16因式分解奥数专题

合集下载

2016年全国中考数学真题分类 因式分解(习题解析)

2016年全国中考数学真题分类 因式分解(习题解析)

2016年全国中考数学真题分类因式分解一、选择题1.(2016山东潍坊,8,3分)将下列多项式分解,结果中不含有因式a+1的是( ) A.2a -1 B. 2a +a C. 2a +a-2 D.2(2)a +-2(a+2)+1 答案:解:A :原式=(a+1)(a-1),不符合题意; B :原式=a(a+1),不符合题意; C :原式=(a+2)(a-1),符合题意; D :原式=22(21)(1)a a +-=+,不符合题意. 故选C.4.(2016广东梅州,4,3分)分解因式32b b a - 结果正确的是 A .))((b a b a b -+ B .2)(b a b - C .)(22b a b -D .2)(b a b + 【答案】A.(2016吉林长春,5,3分)把多项式269x x -+分解因式,结果正确的是 (A )2(3)x -.(B )2(9)x -.(C )(3)(3)x x +-. (D )(9)(9)x x +-.【答案】A二、填空题9.(2016四川宜宾,9,3分)分解因式:ab 4﹣4ab 3+4ab 2= ab 2(b ﹣2)2 .【考点】提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解. 【解答】解:ab 4﹣4ab 3+4ab 2 =ab 2(b 2﹣4b+4)=ab 2(b ﹣2)2.故答案为:ab 2(b ﹣2)2.2. (2016 镇江,3,2分)分解因式:x 2-9= . 答案:(x +3)(x -3).3. (2016 苏州 11,3分)分解因式:21x -=_________ 答案:(x +1)(x -1)4.(2016湖北襄阳,11,3分)分解因式:2a 2-2= . 【答案】)1)(1(2-+a a1.(2016甘肃定西,11,4分)因式分解:2a 2﹣8= . 【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a 2﹣8=2(a 2﹣4)=2(a+2)(a ﹣2).故答案为:2(a+2)(a ﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.2.(2016广西贺州,17,3分)将m 3(x -2)+m (2-x )分解因式的结果是 .【答案】m (x -2) (m +1) (m -1)3.(2016安徽,12,5分)因式分解:a 3﹣a= a (a+1)(a ﹣1) . 【考点】提公因式法与公式法的综合运用. 【分析】原式提取a ,再利用平方差公式分解即可. 【解答】解:原式=a (a 2﹣1)=a (a+1)(a ﹣1), 故答案为:a (a+1)(a ﹣1)4. (2016广东深圳,13,3分)分解因式:.________232=++b ab b a 【答案】()2b a b +5. 分解因式:4ax 2-ay 2=_______________________. 【考点】因式分解(提公因式法、公式法分解因式).【分析】先提取公因式a ,然后再利用平方差公式进行二次分解.【解答】解:4ax2-ay2=a(4x2-y2)= a(2x-y)(2x+y).故答案为:a(2x-y)(2x+y).6. (2016浙江杭州,13,4分)若整式22x ky+(k为不等于零的常数)能在有理数范围内因式分解,则K的值可以是(写出一个即可). 【答案】1-等7. (2016海南省,15,4分)因式分解:ax-ay =_________________.【答案】()-a x y8.(2016湖南衡阳,13,3分)因式分解:a2+ab= a(a+b).【分析】直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为:a(a+b).9.(2016新疆生产建设兵团,10,5分)分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.10.(2016四川内江,13,5分)分解因式:ax2-ay2=______.[答案]a(x-y)(x+y).[解析]先提取公因式a,再用平方差公式分解.原式=a(x2-y2)=a(x-y)(x+y).故选答案为:a(x-y)(x+y).11. (2016四川泸州,14,3分)分解因式:2++= .a a242【答案】()2a+2112.(2016湖南湘西,6,4分)分解因式:x2﹣4x+4= (x﹣2)2.【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.13.(2016,10,4分)因式分解:6x2﹣3x= 3x(2x﹣1).【考点】因式分解-提公因式法.菁优网版权所有【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).14. (2016江苏南京,9,2分)分解因式的结果是_______.答案:()(23)+-b c a考点:因式分解,提公因式法。

竞赛专题因式分解

竞赛专题因式分解

竞赛专题:因式分解一、重要公式1、a2-b2=a+ba-b;a n-1=a-1 a n-1+a n-2+a n-3+…+a2+a+12、a2±2ab+b2=a±b2;3、x2+a+bx+ab=x+ax+b;4、a3+b3=a+ba2-ab+b2; a3-b3=a-ba2+ab+b2;二、因式分解的一般方法及考虑顺序1、基本方法:提公因式法、公式法、十字相乘法、分组分解法;2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法;3、考虑顺序:1提公因式法;2十字相乘法;3公式法;4分组分解法;1、添项拆项例1因式分解:1x4+x2+1;2a3+b3+c3-3abc1分析:x4+1若添上2x2可配成完全平方公式解:x4+x2+1=x4+2x2+1-x2=x2+12-x2=x2+1+xx2+1-x2分析:a3+b3要配成a+b3应添上两项3a2b+3ab2解:a3+b3+c3-3abc=a3+3a2b+3ab2+b3+c3-3abc-3a2b -3ab2=a+b3+c3-3aba+b+c=a+b+ca+b2-a+bc+c2-3aba+b+c =a+b+ca2+b2+c2-ab-ac-bc例2因式分解:1x3-11x+20; 2a5+a+11分析:把中项-11x拆成-16x+5x 分别与x5,20组成两组,则有公因式可提;注意这里16是完全平方数解:x3-11x+20=x3-16x+5x+20=xx2-16+5x+4=xx+4x-4+5x+4 =x+4x2-4x+52分析:添上-a2和a2两项,分别与a5和a+1组成两组,正好可以用立方差公式解:a 5+a +1=a 5-a 2+a 2+a +1=a 2a 3-1+a 2+a +1=a 2a -1 a 2+a +1+a 2+a +1=a 2+a +1a 3-a 2+12、待定系数法例3因式分解2x 2+3xy -9y 2+14x -3y +20解:∵2x 2+3xy -9y 2=2x -3yx +3y,故用待定系数法,可设2x 2+3xy -9y 2+14x -3y +20=2x -3y +ax +3y +b,其中a,b 是待定的系数,比较右边和左边的x 和y 两项的系数,得⎩⎨⎧-=-=+333142b a b a 解得 54==b a ∴2x 2+3xy -9y 2+14x -3y +20=2x -3y +4x +3y +5另解原式=2x 2+3y +14x -9y 2+3y -20,这是关于x 的二次三项式常数项可分解为-3y -43y +5,用待定系数法,可设2x 2+3y +14x -9y 2+3y -20=mx -3y -4nx +3y +5比较左、右两边的x 2和x 项的系数,得m=2, n=1∴2x 2+3xy -9y 2+14x -3y +20=2x -3y +4x +3y +5三、重点定理1、余式定理:整多项式fx 除以x-a 商为qx,余式为r,则fx=x-aqx+r;当一个fx 除以x – a 时, 所得的等于 fa;例如:当 fx=x^2+x+2 除以 x – 1 时,则=f1=1^2+1+2=4;2、因式定理:即为的推论之一:如果多项式fa=0,那么多项式fx 必定含有因式x-a;反过来,如果fx 含有因式x-a,那么,fa=0;四、填空题1、两个小朋友的年龄分别为a 和b,已知a 2+ab=99,则a= ,b= ;2、计算:x +62x -62=x 2-362 ;3、若x +y=4,x 2+y 2=10,则x -y 2= ;4、分解因式:a 2-b 2+4a +2b +3= ;5、分解因式:4x3-31x+15= ;6、分解因式:x4+1987x2+1986x+1987= ;五、选择题7、x2y-y2z+z2x-x2z+y2x+z2y-2xyz因式分解后的结果是 ;Ay-zx+yx-z By-zx-yx+zCy+zx-yx+z Dy+zx+yx-z8、已知724-1可被40至50之间的两个整数整除,则这两个整数是 ;A41,48 B45,47 C43,48 D41,479、n为某一自然数,代入代数式n3-n中计算其值时,四个同学算出如下四个结果,其中正确的结果只能是 ;A388944 B388945 C388954 D388948六、将下列各式分解因式10、x4+x2y2+y4 11、x4+412、x4-23x2y2+y4 13、x3+4x2-914、x3-41x+30 15、x3+5x2-1816、x3+3x2y+3xy2+2y3 17、x3-3x2+3x+718、x3-9ax2+27a2x-26a3 19、x3+6x2+11x+620、a3+b3+3a2+b2+3a+b+221、3x3-7x+10 22、x3-11x2+31x-21七、解答题23、已知x-y+4是x2-y2+mx+3y+4的一个因式,求m的值;24、求方程xy-x-y+1=3的整数解;解:原方程可化为x-1y-1=3∵x,y整数,∴原方程可化为四个方程组:x-1=1 x-1=3 x-1=-1 x-1=-3y-1=3 y-1=1 y-1=-3 y-1=-1 解得:x,y的解为2,4、4,2、0,-2、-2,0。

因式分解(竞赛题)含问题详解

因式分解(竞赛题)含问题详解

因式分解运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、真题精解:1)已知多项式ax3+bx2+cx+d除以x-1时的余数是1,除以x-2时的余数是3,那么,它除以(x-1)(x-2)时所得的余数是什么?(第12届“希望杯”试题)解:设原式=(x-1)(x-2)(ax+k)+(mx+n),当x=1时,原式=1,即m+n=1;当x=2时,原式=3,即2m+n=3,解此关于m、n的方程组得m=2,n=-1,故原式除以(x-1)(x-2)时的余数为x-12)k为何值时,多项式x2-2xy+ky2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛试题)解:原式中不含y的项为x2+3x+2可分解为 (x+1)(x+2),故可设原式=[(x+1)+ay][(x+2)+by],将其展开得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,与原式对比系数得:a+b=-2, ab=k, 2a+b=-5,解之得a=-3,b=1,k=-3 3)如果x3+ax2+bx+8有两个因式x+1和x+2,求a+b的值。

因式分解(竞赛题)含答案

因式分解(竞赛题)含答案

因式分解一、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头.甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了.”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃.二、知识点回顾:1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、反思总结。

