψψψψ--==++=+++⎧⎫=++⎨⎬⎩⎭=+⎰⎰⎰⎰⎰⎰⎰⎰()()212002sin sin aa x xa a x x x dx x dx aππψψ=⎰⎰ 利用:()()1sin sin cos cos 2αβαβαβ=--+⎡⎤⎣⎦ ()()()21200302sin sin 1cos cos aa x xa a ax xa a x x x dx x dx ax dx a ππππψψ==-⎰⎰⎰利用公式:[]()2111cos sin sin sin sin cos x tttt x txdx xd tx x tx txdx tx tx ==-=+⎰⎰⎰计算:()222222222233339000221699cos cos sin cos sin cos a aax x ax x a x ax x a x a a a a a a a a ax dx πππππππππππππ⎡⎤⎡⎤-=+-+⎣⎦⎣⎦=-+=-⎰所以:()()12216cos 29E E ta a xt π-=- 1.5)()()()()()()()()()()()12121212*01212012120ˆ,,1212E t E t E t E t E t E t E t E t aai i i i a i i i i p t x t px t dx ddx x e x e x e x e i dxd dx xe x e x e x e i dx ψψψψψψψψψψ----=⎡⎤⎡⎤=++⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤=++⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰()()2cos E t E t n n i i n n x n a a a d x e e dxππψ--= ()()()()()(12121212(112120222220222121sin sin cos cos 2sin cos sin cos E t E t E t E t E t E t E t E tE ai i i i ai i i i x x x x aa a a a a a ix x x x a a a a a a a d p t dx x e x e x e x e idx dxe e e e i dx e ai πππππππππππππψψψψ------⎡⎤⎡⎤=++⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤=+⋅+⎢⎥⎢⎥⎣⎦⎣⎦=++⎰⎰)()2122220sincossin cos E tE E taixx x x aaaa a eπππππ-⎡⎤+⎢⎥⎣⎦⎰利用:()()12sin cos sin sin αβαβαβ=++-⎡⎤⎣⎦sin cos 0ax x a a dx ππ=⎰,220sin cos 0ax xa a dx ππ=⎰()()()(){}[][]{}{}231200312300123433sin cos sin sin cos cos cos3cos0cos cos0aax x x x a a a a a aa x a xa a a aa a a dx dx πππππππππππππππ⎡⎤=+⎣⎦⎡⎤⎡⎤=--⎣⎦⎣⎦=--+-=+=⎰⎰()()()(){}[][]{}{}231200312300123233sin cos sin sin cos cos cos3cos0cos cos0aax x x x a a a a a aa x a xa a a aa a a dx dx πππππππππππππππ⎡⎤=-⎣⎦⎡⎤⎡⎤=-+⎣⎦⎣⎦=----=-=-⎰⎰所以:(){}{}()()()1212()()()()1212121212122220422443333()()()sincossin cos 482sin sin 33E E tE E tE E tE E tE E tE E taiixx x x a aaa a a iiiiaa a aE E t E E tp t dx e eai eeeeaiai i ai aππππππππππ-----------⎡⎤=+⎢⎥⎣⎦=+-=-=-=-⎰由1.4)问结果:()()()()121212212222163168sin sin sin 9293E E t E E t E E t E E d a a x t dt m a am πππ----⎛⎫==-=- ⎪⎝⎭()()()128()sin 3E E t d p t mx t mx t dt a-===- 可见满足Ehrenfest 定理:量子力学中物理量的平均值按经典方程变动。

