非线性电路中的混沌现象

合集下载

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。

但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。

1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。

于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。

从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。

该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。

混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。

【实验目的】1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。

2.学会测量非线性器件伏安特性的方法。

【实验仪器】非线性电路混沌实验仪【实验原理】图1 非线性电路 图2 三段伏安特性曲线1.非线性电路与非线性动力学:实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。

电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。

较理想的非线性元件R 是一个三段分段线性元件。

图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。

由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

图1 电路的非线性动力学方程为:11211Vc g )Vc Vc (G dtdVc C ∙--∙=L 2122i )Vc Vc (G dtdVc C +-∙=式中,导纳21W W 1G +=,1C V 和2C V 分别表示加在1C 和2C 上的电压,L i 表示流过电感器L 的电流,g 表示非线性电阻R 的导纳。

2. 有源非线性负阻元件的实现:有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路:采用两个运算放大器(一个双运放 353LF ) 和六个配置电阻来实现,其电路如图3所示,它的伏安 特性曲线如图4所示。

非线性电路混沌现象研究论文答辩

非线性电路混沌现象研究论文答辩

有源非线性负阻原价的伏安特性测量及曲线绘制
I/MA
0 0.016 0.082 0.161
R/Ω
99.9 599.9 1199.9 1275.9
U/V
0 -0.01 -0.099 -0.206
2.214 2.582 3.062 3.364 3.795 4.136 4.648 3.79 3.28 2.833 2.309 1.896 1.365 0.907 0.596 0.243
研究框架
实验原理
数值模拟
实验分析
相关概念 倍周期分岔
分岔指在一族系统中,当一个参数值从某一临界值以下 变到该临界值以上时,系统长期行为的一个突然变化。 解释倍周期分岔现象,我们从混沌描述中最重要的的一 维非线性迭代方程式入手。这类方程中最有典型意义的 是虫口方程。
式中的 是与虫口增长率有关的控制参数,同时它的大小 也反映了系统非线性的强弱。
x n 1 x n(1 x n )
相关概念 倍周期分岔
相关概念
阵发混沌
系统的运动在某些时间段落,十分接近周期过程 ,而在规则的运动段落之间,夹杂着看起来很随 机的跳跃---系统时而处于周期过程,时而处于 非周期过程,呈现出“阵发”行为。
相关概念 奇异吸引子
系统的状态进入相应吸引域内,运动轨道 都会向吸引子会聚,但是,一切到达吸引 子后的轨道由于其对初始条件的敏感依赖 性又会急剧的分离、发散,但仍要一直处 在吸引域的界限之内---轨道相互缠绕, 来回穿行,永不相交。
1810.9 1930.9 2000 2077 2107 2159 2200 2790 3290 3799.9 4849.9 5999.9 8499.9 12999.9 19999.9 49999.9

非线性电路中的混沌现象_电子版实验报告范文

非线性电路中的混沌现象_电子版实验报告范文

1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=30.8kHz ;实验仪器标示:C=1.145nF 由此可得:mHC f L 32.23)108.30(10145.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222108.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 18.0)(=最终结果:mH L u L )2.03.23()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:99999.9 -11.750 23499.9 -11.550 13199.9 -11.350 -11.150 -10.950 -10.750 -10.550 -10.350-10.150-9.550-9.350-9.150-8.350-8.150上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

基础物理实验报告第3页基础物理实验报告(2)数据处理:根据RU I RR可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.00433464,-9.150)和(0.00118629,-1.550)两个实验点是折线的拐点。

故我们在V U 150.9750.11-≤≤-、550V .1U 9.150-≤<-、V 150.1U 1.550-≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

⎪⎩⎪⎨⎧≤≤+≤≤+-≤≤+= -1.150U 1.550- 0.00000976U 0.00075901- -1.550U 9.150- 240.0.000609U 0.00040784- 9.150U 11.750- 0.02018437U 0.00170003I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。

非线性电路混沌现象的探究以及基于Multisim仿真设计样本

非线性电路混沌现象的探究以及基于Multisim仿真设计样本

非线性电路混沌现象探究以及基于Multisim仿真设计摘要本文从非线性电路中混沌现象着手,详细回顾了混沌电路实验原理、实验办法以及实验现象,并通过一元线性回归对有源非负阻伏安特性曲线实进行了拟合。

此外,本文也着重通过MultiSim软件,对实验中混沌电路进行了仿真,仔细记录了仿真下来各个波形。

同步,也运用该软件,通过搭建电路,用示波器获得了有源非线性负阻伏安特曲。

核心词混沌电路有源非线性负阻MultiSim软件一、引言混沌是二十世纪最重要科学发现之一,被誉为继相对论和量子力学之后第三次物理革命,它打破了拟定性与随机性之间不可逾越分界线,将典型力学研究推动到一种崭新时代。

由于混沌信号是一种貌似随机而实际却是由拟定信号系统产生信号,使得混沌在许多领域(如保密通信,自动控制,传感技术等)得到了广泛应用[1]。

20近年来混沌始终是举世瞩当前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在复杂性、有序性和无序统一,大大拓宽了人们视野,加深了人们对客观世界结识。

