第7章 恒定磁场1

合集下载

大学物理第7章恒定磁场(总结)

大学物理第7章恒定磁场(总结)

磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力

大学物理 稳恒磁场的基本性质

大学物理  稳恒磁场的基本性质

7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
四 安培环路定理的应用举例
例1 求长直密绕螺线管内磁场
解 1 ) 对称性分析螺旋管内为均匀场 , 方向沿
轴向, 外部磁感强度趋于零 ,即 B 0 .
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
2 ) 选回路 L .
磁场 B 的方向与
电流 I 成右螺旋.
s
B dS B dS
S
S
-Br 2
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例 如图载流长直导线的电流为 I ,
形面积的磁通量.
解 先求
试求通过矩 B ,对变磁场
B
给B出dΦ后0I 积分求BΦ// S
I
l
2π x dΦ BdS
0I
ldx

M
NB
++++++++++++
P
LO

B dl B dl B dl BPM
B MN 0nMNI B 0nI
无限长载流螺线管内部磁场处处相等 , 外部磁场 为零.
7 – 3 稳恒磁场的基本性质
第七章 稳恒磁场
例3 无限长载流圆柱体的磁场
I
解 1)对称性分析 2)选取回路
RR

rR
Bdl l
0I
L
2π rB 0I
B 0I
2π r
r B
0 r R
l
B
d
l

0
π π

7-4 毕奥-萨伐尔定律

7-4 毕奥-萨伐尔定律
物理学 第六版
7-0 教学基本要求
第 七 章
恒定磁场
第七章 恒定磁场 1
物理学 第六版
7-1 恒定电流
一 电流 电流密度
电流:通过截面S 的电荷随时间的变化率
I dq / dt
电流强度与运动带电粒子的关系 vdt
粒子数 密度为n S
设各粒子电量均为q,速度均为 v . dq (vdt S )nq I I dt dt
16
x
C
o r0
P
y
第七章 恒定磁场
物理学 第六版
7-4 毕奥-萨伐尔定律
0 Idz sin B dB 4 π CD r 2
z
D
2
z r0 cot , r r0 / sin
dz r0d / sin
2
dz
I
B
dB
*
0 I
4 π r0

3
物理学 第六版
7-1 恒定电流
2、电流密度和电流强度的积分关系
对任意小面元 d S
dI
d S
dS θ
d I j d S jdS cos j d S
对任意曲面S : I
j
j d S
S
由:dI n q vdS j dI / d S n q v
7-3 磁场 磁感强度
Fmax B 的大小: B qv B 的方向: 正电荷受力 Fmax 与电荷速度 v 的叉积 方向:Fmax v
第七章 恒定磁场 11
物理学 第六版
7-3 磁场 磁感强度
运动电荷在磁场中受力 F qv B 单位:特斯拉

恒定磁场

恒定磁场

1恒定磁场1.真空中位于'r点的点电荷q的电位的泊松方程为()2.由()可知,无界空间中的恒定磁场由恒定磁场的散度和旋度方程共同决定3.恒定磁场在自由空间中是()场4.磁通连续性定律公式物理意义:穿过任意闭和面的磁通量为()。

即进入闭和面S的磁力线数与穿出闭和面S的磁力线数(),磁力线是闭和的5.安培环路定律公式物理意义:磁感应强度B沿任意闭和路径l的线积分,()穿过路径l所围面积的总电流与的乘积6.一个载流的小闭和圆环称为()7.电流环的面积与电流的乘积,称为()8.在远离偶极子处,磁偶极子和电偶极子的场分布是()的,但在偶极子附近,二者场分布()9.磁力线是()的,电力线是间断的10.介质在磁场作用下会产生()11.磁化引起的分子电流、原子电流相当于()12.磁偶极子产生()磁场,叠加于原场之上,使磁场发生变化。