《量子力学》课程考试试题

《量子力学》课程考试试题

《量子力学》课程考试试题- 学年 第 学期 班级时量: 100分钟,总分 100 分,考试形式: 闭卷一、 试述量子力学的五条基本原理。

(10分)二、 一粒子在一维无限深势阱⎪⎩⎪⎨⎧∞∞=⋃,,0,)(x a x a x x 〉≤≤〈00中运动,求粒子的能级和对应的波函数。

(10分)三、氢原子处在基态0301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)最可几的半径。

(10分)四、一粒子在硬壁球形空腔中运动,势能为⎩⎨⎧∞=⋃,0,)(r a r a r 〈≥ 求粒子的能级和定态波函数。

(10分) 五、设已知在2ˆL 和Z L ˆ的共同表象中,算符x L ˆ的矩阵为⎪⎪⎪⎭⎫ ⎝⎛=010********h L x 求它的本征值和归一化的本征函数。

(10分)六、求⎪⎪⎭⎫ ⎝⎛=01102ˆh S x 的本征值和本征函数,并将矩阵x S ˆ对角化。

(10分) 七、证明 i z y x =σσσˆˆˆ (10分)八、转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。

(10分)九、有一微扰作用于一个线性谐振子上,这微扰的算符具有形式:'ˆH(x )=⎩⎨⎧00>x x b ,>x x O ,当当 此处x 0为坐标起点的邻区,并且当x 0→O 时,b →∞,亦即使得满足条件X O b →a ,此处a为常量。

求对于基态及第一激发态能量的改正。

(10分)十、证明(1)1ˆˆ,,,,21j z j j z jj m s j m j m J j m<>=<>+,当12j=+(2)1ˆˆ,,,,21j z j j z jj m s j m j m J j m<>=<>+,当12j=-(10分)。

高职高考中职物理对口升学精华模块(下册)全册要点解析

高职高考中职物理对口升学精华模块(下册)全册要点解析

高职高考中职物理对口升学精华模块(下册)全册要点解析高职高考中职物理对口升学精华模块(下册)全册要点解析第五章机械能5.1 机械能的概念- 机械能是物体由于其位置或速度而具有的能量。

- 机械能包括动能和势能。

5.2 动能- 动能是物体由于运动而具有的能量。

- 动能的计算公式为:\[ E_k = \frac{1}{2}mv^2 \],其中 \( m \) 是物体的质量,\( v \) 是物体的速度。

5.3 势能- 势能是物体由于其位置而具有的能量。

- 势能包括重力势能和弹性势能。

5.4 机械能守恒定律- 机械能守恒定律指出,在没有外力做功的情况下,一个系统的机械能是守恒的。

- 机械能守恒定律的数学表达式为:\[ E_{initial} = E_{final} \]。

第六章动量与角动量6.1 动量的概念- 动量是物体的质量和速度的乘积。

- 动量的计算公式为:\[ p = mv \],其中 \( m \) 是物体的质量,\( v \) 是物体的速度。

6.2 动量守恒定律- 动量守恒定律指出,在没有外力作用的情况下,一个系统的总动量是守恒的。

- 动量守恒定律的数学表达式为:\[ p_{initial} = p_{final} \]。

6.3 角动量的概念- 角动量是物体绕某一轴旋转时具有的能量。

- 角动量的计算公式为:\[ L = I\omega \],其中 \( I \) 是物体的转动惯量,\( \omega \) 是物体的角速度。

6.4 角动量守恒定律- 角动量守恒定律指出,在没有外力矩作用的情况下,一个系统的总角动量是守恒的。

- 角动量守恒定律的数学表达式为:\[ L_{initial} = L_{final} \]。

第七章波动与光学7.1 波动的基本概念- 波动是介质中能量的传播。

- 波动分为机械波动和电磁波动。

7.2 波的传播- 波的传播可以通过波动方程来描述。

- 机械波的波动方程为:\[ y = A\cos(kx - \omega t + \phi) \],其中 \( A \) 是振幅,\( k \) 是波数,\( x \) 是位置,\( \omega \) 是角频率,\( t \) 是时间,\( \phi \) 是相位。

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

量子力学试卷(2套)(完整资料).doc

量子力学试卷(2套)(完整资料).doc

【最新整理,下载后即可编辑】2002级量子力学期末考试试题和答案A 卷一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。

