第10章 酶的作用机制和酶的调节
10第十章 酶的作用机制和酶的调节
第十章酶的作用机制和酶的调节目的和要求:理解、掌握酶活性部位的相关概念和特点;掌握酶催化高效性的相关机理;了解几种酶的催化机制,理解结构和功能的适应性;了解酶活性的调节方式,掌握酶活性的别构调节、可逆共价调节和酶原激活调节方式及生物代谢中的作用。
一、酶的活性部位㈠酶的活性部位的特点1、概念:三维结构上比较接近的少数特异的氨基酸残基参与底物的结合与催化作用,这一与酶活力直接相关的区域称酶的活性部位。
结合部位:专一性催化部位:催化能力,对需要辅酶的酶分子,辅酶或其一部分就是活性中心的组成部分;组成酶活性部位的氨基酸数目对不同酶而言存在差异,占整个酶氨基酸残基小部分酶活性部位的基团:亲核性基团,丝氨酸的羟基,半胱氨酸的巯基和组氨酸的咪唑基。
酸碱性基团:天冬氨酸和谷氨酸的羧基,赖氨酸的氨基,酪氨酸的酚羟基,组氨酸的咪唑基和半胱氨酸的巯基等。
2、特点⑴活性部位在酶分子的总体中只占相当小的部分(1%~2%)⑵酶的活性部位是一个三维实体⑶酶的活性部位并不是和底物的形状互补的⑷酶的活性部位是位于酶分子表面的一个裂隙内⑸底物通过次级键结合到酶上⑹酶活性部位具有柔性㈡研究酶活性部位的方法1、酶分子基团的侧链化学修饰⑴非特异性共价修饰:活力丧失程度与修饰剂浓度有正比关系;底物或可逆的抑制剂可保护共价修饰剂的修饰作用。
⑵特异性共价修饰:分离标记肽段,可判断活性部位的氨基酸残基,如二异丙基氟磷酸(DFP)专一性与胰凝乳蛋白酶活性部位丝氨酸残基的羟基结合。
⑶亲和标记:利用底物类似物和酶活性部位的特殊亲和力将酶加以修饰标记来研究酶活性部位的方法。
修饰剂的特点:①结构与底物类似,能专一性引入到酶活性部位;②具活泼化学基团,能与活性部位某一氨基酸共价结合,相应的试剂称“活性部位指示剂”。
胰凝乳蛋白酶和胰蛋白酶,TPE是酶的底物,TPCK是酶的亲和试剂,当酶与TPCK温浴后,酶活性丧失,这种结合具有空间结构的需求,同时也阻止其他试剂如DFP结合。
《生物化学》酶的作用机制和酶的调节
side view
胃蛋白酶原
在pH5.0以下断裂 切去44个氨基酸片断
胃蛋白酶
溶菌酶
必需基团
酶的活性中心往往只是包括酶蛋白的几个氨基酸残 基,而对于活性中心以外的氨基酸残基,并非是可有可无 的,有些氨基酸残基也是酶表现催化活性所必需的,称为 必需基团。因此酶的活性中心属于必需基团的一部分,必 需基团还包括其它一些对酶活性必需的氨基酸残基。
(五)金属离子催化
1、需要金属的酶分类 (1)金属酶 含紧密结合的金属离子,多属于过渡金 属离子如,Fe2+、Fe3+、Cu2+、Zn2+、 Mn2+或Co3+。 (2)金属-激活酶 含松散结合的金属离子,通常为碱和碱 土金属离子,如Na+、K+、Mg2+或Ca2+。
(五)金属离子催化
2、金属离子以三种主要途径参加催化过程: (1)通过结合底物为反应定向 (2)通过可逆的改变金属离子的氧化态调 节氧化还原反应 (3)通过静电稳定或屏蔽负电荷
(一)酶活性部位的特点
1、活性部位在酶分子的总体中只占相当小的部分。 2、酶的活性部位是一个三维实体。 3、酶的活性部位并不是和底物的形状正好互补的,而 是在酶和底物结合的过程中,底物分子或酶分子, 有 时是二者构象同时发生变化后才互补的。 (诱导 契合学说)。 4、酶的活性部位位于酶分子表面的一个裂缝内,底物 分子结合到裂缝内并发生催化作用。 5、底物通过次级键较弱的的力结合到酶上。 6、酶活性部位具有柔性或可运动性。
广义酸基团 (质子供体) 广义碱基团(质子受体)
(四)共价催化(covalent catalysis)
共价催化又称亲核催化或亲电子催化,在催化时, 亲核催化剂或亲电子催化剂能分别放出电子或汲 取电子并作用于底物的缺电子中心或负电中心,迅 速形成不稳定的共价中间复合物,降低反应活化能, 使反应加速。
10章 酶反应动力学-教学用
v0 K cat [ ES ] K cat [ Et ][S ] K 1 [S ] K1
K 1[ Et ][S ] [ ES] K 1 K 1[ S ]
k 1 ks k1
Vmax [ S ] 此模型不具有普遍性 K S [S ]
V max = Kcat [Et]
1952,Briggs G E和Haldane J B S 的“稳态理论”及其对米式方程的 发展:稳态模型或Briggs-Haldane氏模型
Ks:解离[平衡]常数; Kcat:催化常数
1913,德化学家Michaelis L和Menten M 根据中间产物学快速平 衡模型或平衡稳态模型,称为米-曼氏模型。
Vmax[ S ] v0 K s [S ]
米式方程的导出:
基于快速平衡模型或平衡稳态模型的米氏方程: 早年的米式方程 最初,Michaelis 和 Menten 根据“快速平衡假说”推出米式方程。 快速平衡假说:一些假设
2. Kcat 的意义:催化常数或转换数
K2 E S K1 ES E P K K
-1 -2