磁化的结果使介质中的合成磁场可能减弱,也可能增强13.介质磁性能分类:()磁性介质,()磁性介质,铁磁性及亚铁磁性介质14.()磁性介质:二次磁场与外加磁场方向相反,导致介质中合成磁场减弱15.()磁性介质:二次磁场与外加磁场方向相同,导致介质中合成磁场增强16.铁磁性及亚铁磁性介质:在()作用下,磁化现象非常显著17.在无传导电流的均匀介质中,束缚电流体密度为()18.只有磁场强度为零或磁场强度与介质表面相垂直的区域,束缚电流面密度为()19.磁感应强度通过某一表面的通量称为()20.与某电流交链的磁通量称为()21.导线回路的总自感等于内、外自感之()22.单位导线回路的内自感为()23.磁场问题的基本变量是场源变量和两个基本的场变量:磁感应强度和磁场强度。

实验证明:磁场的两个基本变量之间的关系为()24.磁通量连续性方程微分形式:()25.安培力可以用磁能量的空间变化率称()来计算26.自由空间中一半径为a的无限长导体圆柱,其中均匀流过电流I,求导体内外的磁感应强度27.一段长为L的导线,当其中有电流I通过时,求空间任一点的矢量磁位及磁感应强度28.磁导率为,内外半径分别为a,b的无限长空心导体圆柱,其中存在轴向均匀电流密度,求各处磁场强度和磁化电流密度。

毕奥-萨伐尔定律讲解

毕奥-萨伐尔定律讲解
第七章 恒定磁场
7-4 毕奥-萨伐尔定律
2
7-4 毕奥-萨伐尔定律
问题: 1、电磁起重机的工作原理是什么? 2、如何计算电磁起重机所产生的磁场的大小?
3
7-4 毕奥-萨伐尔定律
一、毕奥—萨伐尔定律
载流导线上任一电流
元Idl在真空中P处的
磁感强度大小,与电
流元的大小Idl成正比,
与电流元Idl到点P的
所以
B 0I 0I ,
4R1 4R2
19
7-4 毕奥-萨伐尔定律
例6. 求闭合载流线圈在 O点的磁场。
I
R1
R2
*o
解:由磁场叠加原理得总磁场为 :
B0
0I
4R2
0I
4R1
0I
4 π R1
20
7-4 毕奥-萨伐尔定律
例7. 长直导线 aa’与一半径为 R 的 导体圆环相切于a点, 另一长直导线 bb’ 沿半径方向与圆环相接于b点。电流 I 从 a 点流入而从b 点流出。求圆环中心O点的磁场。
dBx
0

I cosdl
r2
dB
*p x
B dBx dBcos
0I 4π
cosdl
l r2
因为 cos R r r2 R2 x2
所以
B
0IR
4π r3
2π R
dl
0
25
7-4 毕奥-萨伐尔定律
B
0 IR2
2(x2 R2)32
I
R
ox
B
*x
讨论: 1)若线圈有N匝
B
N (2 x2
例5. 求闭合载流线圈在 O点的磁场。
I
R2

毕奥萨伐尔定律.ppt

毕奥萨伐尔定律.ppt

第七章 恒定磁场
7
物理学
第五版
7-4 毕奥-萨伐尔定律
4.由叠加原理求出磁感应强度的分布;
若各电流产生的
dB 方向一致,直接用
B
若各电流产生的 dB方向不一致,按照所选取
dB
的坐标系,求出
dB
的各方向的分量,(注意是
否具有对称性)然后各方向分别进行积分。
这样做的目的是将磁感应强度的矢量积分变 为标量积分。有时在积分过程中还要选取合适的积 分变量,来统一积分变量。
B 0I
2R
B
I
❖ 载流圆弧:
圆心角
B 0I 0I 2R 2 4R
第七章 恒定磁场
B
I
17
物理学
第五版
7-4 毕奥-萨伐尔定律
(1)
R
B0
x