(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。

(4分)4、证明)ˆˆ(22x x p x x pi -是厄密算符 (5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x pˆ之间的测不准关二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==BA,且0ˆˆˆˆ=+A B B A ,求1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在B 表象中算符Aˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。

三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021ϕθϕθϕθψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2L ˆ和zL ˆ的取值几率和平均值; 2、0>t 时体系的波函数,并给出此时体系的E 、2L ˆ和zL ˆ的取值几率和平均值。

四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=C C C H000000200030001ˆ这里,H H H'+=ˆˆˆ)0(,C 是一个常数,1<<C ,用微扰公式求能量至二级修正值,并与精确解相比较。

五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态⎪⎪⎭⎫ ⎝⎛=+0121和⎪⎪⎭⎫ ⎝⎛=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae-⋅=ψ2、定态:定态是能量取确定值的状态。

量子力学考试题讲解及答案

量子力学考试题讲解及答案

量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。

答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。

答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。

答案:K.E.4. 费米子遵循的统计规律是________统计。

答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。

答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。

答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。

2. 解释量子力学中的叠加原理。

答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。

3. 描述量子力学中的泡利不相容原理。

答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。

中职对口升学量子力学模拟试题(3)

中职对口升学量子力学模拟试题(3)

单项选择题101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛- 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪. 102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 001.B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++ 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在( , L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中 L z 的平均值为 A. . B. - . C. 2 . D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x∂∂在 Q表象中的矩阵元的表示是 A.F u x F x i xu x dx mn n m =⎰*()(,)() ∂∂. B.F u x F x i xu x dx mn m n =⎰*()(,)() ∂∂. C.F u x F x i xu x dx mn n m =⎰()(,)()* ∂∂. D.F u x F x i xu x dx mn m n =⎰()(,)()* ∂∂. 106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B. 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x∂∂. B.i p x ∂∂. C.-i p x 2∂∂. D.i p x 2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+ .B.p p 2222212μμω∂∂-. C.22222212pp ∂∂μωμ -. D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i .110.111.