K2 限速步骤速率常数
K3 K K2 E S K 1 ES EP E P
-1
K3 限速步骤限速常数
需要提出一个更通用 的速率常数,催化常 数,Kcat,用来描述任 一酶促反应在饱和时 的限制速率
2. Kcat 的意义: 催化常数或转换数
3. Kact/KM 的意义: 催化效率指数或专一性常数
1. KM的意义: 真实解离常数和表观解离常数
① 米氏常数KM是 v0=1/2 Vmax时的底物浓度。遵循米-曼氏动力 学的酶,也称为米-曼型酶, 是指呈现v0对[S]的双曲线关系的酶。 ② KM的真实意义决定于酶促反应机制的特定方面, 如反应步骤 数目和各步的速率常数。对于简单的二步反应: KM=(K-1+K2)/K1 当K2是限速步骤的速率常数时,即k2<<k-1 ,KM即Ks。 此时, KM 的意义是真实解离常数,代表ES复合体中酶对 底物的亲和力大小, 但是这种意义对大多数酶是不适用的。 当 k2、k-1 相当时,KM是三个速率常数的函数。
酶的作用和作用机理
酶的作用和作用机理
在生物化学领域中,酶是一类高效的催化剂,对生物体内各种生物化学反应起着至关重要的作用。
酶在细胞内起到了调控代谢途径、合成分子和分解废物等重要功能。
本文将探讨酶的作用与作用机理。
酶的作用
酶在生物体内参与了各个生物化学反应,可以加速反应速率,降低活化能,从而促进生物体的正常代谢。
以消化系统为例,唾液中的唾液淀粉酶可以催化淀粉分解成葡萄糖,使得食物中的多糖得以被吸收。
类似地,胃蛋白酶可以将蛋白质分解成氨基酸,以供生物体合成自身所需的蛋白质。
此外,酶还可以通过调控代谢路径来维持细胞内的稳态。
例如,ATP合成酶和ATP分解酶协调合成和分解ATP,保持细胞内ATP的水平,从而满足细胞对能量的需求。
酶的作用机理
酶的作用机理主要是通过诱导适当的环境条件,使得底物能够更容易地进入酶的活性中心,并促使反应发生。
酶的活性中心通常是一个具有特定结构的裂解活性相对较高的部分。
酶的活性中心与底物结合后形成酶底物复合物,而这个复合物的形成使得反应能够以更少的活化能发生。
此外,酶的活性会受到温度、pH值等环境条件的影响。
一般来说,酶对于适宜的温度和pH值会有最高的活性,当环境条件偏离适宜范围时,酶的活性会受到影响。
这也是为什么在一些生物学实验中,需要严格控制温度和pH值的原因。
总的来说,酶作为生物体内重要的催化剂,在调控细胞代谢、合成和分解各种生物分子等方面发挥着非常重要的作用。
通过了解酶的作用和作用机理,可以更好地理解生物体内种种生物化学过程的本质。
生物化学(第三版)第十章 酶的作用机制和酶的调节课后习题详细解答_ 复习重点
第十章酶的作用机制和酶的调节提要酶的活性部位对于不需要辅酶的酶来说,就是指酶分子中在三维结构上比较靠近的几个氨基酸残基负责与底物的结合与催化作用的部位,对于需要辅酶的酶来说,辅酶分子或辅酶分子上的某一部分结构,往往也是酶活性部位的组成部分。
酶活性部位有6个共同特点。
研究酶活性部位的方法有:酶分子侧链基团的化学修饰法,动力学参数测定法,X射线晶体结构分析法和定点诱变法,这些方法可互相配合以判断某个酶的活性部位。
酶是催化效率很高的生物催化剂,这是由酶分子的特殊结构所决定的。
经研究与酶催化效率的有关因素有7个,即底物和酶的邻近效应与定向效应,底物的形变与诱导契合,酸碱催化,共价催化,金属离子催化,多元催化和协同效应,活性部位微环境的影响。
但这些因素不是同时在一个酶中其作用,也不是一种因素在所有的酶中起作用,对于某一种酶来说,可能分别主要受一种或几种因素的影响。
研究酶催化的反应机制,始终是酶学研究的一个重点,通过大量的研究工作,已经对一些酶的作用机制有深入了解,该章对溶解酶、胰核糖核酸酶A、羧肽酶A、丝氨酸蛋白酶、天冬氨酸蛋白酶等的催化作用机制进行了详尽的讨论。
酶活性是受各种因素调节控制的,除了在第8章中已介绍的几种因素外,主要还有①别构调节,例如ATCase。
②酶原的激活,如消化系统蛋白酶原的激活及凝血系统酶原的激活。
③可逆共价修饰调控,如蛋白质的磷酸化,一系列蛋白激酶的作用。
通过以上作用,使酶能在准确的时间和正确的地点表现出它们的活性。
别构酶一般都是寡聚酶,有催化部位和调节部位,别构酶往往催化多酶体系的第一步反应,受反应序列的终产物抑制,终产物与别构酶的调节部位相结合,由此调节多酶体系的反应速率。
别构酶有协同效应,[S]对υ的动力学曲线呈S形曲线(正协同)或表现双曲线(负协同),两者均不符合米氏方程。
ATCase作为别构酶的典型代表,已经测定了其三维结构,详细研究了别构机制和催化作用机制。
为了解释别构酶协同效应的机制,有两种分子模型受到人们重视,即协同模型和序变模型。
酶作用机制
酶活性中心示意图
S- S
活性中心外 必需基团 活 性 中 心 必 需 基 团
底物
结合基团
催化基团 肽链
活性中心
多肽链 底物分子 活性 中心 以外 必需 基团 酶活性中心 活性 催化基团 中心 必需 结合基团 基团
有的酶的必需基团 兼有两者的功能