数学竞赛中的因式分解问题.doc

数学竞赛中的因式分解问题.doc

数学竞赛中的因式分解问题市郊中心学校 李英1 引言因式分解是指把一个多项式分解为几个整式的积的形式,即和差化积.它是中学数学中最重要的恒等变形之一,被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用,学习它,既可以复习整式四则运算,又为学习分式打好了基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力.分解因式与整式乘法互为逆变形.因式分解的应用较为广泛,可应用于多项式除法、高次方程的求根以及分式的运算.因式分解在中学数学里占有十分重要的地位,它是学习其他知识的一座桥梁,在分式的运算中,它是通分和约分的基础知识;在解高次方程与不等式时,它又是一种重要的解法;在数的运算中,它是进行简便运算的重要方法;在代数式与三角式的恒等变形中,它又是一种重要的手段;它对整式的运算也起到巩固的作用;它是整式乘法的逆变形,对学生的逆向思维能力、观察能力的培养也起着积极的作用.在各类数学竞赛中,它是命题的热点.2 数学竞赛中常见的因式分解方法2.1 分组分解法[1]当多项式的项数较多时,可将多项式进行合理分组,然后再直接提公因式或运用公式进行因式分解.例如:要把多项式am an bm bn +++分解因式,可以先把它前两项分成一组,并提出公因式a ,再把它后两项分成一组,并提出公因式b ,从而得到()()a mn b m n +++,又可以提出公因式()m n +,从而得到()()a b m n ++ .例1分解因式2222224y x 565x 24y 30y y y x x x --+-++-(全国“希望杯”数学竞赛题)分析 本题如是按照一般的分组分解方法难以进行,若将它整理成x 或y 的二次三项式再分组,问题就变得简单了.解 原式=()()()22224545645x y y x y y y x -++-+--+=()()22456y x y x -++-=()()()23245x x y y +--+2.2 待定系数法[2]待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n 个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数,从而把多项式因式分解.待定系数法是数学常用方法,用途十分广泛.2.2.1用待定系数法解题的依据用待定系数法解题的依据主要是多项式恒等定理:(1) 多项式()()x g x f ≡的充要条件是两个多项式的同类项的系数对应相等.(2) 如果()()x g x f ≡,则对于任意一个值a ,都有()()a g a f ≡.2.2.2用待定系数法解题的一般步骤(1)用适当的待定系数表示问题的一般形式.(2)根据多项式恒等定理列出方程(组).(3)解方程(组),确定待定系数的值.2.2.3待定系数法在数学竞赛中的应用例2分解因式:226136xy x y y x +-++-(第十届缙云杯初二数学竞赛) 解 由于原式是二元二次式,且只可能分解成两个二元一次式之积,考虑到226xy y x +-=()()y x y x 23-+ 故可设226136xy x y y x +-++-=()()b y x a y x +-++23=226xy y x +-()()32a b x b a y ab +++-+比较恒等式两边同类项系数,得⎪⎩⎪⎨⎧-==-=+613231ab a b b a ②由于①、②解得,3,2=-=b a 代入③,适合.所以,226136xy x y y x +-++-=()()3223+--+y x y x说明 高次多项式的因式分解一般较难,如果能判定它含有某些因式后再分解就相对容易些.所以,在分解高次式之前,我们可以用因式定理“如果(),0=a f 则()x f 必含有因式a x =”来寻找()x f 的因式.例3 分解因式:()()()876321⨯⨯-+++x x x (1987,四川省初中数学竞赛) 解 设()=x f ()()()876321⨯⨯-+++x x x显然,().05=f由因式定理知()x f 有因式().5-x所以可设()()()⨯⨯-+++76321x x x 8= ()5-x ()b ax x ++2取,1-=x 得()b a +--=⨯⨯-16876;取,2-=x 得=⨯⨯-876().247b a +--解得.66,11==b a说明(1)有几个独立的待定系数,就必须列出几个独立的方程.当方程个数多余未知数的个数时,可选择其中适当的方程求解,而把多余的方程作检验用,当解得的未知数适合所有方程时,这些未知数的值即为所求.(2)在设多项式可能的分解形式时,应充分利用已知条件和多项式的有关性质,尽量减少待定系数的个数,这样可减少方程个数,降低解方程组的难度.(3)当分解后的可能形式不止一种而又不能确定哪一种正确时,就要逐个试探.在试探过程中,如能充分利用已知信息和解题经验,则可减少探索过程,少走弯路.2.3 换元法[3]换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并引入一个新的字母变量替代这个整体来运算,从而使运算过程简明清晰.达到简化原式结构的目的.有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.种方法对于某些特殊的多项式因式分解可以起到简化的效果.换元法是一种重要的数学方法.注意:换元后勿忘还元.例4 方程组⎪⎪⎩⎪⎪⎨⎧=+=+71328123y x xy y x xy 的解是=x =y (第十一届‘五羊杯’初中数学竞赛题)分析 如果把已知方程两边都取倒数,那么可得,732,823=+=+xyy x xy y x 即,732,823=+=+xy x y 这就可以用换元法来解这个方程组.解 设,1,1v yu x == 则原方程可化为⎩⎨⎧=+=+732823u v v u 解这个方程组得⎩⎨⎧==21v u.21,1==∴y x2.4 十字相乘法[4]2.4.1q px x ++2的因式分解由乘法公式知:()()()2x a x b x a b x ab ++=+++令,,ab q b a p =+=则有q px x ++2=()()b x a x ++凡是如q px x ++2的形式的二次三项式,如果可以分解成两个一次因式,那么每个因式有两个项,它们的第一项都是x ,第二项a 和b 可以由一次项的系数p 和常数项q 确定.(1)确定a 和b 的符号:①如果q 是正数,p 也是正数,那么a 和b 都是正数;②如果q 是正数,p 是负数,那么a 和b 都是负数;③如果q 是负数,p 是正数,a 、b 中绝对值大的是正,小的是负; ④如果q 是负数,p 也是负数,a 、b 中绝对值大的是负,小的是正;(2)确定a 和b 的绝对值,可以先把q 得绝对值分解成所有可能的一对因数的积,然后看:①如果a 、b 同号的话,哪一对因数的和等于p 的绝对值,那么这一对因数就是a 和b 的绝对值;②如果a 、b 异号的话,哪一对因数的差等于p 的绝对值,那么这一对因数就是a 和b 的绝对值;2.4.2 n mx lx ++2的因式分解由乘法可以得到关于x 的两个二项式b ax +和d cx +相乘的结果:()()()bd x bc ad acx d cx b ax +++=++2.如果令,,,bd n bc ad m ac l =+==得公式:n mx lx ++2=()()d cx b ax ++. 具体步骤:(1)把l 分解成两个正因数a 和c (如果l 是负数,可以先提出公因式-1,这样括号里2x 项的系数就是正数3),把a 、c 分成上下行写在左列.(2)把n 的绝对值分解成两个因数b 和d ,分上下行写在右列.(3)交叉相乘,得到两个积ad 和bc 的值,如下式:(4)如果n 是正数,那么ad 和bc 的绝对值的和必须等于m 的绝对值才适合,如果n 是负数,那么ad 和bc 的绝对值的差必须等于m 才合适.(5)确定ad 和bc 的符号,而ad 的符号就是d 的符号,bc 的符号就是b 的符号.把符号补到竖式里去,最后把确定了的a 、b 、c 、d 分别填入两个因式()b ax +和()d cx +中去.例5 已知方程()222238213150a x a a x a a --+-+=(其中a 是非负整数)至少有一整数根,那么a =分析 考虑到151322+-a a =()()325--a a 且十字相乘之积的和正好等于一次项系数a a 832+-.解 原方程用十字相乘法对左端分解因式得()()523ax a ax a ----⎡⎤⎡⎤⎣⎦⎣⎦,,32,5121ax a x -=-=∴ 要使1x 或2x 是整数,只要a =1, 3,5.答:a 可取1, 3,5.2.4.3 双十字相乘法[5]在分解二次三项式时,十字相乘法是常用的方法,对于比较复杂的多项式,尤其是二次六项式,也可以运用十字相乘法分解因式,其具体步骤为:(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图.(2)把常数项分解成两个因式填在第二个十字的右边且使这个两个因式在第二个十字中交叉之积等于原式中含y 的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含x 的一次项.例6 分解因式224522-+++-y x y xy x .解 这是一个二次六项式,可考虑使用双十字相乘法进行因式分解,如下图:所以,原式=()()124--+-y x y x .2.5 对称式的因式分解[6]2.5.1对称多项式如果对换多项式()n x x x f ,...,,21的任意两个字母的位置,多项式恒不变,那么()n x x x f ,...,,21叫做n 元对称多项式.例如()333231321,.,x x x x x x f ++=,()221221323121,x x x x x x x x f +++=分别为三元,二元对称多项式,并且都是三次齐次式.三次齐次对称式的标准形为()()Cxyz x z x z yz z y xy y x B z y x A +++++++++22222223332.5.2对称式的因式分解根据对称多项式的特点和因式定理,可利用待定系数法对它进行因式分解. 例:分解因式Q =()()()()3333z y x y x z x z y z y x -+--+--+-++解:由于交换x 、y 、z 之中的任意两个字母,原多项式不变,所以原式为对称式.设0x =,那么有()()()()33330.y z y z z y y z +-+----=由因式定理可知,Q 含有因式x ,又Q 是关于x 、y 、z 的对称式,所以它还有因式y 和z .又由于Q 是三次式,xyz 也是三次式,所以Q =A xyz (A ≠0),A 是待定系数. 确定A 的值,有两种方法:(1) 因为Q =A xyz 是恒等式,所以只要任取x 、y 、z 的一组值,就可以确定A 的值. 设x =1,y =-1, z =1,左边=-24,右边=-A ;∴A =24,即Q =24xyz .(2)因为Q =A xyz 是恒等式,所以只要求出Q 的展开式中xyz 的系数,就是A的值.()3z y x ++的展开式中,xyz 的系数是6,其余三个式子的展开式中xyz 的系数是-6,所以Q 的展开式中xyz 的系数是24,即A =24.3 因式分解在数学竞赛中的应用因式分解是初中代数中重要的一中恒等变形,其特点是把和差化积的形式.作为一种数学方法,它在解题中的应用较广,有些问题,若能恰当使用,可使解题过程显得简捷明了,收到事半功倍的效果.3.1 用于计算[7]例7 计算:19961995199519931995219952323-+-⨯-(北京市中学生数学竞赛初二赛题) 解 原式=()()2219952199319951995119961995--+-=()()22199311995199611995-- =19961993 例8 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22221011411311211 (天津市初二数学竞赛题) 解 原式=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-10111011411411311311211211 =101110991098454334322321⨯⨯⨯⨯⨯⨯⨯⨯ =20113.2 用于求值[7]例9 若n 为正整数,且4216100n n -+是质数,那么n = (希望杯初二数学竞赛试题)解 原式=()4221610036n n n -+- =()2223610n n -+ =()()22610610n n n n ++-+ 因为()()22610610n n n n ++>-+, 所以()2610n n -+=1, 所以()230n -=,所以3n =.例10 已知:0=+bd ac ,则()()2222b a cd d c ab +++得值等于 (武汉市初中数学竞赛初二试题)解 原式 =2222cdb cda abd abc +++=()()bd ac ad bd ac bc +++=()()ac bd bc ad ++0=+bd ac ∴原式=03.3 用于解决有关方程问题[7]例11 若方程2214,28,xy y xy x y x ++=++=,则x y +的值为 (TI 杯全国初中数学竞赛试题)解 把两个方程左右两边分别相加得:22242,xy x y y x ++++=移项并整理得:()()2420x y x y +++-=方程左边因式分解得:()()670x y x y +-++=所以,7,6-=+=+y x y x 或.例12 已知方程()()22221120x y x y +-+-=,则y x 、的平方和是 (孝感市英才杯初中数学竞赛试题) 解 原方程变形得,()()01222222=-+-+y x y x ,()()2222340x y x y ∴+++-= 0322>++y x ,0422=-+∴y x ,∴422=+y x3.4 用于二次根的化简[7]例13 化简2356101528-+--+的结果是 (山东省初中数学竞赛试题) 解 原式=()()235352352-++-+==35+例14 化简=+++--+2115141021151410 (武汉、重庆市初中数学竞赛题)解 原式=()()()()753752753752++++-+= =3232+- =562-3.5 用于判断整除问题[8]例15 多项式1261x x -+除以21x -的余式是 (1993,全国初中数学竞赛)解 设商式为()x g .因为除式是二次式,则余式最多是一次式,故可设1261x x -+=()()21g x ax b x -++取,1=x 得b a +=1,取,1-=x 得b a +-=1.解得1,0==b a .所以,余式是1.例16 知多项式1323+++bx ax x 能被12+x 整除,且商式是13+x ,那么()b a -的值是 (第五届河南省初二数学竞赛)解 据多项式恒等式,得()()32231131x ax bx x x +++=++.取1=x 得84=++b a .取1-=x 得42-=--b a .解得3,1==b a .()()113-=-=-∴b a .3.6 用于确定大小关系[9]例17 知c b a >>,a c c b b a M 222++=,222ca bc ab N ++=,则M 与N 的大小关系是 (第十三届“希望杯”初二)解 为c b a >>,所以N M -=()()()22222b c a c b a b c bc -+-+-=()c b -()ab ac bc a --+2=()c b -()()0a c a b -->所以M N >.3.7 用于解不定方程[9]例18 足不等式2003200320032003=+--+xy y x y x y x 的正整数对()y x ,的个数是 2 (2003年全国初中数学联赛试题)解 m =n =,k =2003,则222n m km kn mnk m n k +--+=,所以()()20m n mn k mn m n k ++--+=,()()0k mn k m n -++=.因为0k m n ++>,所以0k mn -=,即=2003xy .由x 、y 都是正整数且2003是质数,易求x 与y 的值.3.8 其他应用[9]例19 个指教三角形的边长都是整数,它的面积与周长的数值相等,试确定这个直角三角形的三边的长.(2003年北京市中学生数学竞赛初中二年级复赛试题)解 两直角边分别为a 、b ,斜边为a bc >,由于a 、b 、c 全是正整数,所以b a ≠.依题意有++b a 22b a +=2ab . 移项,平方,整理得0242222=+--ab ab b a b a , 因为ab 0≠,两边同除以abc ,得024=+--b a ab , 可化为()()4281844⨯=⨯==--b a .因为a 、b 都为正整数,a b >,则⎩⎨⎧=-=-1484b a 或 ⎩⎨⎧=-=-2444b a 分别得a =12,b =5,c =13或a =8,b =6,c =10.答:三边长为12、5、13或8、6、10.例20 甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现购甲、乙、丙各一件,共需多少元?(1985,全国初中数学竞赛)解 购甲1件需x 元,乙一件需y 元,丙一件需z 元,则购甲、乙、丙各一件需()z y x ++元.由已知条件得:15.373=++z y x20.4104=++z y x设z y x ++()()z y x b z y x a +++++=10473()()()z b a y b a x b a +++++=10743比较等式两边同类项系数,得 ⎪⎩⎪⎨⎧=+=+=+11107143b a b a b a解得3=a ,2-=b .05.120.4215.33=⨯-⨯=++∴z y x .。