当前混沌控制与同步研究成果已被用来解决秘密通信、改进和提高激光器性能以及控制人类心律不齐等问题。

混沌(chaos)作为一种科学概念,是指一种拟定性系统中浮现类似随机过程。

理论和实践都证明,虽然是最简朴非线性系统也能产生十分复杂行为特性,可以概括一大类非线性系统演化特性。

混沌现象出当前非线性电路中是极为普遍现象,通过变化电路中参数可以观测到倍周期分岔、阵法混乱和奇异吸引子等现象。

二、混沌电路简介对电路系统来说,在有些二阶非线性非自治电路或三阶非线性自治电路中,浮现电路解既不是周期性也不是拟周期,但在状态平面上其相轨迹始终不会重复,但是有界,并且电路对初始条件十分敏感,这便是非线性电路中混沌现象。

依照Li-York定义,一种混沌系统应具备三种性质:(1)存在所有阶周期轨道;(2)存在一种不可数集合,此集合只具有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替浮现,同步任一轨道不趋于任一周期轨道,即此集合不存在渐近周期轨道;(3)混沌轨道具备高度不稳定性。

非线性电路混沌现象研究

非线性电路混沌现象研究

非线性电路混沌现象研究对混沌现象的研究,是20世纪物理学的重大事件。

相对论和量子力学的兴起,使牛顿力学受到巨大冲击。

而近二十年内进一步发起挑战的是对混沌现象的研究。

混沌理论是当前物理学范围的前沿课题,涉及物理学、数学、生物学、计算机科学、电子学、经济学等领域,范围相当广泛。

混沌理论包含的物理内容非常多,研究这些内容需要比较深入的数学理论如微分动力学理论、拓扑学、分形几何学等。

研究表明,混沌现象与系统的非线性特征紧密相关。

而非线性特征是自然界普遍存在的现象。

例如,在非线性电路中,往往伴随着混沌现象的出现。

本实验通过chua电路,观察电路混沌现象,包括“蝴蝶效应”分岔、收敛吸引子,奇异吸引子等,从而可以直观地了解混沌观察和理论。

[预习提要]1、什么叫“混沌”?什么叫系统的非线性?2、结合chau’s电路理解。

什么叫“蝴蝶效应”?什么叫“分岔”?什么叫“分形”?什么叫“奇异吸引子”?3、本实验中chua’s电路的非线性电阴伏安特性怎样?如何测量?[实验要求]1、理解混沌及相关概念的含义。

2、学会测量有源理想非线性负电阻伏安特性。

3、掌握一种测有芯电感电感量的方法。

[实验目的]1、理解混沌及相关概论的含义。

2、了解有源理想非线性负电阻的伏安特性及测量方法。

[实验器材]非线性电路混沌实验电路板(包括:1、LC振荡器;2、RC移相器电路;3、双动放及6个电阻组成的等效“有源非线性负阻元件”;4、连接导线及同轴电缆线;5、四位半数字电压表。

)双踪示波器。

[实验原理]一、基本概念在混沌学中,混沌一词一般取其混乱和无序的意思。

在英、法、德文中,都写作“chaos”。

混沌一词的科学定义是指发生在确定性系统中的貌似随机的不规则运动或表现。

一个确定性理论描述的系统,其行为却表现为不确定性,不可重复、不可预测,这就是混沌现象。

研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。

因为是决定性系统内部所因有的,故又称之为“内禀随机性”。

【免费下载】非线性电路中的混沌现象 电子版实验报告

【免费下载】非线性电路中的混沌现象 电子版实验报告

非线性电路中的混沌现象学号:37073112 姓名:蔡正阳日期:2009年3月24日五:数据处理:1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率时,RLC 串联电路将达到谐振,L 和C 的电压反相,在LCf π21=示波器上显示的是一条过二四象限的45度斜线。

测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度:估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=CC u f f u L L u 即mHL u 16.0)(=最终结果:mHL u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理:(1)原始数据:R V RVRV71200-122044.9-81753.4-421000-11.82036.2-7.81727.5-3.812150-11.62027.2-7.61699.6-3.68430-11.42017.8-7.41669.4-3.46390-11.22007.9-7.21636.7-3.25100-111997.5-71601.2-34215-10.81986.7-6.81562.4-2.83564-10.61975.3-6.61519.7-2.63070-10.41963.4-6.41472.3-2.42680-10.21950.9-6.21420-2.22369-101937.6-61360.9-22115-9.81923.7-5.81295.1-1.82103.1-9.61909-5.61281.8-1.62096.8-9.41893.4-5.41276.7-1.42090.2-9.21876.9-5.21270.1-1.22083.4-91859.5-51261.1-12076.3-8.81840.9-4.81247.8-0.82068.9-8.61821.2-4.61226-0.62061.2-8.41800.1-4.41148.9-0.42053.3-8.21777.6-4.21075-0.2(2)数据处理:根据可以得出流过电阻箱的RU I R R=电流,由回路KCL 方程和KVL 方程可知:RR RR U U I I =-=11由此可得对应的值。

非线性电路中的混沌现象_电子实验分析方案

非线性电路中的混沌现象_电子实验分析方案

1.计算电感L本实验采用相位测量。

根据RLC谐振规律,当输入激励的频率时,RLC串联电路将达到谐振,L和C的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=30.8kHz;实验仪器标示:C=1.145nF由此可得:估算不确定度:估计u(C>=0.005nF,u(f>=0.1kHz则:即最终结果:2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理:<1)原始数据:99999.9 -11.75023499.9 -11.55013199.9 -11.350-11.150-10.950-10.750-10.550-10.350-8.950-8.750-8.550-8.350上表为实验记录的原始数据表,下表为数据处理时使用Excle计算的数据及结果。