胰凝乳蛋白酶活性部位示意图
一些酶活性中心的氨基酸残基
酶
糖原磷酸化酶 磷酸化酶b激酶 糖原合成酶 丙酮酸脱羧酶 磷酸果糖激酶 丙酮酸脱氢酶 HMG-CoA还原酶 HMG-CoA还原酶激酶 乙酰CoA羧化酶 脂肪细胞甘油三脂脂肪酶 黄嘌呤氧化酶
化学修饰类型
磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 磷酸化/脱磷酸化 -SH/-S-S-
1
(接近过渡 CH 2 CH 2 态) 108
O
三)酸碱催化
酸碱催化是通过瞬间的向反应物提供质子或 从反应物接受质子以稳定过渡态,加速反应 的一类催化机制。
狭义的酸碱催化 H+、OH-
酸碱催化
广义的酸碱催化,质子受体和供体
酶蛋白中具有广义的酸碱催化的功能基:氨 基、羧基、巯基、酚羟基、咪唑基等。
His存在于许多酶的活性中心;咪唑基是催化中很活泼的一个催化 功能基,它既能供出质子又能接受质子,且速度十分迅速,所 以,His在Pr的含量虽小,往往位于活性中心。
研究酶活性部位的方法
1.分子侧链基团的化学修饰法 2、动力学参数测定法 3、射线晶体结构分析法 4、定点诱变法
二、酶反应的独特性质
• 酶反应;一类反应仅涉及电子转移,另一类 反应涉及电子和质子两者或其他基团的转移 • 酶催化作用以残基上的功能基团和辅酶为媒 介,如His, Ser, Cys, Lys, Glu, Asp • 酶催化反应的最适pH范围狭小 • 酶活性部位比底物稍大 • 酶除进行催化反应所必需的活性基团外,还 有其他因素,如使底物产生张力等作用因素
王镜岩版生物化学总复习习题
生物化学各章复习题第 3 章氨基酸回答问题 :1. 什么是蛋白质的酸水解、碱水解和酶水解,各有何特点?2. 写出 20 种基本氨基酸的结构、三字母缩写和单字母缩写。
3. 甘氨酸、组氨酸和脯氨酸各有何特点?4. 什么是氨基酸的等电点?写出下了列氨基酸的结构、解离过程,并计算等电点:缬氨酸、谷氨酸和精氨酸。
5. 在多肽的人工合成中,氨基酸的氨基需要保护,有哪些反应可以保护氨基?6. Sanger 试剂、 Edman 试剂分别是什么?与氨基酸如何反应,此反应有何意义?7. 试写出半胱氨酸与乙撑亚胺的反应,此反应有何意义?8. 写出氧化剂和还原剂打开胱氨酸二硫键的反应。
9. 蛋白质有紫外吸收的原因是什么,最大吸收峰是多少?10. 什么是分配定律、分配系数?分配层析的原理是什么?11. 什么是 HPLC?12. 课本 P156,15 题。
第 4 、 5 章蛋白质的共价结构,三维结构一.名词解释:单纯蛋白(举例),缀合蛋白(举例),辅基,配体,蛋白质的一、二、三、四级结构,超二级结构,结构域,肽平面(酰胺平面),谷胱甘肽(结构式),对角线电泳,完全水解,部分水解,同源蛋白质,不变残基,可变残基,α - 螺旋β - 折叠,膜内在蛋白,脂锚定膜蛋白,蛋白质的变性与复性,单体,同聚体,杂多聚蛋白二.回答问题:1. 试举例说明蛋白质功能的多样性?2. 那些实验能说明肽键是蛋白质的连接方式?3. 试述肽键的性质。
4. 试述蛋白质一级结构测定的策略。
5. 如何测定 N- 端氨基酸?6. 图示胰蛋白酶、胰凝乳蛋白酶、嗜热菌蛋白酶及胃蛋白酶的作用专一性。
7. 书 p194 —第 2 题8. 研究蛋白质构象的方法都有哪些?9. 稳定蛋白质的三微结构的作用力有哪些?10. 影响α - 螺旋形成的因素有哪些?11. 胶原蛋白的氨基酸组成有何特点?12. 蛋白质变性后有哪些现象?13. 举例说明蛋白质一级结构决定三级结构。
第 6 章蛋白质结构与功能的关系一.名词解释:珠蛋白,亚铁血红素,高铁血红素,亚铁肌红蛋白,高铁血红蛋白二.回答问题:1. 肌红蛋白和血红蛋白的氧合曲线有何不同,试从蛋白质结构与功能的关系上加以解释。
第10章酶的作用机制和酶的调节
第10章酶的作用机制和酶的调节第10章酶的作用机制和酶的调节教学目的:掌握酶的活性部位结构与功能、酶活性的别构调节、酶原激活,了解酶高效性原因教学重点:酶活性部位的结构与功能及酶的活性的别构调节教学难点:酶活性的别构调节教学方法:多媒体教学内容:一、酶的活性部位及确定方法(一)酶活性部位概念及特点1、酶的活性中心(活性部位):指酶分子中的表面有一个必需基团比较集中、并构成一定空间结构的微小区域。
酶活性中心的基团,按其功能可分为结合基团和催化基团。
活性中心的基团都是维持酶活性的必需基团,2、酶活性部位的共同点:(1)酶活性部位仅占酶体积的很小一部分,通常只占整个酶分子体积的1~2%,酶分子是大分子物质,由很多氨基酸构成,而活性部位仅由几个氨基酸残基组成催化部位一般由2~3个氨基酸残基组成。
结合部位氨基酸残基数目,不同的酶有所不同。
可能是一个,也可能是多个。
(2)酶的活性部位具有三维结构,构成酶活性中心的基团,可位于同一条肽链上,也可位于不同的肽链上,在一级结构上可能相距甚远,但在空间结构上位置必须相互靠近;酶的空间结构受物理或化学因素影响时,酶的活性部位可能会遭破坏,酶会失活。