Io
广 (2)
I
R


合 (3) I
R ×o
B0
0I
2R
B0
0I
4R
B0
0I
8R
第七章 恒定磁场
18
物理学
第五版
7-4 毕奥-萨伐尔定律
(4) I
第七章 恒定磁场
33
B 0nI
O
x
第七章 恒定磁场
30
物理学
第五版
7-4 毕奥-萨伐尔定律
四 运动电荷的磁场
dB
0
Idl
r
4π r3
Idl
qnSvdl
dB
0

nSdlqv r3
r
j
S
dl
其中: I qnvS
dN nSdl

恒定磁场分析

恒定磁场分析
真空中本构关系
7
求证:
证 明:

ur r B ds = 0
Q
ur µ B= 0 4π

r ur Id l × R R3
r r u r r µ0 Idl × eR r ∴ ∫ B ds = ∫ ∫ c R2 d s s 4π
又Q
uv ur uv uv ur uv A× B C = A B×C
23
2、磁偶极子的标量位(解释P116) 磁偶极子的标量位(解释 ) 在无源区域( 在无源区域(只有无源 ∇ × H = J=0 uu r 区域才定义标量位): 区域才定义标量位): ∇×H =0 uu r H = −∇ ϕ m 由下面式子
P ( r ,θ , 0 )
µ0 µ0 1 A = p m × e r = − p m × ∇ 2 4πr 4π r B、幂级数近似) 与求电偶极子类似的方法(余弦定理、幂级数近似)可以得到 磁偶极子的矢量位和标量位: 磁偶极子的矢量位和标量位:
µ0 µ0 1 A= p m × er = − p m × ∇ 2 4πr 4π r
的距离,是标量。 其中 r 为场点 P 到磁偶极子中心 O 的距离,是标量。
这表明恒定磁场是无散有旋场, 这表明恒定磁场是无散有旋场, 无散有旋场 传导电流是其旋涡源。 传导电流是其旋涡源。
13
5-2、内、外半径分别为 a、b 的无限长空心圆柱中,均匀 - 、 、 的无限长空心圆柱中, 分布着轴向电流 求柱内、外的磁场强度。 I ,求柱内、外的磁场强度。
解:使用圆柱坐标系。电流密度沿轴线方向为 使用圆柱坐标系。
12
3、真空(介质)中磁场的基本方程: 真空(介质)中磁场的基本方程:
∫sB • d s = 0 , ∇•B =0 , ∇×H = J ∫c H • d l = I B = µ0H B = µH

大学物理第7章恒定磁场试题及答案.docx

大学物理第7章恒定磁场试题及答案.docx

第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。

大学物理稳恒磁场理论及习题解读

大学物理稳恒磁场理论及习题解读

250 0 方向垂直A面
B
BC
0 N C I C
2 RC

0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .

第7章稳恒磁场

第7章稳恒磁场

o
L
P
x
结论 任意平面载流导线在均匀磁场 中所受的力,与其始点和终点相同的载流 直导线所受的磁场力相同.
42
二 物理学 均匀磁场对载流线圈的作用力矩
将平面载流线圈放入均匀磁场中,
da边受到安培力大小:
Fda
Il
2
B
sin(
2
)
bc边受到安培力大小:
Fbc
Il 2 B
sin(
2
)
o
Fda
d
a
I
l1
qvB m v2 R
m qBR v
70 72 73 74 76
质谱仪的示意图
锗的质谱
30
物理学
霍耳效应
31
物理学
B
霍耳电压 Fm
UH
RH
IB d
b
d
vd+
+ ++
+q
+
- - - - - I
UH
Fe
qEH qvd B I qnvd S qnvdbd
EH vd B U H vd Bb
× ×
××0
粒子做匀速圆周运动
物理学
(3)
0与B成角
// 0 cos
0 sin
R m m0 sin
qB
qB

0 //
B
B
T 2R 2m qB
螺距 h : h //T 0 cos T 2m0 cos
qB
h //
0
q R
物理学
例题1 :请根据磁感应强度的方向规定,给 出下列情况运动电荷的受力方向:
B
c
en