因式分解奥数专题

因式分解奥数专题

八年级奥数专题第一讲:勾股定理及应用----李第二讲:实数的性质-------李第三讲:二次根式(1)第四讲:二次根式(2)第五讲:一次函数的图像和性质第六讲:待定系数法------李第七讲:一次函数的应用-第八讲:二元一次方程组和不定方程第九讲:三元一次方程组与不定方程组第十讲:二元一次方程组的应用第十一讲:等腰三角形与等边三角形-------张琼方第十二讲:线段的垂直平分线第十三讲:角平分线第十四讲:一元一次不等式与一元一次不等式组第十五讲:一元一次不等式与一元一次不等式组的应用(1)第十六讲:一元一次不等式与一元一次不等式组的应用(2)------方案设计------罗第十七讲:因式分解(1)第十八讲:因式分解(2)第十九讲:因式分解(3)第二十讲:因式分解(4)第二十一讲:因式分解(5)-----刘第二十二讲:分式第二十三讲:分式的运算第二十四讲:含字母系数的方程和分式方程第二十五讲:分式方程的应用第二十六讲:平行四边形性质与判定---杨洁第二十七讲:矩形第二十八讲:菱形第二十九讲:正方形第三十讲:三角形的中位线第三十一讲:梯形第三十二讲:梯形的中位线------张皓注意:文字用宋体五号字第一讲 勾股定理及应用1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠⇔a 2+b 2=c22、勾股定理及逆定理的应用① 作已知线段a 的2,3,5……倍② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。

3勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做一组勾股数.4勾股数的推算公式a) 罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。

b) 如果k 是大于1的奇数,那么k, 212-k ,212+k 是一组勾股数。

因式分解难题竞赛题

因式分解难题竞赛题

因式分解难题竞赛题一、已知多项式 x4 + ax3 + bx2 + cx + d 的因式分解中含有一个因式 (x - 2)2,且当 x = 1 时,多项式的值为 1。

则下列哪个选项可能是该多项式的因式分解形式?A. (x - 2)2(x2 + 4x + 7)B. (x - 2)2(x2 + 5x + 8)C. (x - 2)2(x2 + 3x + 5)D. (x - 2)2(x2 + 6x + 9)(答案:C)二、多项式 x3 + ax2 + bx + c 分解因式后有一个因式是 x + 1,且当 x = 2 时,多项式值为 0;当 x = -2 时,多项式值为 -27。

下列哪个选项是该多项式的因式分解?A. (x + 1)(x2 - x + 3)B. (x + 1)(x2 - 2x - 3)C. (x + 1)(x2 - 3x + 9)D. (x + 1)(x2 - x - 9)(答案:C)三、多项式 x4 - ax3 + bx2 - ax + 1 在进行因式分解时,有一个因式是 x2 + 1,且常数项为 1。

下列哪个选项可能是该多项式的另一个因式?A. x2 - ax - 1B. x2 - ax + 2C. x2 - ax - 2D. x2 - ax + 3(答案:A)四、已知多项式 2x4 - 11x3 + 19x2 - 11x + 2 可以完全分解,且含有一个二次因式。

下列哪个选项是该多项式的一个因式?A. x2 - 5x + 1B. x2 - 4x + 2C. x2 - 3x + 1D. x2 - 6x + 2(答案:B)五、多项式 x3 + ax2 + bx + c 有一个因式 x - 1,且满足 x = 0 时多项式为 -6,x = 2 时多项式为 0。

下列哪个选项是该多项式的因式分解?A. (x - 1)(x2 + x - 6)B. (x - 1)(x2 + 2x - 6)C. (x - 1)(x2 + 3x - 6)D. (x - 1)(x2 + 4x - 6)(答案:A)六、多项式 x4 + 6x3 + ax2 + bx + c 有一个因式 (x + 1)(x + 2),且常数项 c 为正数。

因式分解 竞赛题集

因式分解 竞赛题集

例 2 分解因式:a3+b3+c3-3abc. 解 原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公
课内练习
1. 若 a+b=3,a2b+ab2=-30,则 a3+b3 的值是(

(A)117 (B)133
(C)-90
(D)143
2. 已知 a = 1996, b = −1994, c = 1992 ,那么 bc(b + c) + ca(c − a) − ab(a + b) 等于
_____________
=(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要, 引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.
例 4 分解因式:6x4+7x3-36x2-7x+6. 解法 1 原式=6(x4+1)+7x(x2-1)-36x2
3. 把代数式 (x + y − 2xy)(x + y − 2) + (xy −1)2 分解成因式的乘积,应当是 。