<2)数据处理:根据可以得出流过电阻箱的电流,由回路KCL方程和KVL方程可知:由此可得对应的值。

对非线性负阻R1,将实验测得的每个<I,U)实验点均标注在坐标平面上,可得:图中可以发现,<0.00433464,-9.150)和<0.00118629,-1.550)两个实验点是折线的拐点。

故我们在、、这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

经计算可得,三段线性回归的相关系数均非常接近1<r=0.99997),证明在区间内I-V 线性符合得较好。

应用相关作图软件可以得出非线性负阻在U<0区间的I-U曲线。

将曲线关于原点对称可得到非线性负阻在U>0区间的I-U曲线:该图为根据计算绘出的I-U图,能清楚的看到拐点和变化关系。

3.观察混沌现象:<1)一倍周期:<2)两倍周期:<3)四倍周期:<4)单吸引子:<5)三倍周期(6>双吸引子:六、什么叫混沌?表现在相图上有什么特点?答:混沌大体包含以下一些主要内容:(1)系统进行着貌似无归律的运动,但决定其运动规律的基础动力学却是决定论的;(2)具体结果敏感地依赖初始条件,从而其长期行为具有不可测性;(3)这种不可预测性并非由外界噪声引起的;(4)系统长期行为具有某些全局和普适性的特征,这些特征与初始条件无关。

非线性电路中的混沌现象实验

非线性电路中的混沌现象实验
非线性电路中的混沌现象
背景 混沌特点:
倍周期分岔 无穷嵌套的自相似结构 系统长期行为具有某些普适性 系统轨迹敏感依赖于初始条件,即Lyapunov
指数为正 具有分形结构
非线性电路
电路
有源非线性负电阻
动力学方程
C1
dVc1 dt
G(Vc2
Vc1 )
gVc1
C2
dVc2 dt
按已知的数据信息(L~20mh,r~10Ω,C0
见现场测试盒提供的数据)估算电路的共振
频率f;
考虑测共振频率时应如何连线? 用振幅法和相位法测量共振频率并由此算得
电感量,测量时电流不要超过20mA
实验内容二
倍周期分岔和混沌现象的观察
求观察并记录2倍周期分岔,4倍周期分岔, 阵发混沌,3倍周期,单吸引子,双吸引子 现象及相应的Vc1(t)和Vc2(t)的波形。
由非线性方程组结合本实验的相关参数, 用四阶龙格—库塔(Runge-Kutta)数值积分 法编程并画出奇异吸引子、双吸引子的 相图和对应变量的波形图并与实验记录 进行对照。
谢谢
相图:任意两运动状态之间的关系图
实验内容三
非线性电阻伏安特性的测量
用伏安法测量 测量时把有源非线性负阻元件与移相器连线
隔开(想一想,如何实现?) 注意实验点分布的合理性
V
R
非线性负电阻
数据处理要求
由测量数据计算电感L。
用一元线性回归方法对有源非线性负阻 元件的测量数据做分段拟合,并作图。
周期窗口 间歇现象 —阵发混沌
实验仪器介绍
实验内容 一
串联谐振电路和电感的测量
串联谐振电路
I ( 1 jL R) E I
E
E

非线性电路中的混沌现象11011079

非线性电路中的混沌现象11011079

非线性电路中的混沌现象实验指导及操作说明书北航实验物理中心2013-03-09教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。

许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。

目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。

混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。

理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。

混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。

实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。

此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。

5.2.1 实验要求1.实验重点①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。

②掌握用串联谐振电路测量电感的方法。

③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。

熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。

④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。

了解用计算机实现实验系统控制和数据记录处理的特点。

2.预习要点(1)用振幅法和相位法测电感①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。

非线性电路研究混沌现象

非线性电路研究混沌现象

一、实验目的1.了解混沌的一些基本概念;2.测量有源非线性电阻的伏安特性;3.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。

二、实验原理实验所用电路原理图如图3.7-1所示。

电路中电感L 和电容C 1、C 2并联构成一个振荡电路。

R 是一有源非线性负阻元件,电感L 和电容器C 2组成一损耗可以忽略的谐振回路;可变电阻R 和电容器C 1串联将振荡器产生的正弦信号移相输出。

电路的非线性动力学方程如式(3.7-1)所示2121212d d )(d d )(d d 112C L C C C C L C C C U ti L gU U U G tU C i U U G tU C -=--=+-= (3.7-1)RL图3.7-1 电路原理图 图3.7-2 非线性元件R 的U - I 特性 这里,U C1、U C2是电容C 1、C 2上的电压,i L 是电感L 上的电流,G = 1/R 0是电导,g 为R 的伏安特性函数。

如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数。

电阻R 0的作用是调节C 1 和C 2的位相差,把C 1 和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。