第七章恒定磁场-习题解答

第七章恒定磁场-习题解答
第七章、稳恒磁场
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
形状。求使o点的磁感应强度为零的半径a和b的比值。
解 该载流系统由三部分组成,o点的磁感
应强度为载有相同电流的无限长直导线
及两个半径分别为a和b的圆环分别在该
处激发的磁感应强度的矢量和。设磁场 方向以垂直纸面向内为正,向外为负。
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、
电荷为q的离子。离子初速很小,可以看作是静止的,然后经
过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆
周运动,最后到达记录底片P上。测得离子在P上的位置到入
口处A的距离为x。试证明该离子的质量为:M ? qB 2 x 2 。
或由磁感应线是闭合曲线,也可推知
??
Φaefd
?
? Φabcd
?
0.24Wb
? Φ ? ?B?dS ? 0
第七章、稳恒磁场
7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常 量),方向垂直纸面向外。磁场中有一边长为a的正方形线 框,其位置如图所示。求通过线框的磁通量。
解 在线框内坐标为y处取一长为a宽为 dy的矩形面积元dS,在dS中磁场可认 为是均匀的,则通过dS的磁通量
? I2l
? 0 I1
2πx1
I2l
? ?7.2?
F2 10?4
? B2I2l N
?
? 0 I1
2πx2
I2l
负号表示合力方向水平向左。
第七章、稳恒磁场
习题7-16 一长直导线通有电流I =20A,另一导线ab通 有电流I?=10A,两者互相垂直且共面,如图所示。求导 线ab所受的作用力和对o点的力矩。

7-6 安培环路定理

7-6 安培环路定理
l
I1
I2
I3
推广: 推广: 安培环路定理
l
n v v ∫ B ⋅ dl = µ 0 ∑ I i i =1
第七章 恒定磁场
4
物理学
7-6
第五版
安培环路定理
安培环路定理
n v v ∫ B ⋅ dl = µ 0 ∑ I i i =1
v 在真空的恒定磁场 恒定磁场中 在真空的恒定磁场中,磁感强度 B 沿任 一闭合路径的积分的值, 一闭合路径的积分的值,等于µ 0乘以穿过该 闭合路径的各电流的代数和. 闭合路径的各电流的代数和
令 L = 2 πR
d
L
B = µ0 NI L
R
当 2R >> d 时,螺绕环内可视为均匀场 .
第七章 恒定磁场
14
物理学
7-6
第五版
安培环路定理
I
例2 无限长载流圆柱体的 磁场 L 解 (1)对称性分析 ) (2) r > R ) v v µ0 I ∫l B ⋅ d l = µ 0 I B = 2π r v v π r2 0 < r < R ∫ B ⋅ d l = µ0 2 I l πR µ0 Ir B= 2 2π R
j i
第七章 恒定磁场
12
物理学
7-6
第五版
安培环路定理
例1 求载流螺绕环内的磁场
v 解 (1) 对称性分析:环内 B 线为同心 ) 对称性分析: v 为零. 圆,环外 B 为零
d
R
第七章 恒定磁场
13
物理学
7-6
第五版
安培环路定理
(2)选回路 ) v v ∫l B ⋅ d l = 2π RB = µ0 NI µ0 NI B= 2π R