幺正矩阵的定义式为A.S S +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/a x i p =+μωμω212 ,则对易关系式[ , ]a a +等于 A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]aa +=-1. D. [ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E n nn mn n m m ()()()''0200++-∑. B. E H H E E n nn mn n mm ()()()'''0200++-∑. C.E H H E E nnn mn m n m ()()()'''0200++-∑. D.E H H E E n nn mn m n m ()()()''0200++-∑. 115. 非简并定态微扰理论中第n 个能级的一级修正项为A.H mn '.B.H nn '.C.-H nn '.D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为A.H E E mn n m m '()()200-∑. B. ''()()H E E mn n m m 200-∑. C. ''()()H E E mn m n m 200-∑. D. H E E mn m n m '()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H E E mn nm m m '()()()000-∑ψ. B. ''()()()H E E mn nm m m 000-∑ψ. C. ''()()()H E E mn mn m m 000-∑ψ. D. H E E mn m n m m '()()()000-∑ψ. 118.沿x 方向加一均匀外电场 ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++ 22222212μμωε. B. H d dx x q x =-++ 2222212μμωε. C. H d dx x q x =-+- 2222212μμωε. D. H d dx x q x =-+- 22222212μμωε. 119.非简并定态微扰理论的适用条件是A.H E E mkk m '()()001-<<. B. H E E mk k m '()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<. 120.转动惯量为I ,电偶极矩为 D 的空间转子处于均匀电场 ε中,则该体系的哈密顿为A.ε ⋅+=D I L H 2ˆˆ2.B. ε ⋅+-=D IL H 2ˆˆ2. C. ε ⋅-=D I L H 2ˆˆ2. D. ε ⋅--=D IL H 2ˆˆ2. 121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm n mm m H E E =+-∑()()()()''0000. B.ψψψn n mn nm m m H E E =+-∑()()()()''0000. C.ψψψn n mn mn m m H E E =+-∑()()()()''0000. D.ψψψn n nm mn m m H E E =+-∑()()()()''0000. 122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.202 ' )'exp(' 1⎰t mk mk dt t i H ω. B.20 ' )'exp( '⎰t mk mk dt t i H ω. C.202')' exp(1⎰tmk mk dt t i Hω . D. 20 ' )'exp(⎰t mk mk dt t i Hω.124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿.B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分.125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 126. S 为自旋角动量算符,则[ , ]S S y x等于 A.2i . B. i . C. 0 .D. -i S z . 127. σ为Pauli 算符,则[ , ]σσx z等于 A.-i y σ. B. i y σ. C.2i y σ. D.-2i y σ. 128.单电子的自旋角动量平方算符 S2的本征值为 A.142 . B.342 . C.322 . D.122 . 129.单电子的Pauli 算符平方的本征值为A. 0.B. 1.C. 2.D. 3.130.Pauli 算符的三个分量之积等于A. 0.B. 1.C. i .D. 2i . 131.电子自旋角动量的x 分量算符在 S z表象中矩阵表示为 A. S x =⎛⎝ ⎫⎭⎪ 21001. B. S i i x =-⎛⎝ ⎫⎭⎪ 200. C. S x =⎛⎝ ⎫⎭⎪ 20110. D. S x =-⎛⎝ ⎫⎭⎪ 21001. 132. 电子自旋角动量的y 分量算符在 S z表象中矩阵表示为 A. S y =⎛⎝ ⎫⎭⎪ 21001. B. S i y =-⎛⎝ ⎫⎭⎪ 20110. C. S i i i y =-⎛⎝ ⎫⎭⎪ 200. D. S i i y =⎛⎝ ⎫⎭⎪ 200.133. 电子自旋角动量的z 分量算符在 S z表象中矩阵表示为 A. S z =⎛⎝ ⎫⎭⎪ 21001. B. S z =-⎛⎝ ⎫⎭⎪ 20110. C. S z =-⎛⎝ ⎫⎭⎪ 21001. D. S i z =-⎛⎝ ⎫⎭⎪ 21001. 