如果R 是非线性的,它的伏安特性如图3.7-2所示,由于加在此元件上的电压增加时,通过它的电流却减小,因而此元件称为非线性负阻元件。

本实验所用的非线性元件R 是一个三段分段线性元件。

若用计算机编程进行数值计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象。

除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图3.7-3所示。

图中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的。

电路中,LC 并联构成振荡电路,R 0的作用是分相,使A ,B 两处输入示波器的信号产生位相差,可得到x ,y 两个信号的合成图形。

双运放TL082的前级和后级正、负反馈同时存在,正反馈的强弱与比值R 3 /R 0,R 6/R 0有关,负反馈的强弱与比值R 2/R 1,R 5 /R 4有关.当正反馈大于负反馈时,振荡电路才能维持振荡。

非线性电路混沌现象研究

非线性电路混沌现象研究

混沌的产生
混沌的产生
奇异吸引子
英国的海岸线地图
自然界中的分形

星 云


天空中的云朵 植物的叶子
毛细血管分布
视乳头旁毛细血管瘤 视网膜中央动脉颞上支阻塞
河流分布图
自然界中的分形
• 股票价格曲线 • 岩石裂缝 • 金属损伤裂缝 • 道路分布 • 神经末梢的分布 …………
3、当代科学对混沌的研究(主要研究通向 混沌的途径)。
后来洛伦兹发现两次计算的差别只是第二次 输入中间数据时将原来的0.506127省略为 0.506。洛伦兹意识到,因为他的方程是 非线性的,非线性方程不同于线性方程, 线性方程对初值的依赖不敏感,而非线性 方程对初值的依赖极其敏感。正是初始条 件的微小误差导致了计算结果的巨大偏离。 由此洛伦兹断言:准确地作出长期天气预 报是不可能的。对此,洛伦兹作了个形象 的比喻:一只蝴蝶在巴西扇动一下翅膀会 在美国的得克萨斯州引起一场龙卷风,这 就是蝴蝶效应。
• 逻辑斯蒂映射的形式为
xn1 axn (1 xn )
• 以参数a为横坐标、以x的稳定定态 (stable steady states)为纵坐标作图, 得到1、图2等。从图中可以看出开始是 周期加倍分岔(也称周期倍化分岔或周期 倍分岔),然后是混沌,混沌区中又有周 期窗口。窗口放大后又可见到同样结构 的一套东西。此 所谓无穷自相似结构。
⑴倍周期分岔进入混沌 一个系统,在一定条件下,经过周期加倍,会逐步 丧失周期行为而进入混沌。例如,一个非线性电子电路 (混沌仪),当我们观察它的输出交变电压随输入电压 大小的改变而变化的规律时,可以发现:开始输入电压 较低时,输出电压的频率与输入电压的频率一样,而随 着输入电压的增加,输出电压的频率经过二分频(具有 输入频率及其1/2频率,共两个频率)、四分频、八分 频……,最后进入混沌(具有各种各样频率的输出电 压)。这就是倍周期分岔进入的混沌,是一种典型的非 平衡过程产生的混沌。

混沌现象

混沌现象

研究性实验报告——非线性电路中混沌现象的研究 非线性电路中混沌现象的研究一、 摘要本文介绍了混沌现象的起源、产生混沌现象的原因以及非线性电路中的混沌现象 本文介绍了混沌现象的起源 产生混沌现象的原因以及非线性电路中的混沌现象, 最后用一元线性回归方法对有源非线性负阻元件的测量数据做了分段拟合。

最后用一元线性回归方法对有源非线性负阻元件的测量数据做了分段拟合二、 背景1.混沌的起源 混沌理论是一门对复杂系统现象进行整体性研究的科学。

混沌理论是一门对复杂系统现象进行整体性研究的科学 我国科学家钱学森称混沌是宏 观无序、微观有序的现象。

混沌理论的创立 将非线性系统表现的随机性和系统内部的决定 混沌理论的创立,将非线性系统表现的随机性和系统内部的决定 性机制巧妙地结合起来。

20 世纪 60 年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。

他当时 理工学院的气象学家洛伦兹在计算机上进行天气模拟演算 用的计算机,储存数据的容量是小数点后六位数字 储存数据的容量是小数点后六位数字,但是在打印输出数据时, ,为了节省纸张, 只输出小数点后三位数字。

而洛伦兹在给第二次计算输入初始条件的时候 只输入了小数点后 而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后 的三位,与精确的数据有不到 0.1%的误差。

就是这个原本应该忽略不计的误差 与精确的数据有不到 就是这个原本应该忽略不计的误差,使最终的结果 大相径庭,如图 1 所示。

1963 年,洛伦兹在美国《气象学报》上发表了题为“ 1963 “确定性的非周期 流”的论文,提出了在确定性系统中的非周期现象 提出了在确定性系统中的非周期现象。

第 2 年,他发表了另外一篇论文 他发表了另外一篇论文,指出对 于模式中参数的微小改变将导致完全不一样的结果,使有规律的、周期性的行为 于模式中参数的微小改变将导致完全不一样的结果 周期性的行为,变成完全混 乱的状态。

北航基础物理实验之【非线性电路中的混沌现象】

北航基础物理实验之【非线性电路中的混沌现象】

非线性电路中的混沌现象一:数据处理:1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=C C u f f u L L u 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。