电磁场-复习资料

电磁场-复习资料

(9.1b) (9.1c)
∫S B(r) ⋅ dS= 0,
∇ ⋅ B(r) = 0
(9.1d)
3.问题:既然变化磁场能产生涡旋电场,那么变化电场能否产生磁场呢?图 4.1 中接交变电
源的电容器的断路回路上为什么存在传导电流?8
4.动态场基本方程——麦克斯韦方程
∫l
E(r,t) ⋅ dl
=
− ∫S
∂B(r , t ) ∂t
性微分算符“ ∇ ”来统一表示?
19.亥姆霍兹定理:在无界区域中,某场点的矢量场由其散度和旋度唯一确定。 第二章 源量的定义和库伦定律 1.微粒物质构成的带电体所带电量的多少称为电荷量。 2.当观察点与带电体的距离远大于带电体尺度时,可将点电荷视为体积很小而电荷密度很大 的带电小球的极限,其总电量完全集中于球心处。 3.电荷作定向运动,形成电流,其大小用电流强度来表示。
6.线电流——电流在某细导线上定向运动形成的电流。 7.电荷守恒性——电荷不能自生自灭,只能在物体内不同区域、或不同物体间转移。
电荷守恒定律——在一个无外界电荷交换的闭合系统内,正、负电荷的代数和在任何电磁
过程中均保持不变。 8. 库仑定律:自由空间中两个静止点电荷 q 和 q0 (探测静电力的试验电荷)的相互作用
与该点场矢量的方向一致。
4. 问题:为什么要同时应用矢量场的通量和环量来描述矢量场的场域性质?
5. 矢量场对有向曲面的面积分称为矢量场通过该有向曲面的通量。 7.(1)当ψ > 0 时,表示穿出闭合闭曲面 S 的通量线多于穿入的通量线,闭曲面 S 内必有发出
通量线的正通量源(例如,发出静电场力线的正电荷);
构成一个完备方程组,它定量描述了场量、源量和媒质间的相互作用规律和转化关系,全面 反映了电磁场与波的基本性质和普遍的运动规律,是宏观电磁理论的基础,所有的电磁现象 都可以由它得到说明。 7.问题:如何得动态位波动方程的单值解?按什么原则选择 A 的散度之值? 8. 理想介质——电导率极小的低耗介质

磁学和电磁感应(第七章和第八章)作业讲评

磁学和电磁感应(第七章和第八章)作业讲评

0i
2a0

0e
2 2
1 m e 0 a 0
8a0
其方向垂直纸面向外
第七章 恒定电流和磁场(二)
1 长直电流I2与圆形电流I1共面,并与其一直径相重合如图(但两者 间绝缘),设长直电流不动,则圆形电流将 dF (A) 绕I2旋转. (C) 向右运动. (E) 不动. 分析:圆形电流上所有电流元所受的长直电流的磁场力都在屏 幕平面上,右边的力沿径向向外,而左边的沿径向向内,所以 合力向右 它们所受的最大磁力矩之比M1/M2等于 (A)1 (C) 4 分析: M IS e n B p m B (B)2 (D) 1/4 (B) 向左运动. (D) 向上运动.
5.如图所示,在宽度为d的导体薄片上有电流I沿此导体长度方向流 过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P点 的磁感强度B 的大小为 0 I /( 2 d ) . 俯 I 分析:考虑导体中线附近处P点的磁感强度时,可认 视 图 为电流分布具有面对称性,此时板外磁场方向平行 d d 于板面并与电流方向垂直,建立关于板面对称的矩 I 形回路,利用安培环路定理求解。 P
q C 0 .2 C

1 C
t
idt
0
t
(1 e
) (SI)
(2) 由全电流的连续性,得
I d i 0 . 2 e t (SI)
5.均匀带电刚性细杆AB,电荷线密度为λ,绕垂直于直线的轴O 以角速度ω匀速转动(O点在细杆AB延长线上).求:(1)O点的 磁感应强度 ;(2)磁矩 P;(3)若a>>b,求 B 和 Pm O B m O dq 解:(1) r~r+dr段电荷 dr a dI dq = dr旋转形成圆电 2 2 A 流 0 d I 0 d r b 它在O点的磁感强度 d B 0

恒定磁场

恒定磁场

x r sin
Idl
x dl 2 d sin
r l o 1
积分变为:
x I sin d 2 Idlsin 2 2 0 sin 0 B dB 1 4π L 1 4 π r2 x2 2 sin 0 I 0 I sin d cos1 cos 2
1 0 , 2 0,
B =0
a
直线电流的磁感应线
磁感应线是以直线电流为轴的一层层同心圆环。
I
I
B
2.通电圆线圈的磁场
已知:电流为I,半径 R
Idl
求:圆电流的垂直轴线上P点的 B
R
I
解:将圆环分割为无限多个电流元, 电流元在轴线上产生的磁感应强度 dB 为:
o
Idl
dB dB r dBx x P dBx ' x dB ' dB'
I
I
第三节 恒定磁场的高斯定理 一.磁感应线
为形象的描绘磁场分布而引入的一组有方向的 空间曲线。 规定: •方向:磁感应线上各点的切线方向就是该点磁感应 强度的方向。 •大小:通过磁场中某点垂直于磁感应强度的单位 面积的磁感应线条数等于该点磁感应强度的大小。 磁感应线的疏密可以反映磁感应强度的大小。 磁感应线稀疏处B较小,磁感应线密集处B较大。