(3)活性中心的结合基团与底物专一性结合,这需要活性部位的基团精确排列。
活性部位具有一定的柔韧性,活性部位的结构并不是与底物的结构正好互补。
在酶与底物结合过程中,酶活性中心的构象在底物的诱导下可发生形变,然后嵌合互补形成中间产物,而底物在酶活性中心的诱导下也可发生形变,变的易与酶结合,有时是两者的构象同时发生变化后才互补契合(诱导契合学说)。
(4)酶活性部位位于酶分子表面的一个裂缝内,底物分子或底物分子的一部分结合到裂缝中,裂缝内的非极性基团较多,形成一个疏水环境,提高与底物的结合能力,也有极性的氨基酸残基,以便与底物结合并催化底物发生反应。
(5)底物通过较弱的次级键与酶结合。
组成酶活性中心的氨基酸残基,常见的有:组氨酸、赖氨酸、天冬氨酸、谷氨酸、丝氨酸、半胱氨酸和酪氨酸3、研究酶活性部位的方法(1)共价修饰(2)亲和标记法(3)切除法(4)X射线晶体结构分析法二、酶促反应机制(一)基元催化的分子机制:酶的催化作用包括若干基元催化。
第九章:酶的作用机制和酶的调节1
3.用于判断和确定酶活性中心的方法 1)酶的专一性研究 通过研究酶的专一性底物的结构特点,来判断和确定 活性中心的结构特点→确定活性中心的结构 研究酶的竞争性抑制剂的必需结构、酶与专一性底物 的相互关系,来确定酶活性中心结构。
2)酶分子侧链基团的化学修饰法 使用一些对酶分子侧链功能基团可进行共价修饰的 试剂作用与酶,以查出哪些基团是保持酶活力所必需 的。
三.与酶高效催化作用有关的因素 1.底物与酶邻近效应和定向效应 在酶促反应中,底物分子结合到酶的活性中心,一方 面底物在酶活性中心的有效浓度大大增加,有利于提高 反应速度; 另一方面,由于活性中心的立体结构和相关基团的诱 导和定向作用,使底物分子中参与反应的基团相互接近, 并被严格定向定位,使酶促反应具有高效率和专一性特 点。
第九章:酶的作用机制和酶的调节 1.酶的活性 部位 2.影响酶催 化效率的有关 因素 3.酶活性的 调节控制 4.同工酶
第一节:酶活性中心
以一个独立三级结构为完整生物共能分子最 高形式的酶,称为单体酶;以四级结构作为完整生物 功能分子结构的酶,称为寡聚酶。 1.酶的活性中心 酶蛋白中只有少数特定的氨基酸的侧链基团核 酶的催化活性直接有关,这些官能基团称为酶的必需 基团。在酶分子三级机构的构象中,由少数必需基团 组成的能与底物分子结合并完成特定催化反应的空间 小区域,称为酶的活性中心或酶活中心。构成酶活性 中心的必需基团,主要是某些氨基酸残基的侧链基团。
在酶的活性中心出现频率最高的氨基酸残基有:丝 氨酸、组氨酸、半胱氨酸、酪氨酸、天冬氨酸、谷氨酸 和赖氨酸,它们的极性侧链基团常常是酶活性中心的必 需基团。
2.酶的活性部位的特点
活性部位在酶分子的中提及中只占相当小的一 部分,通常只占整个酶分子体积的1%-2%。酶的活性 部位是一个三维实体 酶的底物部位并不是和底物的形状正好互补的, 而是在酶和底物结合的过程中,底物分子或酶分子, 有时是两者的构象发生了一定的变化后才互补的, 这时催化基团的位臵也正好在所催化底物键的断裂 和即将生成键的适当位臵。这个动态的辨认过程称 为诱导契合。 酶的活性部位是位于酶分子表面的一个裂缝内。 底物通过次级键较弱的力结合到酶上。 酶活性部位具有柔性或可运动性。
第10章 酶的作用机制和酶的调节
正、负协同别构酶与非调节酶的动力学曲线比较
10
(二)酶原的激活
酶原 (zymogen或proenzyme)
有些酶在细胞内合成或初分泌时只是
酶的无活性前体,此前体物质称为酶原。 酶原的激活 在一定条件下,酶原向有活性酶转化 的过程。
11
酶原激活的原理 酶 原 在特定条件下 一个或几个特定的肽键断裂,水解 掉一个或几个短肽
以改变细胞内酶的含量的调节
6
(一)别构调控
酶分子的非催化部位与某些化合物可逆地非共价结合后导 致酶分子发生构象改变,进而改变酶的活性状态,称为酶的别 构调节(allosteric regulation)。 别构酶 (allosteric enzyme) 别构效应物 (allosteric effector) 正效应物 (positive effector)或别构激活剂 (allosteric activator) 负效应物 (negative effector)或别构抑制剂 (allosteric inhibitor)
7
A--非调节酶 B-正协同别构酶 的S形曲线 当底物浓度发生很小的变化 时,别构酶就极大地控制着 反应速度。 在正协同效应中使得酶反应 速度对底物浓度的变化极为 敏感。
别构酶与米氏酶的动力学曲线比较
9
1--非调节酶 2--正协同别构酶 3--负协同别构酶 具有负协同效应的酶在底物浓度较低 的范围内酶活力上升快,但再继续下 去,底物浓度虽有较大的提高,但反 应速度升高却较小。使得酶反应速度 对底物浓度的变化不敏感。
③ 可视为酶的储存形式。
15
(三)酶的共价修饰