故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

使用Excel 的Linest 函数可以求出这三段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12- 20.02453093-0.002032U I经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。

hundun

hundun

k 为与 m0、m1、G 相关的常数。
5.20.2.2 非线性电阻 RN 的电路与伏安特性 图 5.20.1 的电路只有一个非线性元件,即负阻 RN,其特性见图 5.20.2,数学表达式合式为 1 1 g v c1 m 0 v c1 m1 m 0 v c1 B P m 0 m1 v c1 B P 2 2 实验中用于产生非线性电阻的方法很多,如单结晶体管、变容二极管以及运算放大电路等。最初 蔡氏方案选用单一运放电路作为非线性元件的电路,俗称蔡氏二极管。为了方便调整,电路很快 改为图 5.20.3 的双运放电路,其伏安特性见图 5.20.4。比较图 5.20.2、图 5.20.4 可以认为:这个电 路在分段线性方面与图 5.20.2 要求的理论特性相近,而当 vR 过大或过小时都出现了负阻向正阻的 转折。这是运算放大器工作进入饱和区的输出现象。这个特性导致在电路中产生附加的周期轨道, 但对混沌电路产生混沌吸引子和倍周期分岔轨道没有影响。为了测量和分析非线性电阻 RN 的伏安 特性,可以采用两种方法: ①在 A、B 两端接入可变电阻和电压电流表,直接测量; ②在 A、B 两端接入交流信号源,用示波器显示电流和电压的伏安曲线。 本次实验采用第一种方法测量伏安特性曲线。
图 5.20.3 用作非线性元件的双运放电路
D1 x, y, z x 1


iR
每个区域内状态方程呈线性,而且各具有一个平衡点:
0,0,0 D0
p k ,0,k D1
VR
p k ,0, k D1
图 5.20.4 运放电路输出特性
3
[3] 郝柏林,从抛物线谈起-混沌动力学引论,上海科教出版社(1993) ,1-35。 [4] Bilotta E, Pantano P, Stranges F. A gallery of Chua attractors : Part I,International Journal of Bifurcation and Chaos. 2007 .17(1):l-60. [5] 王珂,田真,陆申龙,非线性电路混沌现象实验装置的研究[J]. 实验室研究与探索 1999 年 04 期 [6] 曹惠贤,李蓉,普通物理实验教程,北京师范大学出版社,2007,p302-309

实验48 非线性电路中混沌现象的研究

实验48 非线性电路中混沌现象的研究

第4章基础实验25 实验4.8 非线性电路中混沌现象的研究现代科学技术研究发现,非线性是真实世界的普遍特性,非线性问题大量出现在自然科学、社会科学和工程科学中,并起着重要的作用。

混沌的研究是20世纪物理学的重大事件,在现代非线性理论中,混沌是泛指在确定体系中出现的貌似无规律的、随机的运动。

混沌运动的基本特征是确定性中包含的非周期性和不可预测性,以及对初值的敏感性等。

混沌的研究表明,一个完全确定的系统,即使非常简单,由于自身的非线性作用,同样具有内在的随机性。

绝大多数非线性动力学系统,既有周期运动,又有混沌运动,而混沌既不是具有周期性和对称性的有序,又不是绝对的无序,而是可用奇怪吸引子来描述的复杂的有序,混沌是非周期的有序性。