二.毕奥-萨伐尔定律的应用
解题步骤
1.选取合适的电流元——根据已知电流的分布与待求场点的位
置; 2.选取合适的坐标系——要根据电流的分布与磁场分布的特点 来选取坐标系,其目的是要使数学运算简单; 3.写出电流元产生的磁感应强度——根据毕奥-萨伐尔定律;
4.计算磁感应强度的分布——叠加原理;

大学物理课后选择与作业答案

大学物理课后选择与作业答案

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π (C )αB r cos π22(D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B =(C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠(D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H求得磁介质内的磁化强度,因而正确答案为(B ).7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xlμΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 7 -16 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222πππRr r R I I ==∑,因而 202πRIrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RIμB 7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力. 解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dlI I μF π22103=()b d lI I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.第八章 电磁感应 电磁场8 -1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( ) (A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向 (C ) 线圈中感应电流为逆时针方向 (D ) 线圈中感应电流方向无法确定分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).8 -2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( ) (A ) 铜环中有感应电流,木环中无感应电流 (B ) 铜环中有感应电流,木环中有感应电流 (C ) 铜环中感应电动势大,木环中感应电动势小 (D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;tiM εd d 21212=.因而正确答案为(D ).8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( ) (A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比 (D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链.解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tId d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tlM E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xIμx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd=-+==⎰⎰⎰再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为43ln π20d μI ΦM ==当电流以tld d 变化时,线圈中的互感电动势为 tI d μt I ME d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xIμB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰vv v I μx x μxl E ABAB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xIμΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===SIyμx y x I μΦΦ回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iyμt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为 ()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和t I d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.第九章 振动9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为()题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ).9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为 gS ρm πωT /2/π2==9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得 (),...2,1,0,π25.1π2π1223±±=+=++=k k k题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x (2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x 第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确.10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( ) ()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为 ()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π第十一章 光 学11-1 在双缝干涉实验中,若单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则( )(A ) 中央明纹向上移动,且条纹间距增大(B ) 中央明纹向上移动,且条纹间距不变(C ) 中央明纹向下移动,且条纹间距增大(D ) 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程相同,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.因此正确答案为(B ).。

恒定磁场习题

恒定磁场习题

B
设M线圈p平m 面B与B成pm6B0°sin角30, 则 1P.m5与7 B1成03-20N°角m ,方圈有向 法力:线矩力转矩向A将与驱B平使行线O
第七章 恒定磁场
解:在圆盘上任取一微元 dq 2rdr 圆盘以ω匀速转动相当于产生一圆电流。
or R
dI dq rdr
T 微元在P点产生的磁感应强度大小为:
dB

0r 2dI
2(r
2

x2
3
)2
B
R
dB
0
0q 2R2
(
R2 2x2 R2 x2
2x)
第七章 恒定磁场
恒定磁场习题课选讲例题
物理学教程 (第二版)
例 一无限长载流 I 的导线,中部弯成如图所示 的四分之一圆周 AB,圆心为O,半径为R,则在O点处 的磁感应强度的大小为
(A)
0I
2πR
(B)
0 I (1
4πR
π) 2
(C)
0I
4R
(D)
0 I (1
4πR
π) 2
A
R
B
O
第七章 恒定磁场
物理学教程 (第二版)
有一带电球壳,内、外半径分别为a和b,电荷体密度r = A /
r,在球心处有一点电荷Q,证明当A = Q / ( 2a2 )时,球壳
区域内的场强的大小与r无关.
r
证:用高斯定理求球壳内场强:

E d S E 4r 2 S
Q
r dV
V
/0
恒定磁场习题课选讲例题
物理学教程 (第二版)
圆弧形例载流有导一线半径bc为,按a图,示流方过式稳置恒于电均流匀为外I磁的场1B4

第7章恒定磁场1

第7章恒定磁场1

为r 的阴影部分均匀带正电荷,面电荷密度为■二,其余第7章恒定磁场二、计算题 1.边长为21的正方形导体框载有电流 I .求正方形轴线上离中心 O 为X 处的磁感应强度B 和磁场强度H .2. 如T7-3-2图所示,一无限长载流直导线载有电流I ,在一处弯成半径为 R 的半圆弧.求此半圆弧中心O 点的磁感应强度B .3.两共轴载流线圈,半径分别为 R i 和R 2 ,电流分别为I i 和∣2 ,电流流向如T7-3-3图 所示•两线圈中心 O 1和O 2相距为21 ,联线的中心为 O .求轴线上离 O 点为r 处的磁感应 强度B .4. 如T7-3-4图所示,表面绝缘的细导线密绕成半径为 心,另一端在盘边缘,沿半径单位长度上的匝数为 n 当导线中通有电流I 时,求离圆盘中心距离X 处P 点的磁感应强度 B .5.女口 T7-3-5图所示,宽度为 d 的“无限长”直导体薄片通有从下到上的电流 I ,电流在导体横截面上均匀分布.图中P 点为通过导体片中线并与导体片面垂直的平面上的一点,它与导体片的距离为 r .求P 点的磁感应强度B .OT7-3-2图R 的平面圆盘,导线的一端在盘6.如图,一半径为 R 的带电塑料圆盘,其中有一半径 T7-3-3 图 bT7-3-4 图T7-3-5 图X X X_.X X X :部分均匀带负电荷,面电荷密度为 -::;.当圆盘以角速度•■旋转时,测得圆盘中心 O 点的磁感应强度为零,问 R 与r 满足什么关系?7. 星际空间里某区域内存在一均匀磁场B ,其大小为1.0 10 '高斯.一电子在此磁场中运动,其速度沿磁场 B 方向的分量为1%c .当电子沿磁场方向 前进了一光年时,它绕磁力线转了多少圈 8.图7-3-7所示的结构中,两水银杯与一个带开关K 的电源相联结;上部分是一质量为m 的一段导线弯成了形,上面一段长度为 L,置于垂直向里的均匀磁场B 中,下端也分别插入到两水银杯中. 开关K 接通时,上面的的导线就会跳起来, 设导线跳起的高度为 h,求通过导线的电量.9. 一 “无限长”直线电流I 1旁边有一段与之垂直且共面的电流 I 2 ,载流∣2的导线长度 为L,其一端离“无限长”直线电流的距离也是L.试求电流I 1作用在电流I 2上的磁场力.10. 一线圈由半径为 0.2m 的1.4圆弧和相互垂直的二直线组 成,通以电流2A ,把它放在磁感应强度为 0.5T 的均匀磁场中(磁感应强度B 的方向如T7-3-10图所示).求:C(A) 线圈平面与磁场垂直时,圆弧AB所受的磁力;(B) 线圈平面与磁场成 60 •角时,线圈所受的磁力矩. 11.电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计, 试用毕奥----萨伐尔定律求板外的任意一 点的磁感应强度.12. 如T7-3-12图所示,一半径为R 的均匀带电无限长直圆筒, 电荷面密度为二,该筒以角速度■绕其轴线匀速旋转, 试求圆筒内 部的磁感应强度.13. 带电刚性细杆 CD,电荷线密度为 丸,绕垂直于直线的轴 O 以ω角速度匀速转动(O 点在细杆AB 延长线上),求:(1) O 点的磁感应强度B o ;⑵磁矩P m ;(3)若a …b ,求B o 及P m .OT7-3-6 图T7-3-8 图14. T7-3-14图为两条穿过y轴且垂直于x— y平面的平行长直导DT7-3-13 图⑴推导出X轴上P点处的磁感应强度B(X)的表达式.⑵求P点在X轴上何处时,该点的 B取值最大.15. 如T7-3-15图所示的一无限长圆筒,内半径为R i,外半径为 R2,沿轴向通有恒定电流,密度为j ,求磁感应强度分布.16. 一厚度为b的无限大平板,沿板平面均匀流有恒定电流,其密度为j ,方向如T7-3-16图示,求板内外磁场的分布.17•如T7-3-17图所示,两个闭合曲线L1和L2环绕一稳恒电流I ,求电流I的磁场对于T7-3-15 图T7-3-17 图闭合曲线L1和L2的环流L B dl禾L B dl18. 均匀磁场中放置一半径为 R的半圆形导线,其位置如T7-3-17图所示.已知磁感强度为B ,导线中电流为I ,导线两端的连线与B夹角-30 ,求此段圆弧所受磁力.19. 一无限长圆柱面沿轴向开有细长条缺口,缺口的宽度b远小于圆柱的半径 R,圆柱面上均匀通有轴向电流,电流的线密度为j .在圆柱的轴线位置放置无限长载流直导线,电流强度为I, j、I的方向相同.求单位长度的载流直导线所受带缺口的圆柱面电流的磁力.20. 一半径为R的圆线圈,载有电流I ,置于均匀外磁场B中,线圈的法线方向与B的方向相同,在不考虑载流线圈本身所激发的磁场的情况下,求线圈导线上的张力.21. 如T7-3-21图所示,支在一水平轴尖 O上的一细长小磁针,在地磁场的作用下,平衡时指向南北方向;若使磁针偏离平衡位置一个小的角度后释放,它将绕平衡位置往复摆动•经实验测定,小磁针的摆动周期T = 2s ,小磁针绕O轴的转动惯量J = 8 × 10-8 kg ∙m2,地磁场的磁感应强度的水平分量 B = 0.3 × 10-4 T.试求小磁针的等效磁矩.T7-3-21 图T7-3-20 图。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7章 恒定磁场
三、计算题
1. 边长为2l 的正方形导体框载有电流I .求正方形轴线上离中心O 为x 处的磁感应强
度B 和磁场强度H .
2. 如T7-3-2图所示,一无限长载流直导线载有电流I ,在一处弯成半径为R 的半圆弧.求
此半圆弧中心O 点的磁感应强度B