因式分解经典竞赛题集

因式分解经典竞赛题集
经典例题:
2 2 1 分解因式: x − 3 xy − 10 y + x + 9 y − 2 ○
E A
3 3 3 2 分解因式: ( x − 1) + ( x − ቤተ መጻሕፍቲ ባይዱ) + (3 − 2 x ) ○
A E A
A
2 2 2 3 若 a 、 b 、 c 满足 a + b + c = ○ 9 ,那么代数式 (a − b) 2 + (b − c) 2 + (c − a ) 2 的最大值是
E A
2 2 6 设 a<b<0,a +b =4ab,则 ○
E A P P P P
a+b 的值为__________ a−b
2 2 2 7 已知 a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式 a +b +c -ab-bc-ca 的 ○ 值为___________
E A
3 分解因式: ( x + 1)( x + 2)( x + 3)( x + 4) − 24 ○
A E A
4 已知 x + ○
A E A
1 __________ = 3 ,则 x 4 + 3 x 3 − 16 x 2 + 3 x − 17 = x
4 2 5 已知 n 是正整数,且 n − 16n + 100 使质数,求 n 的值. ○
课内练习 1. 若 a+b=3,a2b+ab2=-30,则 a3+b3 的值是( (A)117 (B)133 (C)-90 ) (D)143
2. 已知 a = 1996, b = −1994, c = 1992 ,那么 bc(b + c) + ca(c − a ) − ab(a + b) 等于 _____________ 3. 把代数式 ( x + y − 2 xy )( x + y − 2) + ( xy − 1) 2 分解成因式的乘积,应当是 。

(完整版)因式分解(竞赛题)含答案

(完整版)因式分解(竞赛题)含答案

因式分解1、导入:有两个人相约到山上去寻找精美的石头,甲背了满满的一筐,乙的筐里只有一个他认为是最精美的石头。

甲就笑乙:“你为什么只挑一个啊?”乙说:“漂亮的石头虽然多,但我只选一个最精美的就够了。

”甲笑而不语,下山的路上,甲感到负担越来越重,最后不得已不断地从一筐的石头中挑一个最差的扔下,到下山的时候他的筐里结果只剩下一个石头!启示:人生中会有许多的东西,值得留恋,有的时候你应该学会去放弃。

二、知识点回顾:1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.三、专题讲解 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz; 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). 例2 分解因式:a 3+b 3+c 3-3abc . 本题实际上就是用因式分解的方法证明前面给出的公式(6). 分析 我们已经知道公式(a+b)3=a 3+3a 2b+3ab 2+b 3 的正确性,现将此公式变形为a 3+b 3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导. 解 原式=(a+b)3-3ab(a+b)+c 3-3abc =[(a+b)3+c 3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c 2]-3ab(a+b+c) =(a+b+c)(a 2+b 2+c 2-ab -bc -ca). 说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a 3+b 3+c 3-3abc 显然,当a+b+c=0时,则a 3+b 3+c 3=3abc ;当a+b+c >0时,则a 3+b 3+c 3-3abc≥0,即a 3+b 3+c 3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a 3≥0,y=b 3≥0,z=c 3≥0,则有 等号成立的充要条件是x=y=z .这也是一个常用的结论.※※变式练习 1分解因式:x 15+x 14+x 13+…+x 2+x+1. 分析 这个多项式的特点是:有16项,从最高次项x 15开始,x 的次数顺次递减至0,由此想到应用公式a n -b n 来分解. 解 因为 x 16-1=(x -1)(x 15+x 14+x 13+…x 2+x+1), 所以 说明 在本题的分解过程中,用到先乘以(x -1),再除以(x -1)的技巧,这一技巧在等式变形中很常用. 2.拆项、添项法 因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解. 例3 分解因式:x3-9x+8. 分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧. 解法1 将常数项8拆成-1+9. 原式=x3-9x-1+9 =(x3-1)-9x+9 =(x-1)(x2+x+1)-9(x-1) =(x-1)(x2+x-8). 解法2 将一次项-9x拆成-x-8x. 原式=x3-x-8x+8 =(x3-x)+(-8x+8) =x(x+1)(x-1)-8(x-1) =(x-1)(x2+x-8). 解法3 将三次项x3拆成9x3-8x3. 原式=9x3-8x3-9x+8 =(9x3-9x)+(-8x3+8) =9x(x+1)(x-1)-8(x-1)(x2+x+1) =(x-1)(x2+x-8). 解法4 添加两项-x2+x2. 原式=x3-9x+8 =x3-x2+x2-9x+8 =x2(x-1)+(x-8)(x-1) =(x-1)(x2+x-8). 说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习 1分解因式: (1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn; (3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1. 解 (1)将-3拆成-1-1-1. 原式=x9+x6+x3-1-1-1 =(x9-1)+(x6-1)+(x3-1) =(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1) =(x3-1)(x6+2x3+3) =(x-1)(x2+x+1)(x6+2x3+3). (2)将4mn拆成2mn+2mn. 原式=(m2-1)(n2-1)+2mn+2mn =m2n2-m2-n2+1+2mn+2mn =(m2n2+2mn+1)-(m2-2mn+n2) =(mn+1)2-(m-n)2 =(mn+m-n+1)(mn-m+n+1). (3)将(x2-1)2拆成2(x2-1)2-(x2-1)2. 原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4 =[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2 =[(x+1)2+(x-1)2]2-(x2-1)2 =(2x2+2)2-(x2-1)2=(3x2+1)(x2+3). (4)添加两项+ab-ab. 原式=a3b-ab3+a2+b2+1+ab-ab =(a3b-ab3)+(a2-ab)+(ab+b2+1) =ab(a+b)(a-b)+a(a-b)+(ab+b2+1) =a(a-b)[b(a+b)+1]+(ab+b2+1) =[a(a-b)+1](ab+b2+1) =(a2-ab+1)(b2+ab+1). 说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验. 3.换元法 换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰. 例4 分解因式:(x2+x+1)(x2+x+2)-12. 分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了. 解设x2+x=y,则 原式=(y+1)(y+2)-12=y2+3y-10 =(y-2)(y+5)=(x2+x-2)(x2+x+5) =(x-1)(x+2)(x2+x+5). 说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试. 例5 分解因式:(x2+3x+2)(4x2+8x+3)-90. 分析先将两个括号内的多项式分解因式,然后再重新组合. 解原式=(x+1)(x+2)(2x+1)(2x+3)-90 =[(x+1)(2x+3)][(x+2)(2x+1)]-90 =(2x2+5x+3)(2x2+5x+2)-90. 令y=2x2+5x+2,则 原式=y(y+1)-90=y2+y-90 =(y+10)(y-9) =(2x2+5x+12)(2x2+5x-7) =(2x2+5x+12)(2x+7)(x-1). 说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习 1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2. 解设x2+4x+8=y,则 原式=y2+3xy+2x2=(y+2x)(y+x) =(x2+6x+8)(x2+5x+8) =(x+2)(x+4)(x2+5x+8). 说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式. 1.双十字相乘法 分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式. 例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3), 可以看作是关于x的二次三项式.的二次三项式,也可以用十字相乘法,分解为 对于常数项而言,它是关于y 即:-22y2+35y-3=(2y-3)(-11y+1).的二次三项式分解 再利用十字相乘法对关于x 所以,原式=[x+(2y-3)][2x+(-11y+1)] =(x+2y-3)(2x-11y+1). 上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图: 它表示的是下面三个关系式: (x+2y)(2x-11y)=2x2-7xy-22y2; (x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3. 这就是所谓的双十字相乘法. 用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是: (1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列); (2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx. 例1 分解因式: (1)x2-3xy-10y2+x+9y-2; (2)x2-y2+5x+3y+4; (3)xy+y2+x-y-2; (4)6x2-7xy-3y2-xz+7yz-2z2. 解 (1)原式=(x-5y+2)(x+2y-1).(2) 原式=(x+y+1)(x-y+4).来分解. (3)原式中缺x2项,可把这一项的系数看成0 原式=(y+1)(x+y-2). (4) 原式=(2x-3y+z)(3x+y-2z). 说明 (4)中有三个字母,解法仍与前面的类似.2.求根法 我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如 f(x)=x2-3x+2,g(x)=x5+x2+6,…, 当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×1+2=0; f(-2)=(-2)2-3×(-2)+2=12. 若f(a)=0,则称a为多项式f(x)的一个根. 定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a. 根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x)要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根. 定理2 的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数. 我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解. 例2 分解因式:x3-4x2+6x-4. 分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有 f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2. 解法1 用分组分解法,使每组都有因式(x-2). 原式=(x 3-2x 2)-(2x 2-4x)+(2x-4) =x 2(x-2)-2x(x-2)+2(x-2) =(x-2)(x 2-2x+2). 解法2 用多项式除法,将原式除以(x-2), 所以原式=(x-2)(x 2-2x+2). 说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习 1. 分解因式:9x 4-3x 3+7x 2-3x-2. 分析 因为9的约数有±1,±3,±9;-2的约数有±1,±为: 所以,原式有因式9x 2-3x-2. 解 9x 4-3x 3+7x 2-3x-2 =9x 4-3x 3-2x 2+9x 2-3x-2 =x 2(9x 3-3x-2)+9x 2-3x-2 =(9x 2-3x-2)(x 2+1) =(3x+1)(3x-2)(x 2+1) 说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程. 总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了. 3.待定系数法 待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用. 在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法. 例3 分解因式:x2+3xy+2y2+4x+5y+3. 分析由于 (x2+3xy+2y2)=(x+2y)(x+y), 若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决. 解设 x2+3xy+2y2+4x+5y+3 =(x+2y+m)(x+y+n) =x2+3xy+2y2+(m+n)x+(m+2n)y+mn, 比较两边对应项的系数,则有 解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1). 说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习 1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式. 解设 原式=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd, 所以有有 由bd=7,先考虑b=1,d=7 所以 原式=(x2-7x+1)(x2+5x+7). 说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止. 本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2). 分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式. 解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则 原式=(u2-v)2-4v(u2-2v) =u4-6u2v+9v2 =(u2-3v)2 =(x2+2xy+y2-3xy)2 =(x2-xy+y2)2.五、反思总结。

奥林匹克数学竞赛因式分解

奥林匹克数学竞赛因式分解

奥林匹克数学竞赛因式分解因式分解是多项式乘法的逆向运算,是代数恒等变形的基础,体现了一种化归的思想.提取公因式法、公式法、二次三项式的十字相乘法、分组分解法是因式分解的基本方法,下面是为你整理的奥林匹克数学竞赛因式分解,一起来看看吧。

奥林匹克数学竞赛因式分解十二种方法1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、分解因式x-2x-x(2003淮安市中考题)x-2x-x=x(x-2x-1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a+4ab+4b(2003南通市中考题)解:a+4ab+4b=(a+2b)3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x-19x-6分析:1-3722-21=-19解:7x-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x+3x-40解x+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)6、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