以下我们用级联倍周期分岔的方式接近混沌,从一个简单的实验中去观察非线性的现象,并尝试着得到一些重要结论。

【实验目的及要求】1.学习有源非线性电阻的伏安特性。

2.通过研究一个简单的非线性电路,了解混沌现象和产生混沌的原因。

3.学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。

【提供的主要器材】NCE-Ⅱ型非线性电路混沌实验仪、双踪示波器、铁氧介质电感、自备器件。

【实验预备知识】1.了解混沌起源混沌理论是一门对复杂系统现象进行整体性研究的科学。

我国科学家钱学森称混沌是宏观无序、微观有序的现象。

混沌理论的创立,将非线性系统表现的随机性和系统内部的决定性机制巧妙地结合起来。

20世纪60年代,麻省理工学院的气象学家洛伦兹在计算机上进行天气模拟演算。

他当时用的计算机,储存数据的容量是小数点后六位数字,但是在打印输出数据时,为了节省纸张,只输出小数点后三位数字。

而洛伦兹在给第二次计算输入初始条件的时候,只输入了小数点后的三位,与精确的数据有不到0.1%的误差。

就是这个原本应该忽略不计的误差,使最终的结果大相径庭,如图4-20所示。

1963年,洛伦兹在美国《气象学报》上发表了题为“确定性的非周期流”的论文,提出了在确定性系统中的非周期现象。

非线性电路混沌实验ppt课件

非线性电路混沌实验ppt课件

例如:
当=
31 3
时,0.7是周期一点。现用0.669去
迭代,就会出现周期二。迭代情况如下:
0.669---0.738---0.644---0.764---0.601---03 .799---
0.545---0.829---0.472---0.830---0.469---0.830---
0.470---0.830---0.470……
19
实验仪器介绍
LC组成 的振荡电 路
有源非线 性电阻
20
实验内容
1. 连接电路,并将示波器打到合成档。 2. 通过调节电位器W1(粗调)和W2(细调),
在示波器上观察一倍周期李萨茹图、并记录之,
并分别观看1,2通道波形图并记录之。
3.
逐步减小
1 G
,李萨茹图开始出现分叉,即由1倍
周 期变为2倍周期,记录之,并分别记录1,2通道
波形图。
4.逐步减小
1 G
,出现四倍周期,8倍周期,期与阵发混沌相
应图形。
21
实验内容
5.
再减小
1 G
,出现三倍周期,图像十分清楚稳定,
并记录相应图形。根据Yorke的著名论断“周期3意
味着混沌”,这说明电路即将出现混沌。
6.
继续减小
1 G
,则出现单个吸引子,并记录相应图
通信在我们的生活中的作用越来越重要,尤其是电子商务 的兴起,对保密通信提出了更高的要求。利用混沌进行保密 通信是现在十分热门的研究课题。混沌信号最本质的特征是 对初始条件极为敏感,并导致了混沌信号的类随机特性。用 它作为载波调制出来的信号当然也具有类随机特性。因而, 调制混沌信号即使被敌方截获,也很难被破译,这就为混沌 应用于保密通信提供了有利条件。因此利用混沌进行保密通 信是目前十分热门的研究课题。混沌信号最本质的特征是对 初始条件极为敏感,并由此信号又具有整体稳定性,当我们用 同一个混沌信号去驱动两个相同的系统时,两个系统的某些 部分将产生同步化的行为,这就为混沌应用于保密通信提供 了可行性。

非线性电路中的混沌现象实验报告

非线性电路中的混沌现象实验报告

竭诚为您提供优质文档/双击可除非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间:20XX年11月8日,第十一周,周一,第5-8节实验者:班级材料0705学号20XX67025姓名童凌炜同组者:班级材料0705学号20XX67007姓名车宏龙实验地点:综合楼404实验条件:室内温度℃,相对湿度%,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号)1.约结电子模拟器约结电子模拟器的主要电路包括:1.1,一个压控震荡电路,根据约瑟夫方程,用以模拟理想的约结1.2,一个加法电路器,更具电路方程9-1-10,用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3,100khz正弦波振荡波作为参考信号2.低频信号发生器用以输出正弦波信号,提供给约结作为交流信号3.数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1.了解混沌的产生和特点2.掌握吸引子。

倍周期和分岔等概念3.观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。

混沌的最本质特征是对初始条件极为敏感。

1.非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。

除此之外,非线性关系还具有某些不同于线性关系的共性:1.1线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化1.4非线性是引起行为突变的原因2.倍周期,分岔,吸引子,混沌借用T.R.malthas的人口和虫口理论,以说明非线性关系中的最基本概念。

虫口方程如下:xn?1xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。

在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。

非线性混沌实验报告

非线性混沌实验报告

一、实验目的1. 了解非线性混沌现象的产生机制和特点;2. 掌握非线性电路混沌现象的实验方法;3. 通过实验验证混沌现象在非线性电路中的存在和表现。

二、实验原理混沌现象是指非线性系统在初始条件和参数变化下,表现出对初始条件极为敏感、长期行为不可预测、复杂且非周期性的现象。

在非线性电路中,混沌现象通常由非线性元件(如非线性电阻、非线性电容等)引起。

本实验采用蔡氏振荡电路(Chua's circuit)作为研究对象,该电路具有以下特点:1. 简单易实现;2. 混沌现象明显;3. 可以通过调节电路参数来观察混沌现象的产生、发展和消失。

三、实验仪器与设备1. 数字示波器;2. 函数信号发生器;3. 万用表;4. 电路实验板;5. 连接线。

四、实验步骤1. 搭建蔡氏振荡电路,包括非线性电阻、线性电阻、电容和运算放大器等元件;2. 使用函数信号发生器为电路提供激励信号;3. 使用数字示波器观察电路输出信号的波形;4. 调节电路参数(如非线性电阻的值、电容的值等),观察混沌现象的产生、发展和消失;5. 记录不同参数下电路输出信号的波形,分析混沌现象的特点。

五、实验结果与分析1. 混沌现象的产生当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。

在非线性电阻值达到一定范围时,电路输出信号呈现出复杂的非周期性波形,即混沌现象。

2. 混沌现象的特点(1)对初始条件的敏感依赖性:在混沌现象中,电路输出信号的长期行为对初始条件极为敏感,微小变化可能导致截然不同的结果。

(2)复杂性和非周期性:混沌现象的输出信号具有复杂性和非周期性,无法用简单的数学公式描述。

(3)奇怪吸引子:混沌现象的长期行为可以用奇怪吸引子来描述,奇怪吸引子是一种具有复杂结构的有序结构。

3. 参数调节对混沌现象的影响(1)非线性电阻的值:非线性电阻的值对混沌现象的产生和消失具有关键作用。

当非线性电阻的值较小时,电路输出信号为稳定的正弦波;随着非线性电阻的值逐渐增大,混沌现象开始出现。

非线性电路的混沌现象

非线性电路的混沌现象

非线性电路的混沌现象1、引言混沌理论(ChaosTheory)是架起确定论和概率论两大理论体系之间的桥梁,与相对论、量子力学一起被称为20世纪物理学的三大科学革命。

混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。

混沌来自非线性,是非线性系统中存在的一种普遍现象。

无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。

近年来,混沌现象及其应用已成为通讯工程、电子工程、生物工程、经济学等领域中的一个研究热点。

由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua’sCircuit)。

蔡氏电路是能产生混沌行为的最简单的自治电路,是至今所知唯一的混沌实际物理系统,已被希尔尼柯夫定理严格证明存在混沌现象。

就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子,有兴趣的读者不妨亲自搭试电路,实际观测一番。

2、蔡氏电路图1就是讨论非线性电路系统的一种简单而又经典的电路———蔡氏电路,它是由两个线性电容C1和C2、一个线性电感L、一个可变线性电阻R0和一个非线性电阻R构成。