134. , J J 12是角动量算符, J J J =+12,则[ , ] J J 212等于 A. J 1. B. - J 1. C. 1 . D. 0 .135. 0.136.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0, .B. 0,- .C. 22,.D. 22,-. 140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为 A. ,-. B. /,2. C. /,/22-. D. ,/-2.141.142.143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性.145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项选择题101.一粒子在一维无限深势阱中运动的状态为)(22)(22)(21x x x ψψψ-=,其中ψ1()x 、ψ2()x 是其能量本征函数,则ψ()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 02/22/2.B.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-M 02/22/2.C.222200//⎛⎝ ⎫⎭⎪⎪⎪⎪⎪.D.222200//-⎛⎝ ⎫⎭⎪⎪⎪⎪⎪. 102.线性谐振子的能量本征函数ψ1()x 在能量表象中的表示是A.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 001.B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 010. C. 1000⎛⎝ ⎫⎭⎪⎪⎪⎪. D. 0100⎛⎝ ⎫⎭⎪⎪⎪⎪. 103. 线性谐振子的能量本征函数)()(10x b x a ψψψ+=在能量表象中的表示是A.⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++M 0//2222b a b b a a . B. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++0//02222b a b b a a . C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛M 0b a . D. 00a b ⎛⎝ ⎫⎭⎪⎪⎪⎪. 104.在(∃,∃L L z 2)的共同表象中,波函数φ=⎛⎝ ⎫⎭⎪⎪⎪22101,在该态中∃L z 的平均值为 A. ♒. B. -♒. C. 2♒. D. 0.105.算符 Q 只有分立的本征值{}Q n ,对应的本征函数是{()}u x n ,则算符 (,)F x i x ♒∂∂在 Q 表象中的矩阵元的表示是A.F u x F x i xu x dx mn n m =⎰*()(,)()♒∂∂. B.F u x F x i xu x dx mn m n =⎰*()(,)()♒∂∂. C.F u x F x i xu x dx mn n m =⎰()(,)()*♒∂∂. D.F u x F x i xu x dx mn m n =⎰()(,)()*♒∂∂. 106.力学量算符在自身表象中的矩阵表示是A. 以本征值为对角元素的对角方阵.B. 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.107.力学量算符xˆ在动量表象中的微分形式是 A.-i p x♒∂∂. B.i p x ♒∂∂. C.-i p x ♒2∂∂. D.i p x ♒2∂∂. 108.线性谐振子的哈密顿算符在动量表象中的微分形式是A.p p 22222212μμω∂∂+♒.B.p p 2222212μμω∂∂-. C.22222212pp ∂∂μωμη-. D.--p p 2222212μμω∂∂. 109.在 Q 表象中F =⎛⎝ ⎫⎭⎪0110,其本征值是 A. ±1. B. 0. C. ±i . D. 1±i .110.111.幺正矩阵的定义式为A.S S +-=.B.S S +=*.C.S S =-.D.S S *=-.112.幺正变换A.不改变算符的本征值,但可改变其本征矢.B.不改变算符的本征值,也不改变其本征矢.C.改变算符的本征值,但不改变其本征矢.D.即改变算符的本征值,也改变其本征矢.113.算符 ()( )/a x i p =+μωμω212♒,则对易关系式[ , ]a a +等于 A. [ , ]aa +=0. B. [ , ]a a +=1. C. [ , ]aa +=-1. D. [ , ]a a i +=. 114.非简并定态微扰理论中第n 个能级的表达式是(考虑二级近似)A.E H H E E n nn mn n m m ()()()''0200++-∑.B. E H H E E n nn mn n mm ()()()'''0200++-∑. C.E H H E E n nn mn mn m ()()()'''0200++-∑. D.E H H E E n nn mn m n m ()()()''0200++-∑. 115. 非简并定态微扰理论中第n 个能级的一级修正项为A.H mn '.B.H nn '.C.-H nn '.D.H nm '.116. 非简并定态微扰理论中第n 个能级的二级修正项为A.H E E mn n m m '()()200-∑.B.''()()H E E mn n m m 200-∑.C. ''()()H E E mn m n m 200-∑. D. H E E mn m n m '()()200-∑.117. 