某些酶可以通过其它酶对其多肽链上某些基团进行可 逆的共价修饰,使其处于活性与非活性的互变状态,从而 调 节 酶 活 性 , 此 种 调 节 方 式 称 共 价 修 饰 (covalent modification)。这类酶称为共价修饰酶。
上海交大 中文翻译 生物化学课本:第10章 调节机制
第十章调节机制如同机动车交通,用信号调节代谢途径流动效率更高。
CTP是一个多步骤反应的最终产物。
CTP抑制限速步骤催化酶(即天冬氨酸-氨基甲酰转移酶ATCase)活性能够控制这个代谢途径。
为了在合适的时间和地点发挥作用,必须调节酶的活性。
这种调节对于协调生物体内一直发生的大量生化过程而言是必需的。
酶活性的调节方式主要有五种。
1.变构控制。
变构蛋白质含有独特的调节位点和多个活性位点。
信号小分子与调节位点的结合是控制这些酶蛋白活性的主要手段。
而且,变构蛋白有协同性:一个活性位点的活性会影响其它活性位点。
因此有变构控制能力的蛋白质也是信息转导分子:能够将信号分子或同一酶蛋白活性位点的信息传递给蛋白质,调节酶蛋白活性。
本章介绍研究最深入的变构蛋白,即天冬氨酸-氨基甲酰转移酶(ATCase)。
该酶催化嘧啶合成途径的第一步反应,即氨基甲酰转移给天冬氨酸的化学反应。
这个酶受该途径终产物CTP的反馈抑制。
在第7章我们已经介绍了一种变构蛋白(即运送氧气的血红蛋白)。
2.酶的多重形式。
同功酶(isozyme,isoenzyme)是在不同位置或时间调节酶活性的另一种形式。
同功酶是同一生物体内存在的催化同一反应的同源酶,它们之间在结构上稍1有差异,但是催化反应的Km和Vmax,以及调节特性差异显著。
通常同功酶随表达的时间、地点和发育状态而改变。
3.可逆共价修饰。
有很多酶共价连接一个基团后催化活性显著改变,最常见的修饰基团是磷酸。
ATP作为这些修饰反应的磷酸供体,催化的酶是蛋白激酶。
蛋白磷酸酯酶负责删除蛋白质的磷酸基团。
本章介绍蛋白激酶的结构、特异性和活性调节。
PKA是真核生物广泛存在的蛋白激酶,能够调节不同的目标蛋白质。
4.蛋白裂解活化。
有些调节使酶蛋白活性能够来回变化,使之处于有活性和无活性两种状态。
还有一种调节方式是酶蛋白活性不可逆转地激活。
只要水解少数几个肽键甚至一个肽键就能够酶激活的蛋白质称为酶原(zymogen, or proenzyme)。
《生物化学》酶促反应动力学
k4
[ES]
(3)推导过程-1 由中间产物学说可知,酶促反应分两步进行
在稳态下,ES的生成速率与分解速率相等,达到动态平衡即:
VES生成 = VES分解
k1([E]- [ES]) [S]=(k2+ k3) [ES] 令Km = (k2+ k3)/ k1,则
([E]- [ES]) [S]/ [ES]= (k2+ k3)/ k1= Km
第二单元 酶化学
第8章 酶通论 第9章 酶促反应动力学 第10章 酶的作用机制和酶的调节
第9章 酶促反应动力学
一、化学动力学基础(P351) 二、底物浓度对酶反应速率的影响(P355) 三、酶的抑制作用(P368) 四、温度对酶反应的影响(P378) 五、pH对酶反应的影响(P379) 六、激活剂对酶反应的影响(P380)
1、不可逆的抑制作用
抑制剂与酶的必需基团以共价键结合而引起酶活力丧失, 不能用透析、超滤等物理方法除去抑制剂而使酶复活,称 为不可逆抑制(irreversible inhibition)。
2、可逆抑制作用
抑制剂与酶的必需基团以非共价键结合而引起酶活力丧 失,能用透析、超滤等物理方法除去抑制剂而使酶复活, 称为可逆抑制(reversible inhibition)
4、抑制百分数:
i%= (1- a) × 100% = (1-vi/ v0)× 100%
(二)抑制作用的类型
抑制剂: 凡使酶的必需基团或酶的活性部位中的基团的化学
性质改变而降低酶活力甚至使酶完全丧失活性的物质, 称为抑制剂,用I表示,其作用称为抑制作用。
抑制作用一般分为: 不可逆抑制作用和可逆抑制作用两类。
的速率方程称为本征动力学方程,有具体的物理
第10章 酶动力学
+抑制剂
1/v
(1+ KI/[I])/Vmax Vmax/(1+KI/[I])
斜率=Km/vmax
斜率= Km/vmax
[S]
Km/(1+ KI/[I]) Km
-1/Km - (1+ KI/[I])/Km
1/vmax
1/[S]
无I 有I
与 图 形 特 征
反 竞 争 性 抑 制 的 速 度 方 程
反竞争性抑制的特点: ⑴ 反竞争性抑制剂的化学结构不一定与 底物的分子结构类似; ⑵ 抑制剂与底物可同时与酶的不同部位 结合; ⑶ 必须有底物存在,抑制剂才能对酶产 生抑制作用;抑制程度随底物浓度的增 加而增加; ⑷ 动力学参数:Km减小,Vm降低。
非 竟 争 性 抑 制
(3)反竞争性(Uncompetitive )抑制
反竞争性抑制剂
ES
k1 k-1
ES
I
KI’
k2
EP
v max [S ] Km K (1 I ) [S ] K [I ] (1 I ) [I ]