电感L和电容C2并联构成振荡电路,线性电阻R0的作用是分相。

非线性电阻R的伏安特性iR=g(uR),是一个分段线性的负电阻,如图2所示,整体呈现对称但非线性。

负阻是出现混沌的原因,其特性至少可用三种方法来实现:两个晶体管和两个二极管;一个运算放大器和两个二极管;一个双运算放大器和六个线性电阻组合。

图1电路中有3个状态变量uC1,uC2和uL,电路的非线性动力学状态方程为:式中:uC1,uC2和iL分别表示C1、C2两端的电压,L中的电流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性电路中的混沌现象学号:37073112 姓名:蔡正阳 日期:2009年3月24日五:数据处理:1.计算电感L本实验采用相位测量。

根据RLC 谐振规律,当输入激励的频率LCf π21=时,RLC 串联电路将达到谐振,L 和C 的电压反相,在示波器上显示的是一条过二四象限的45度斜线。

测量得:f=32.8kHz ;实验仪器标示:C=1.095nF 由此可得:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估算不确定度: 估计u(C)=0.005nF ,u(f)=0.1kHz 则:32222106.7)()(4)(-⨯=+=CC u f f u L L u 即mH L u 16.0)(=最终结果:mH L u L )2.05.21()(±=+2.用一元线性回归方法对有源非线性负阻元件的测量数据进行处理: (1)原始数据:(2)数据处理:根据RU I RR=可以得出流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11由此可得对应的1R I 值。

对非线性负阻R1,将实验测得的每个(I ,U )实验点均标注在坐标平面上,可得:图中可以发现,(0.0046336,-9.8)和(0.0013899,-1.8)两个实验点是折线的拐点。

故我们在V U 8.912≤≤-、8V .1U 9.8-≤<-、0V U 1.8≤<-这三个区间分别使用线性回归的方法来求相应的I-U 曲线。

使用Excel 的Linest 函数可以求出这三段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12- 20.02453093-0.002032UI经计算可得,三段线性回归的相关系数均非常接近1(r=0.99997),证明在区间内I-V 线性符合得较好。

应用相关作图软件可以得出非线性负阻在U<0区间的I-U 曲线。

将曲线关于原点对称可得到非线性负阻在U>0区间的I-U曲线:3.观察混沌现象:(1)一倍周期:一倍周期Vc1-t (2)两倍周期:两倍周期Vc1-t (3)四倍周期:四倍周期Vc 1-t(4)单吸引子:单吸引子阵发混沌三倍周期Vc 1-t(5)双吸引子:双吸引子Vc 1-t4.使用计算机数值模拟混沌现象:(1)源程序(Matlab代码):算法核心:四阶龙格库塔数值积分法文件1:chua.mfunction [xx]=chua(x,time_variable,aaa,symbol_no) h=0.01;a=h/2;aa=h/6;xx=[];for j=1:symbol_no;k0=chua_map(x,time_variable,aaa);x1=x+kO*a;k1=chua_map(xl,time_variable,aaa);xl=x+k1*a;k2=chua_map(x1,time_variable,aaa);x1=x+k2*h;k3=chua_map(x1,time-variable,aaa);x=x+aa*(kO+2*(k1+k2)+k3);xx=[xx x];end文件2:chua_initial.m:function [x0]=chua_initial(x,aaa)h=0.01;a=h/2;aa=h/6;x=[-0.03 0.6 -0.01]';k0=chua_map(x,1,aaa);x1=x+k0*a;k1=chua_map(xl,1,aaa);x1=x+k1*a;k2=chua_map(x1,1,aaa);x1=x+k2*h;k3=chua_map(x1,1,aaa);x=x+aa*(k0+2*(kl+k2)+k3);for k=2:400kO=chua_map(x,k,aaa);x1=x+k0*a;k1=chua_map(x1,k,aaa);x1=x+k1*a;k2=chua_map(x1,k,aaa);x1=x+k2*h;k3=chua_map(xl,k,aaa);x=x+aa*(kO+2*(k1+k2)+k3);endx0=x;文件3:chua_map.m:function[x]=chua_map(xx,time_variable,aaa)m0=-1/7.0;m1=2/7.0;if xx(1)>=1hx=m1*xx(1)+m0-m1;elseif abs(xx(1))<=1hx=m0*xx(1);elsehx=m1*xx(1)-m0+m1;endA=[0 9.0 01.0 -1.0 1.0O aaa 0];x=A*xx;x=x+[-9*hx 0 O]';文件4:chua_demo.mx0=0.05*randn(3,1);[x0]=chua_initial(x0,-100/7);[xx]=chua(x0,1,-100/7,20000);plot(UVI(1,1:end),UVI(2,1:end));xlabel('Uc1 (V)');ylabel('Uc2 (V)');figure;plot3(UVI(3,1:end),UVI(2,1:end),UVI(1,1:end))xlabel('I (V)');ylabel('Uc1 (V)');zlabel('Uc2 (V)'); (2)对于本实验,其微分方程组的求解还可以采用离散化的处理。