非简并定态微扰理论中第n 个波函数一级修正项为A.H E E mn n mm m '()()()000-∑ψ. B. ''()()()H E E mn nm m m 000-∑ψ. C. ''()()()H E E mn mn m m 000-∑ψ. D. H E E mn m n m m '()()()000-∑ψ. 118.沿x 方向加一均匀外电场❒ε,带电为q 且质量为μ的线性谐振子的哈密顿为A. H d dx x q x =-++♒22222212μμωε. B. H d dx x q x =-++♒2222212μμωε. C. H d dx x q x =-+-♒2222212μμωε. D. H d dx x q x =-+-♒22222212μμωε. 119.非简并定态微扰理论的适用条件是A.H E E mkk m '()()001-<<. B. H E E mk k m '()()001+<<.C. H mk '<<1.D. E E k m ()()001-<<. 120.转动惯量为I ,电偶极矩为❒D 的空间转子处于均匀电场❒ε中,则该体系的哈密顿为A.ερρ⋅+=D IL H 2ˆˆ2. B. ερρ⋅+-=D I L H 2ˆˆ2. C. ερρ⋅-=D IL H 2ˆˆ2. D. ερρ⋅--=D I L H 2ˆˆ2. 121.非简并定态微扰理论中,波函数的一级近似公式为A.ψψψn n nm nm m m H E E =+-∑()()()()''0000. B.ψψψn n mn nm m m H E E =+-∑()()()()''0000. C.ψψψn n mn mn m m H E E =+-∑()()()()''0000. D.ψψψn n nm mn m m H E E =+-∑()()()()''0000. 122.氢原子的一级斯塔克效应中,对于n =2的能级由原来的一个能级分裂为A. 五个子能级.B. 四个子能级.C. 三个子能级.D. 两个子能级.123.一体系在微扰作用下,由初态Φk 跃迁到终态Φm 的几率为A.202 ' )'ex p(' 1⎰t mk mk dt t i H ωη. B.20 ' )'ex p( '⎰t mk mk dt t i H ω. C.202')' ex p(1⎰tmk mk dt t i Hωη. D. 20 ' )'ex p(⎰t mk mk dt t i Hω.124.用变分法求量子体系的基态能量的关键是A. 写出体系的哈密顿.B. 选取合理的尝试波函数.C. 计算体系的哈密顿的平均值.D. 体系哈密顿的平均值对变分参数求变分.125.Stern-Gerlach 实验证实了A. 电子具有波动性.B.光具有波动性.C. 原子的能级是分立的.D. 电子具有自旋. 126.❒ S 为自旋角动量算符,则[ , ]S S y x等于 A.2i . B. i ♒. C. 0 .D. -i S z ♒ . 127. ❒ σ为Pauli 算符,则[ , ]σσx z等于 A.-i y ♒ σ. B. i y ♒ σ. C.2i y ♒ σ. D.-2i y ♒ σ.128.单电子的自旋角动量平方算符 S 2的本征值为A.142♒.B.342♒.C.322♒.D.122♒. 129.单电子的Pauli 算符平方的本征值为A. 0.B. 1.C. 2.D. 3.130.Pauli 算符的三个分量之积等于A. 0.B. 1.C. i .D. 2i . 131.电子自旋角动量的x 分量算符在 S z 表象中矩阵表示为A. S x =⎛⎝ ⎫⎭⎪♒21001.B. S i i x =-⎛⎝ ⎫⎭⎪♒200. C. S x =⎛⎝ ⎫⎭⎪♒20110. D. S x =-⎛⎝ ⎫⎭⎪♒21001. 132. 电子自旋角动量的y 分量算符在 S z表象中矩阵表示为 A. S y =⎛⎝ ⎫⎭⎪♒21001. B. S i y =-⎛⎝ ⎫⎭⎪♒20110. C. S i i i y =-⎛⎝ ⎫⎭⎪♒200. D. S i i y =⎛⎝ ⎫⎭⎪♒200.133. 电子自旋角动量的z 分量算符在 S z 表象中矩阵表示为A. S z =⎛⎝ ⎫⎭⎪♒21001. B. S z =-⎛⎝ ⎫⎭⎪♒20110. C. S z =-⎛⎝ ⎫⎭⎪♒21001. D. S i z =-⎛⎝ ⎫⎭⎪♒21001. 134.❒❒ , J J 12是角动量算符,❒❒❒ J J J =+12,则[ , ]❒❒J J 212等于 A. ❒ J 1. B. -❒ J 1. C. 1 . D. 0 .135. 0.136.137.一电子处于自旋态χχχ=+-a s b s z z 1212//()()中,则s z 的可测值分别为A.0,♒.B. 0,-♒ .C. ♒♒22,.D. ♒♒22,-. 140.在s z 表象中,χ=⎛⎝ ⎫⎭⎪3212//,则在该态中s z 的可测值分别为 A.♒♒,-. B.♒♒/,2. C.♒♒/,/22-. D.♒♒,/-2. 141.142.143.下列有关全同粒子体系论述正确的是A.氢原子中的电子与金属中的电子组成的体系是全同粒子体系.B.氢原子中的电子、质子、中子组成的体系是全同粒子体系.C.光子和电子组成的体系是全同粒子体系.D.α粒子和电子组成的体系是全同粒子体系.144.全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性.145.分别处于p 态和d 态的两个电子,它们的总角动量的量子数的取值是A. 0,1,2,3,4.B.1,2,3,4.C. 0,1,2,3.D.1,2,3.。

相关文档
最新文档