Km 降低 vmax 降低 斜率不变
v
vmax
v
EIS
I
E S
KI
k1 K-1
ES
v max [ S ]
k2
EP
v
EI
v
vmax
Km(1+[I]/KI)
[ S ] K m (1
[I ] ) KI
Km 升高 vmax 不变
+抑制剂
1/v
斜率=Km/vmax
斜率= Km(1+[I]/KI)/vmax
Km
[S]
酶的活性调节
(二)E 的活性中心特点 1 几个氨基酸残基,1%〜2 %酶分子体积
384
(二) E 的活性中心特点
2 3
三维实体 表面或接近表面
裂缝(crevice)
疏水区域
4 柔性或可运动性
E 诱导契合和 S底物的形变
5
ES 是由次级键形成
384
酶的活性中心示意图
酶的结构
活性中心
必需基团
结合部位 催化部位 活性中心以外的必需基团
长的凹穴。最适底物正好与
酶分子的凹穴相结合,凹穴
中的Glu35和Asp52 是活性中 心的氨基酸残基。
2. 催化作用机理 • 溶菌酶底物与酶活性中心的关系
溶菌酶活性中心上的Asp52氧 原子距离底物敏感键(C-O键)中 碳原子只有0.3nm,活性中心 上另一个氨基酸 Glu35的羧基 距离底物敏感键(C-O键)中氧原 子也只有0.3nm,溶菌酶的活 性中心的氨基酸残基与底物敏 感键既靠近又定向。
接有关,即与酶活力直接相关的区域称为酶的活性部位。
酶的活性部位是酶分子进行催化反应的一个场所,是酶分子的一小 部分区域,在这个区域上的少数几个特异的氨基酸参与结合底物催化底 物,把酶分子上的这个区域称为酶的活性部位。
结合部位
负责酶与底物的结合,决定
活性 部位
催化部位
酶 的专一性
负责催化底物,决定酶
酶活性中心的羧基与水形成氢键,导 致酶活性中心羧基表面有一层水化层,水 分子的屏蔽作用,大大削弱了酶分子与底 物离子间的静电相互引力,不利于酶促反 应。
酶催化作用机理: 综上所述:
酶与底物结合时,由于酶的变形(诱导契合) 或底物变形使二者相互适合,并依靠离子键、氢 键、范德华力的作用和水的影响,结合成中间产 物,在酶分子的非极性区域内,由于酶与底物的 邻近、定向,使二者可以通过亲核\亲电催化、
第10章 酶动力学
24
kcat值越大,表示酶的催化速率越高 kcat/Km常用来比较酶催化效率的参数
(四)米-曼氏方程的线性化作图求Km和Vmax
1. 双倒数(Lineweaver-Burk)作图
v0
Vmax[S ] Km [S]
1 Km 1 1 v0 Vmax [S ] Vmax
26
E+S
k 2
ES
k -1
E+P
Ks
Kcat
在低底物浓度时:反应速度与 底物浓度成正比,表现为一级 反应特征。
随着底物浓度的增高 反应速度不再成正比例加速; 反应为混合级反应。
当底物浓度达到一定值
反应速度达到最大值(Vmax),
此时再增加底物浓度,反应速度不 再增加,表现为零级反应。
(二)米-曼氏方程所确定的图形是直 角双曲线
单分子反应 A P v k[ A]
一级反应
AB P 双分子反应 v k[ A][B] 二级反应
2A P v k[ A]2
7
二、底物浓度对酶促反应速率的影响 (一)米-曼氏方程
k1 E+S
k-1
ES k2
E+P
8
米-曼氏方程的推导
26
k1 E+S
ES k2
E+P
k-1
27
d[ES] dt
2.Eadie-Hofstee作图法
第十章 酶动力学
Enzyme kinetics
本章内容
1. 有关的化学动力学概论(了解) 2. 底物浓度对酶促反应速率的影响(重点) 3. 多底物的酶促反应(了解) 4. 影响酶促反应速率的其他因素(了解) 5. 酶的抑制作用(重点、难点)
生物化学第10章 酶的作用机理和酶的调节
别够调节可发生在底物-底物、调节物-底物、调节物-调节 物之间,可以是正协同也可以是负协同。
2.别构酶的动力学
别构酶的[S]对V0的动力学曲线不是双曲线,而是S形曲线(正协 同)或表观双曲线(负协同),二者均不符合米氏方程。
定向效应: 底物会诱导酶分子构象改变,使酶活性中心的相 关基团和底物的反应基团正确定向排列,使反应基团之间 的分子轨道以正确方向严格定位,使酶促反应易于进行。
2. 底物的形变(distortion)与诱导契合
当酶遇到其底物时,酶中某些基团或离子可以使底物分子 内敏感键中的某些基团的电子云密度增高或降低,产生“电子 张力”,使敏感键的一端更加敏感,底物分子发生形变,底物 比较接近它的过渡态,降低了反应活化能,使反应易于发生。
[S] (10-4molL-1)
(NAG)2 (NAG)3 (NAG)4 (NAG)5 (NAG)6 (NAG)8
相对水解率
0 1 8 4000 30000 30000
××
ABCDEF
NAG-NAM-NAG-NAM-NAG-NAM
××
NAG-NAG-NAG
NAG-NAG-NAG-NAG NAG-NAG-NAG-NAG-NAG NAG-NAM-NAG-NAM-NAG-NAM