具体代码如下:(Matlab代码)function discrete_chaidt=0.04;c1=1/9;c2=1;L=1/7;G=0.7;N=10000;a0=0.8;a1=0.1;MT=[1-dt*G/c1,dt*G/c1,0;dt*G/c2,(1-dt*G/c2),dt/c2;0,-dt/L,1];UVI=zeros(3,N);UVI(:,1)=[0.1;0.1;0.1];for k=1:N-1;Bd=[-dt/c1*a0*UVI(1,k)*(a1^2*UVI(1,k)^2/3-1);0;0];UVI(:,k+1)=MT*UVI(:,k)+Bd;endplot(UVI(1,1:end),UVI(2,1:end));xlabel('Uc1 (V)');ylabel('Uc2 (V)');figure;plot3(UVI(3,1:end),UVI(2,1:end),UVI(1,1:end))xlabel('I (V)');ylabel('Uc1 (V)');zlabel('Uc2 (V)');经验证:该代码的执行效率比四阶龙格库塔数值积分法要高,但初始精度稍差。

(2)数值仿真结果:改变G的值,当G=0.7时,数值仿真出现双吸引子:Uc1-Uc2图使用matlab的Plot3可以做出I-Uc1-Uc2的三维图:I-Uc1-Uc2图同时可以使用Plot做出I、Uc1和Uc2对时间的曲线:改变G值,使G=0.35,数值仿真出现单吸引子:使用matlab的Plot3可以做出I-Uc1-Uc2的三维图:同时可以使用Plot做出I、Uc1和Uc2对时间的曲线:在结果中可以看到,计算机数值模拟的相图特点和前述示波器的相图极为相似。

同时利用计算机可以方便地更改系统参数,充分显现出计算机仿真的优越性。

六、选做实验:费根鲍姆常数的测量:以G 作为系统参数,将R V1+R V2由一个较大值逐渐减小,记录出现倍周期分岔时的参数值Gn ,得到倍周期分岔之间相继参量间隔之比:nn n n n G G G G --=+-∞→11lim δ 测量时n 越大δ值越趋近于费根鲍姆常数。

在本实验中由于条件限制,费根鲍姆常数的近似值可取:132321)()(R R R R R R --≈δ 实验测得:R 1=8700Ω;R 2=11060Ω;R 3=11829Ω。

代入上述公式,可得:≈δ 4.1728七、实验后思考题:1.什么叫相图?为什么要用相图来研究混沌现象?本实验中的相图是怎么获得的?答:将电路方程x=V1(t)和y=V2(t)消去时间变量t而得到的空间曲线,在非线性理论中这种曲线称为相图。

在非线性理论中,我们会看到使用运动状态之间的关系,更有利于揭示事物的本质,它突出了电路系统运动的全局概念。

在本实验中,示波器CH1端接Vc1电压,CH2端接Vc2电压,这样就能获得Vc1-Vc2相图。

2.什么叫倍周期分岔,表现在相图上有什么特点?答:系统在改变某些参数后,运动周期变为原先的两倍,即系统需要两倍于原先的时间才能恢复原状。

这在非线性理论中称为倍周期分岔。

倍周期分岔在相图上表现为原先的一个椭圆变为两个分岔的椭圆,运动轨线从其中的一个椭圆跑到另一个椭圆,再在重叠处又跑到原来的椭圆上。

3.什么叫混沌?表现在相图上有什么特点?答:混沌大体包含以下一些主要内容:(1)系统进行着貌似无归律的运动,但决定其运动规律的基础动力学却是决定论的;(2)具体结果敏感地依赖初始条件,从而其长期行为具有不可测性;(3)这种不可预测性并非由外界噪声引起的;(4)系统长期行为具有某些全局和普适性的特征,这些特征与初始条件无关。

混沌在相图上的表现为轨道在某侧绕几圈似乎是随机的,但这种随机性和真正随机系统中不可预测的无规律又不相同。

因为相点貌似无规律地游荡,不会重复已走过的路,但并不是以连续概率分布在相平面上随机行走,类似“线圈”的轨道本身是有界的,显然其中有某些规律。

4.什么叫吸引子?什么是非奇异吸引子?什么是奇异吸引子?表现在相图上有什么特点?答:在系统条件一定下,无论个它什么样的初始条件,最终都将落入到各自的终态集上,这些终态集被称为“吸引子”。

周期解的吸引子称为非奇异吸引子,非周期解的吸引子称为奇异吸引子。

5.什么是费根鲍姆常数?在本实验中如何测量它的近似值?答:对于某一系统,改变参量r ,当r=r 1时可以看到系统由稳定的周期一变为周期二,继续改变r ,当当r=r 2时周期二失稳,同时出现周期四,如此继续下去。

定义:nn n n n r r r r --=+-∞→11lim δ 常数δ被命名为费根鲍姆常数。

测量时n 越大δ值越趋近于费根鲍姆常数。

在本实验中由于条件限制,费根鲍姆常数的近似值可取:132321)()(R R R R R R --≈δ 6.非线性电阻R 的伏安特性如何测量?如何对实验数据进行分段拟合?实验中使用的是哪一段曲线?答:测量非线性电阻R 时,把电感从电路中取出,这样可以把有源非线性负阻R 与移相器的连线隔开。

相关文档
最新文档