九年级数学竞赛资料专题(二)——因式分解的9种方法

九年级数学竞赛资料专题(二)——因式分解的9种方法

因式分解的多种方法----知识延伸,向竞赛过度1、提取公因式:这种方法比较常规、简单,必须掌握。

常用的公式:完全平方公式、平方差公式 例一:0322=-x x解:()032=-x x ,01=x ,232=x 这是一类利用因式分解的方程。

总结:要发现一个规律:当一个方程有一个解a x =时,该式分解后必有一个()a x -因式,这对我们后面的学习有帮助。

2、公式法常用的公式:完全平方公式、平方差公式。

注意:使用公式法前,部分题目先提取公因式。

3、十字相乘法是做竞赛题的基本方法,做平时的题目掌握了这个也会很轻松。

注意:它不难。

这种方法的关键是把二次项系数a 分解成两个因数1a ,2a 的积21a a ⋅,把常数项c 分解成两个因数1c ,2c 的积21c c ⋅,并使1221c a c a +正好是一次项b ,那么可以直接写成结果例二: 把3722+-x x 分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数): 2=1×2=2×1;分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况:经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 原式=(x-3)(2x-1).总结:对于二次三项式()02≠++a c bx ax ,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把1a ,2a ,1c ,2c ,排列如下:1a 1c╳2a 2c1221c a c a +按斜线交叉相乘,再相加,得到1221c a c a +,若它正好等于二次三项式c bx ax ++2的一次项系数b ,即1221c a c a +b =,那么二次三项式就可以分解为两个因式11c x a +与22c x a +之积,即 c bx ax ++2()()2211c x a c x a ++=这种方法要多实验,多做,多练。

奥林匹克数学题型代数式的因式分解

奥林匹克数学题型代数式的因式分解

奥林匹克数学题型代数式的因式分解奥林匹克数学竞赛是培养学生数学思维和解题能力的重要途径之一。

其中,代数式的因式分解是奥数中常见的题型之一。

通过对代数式进行因式分解,可以简化复杂的表达式,提高解题的效率。

本文将介绍代数式的因式分解的相关概念、方法和应用。

一、代数式的因式分解的概念代数式的因式分解是将一个代数式表示为若干个因式的积的形式。

在进行因式分解的过程中,可以使用不同的方法,如公因式法、提取公因式法、配方法等。

因式分解在代数运算中扮演着重要的角色,可以帮助我们更好地理解代数式的结构,简化运算过程,优化解题方法。

二、公因式法公因式法是一种常用的因式分解方法,适用于求解含有公因式的代数式。

在公因式法中,我们需要找到代数式中的公因式,并将其提取出来。

举例来说,假设有一个代数式2x^2 - 6x,我们可以将2x作为公因式进行提取,得到2x(x - 3)。

因此,原代数式可以被因式分解为2x(x -3)。

三、提取公因式法提取公因式法是一种常用的因式分解方法,适用于含有多个项的代数式。

在提取公因式法中,我们需要对每个项进行因式分解,并将相同的因式提取出来。

例如,对于代数式3x^2 + 6x,我们可以对每个项进行因式分解,得到3x(x + 2)。

然后,提取公因式3x,即可将代数式分解为3x(x + 2)。

四、配方法配方法是一种适用于二次三项式的因式分解方法。

在配方法中,我们需要通过构造一个合适的加法或减法,将二次三项式转化为完全平方式。

比如,对于二次三项式x^2 + 3x + 2,我们可以通过构造一个合适的加法或减法来将其转化为完全平方式。

根据二次三项式的特点,我们可以发现,该式可分解为(x + 1)(x + 2)。

五、因式分解的应用因式分解在实际问题中具有广泛的应用。

例如,在代数方程的求解、函数的图像绘制和计算等方面,都能够通过因式分解来简化操作过程。

举例来说,对于代数方程x^2 - 5x + 6 = 0,通过因式分解可以得到(x - 2)(x - 3) = 0,进而求得方程的解x = 2或x = 3。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1)a2(x﹣y)+16(y﹣x)分析:首先将括号内的项变为相反数,再利用平方差公式进行二次分解即可。

解答:a2(x﹣y)+16(y﹣x)=a2(x﹣y)﹣16(x﹣y)=(x﹣y)(a2﹣16)=(x﹣y)(a+4)(a﹣4)。

4.分解因式:1)2x2﹣x;(2)16x2﹣1y2分析:(1)先提取公因式x,再利用平方差公式进行二次分解即可;2)先利用完全平方公式将16x2拆分,再利用差平方公式进行二次分解即可。

解答:(1)2x2﹣x=x(2x﹣1);2)16x2﹣1y2=(4x)2﹣(1y)2=(4x+1y)(4x﹣1y)。

5.因式分解:1)2am2﹣8a;(2)3a3﹣6a2b+3ab2.分析:(1)先提取公因式2a,再利用平方差公式进行二次分解即可;2)先提取公因式3ab,再利用完全平方公式进行二次分解即可。

解答:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);2)3a3﹣6a2b+3ab2=3ab(a﹣2b+1)。

6.将下列各式分解因式:1)3x﹣12x3;(2)(x2+y2)2﹣4x2y2分析:(1)先提取公因式3x,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x2+y2)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);2)(x2+y2)2﹣4x2y2=(x2﹣2xy+y2)(x2+2xy+y2)﹣(2xy)2=(x﹣y)(x+y)(x﹣yi)(x+yi),其中i是虚数单位。

7.因式分解:1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2分析:(1)先将各项变为同类项,再利用平方差公式进行二次分解即可;2)先利用平方公式将(x+2y)2拆分,再利用差平方公式进行二次分解即可。

解答:(1)x2y﹣2xy2+y3=xy(x﹣2y+y2)=xy(x﹣y)2;2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y)。