酶与底物给合时构象变化的示意图
3.多元催化和协同效应
在酶催化反应中,几个基元催化反应配合在一起起作用, 如:胰凝乳蛋白酶是通过Asp102, His57,Ser195组成电荷中继网 催化肽键水解,包括亲核和酸碱共同催化共同作用。
4. 活性部位微环境的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶菌酶 胰凝乳蛋白酶 胃蛋白酶 木瓜蛋白酶 羧肽酶A 129 241 348 212 307 Asp52, Glu35 His57, Asp102, Ser195 Asp32, Asp215 Cys25, His159 Arg127, Glu270,Tyr248,Zn 2+
(一)别构调控
1、别构酶的概念 别构酶也称变构酶,它是代谢过程中的关键酶。除了具有酶的 活性部位外,还有一个调节部位。通过效应物(调节物)和酶 的别构部位的结合来调节其活性,从而调节酶反应速度和代谢 过程。
2、别构效应(allosteric effect):调节物或效应物
与酶分子上的别构中心结合后,诱导出或稳定住酶分子的某种 构象,使酶活性中心对底物的结合和催化作用受到影响,从而 调节酶反应速度及代谢过程,此效应即为酶的别构效应。 凡能使酶分子发生别构作用的物质称为效应物或别构剂,通常为小 分子代谢物或辅因子。如因别构导致酶活性增加的物质称为正效应 物或别构激活剂。反之称为负效应物或别构抑制剂。
在非极性环境中两个带电基团之间的静电作用比在极性 环境中显著增高。当底物分子与酶的活性部位相结合, 就被埋没在疏水环境中,这里底物分子与催化基团之间 的作用力将比活性部位极性环境的作用力要强得多。这 一疏水的微环境大大有利于酶的催化作用。
三、
52
五、酶活性的调节控制
(三)研究酶活性部位的方法
1.酶分子侧链基团的化学修饰法
(1)非特异性共价修饰
某些化学试剂能和酶蛋白中氨基酸残基的侧链基团反应而 引起共价结合、氧化或还原等修饰反应,使基团的结构和 性质发生改变。如果某基团修饰后不引起酶活力的变化, 可以初步认为,此基团可能是非必需基团。反之,如修饰 后引起酶活力的降低或丧失,则此基团可能是酶的必需基 团。 修饰剂已和活性都位基团结合的鉴别标准有两个: ①酶活力的丧失速率和修饰剂浓度成正比。 ②底物或与活性部位结合的可逆抑制剂可保护共价修饰剂 的抑制作用。
(三) 酸-碱催化(acid base catalysis)
酶分子中可以作为广义酸、碱的基团
影响酸碱催化反应速率的因素有两个,即酸或碱的 强度(pK值)及质子传递的速率。 在起酸碱催化的功能基团中组氨酸咪唑基的解 离常数约为6.0,因此在接近于生物体液pH的条件下, 即在中性条件下,有一半以酸形式存在,另一半以 碱形式存在,即可作为质子供体,又可作为质子受 体在酶反应中发挥催化作用。同时咪唑基接受质子 和供出质子的速率十分迅速,其半衰期小于10-10s。 由于咪唑基有如此特点,所以在很多蛋白质中His含 量虽少,却占很重要地位。
底物中典型的亲电中心,包括磷酰基、酰基和糖基
亲
(五) 金属离子的催化作用
1.需要金属的酶分类:
(1)金属酶-metalloenzyme:含紧密结合的金属离子。 如Fe2+、Fe3+、Cu2+、Zn2+、Mn2+、Co3+ (2)金属-激活酶(metal-activated enzyme):含松 散结合的金属离子,如Na+ 、K+ 、Mg2+ 、Ca2+
2.金属离子的催化作用:
许多氧化-还原酶中都含有铜或铁离子,它们作为酶的 辅助因子起着传递电子的功能。 许多激酶的底物为ATP-Mg2+复合物。 金属离子通过水的离子化促进亲核催化。
金属离子的催化作用
(七)微环境的影响(酶活性中心是低介电区域)
酶活性中心处于一个非极性环境中,从而有利 于同底物的结合。
a. Koshland标准:CI(cooperativity
index)协同指 数:酶分子中的结合位点被底物饱和90%和10%时底物浓度的 比值。亦称饱和比值Rs(saturation ratio)
Rs=
酶与底物结合达90%饱和度时底物浓度 酶与底物结合达10%饱和度时底物浓度
Rs=81 米氏类型酶 Rs81 具有正协同效应的别构酶 Rs81 具有负协同效应的别构酶 b.Hill系数: Hill系数=1 米氏类型酶 Hill系数1 具有正协同效应的别构酶 Hill系数1 具有负协同效应的别构酶
(3)亲和标记法
利用一些与底物结构相似的共价修饰剂。这种修饰剂有两个 特点:①可以较专一地引入酶的活性部位,接近底物给合位点。 ②具有活泼的化学基团,可以与活性部位的某一基团结合形成稳 定的共价键。因其作用机制是利用酶对底物的特殊亲和力将酶加 以修饰标记,故称为亲和标记。
如,胰凝乳蛋白酶的亲和标记
(2)特异性共价修饰。
某一种化学试剂专一地修饰酶活性部位的某一氨基酸残基, 使酶失活。通过水解分离标记的肽段,即可判断出被修饰的 酶活性部位的氨基酸残基。
二异丙基氟磷酸(DFP)能专一性地与酶活性部位的丝氨酸 残基的羟基共价结合,使酶活力丧失。
如,DFP与胰凝乳蛋白酶作用(只和活性部位的丝氨酸残基 的羟基结合)
2.酶的活性部位是一个三维实体,具有三维空间结构。 3. 酶的活性部位并不是和底物的形状正好互补的,而是 在酶和底物的结合过程中,底物分子或酶分子,有时 是两者的构象同时发生了一定的变化后才互补的,此 时催化基团的位臵正好处在所催化底物键的断裂和即 将生成键的适当位臵,这个动态辨认过程称为诱导契 合(induced-fit)。 4.酶的活性部位位于酶分子表面的一个裂隙(crevice) 内。裂隙内是一个相当疏水的环境,从而有利于同底 物的结合。 5.底物靠较弱的次级键与酶结合。 6.活性中心的空间构象不是刚性的,在与底物接触时表现 出一定的柔性和运动性。
2.动力学参数测定法
3.X-射线晶体衍射法
利用X-射线晶体衍射观察溶菌酶购三维结构可以看
出:溶菌酶活性部位有关氨基酸的排列位臵;酶-底物复合物 中,底物周围氨基酸的排列状况;根据被水解的糖苷键邻近氨 基酸残基的分析,确定了溶菌酶的催化基团为Glu35和Asp52。 再如,通过X射线晶体结构分析,表明胰凝乳蛋白酶活性部位 由 组成。这3个氨基酸残基联在一起形成一个 “电荷中继网,使Ser95的羟基具有非常高的亲核化。
3.别构酶的性质
(1)别构酶一般都是寡聚酶,通过次级键由多亚基构成 在别构酶分子上L有和底物结合和催化底物的活性部位, 也有和调节物或效应物结合的调节部位,这两种都位可能在同 一亚基上,也可能分别位于不同亚基止。每个别构酶分子可以 有一个以上的活性都位和调节部位,因此可以结合一个以上的 底物分子和调节物分子。在同促别构酶中活性部位和调节部位 是相同的。词节部位与活性部位虽然在空间上是分开的,但这 两个部位可相互影响,通过构象的变化,产生协同效应。可发 生在底物-底物,调节物-底物,调节物-调节物之间,可以是 正协同也可以是负协同。 (2)别构酶的动力学 别构酶的[S]对v的动力学曲线不是双曲线,而是S形曲 线(正协同)或表观双曲线(负协同),二者均不符合米 氏方程。
定向效应:当专一性底物向酶活性中心靠近时,会诱导酶分子 构象发生改变,使酶活性中心的相关基团和底物的反应基团正 确定向排列,同时使反应基团之间的分子轨道以正确方向严格 定位,使酶促反应易于进行。
例如:二羧酸单苯酯水解反应
(二)底物的形变(distortion)与诱导 契合
当酶遇到其专一性底物时,酶中某些基团或离子可以使底物 分子内敏感键中的某些基团的电子云密度增高或降低,产生 “电子张力”,使敏感键的一端更加敏感,底物分子发生形 变,底物比较接近它的过渡态,降低了反应话化能,使反应 易于发生。 例如,乙烯环磷酸酯的水解速率是磷酸二酯水解速率
必需基团:酶分子中有些基团若经化学修饰 (氧化、还原、酰化、烷化)使其改变, 则酶的活性丧失,这些基团称为必需基团。 非必需基团:有的酶温和水解掉几个AA残 基,仍能表现活性,这些基团即非必需基 团。
(二)酶活性中心的结构特点
1.活性中心只占酶分子总体积的很小一部分,往 往只占整个酶分子体积的1%-2%。
第10章
酶的作用机制和酶的调节
一、 酶的活性部位
(一)基本概念:酶的活性部位也叫酶的活性中心,指酶分 子上结合底物和将底物转化为产物的区域。对于不需要辅 酶的酶来说,活性中心就是酶分子在三维结构上比较靠近 的少数几个氨基酸残基或这些残基上的某些基团,它们在 一结构上相距甚远,甚至位于不同的肽链上,通过盘绕、 折叠而在空间构象上相互靠近;对于需要辅酶的酶来说, 辅酶分子或其上的某一部分结构往往就是活性中心的组成 部分。酶的活性中心包括两个功能部位:结合部位和催化 部位。 1.结合部位( Binding site) 酶分子中与底物结合的部位或区域一般称为结合部位。此 部位决定酶的专一性。 2.催化部位( catalytic site ) 酶分子中促使底物发生化学变化的部位称为催化部位。此 alent catalysis)
共价催化又称亲核催化或亲电子催化,在催化时, 亲核催化剂或亲电子催化剂能分别放出电子或获 得电子并作用于底物的缺电子中心或负电中心, 迅速形成不稳定的共价中间复合物,降低反应活 化能,使反应加速。 酶中参与共价催化的基团主要包括以下亲核基团: His 的咪唑基,Cys 的巯基,Asp 的羧基,Ser 的羟基等;亲电子基团:H+ 、Mg2+、 Mn2+ 、Fe3+ 某些辅酶,如焦磷酸硫胺素和磷酸吡哆醛等也可 以参与共价催化作用。
4.定点诱变法
二、影响酶催化效率的因素
( 一 ) 底 物 与 酶 的 邻 近 效 应 ( proximity effect)和定向效应(orientation effect)
在酶促反应中,由于酶和底物分子之间的亲和性,底物分 子有向酶的活性中心靠近的趋势,最终结合到酶的活性中 心,使底物在酶活性中心的有效浓度大大增加,从而使反 应速率大大增加的效应叫做邻近效应。 有机化学模拟实验:咪唑催化乙酸对硝基苯酯