奥数因式分解练习题及答案.doc

奥数因式分解练习题及答案.doc

奥数因式分解练习题及答案一、填空题:2.-;12.若m2 — 3m+2=,贝lj a-, b-;15.当时,x2 + 2x + 25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是A. a2b + 7ab —b —bB. 3x2y —3xy —6y-3yC. 8xyz —6x2y2 —2xyzD. —2a2 + 4ab —6ac——2aA. B. C. m D. m3.在下列等式中,属于因式分解的是A. a+b = ax + bm—ay+bnB. a2 — 2ab+b2+l=2 + 1C. —4a2 + 9b2=D. x2 — 7x — 8-x — 84.下列各式中,能用平方差公式分解因式的是A. a2 + bB・—a2+b C. —a2—b2D. b25.若9x2+mxy+16y2是一个完全平方式,那么m的值是A. -IB. +C. 12D. +126.把多项式an+4 — an+l分解得A. anB. anTC. an+1D. an+17.若a2 + a= — 1,则a4 + 2a3 — 3a2 — 4a+3 的值为A. 8B. 7C. 10D. 128.已知x2 + y2 + 2x — 6y +10-0,那么x, y的值分别为A. x-1, y-3B. x-1, y- —C. x- — 1, y-3D. x-1, y- -39.把4-82 + 16分解因式得A. 4B. 22C. 2D. 22210.把x2 —7x —60分解因式,得A. B. C. D.11.把3x2 —2xy —8y2分解因式,得A. B. C. D.12.把a2 + 8ab-33b2分解因式,得A. B. C. D.13.把x4 —3x2 + 2分解因式,得C. D.14.多项式x2 —ax—bx + ab可分解因式为A. —B.C.D.15.一个关于x的二次三项式,其x2项的系数是1, 常数项是一12,且能分解因式,这样的二次三项式是A. x2— 1 lx —12 或x2 + llx— IB. x2—x—12 或x2 +C. x2 — 4x —12 或x2 + 4x — 12D.以上都可以16.下歹U各式x3—x2 — x+1, x2 + y—xy —x,x2~2x 一y2 + l, 2-2中,不含有因式的有A. 1个B. 2个C. 3个D. 4个17.把9—x2+12xy —36y2分解因式为A. B.—C. —D.—18.下列因式分解错误的是A. a2—bc + ac — ab-B. ab — 5a+3b—15-C. x2 + 3xy —2x —6y-D. x2 —6xy — l + 9y2-19.已知a2x2±2x + b2是完全平方式,且a, b都不为零,则a与b的关系为A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对x4+4进行因式分解,所得的正确结论是A.不能分解因式B.有因式x2 + 2x+C.D.21.把a4 + 2a2b2 + b4-a2b2 分解因式为A. 2B.C. D. 222.一是下列哪个多项式的分解结果C. x + 2y + 3x2 + 6xyD. x + 2y — 3x2 — 6xy3. 64a8 — b2因式分解为A. B.C. D. 4. 92 + 12 + 42因式分解为A. B. C. D. 225.2-2 +1因式分解为A. B. 2C. D. 226.把2-4+42分解因式为A. B. C. D. 227.把a22-2ab + b22分解因式为A. cB. c2C. c2D. c228.若4xy —4x2 —y2 —k有一个因式为,则k的值为A. 0B. 1C. -1D. 429.分解因式3a2x—4b2y —3b2x + 4a2y,正确的是A. —B.C. D.30.分解因式2a2 + 4ab + 2b2-8c2,正确的是A. 2B. 2C. D. 2三、因式分解:1. m2 —p + q;2. a—abc;3.x4 —2y4 —2x3y+xy3;. abc —a3bc + 2ab2c2;5. a2 + b2 + c2; . 2 + 2x+l;7. 2 + 12z + 36z2;. x2— 4ax + 8ab — 4b2;9. 2 + 2 + 2; 10. —22;11. 2-92;12. 4a2b2-2;13.ab2 —ac2 + 4ac —4a;14. x3n + y3n;15.3+125; 16. 3 + 3;17.x6 + y6; 18. 83+1;《因式分解》一、填空题1.若m2+2m+n2-6n+6-0,则m-. n-.2.分解因式y4+2y2+81二.3.多项式x4~2x2+ax+b有因式x2-x+1,试将这多项式分解因式,则x4~2x2+ax+b-,其中a-, b-.4.若T2=0,则x2+y2=5.分解因式a2+b2+c2二.116.如果m-a, n=a,那么m-n=. 3n+lnn-17,分解因式7xT4x+7x二.8.已知a-b = l, ab = 2,则a2b-2a2b2+ab2 的值是222222229.观察下列算式,T = 8-3= 1-5 = 9-7 =根据探寻到的规律,请用n的等式表示第n个等式10.若x-1是x2-5x+c的一个因式,则c二.二、选择题11.下列从左边到右边的变形①15x2y = 3x・5xy②-a2_b ③a2_2a+l-2④lx2+3x+l=x其中因式分解的个数为xA. 0个B. 2个C. 3个D. 1个22222212.在多项式①x+2y,②x-y,③-x+y,④-x2-y2 中能用两数和乘以它们的差的公式进行因式分解的有A. 1个B. 2个C. 3个D. 4个13.下列各式中不能分解因式的是11A. 4x2+2xy+y2B. 4x2-2xy+y2411C. 4x2-yD. -4x2-y2414.下列能用两数和的平方公式进行因式分解的是A. m2-9nB. p2-2pq+4qC. -x2-4xy+4yD. 92-6+115.若25x2+kxy+4y2可以解为2,则k的值为A. -10B. IOC. -20D. 2016.下列多项式中不能用提公因式进行因式分解的是1A. -x2-xy+y B. x-xy C. -m3+mnD. -3x2+9217. 81-xk=,那么k的值是A. k-2B. k-3C. k-D. k-618.9x2+mxy+16y2是一个完全平方式,那么m的值是A. IB. 2C. +12.D. +24三、解答题19.把下列各式分解因式8a2~2b 4xy2-4x2y-y34x2y2-9x2+162-24x3_22+a_b20.若x+2x+16是一个整式的完全平方,求m的值.22.求证32002-4X32001+10X32000 能被7 整除.23..已知a2+b2+a2b2+l=4ab,求a, b 的值四、综合探索题24.己知a、b、c为三角形三边,且满足a2?b2?c2?ab?bc?ac?0.试说明该三角形是等边三角形.参考答案:—" 1 —3 ■■—、-1- • VJ , ・・,, ・5. . a7. xnT = 7xnT2) . — ab2 —2X 1—2) 9.2-2= 8nl0.新课标第一网二、11. D . 12. B13. D 14. D22215. C =25x-20xy+4y 故k = -20)16. A . 17. C18. D222222 三、19. 2 -y xy-= 2—2 == 一= —229x2+162-24x-[4] 2-2X4 ・ 3x+2=[4-3x]2 = 23_22+a_b—3_22+a_b— [2-2+1]=[2-2+12] =220.18021.解:•..x2+2x+16=x2+2x+42x — + 2X4x .*.m—7 m—-122.证明:32002-4X32001+10X32000=32 X 32000-4 X3X 32000+10 X 3200-32000 = 7X32000A 32002-4X 32001+10X 32000 能被7 整除.23.a-1, b-1 或a--l, b--l.四、24.解:a2?b2?c2?ab?bc?ac?0,2?0,a2?b2?2ab?b2?c2?2bc?a2?c2?2ac?0,2?2?2?0,a —b —0, b —c —0, a —c —0,.. a b c.「・此三角形为等边三角形.新课标第一网因式分解3a3b2c —6a2b2c2 + 9ab2c3 = 3ab3.因式分解xy+6 —2x —3y =4.因式分解x2 + y2=i5.因式分解2x2—x— ab =6.因式分解a4 —9a2b2 = ai7.若已知x3 + 3x2 — 4含有x—l的因式,试分解x3 + 3x2—4=]8.因式分解ab + xy =9.因式分解+=2y10.因式分解a2 — a—b2 — b =11.因式分解 2 — 4+42— [3a~b~2] q -q12.因式分解2 — 6 —13.因式分解2 — 2 — -abc + ab—4a —a16x2 — 81 =9x2 — 30x + 25=ix2 —7x —30 =35.因式分解x2 —25 =36.因式分解x2 —20x+100=]37.因式分解x2+4x + 3 =38.因式分解4x2 —12x + 5 =39.因式分解下列各式:3ax2 — 6ax = 3axx—x —xx2 — 4x — ax + 4a =25x2-49 =36x2— 60x +25=i4x2+ 12x + 9=ix2 — 9x+18 =2x2 — 5x — 3 —12x2-50x+8 = 240.因式分解+ =41.因式分解2ax2 — 3x + 2ax — 3 —42.因式分解9x2 —66x+121=]43.因式分解8 —2x2 = 244.因式分解x2 —x+l =整数内无法分解45.因式分解9x2 —30x+25=i46.因式分解一20x2 + 9x + 20 =47.因式分解12x2 —29x+15 =48.因式分解36x2 + 39x + 9 = 349.因式分解21x2 —31x —22 =50.因式分解9x4 — 35x2—4 =51.因式分解+=252.因式分解2ax2 —3x + 2ax —3 =53.因式分解x —x —y—1 =54.因式分解+ 2 =55.因式分解9x2 —66x+121=[56.因式分解8 —2x2 = 257.因式分解x4 —1 =58.因式分解x2+4x —xy —2y+4 =59.因式分解4x2 —12x + 5 =60.因式分解21x2 —31x —22 =61.因式分解4x2 + 4xy+y2 — 4x — 2y — 3 =62.因式分解9x5 —35x3—4x = x63.因式分解下列各式:3x2 —6x —3x49x2-25 =6x2 —13x + 5 =)6.己知x, y为任意有理数,记M=x2+y2, N =xy, 则M 与N的大小关系为A.M>NB. MNNC. MWND.不能确定7.对于任何整数m,多项式2?9都能A.被8整除B.被m整除C.被整除D.被整除8.将?3x2n?6xn分解因式,结果是A. ?3xnB. ?3C. ?3xnD. 39.下列变形中,是正确的因式分解的是A. 0.09m2? n-B.x2?10 二x2?9?l 二?1C.x4?x-D.2?-ax10.多项式?的公因式是A.一定为负数B.不可能为正数C.一定为正数D.可能为正数或负数或零二、解答题:分解因式:)2?22?4ax27xn+l?14xn+7xn?l答案:一、选择题:1.B说明:右边进行整式乘法后得16x4?81 -4?81, 所以n应为4,答案为B.2.B说明:因为9x2?12xy+m是两数和的平方式,所以可设9x2?12xy+m - 2 ,则有9x2?12xy+m - a2x2+2abxy+b2y2,即a-, 2ab = ?12, b2y- m;得到 ab - ?2;或 a - ?3, b -;此时b二,因此,m - b2y-y2,答案为B.3.D说明:先运用完全平方公式,a4?a2b2+b- 2, 再运用两数和的平方公式,两数分别是a2、?b2,则有二22, 在这里,注意因式分解要分解到不能分解为止;答案为D.4. C 说明:2?4+4= 2?2 ⑵ +[2]二:a+b?2]= 2;所以答案为C.5. B 说明:2001+2000 = 2000[+1] = 2000 ?= 2001 二?2001,所以答案为B.6. B 说明:因为M?N = x2+y2?2xy = 2N0,所以MNN.7. A 说明:2?二二二.8. A9. D 说明:选项A, 0.0= 0. 32,贝U 0. 09m2? n二, 所以A错;选项B的右边不是乘积的形式;选项C右边可继续分解为x2;所以答案为D.10.A说明:本题的关键是符号的变化:z?x?y二?, 而x?y+zNy+z?x,同时x?y+zN?,所以公因式为x+y?z.11. B 说明:x?l?x二?二?2W0,即多项式x?l?x2 的值为非正数,正确答案应该是B.二、解答题:答案:a说明:2?= - - a.答案:4说明:2?4ax2=[]2?4ax2=22?4ax2二2[2?4ax]二 2二2二 4.答案:7xn?12说明:原式-xn?l ?x2?7xn?l ?2x+7xn?l -xn?l -xn?12.。

(完整版)因式分解(奥赛)

(完整版)因式分解(奥赛)

因式分解【奥赛花絮】最早的数学竞赛匈牙利是举办中学数学竞赛最早的国家,自1894年匈牙利物理数学学会通过了关于举行中学生奥林匹克数学竞赛的决议起,每年十月举行这种竞赛。

仅仅由于两次世界大战和1956年的匈牙利时件间断过7年。

2003年举行的是第103届匈牙利数学竞赛。

【奥赛赛点】将一个多项式化为几个整式的积的形式,叫做因式分解。

因式分解是一种重要的恒等变形,在数学中有广泛的应用.因式分解的方法比较多,除了课本介绍的提公因式法,公式法,十字相乘法,分组分解法外,我们还要掌握换元法,主元法,配方法,待定系数法等。

【解题思路与技巧】1.换元法。

在解题的过程中,我们常把某个比较复杂的代数式看成一个整体,将它用一个字母来代替,从而简化这个代数式的结构,这种方法就是换元法.在因式分解中用换元法,又可细分为整体代换(如例1,例2),对称代换(如例3),倒数代换(如例4),平均代换(如例5)等。

2.主元法在分解一个含有多个字母的多项式时,我们常选择一个字母作为主要元素,将其他字母看作常数,然后将多项式按选定的字母降幂排列,这种方法叫做主元法。

用主元法往往可以得到恰当的分组,从而找出公因式来,如例6。

3.配方法通过添项,拆项利用公式将一个多项式配成一个完全平方,是一种常用的恒等变形技巧,以便利用公式来分解因式,如例7,例8。

4.待定系数法在解决有关多项式时,可先假定问题的结果已经求出,其中含有未知系数,然后根据多项式恒等的定义或性质,列出含有这些未知数的方程或方程组,通过解方程或方程组,求出未知系数的值,从而解决问题的方法,如例9,例10。

【典型示例】例1 (1994年第6届“五羊杯”数学竞赛试题)在有理数范围内分解因式:(1)16(6x-1)(2x—1)(3x+1)(x-1)+25= 。

(2)(6x—1)(2x—1)(3x-1)(x-1)+x2= 。

(3)(6x—1)(4x-1)(3x-1)(x-1)+9x4= .[解] (1)原式=(6x—1)(4x—2)(6x+2)(4x+4)+25=(24x2-16x+2) (24x2-16x—8)+25设 24x2-16x+2=t,原式=t(t-10)+25=(t—5)2=(24x2—16x—3)2(2)原式=(6x-1)(x—1) (2x-1)(3x—1) +x2=(6x2-7x+1)(6x2-5x+1) +x2设6x2-7x+1=t, 原式=t(t-2x) +x2=(t—x)2=(6x2-6x+1)2(3)原式=(6x-1) (x-1) (4x-1)(3x-1) +9x4=(6x2-7x+1) (12x2-7x+1)+ 9x4设6x2-7x+1=t, 原式=t(6x2+t)+ 9x4=(t+3x2)2=(9x2-7x+1)2例2 (2000年第12届“五羊杯”数学竞赛试题)分解因式:(2x–3y)3 + (3x–2y)3 –125(x–y)3= 。

因式分解(竞赛题)含答案

因式分解(竞赛题)含答案

因式分解运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.※※变式练习1分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例3 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.※※变式练习1分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例4 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例5 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.※※变式练习1.分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即:-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以,原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如an x n+an-1x n-1+…+a1x+a(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x) 要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是an的约数.特别地,当a=1时,整系数多项式f(x)的整数根均为an的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.※※变式练习1. 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例3 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.※※变式练习1.分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.四、巩固练习:1. 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.五、真题精解:1)已知多项式ax3+bx2+cx+d除以x-1时的余数是1,除以x-2时的余数是3,那么,它除以(x-1)(x-2)时所得的余数是什么?(第12届“希望杯”试题)解:设原式=(x-1)(x-2)(ax+k)+(mx+n),当x=1时,原式=1,即m+n=1;当x=2时,原式=3,即2m+n=3,解此关于m、n的方程组得m=2,n=-1,故原式除以(x-1)(x-2)时的余数为x-12)k为何值时,多项式x2-2xy+ky2+3x-5y+2能分解成两个一次因式的积?(天津市竞赛试题)解:原式中不含y的项为x2+3x+2可分解为 (x+1)(x+2),故可设原式=[(x+1)+ay][(x+2)+by],将其展开得:x2+(a+b)xy+aby2+3x+(2a+b)y+2,与原式对比系数得:a+b=-2, ab=k, 2a+b=-5,解之得a=-3,b=1,k=-3 3)如果x3+ax2+bx+8有两个因式x+1和x+2,求a+b的值。

因式分解300道疯狂训练

因式分解300道疯狂训练

因式分解100道 1. 判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++2. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=- 其中是因式分解的有 (填括号) 3.分解因式:ad bd d -+; 4.分解因式:4325286x y z x y -5.分解因式:322618m m m -+- 6. 分解因式:23229632x y x y xy ++ 7.分解因式:2222224x y x z y z z --+ 8.分解因式:232232a b abc d ab cd c d -+-9.分解因式:22(1)1a b b b b -+-+-10.分解因式:2244a a b -+-11.分解因式:23361412abc a b a b --+12.分解因式:32461512a a a -+-13.分解因式:22224()x a x a x +--14.分解因式:3222524261352xy z xy z x y z -++ 15.不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.16.分解因式:2121()()m m p q q p +--+-17.分解因式:212312n n x y xy z +-(n 为大于1的自然数).18.把下列各式进行因式分解:3223224612x y x y x y -+-19.分解因式:()()23262x a b xy a b +-+20.分解因式23423232545224()20()8()x y z a b x y z a b x y z a b ---+-21.分解因式:346()12()m n n m -+-22.分解因式:55()()m m n n n m -+-23.分解因式:()()()2a a b a b a a b +--+24.分解因式:2316()56()m m n n m -+- 25.分解因式:(23)(2)(32)(2)a b a b a b b a +--+-26.化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++27.分解因式:()()2121510n n a a b ab b a +---(n 为正整数)28.分解因式:212146n m n m a b a b ++--(m 、n 为大于1的自然数)29.分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.30.先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12y =.31.求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.32.已知:2b c a +-=-,求22221()()(222)33333a a b c b c a b c b c a --+-+++-的值.33.分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.34. 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?35. 因式分解:a ab ab +-22,结果正确的是( )A .)2(-b aB .2)1(-b aC .2)1(+b aD .)2(-b ab37.分解因式:2249()16()m n m n +--38.分解因式:22()()a b c d a b c d +++--+-39.分解因式:()()22114m n mn --+40.分解因式:()()4(1)x y x y y +-+-41.分解因式:34xy xy -;42.分解因式:22()()a x y b y x -+-43.因式分解:22()a b c +-44.因式分解:224(2)y z x --45.分解因式:481y -46.分解因式:229()4()m n m n --+47. 分解因式:22122x y -+48.分解因式:22(32)16x y y --49.分解因式:44()()a x a x +--50.分解因式:4232y -51. 分解因式:81644x -52.分解因式:75()()a b b a -+-53.分解因式:2243()27()x x y y x ---54.利用分解因式证明:712255-能被120整除.55.证明:两个连续奇数的平方差能被8整除56.分解因式:2242x x -+= ;57.分解因式:244ax ax a -+= ;58.分解因式:2844a a --= ;59.分解因式:2292416x xy y -+=60.分解因式:3269x x x -+61.分解因式:2363x x -+62.已知 3.43 3.14x y ==,,求221222x xy y ---值63.分解因式:22224946a b c d ac bd -+-++64.分解因式2222_________________a ab b c -+-=.65.分解因式:22222()4x y x y +-66.分解因式:222224()a b a b -+67.分解因式:2222()4()4()m n m n m n +--+-;68.分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;69.分解因式:44222()4p q p q +-70.分解因式:222()4()4x x x x +-++;71.分解因式:24()520(1)x y x y ++-+-72.分解因式:()()222248416x x x x ++++73.已知2244241a ab b a b ++--+=2m ,试用含a 、b 的代数式表示m .74.化简:22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-76. 在实数范围内分解因式:264m m -+77. 26a -+78. 在实数范围内分解因式:42514a a --79. 分解因式:66a b -80. 分解因式:523972x x y -81. 分解因式:66a b +82. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ). A.大于零 B.小于零 C 大于或等于零D .小于或等于零83. 分解因式:()()()3232332125x y x y x y -+---84. 分解因式:22(23)9(1)x x +--85. 分解因式:22222223(2)273(2)(3)a a b a b a a b b ⎡⎤+-=+-⎣⎦86. 分解因式:222222(35)(53)a b a b --+-87. 分解因式:2222x y z yz ---89.分解因式:22229()6()()a b a b a b ++-+-.90.已知()222410a b a b +--+=,求()20062a b +的值.91.分解因式:22222(91)36a b a b +--92.若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?93.a ,b ,c 是三角形ABC 的三条边,且2220,a b c ab bc ac ++---=则三角形ABC 是怎样的三角形?94. 分解因式: 33b -a95. 分解因式: 1xy x y --+96. 分解因式: ax by bx ay --+97. 分解因式: 27321x y xy x -+-98. 分解因式: 4321x x x ++-99. 分解因式: 22abx bxy axy y +--100. 分解因式: ()()x x z y y z +-+因式分解疯狂训练300道(中)板块一:分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组 分解法.101. 分解因式:221x ax x ax a +++--102. 分解因式:1xy x y --+103. 分解因式:ax by bx ay --+104.分解因式:2222ac bd ad bc +--105.分解因式:27321x y xy x -+-106.分解因式:222332154810ac cx ax c +--107.分解因式:4321x x x ++-108.分解因式:22abx bxy axy y +--109.分解因式:()()x x z y y z +-+110.分解因式:2222(1)(2)(1)x x x x x x ++-++-111.分解因式:222222()()ax by ay bx c x c y ++-++112.分解因式:(1)(2)6x x x ---113.分解因式:222(1)()ab x x a b +++115.分解因式:2231()b a x abx +--116.已知三个连续奇数的平方和为251,求这三个奇数.117.分解因式:22(3)(43)x ab x a b -+-118.分解因式:2222()()ab c d a d cd ---119.分解因式:32x bx ax ab +++120.分解因式:32acx bcx adx bd +++121.分解因式:22221a b a b --+122.分解因式:222221x y z x z y z --+123.分解因式:2226923ax a xy xy ay -+-124.分解因式:325153x x x --+125.分解因式:251539a m am abm bm -+-126.分解因式:3254222x x x x x --++-127.分解因式:432x x x x +++128.分解因式:2222()()()()a b a c c d b d +++-+-+129.分解因式:2293x x y y ---130.分解因式:5544()x y x y xy +-+131.分解因式:2212x x y ---+132. 分解因式:241194n n m x x y +-+133.分解因式:22(1)12a b b b --+-134.分解因式:3232x x y y +--135.分解因式:31ax x a +++136.分解因式:4334a a b ab b --+137.分解因式:33222x y x xy y ++++138.分解因式:4333x x y xz yz +++139.分解因式:54321x x x x x +++++140.分解因式:333333()()()()ay bx ax by a b x y +-++--=_________.141.分解因式:333333()()()a b b c c a a b c ++++++++142.分解因式:22ax bx bx ax a b -+-+-143. 分解因式:ax ay bx cy cx by -++--板块二:拆项与添项模块一:利用配方思想拆项与添项144. 已知2246130a b a b +--+=,求a b +的值.145. 分解因式:43221x x x x ++++146. 分解因式:432234232a a b a b ab b ++++=_______.148.分解因式:42231x x -+;149.分解因式:4224a a b b ++150.分解因式: 12631x x -+151.分解因式: 841x x ++152.分解因式: 4224781x x y y -+153.已知n 是正整数,且4216100n n -+是质数,那么n =_______.154. 分解因式:()()()222241211y x y x y +-++-155. 分解因式:42222222()()x a b x a b -++-156. 分解因式:33(1)()()(1)x a xy x y a b y b +---++157. 把444x y +分解因式.158. 分解因式:464x +159. 证明:在m n 、都是大于l 的整数时,444m n +是合数.160. 分解因式:444222222222a b c a b b c c a ---+++模块二:拆项与添项161. 分解因式:343a a -+162. 分解因式:32265x x x +--163. 分解因式:3234x x +-164.分解因式:267x x +-165.分解因式:398x x -+166.把下列各式因式分解:326116x x x +++167.把下列各式因式分解:4322928x x x x +--+168. 若1x y +=-,则43222234585x x y x y x y xy xy y ++++++的值等于( )A.0B.1-C.1D.3169. 分解因式:323233332a a a b b b ++++++170. 分解因式:51x x ++171. 分解因式:541a a ++172. 分解因式:3333a b c abc ++-.173. 分解因式:22268x y x y -++-174. 分解因式: 224414x y x y -++175. 分解因式:42471x x -+176. 分解因式: 4414x y +177. 分解因式:144-x178. 分解因式:441x +=__________.179. 分解因式:432433x x x x ++++180. 分解因式:2222(48)3(48)2x x x x x x ++++++181. 分解因式:22(52)(53)12x x x x ++++-182.分解因式:(1)(3)(5)(7)15+++++x x x x183.分解因式:(1)(2)(3)(4)24a a a a-----184.分解因式:22++++-x x x x(1)(2)12185.证明:四个连续整数的乘积加1是整数的平方.186.若x,y是整数,求证:()()()()4+++++是一个完全平方数.234x y x y x y x y y187.在有理数范围内分解因式:()()()()--+-+=166********x x x x188.分解因式:()()()()2----+=x x x x x6121311189.分解因式:()()()()4----+=x x x x x61413119190.分解因式2+---a a a(25)(9)(27)91191.分解因式:22x x x x+++++(68)(1448)12192.分解因式:4222-++x x a a(1)193.分解因式:22a b ab bc ac--++22194.分解因式:22x xy y x y+-+--62288195.分解因式:22++++3224x xy y x y196.分解因式:222695156-+-++x xy y xz yz z197.分解因式:2-+-2(3)(43)x ab x a b198.分解因式:2222---()()ab c d a d cd199.分解因式:()()4(1)+-+-x y x y y200.长方形的周长为16cm,它的两边x,y是整数,且满足22--+-+=,求它的面积.220x y x xy y因式分解疯狂训练300道(下)板块一:十字相乘法201. 分解因式:256x x ++202. 分解因式:652-+x x203. 分解因式:652--x x204. 分解因式:256x x -+205. 分解因式2299x x +-等于() A .()()911x x -- B.()()911x x +- C .()()911x x -+ D .()()911x x ++206. 分解因式:276x x ++207. 分解因式:762-+x x208. 分解因式:762--x x209. 分解因式:276x x -+210. 分解因式:268x x ++211. 分解因式:862+-x x212. 分解因式:278x x +-213. 分解因式:122-+x x215.分解因式:2376a a --216.分解因式:3832-+x x217.分解因式:2383x x --218.分解因式:25129x x +-219.分解因式:2121115x x --220.分解因式:1529-122+x x221.分解因式:42730x x +-222.分解因式:36134+-x x223.分解因式:()()()2442111x x x ++-+-224.分解因式:26x x --225.分解因式:62-+x x226.分解因式:2922x x --227.分解因式:2292-+x x228.分解因式:21220x x ++229.分解因式:2082+-x x230.分解因式:20122+-x x231.分解因式:2672x x -+232.分解因式:21362+-x x233.分解因式:21162--x x234.分解因式:21162-+x x235.分解因式:2121115x x --236.分解因式:256x x -++237.分解因式:562-+x x238.分解因式:26136x x -+239.分解因式:63762+-x x240.分解因式:63762++x x241.分解因式:2273x x ++242.分解因式:3722+-x x243.分解因式:2253x x -+244.分解因式:222064xy y x -++245.分解因式:2223y xy x ++246.分解因式:22253y xy x ++247.分解因式:22253y xy x +-2222249.分解因式:2222()abcx a b c x abc +++250.分解因式:4222(1)x x a a -++251.分解因式:2273320x x --252.分解因式:212x x +-253.分解因式:2612x x -+-254. 分解因式:2214425x y xy +-255. 分解因式:22672x xy y -+256.已知221547280x xy y -+=,求x y 的值257.分解因式:22121115x xy y --258.分解因式:2358x x +-259.分解因式:2212197x xy y -+260.因式分解:2(2)(3)4x x x +++-= .261.分解因式:2+-+-;()4()12x y x y262.分解因式:2212()11()()2()+++-+-x y x y x y x y263.分解因式:2++-+a a57(1)6(1)264.分解因式:2---+(2)8(2)12a b a b265.分解因式:633619216--x x y y266.分解因式:2222x x x x x x++++++(4)8(4)15267.分解因式:222222++++++++2(61)5(61)(1)2(1)x x x x x x 268.分解因式:222()14()24+-++x x x x269.分解因式:2-+++a b x ax a b()2270.分解因式:2()()+++++x a b c x a b c271.分解因式:2222+++()abcx a b c x abc272.分解因式:2+-+()(1)1a b ab273. 已知正实数a b c ,,满足方程组222229217226a b ac b c ab c a bc ⎧++=⎪++=⎨⎪++=⎩,求a b c ++的值274. 长方形的周长为16cm ,它的两边x ,y 是整数,且满足22220x y x xy y --+-+=,求它的面积.板块二:选主元 275. 分解因式:1a b c ab ac bc abc +++++++276. 分解因式:(6114)(31)2a a b b b +++--277. 分解因式:2222a b ab bc ac --++278. 分解因式:2222223a b ab a c ac abc b c bc -+--++279. 分解因式:22(1)(1)(221)y y x x y y +++++280. 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++281. 分解因式:322222422x x z x y xyz xy y z --++-板块三:重组重解282. (泰安中考题)因式分解:2(2)(3)4x x x +++-= .284.分解因式:2222(1)(2)(1)x x x x x x ++-++-285.分解因式:222222()()ax by ay bx c x c y ++-++286.分解因式:()()()2442111x x x ++-+-287.分解因式:(1)(2)6x x x ---288.分解因式:222(1)()ab x x a b +++289.分解因式:2()(1)1a b ab +-+290.分解因式:3322()()ax y b by bx a y +++291.分解因式:22()4a b ab c -+-292.分解因式:()()22114m n mn --+293. 分解因式:2222111[()()](2)222x y x y x y -++-294.分解因式:2231()b a x abx +--295.已知三个连续奇数的平方和为251,求这三个奇数.296.已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证:2b a c =+297.分解因式:222064xy y x -++298.分解因式:2222(48)3(48)2x x x x x x ++++++299.分解因式:4224109x x y y -+300. 分解因式:2222()abcx a b c x abc +++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级奥数专题
第一讲:勾股定理及应用----李
第二讲:实数的性质-------李
第三讲:二次根式(1)
第四讲:二次根式(2)
第五讲:一次函数的图像和性质
第六讲:待定系数法------李
第七讲:一次函数的应用-
第八讲:二元一次方程组和不定方程
第九讲:三元一次方程组与不定方程组
第十讲:二元一次方程组的应用
第十一讲:等腰三角形与等边三角形-------张琼方
第十二讲:线段的垂直平分线
第十三讲:角平分线
第十四讲:一元一次不等式与一元一次不等式组
第十五讲:一元一次不等式与一元一次不等式组的应用(1)
第十六讲:一元一次不等式与一元一次不等式组的应用(2)------方案设计------罗第十七讲:因式分解(1)
第十八讲:因式分解(2)
第十九讲:因式分解(3)
第二十讲:因式分解(4)
第二十一讲:因式分解(5)-----刘
第二十二讲:分式
第二十三讲:分式的运算
第二十四讲:含字母系数的方程和分式方程
第二十五讲:分式方程的应用
第二十六讲:平行四边形性质与判定---杨洁
第二十七讲:矩形
第二十八讲:菱形
第二十九讲:正方形
第三十讲:三角形的中位线
第三十一讲:梯形
第三十二讲:梯形的中位线------张皓
注意:文字用宋体五号字
第一讲 勾股定理及应用
1、勾股定理及逆定理:△ABC 中 ∠C =Rt ∠⇔a 2+b 2=c
2
2、勾股定理及逆定理的应用
① 作已知线段a 的2,3,
5……倍
② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。

3勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2
,那么这三个正整数a,b,c 叫做
一组勾股数.
4勾股数的推算公式
a) 罗士琳法则(罗士琳是我国清代的数学家1789――1853)
任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2
是一组勾股数。

b) 如果k 是大于1的奇数,那么k, 2
12-k ,21
2
+k 是一组勾股数。

c) 如果k 是大于2的偶数,那么k, 122
-⎪⎭⎫ ⎝⎛K ,122
+⎪⎭
⎫ ⎝⎛K 是一组勾股数。

d) 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。

5、 熟悉勾股数可提高计算速度,顺利地判定直角三角形。

简单的勾股数有:3,4,5; 5,
12,13; 7,24,25; 8,15,17; 9,40,41。

【例1】.折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知,AB=8cm ,BC=10cm,求 CF 和
EC .
【巩固】.如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠, 使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕 EF 的长为 。

拓展与提升
知识梳理
【例2】.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、
S 2、S 3表示,则不难证明S 1=S 2+S 3 . (1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、
S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)
(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;
(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3
表示,请你猜想S 1、S 2、S 3之间的关系?.
【巩固】.在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积
分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,求S 1+S 2+S 3+S 4的值:_______________
【例3】.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否受到这次台风的影响?为什么?
(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?


F
E
A
B l
3
2
1
S 4
S 3
S 2
S 1
【巩固】.《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.
(1)试求该车从A 点到B 的平均速度; (2)试说明该车是否超过限速.
【例1】.四边形ABCD 中∠DAB =60
,∠B =∠D =Rt ∠,BC =1,CD =2
求对角线AC 的长
【例2】.已知:正方形ABCD 的边长为1,正方形EFGH 内接于ABCD ,AE =a ,AF =b,且S EFGH

3
2 求:a b 的值
(2001年希望杯数学邀请赛,初二)
培优与竞赛
21
D
A B C
E A B C
D F
G H E
1.若△ABC 的三边abc 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。

2.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是__________
3.已知:
如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求
证:AE 2+BF 2=EF 2

4.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C 移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.
(1)该城市是否会受到这交台风的影响?请说明理由.
(2)若会受到台风影响,那么台风影响该城市持续时间有多少? (3)该城市受到台风影响的最大风力为几级?
5.Rt △ABC 中,∠ABC =90
,∠C =600
,BC =2,D 是AC 的中点,从D 作DE ⊥AC 与CB 的延长线交于点E ,以AB 、BE 为邻边作矩形ABEF ,连结DF ,则DF 的长是____。

l
l 2 l 3
A
C
B
课后练习
(12)A
F
D
(2002年希望杯数学邀请赛,初二试题)。

相关文档
最新文档