3. 两共轴载流线圈,半径分别为1R 和2R ,电流分别为1I 和2I ,电流流向如T7-3-3图所示.两线圈中心1O 和2O 相距为l 2,联线的中心为O .求轴线上离O 点为r 处的磁感应
强度B .
4. 如T7-3-4图所示,表面绝缘的细导线密绕成半径为R 的平面圆盘,导线的一端在盘心,另一端在盘边缘,沿半径单位长度上的匝数为n .当导线中通有电流I 时,求离圆盘中
心距离x 处P 点的磁感应强度B

5. 如T7-3-5图所示,宽度为d 的“无限长”直导体薄片通有从下到上的电流I ,电流在导体横截面上均匀分布.图中P 点为通过导体片中线并与导体片面垂直的平面上的一点,
它与导体片的距离为r .求P 点的磁感应强度B

6. 如图,一半径为R 的带电塑料圆盘,其中有一半径
为r 的阴影部分均匀带正电
荷,面电荷密度为σ+,其余
T7-3-4图
T7-3-5图
T7-3-7图
部分均匀带负电荷,面电荷密度为σ-.当圆盘以角速度ω旋转时,测得圆盘中心O 点的
r 满足什么关系?
7. 星际空间里某区域内存在一均匀磁场B ,其大小

高斯5
100.1-⨯.一电子在此磁场中运动,其速度沿磁场B 方向的分量为1%c
.当电子沿磁场方向前进了一光年时,它绕磁力线转
了多少圈?
8. 图7-3-7所示的结构中,两水银杯与一个带开关K 的电源相联结;上部分是一质量为m 的一段导线弯成了 形,上面一段长度为L ,置于垂直向里的均匀磁场B 中,下端也分别插入到两水银杯中.开关
K 接通时,上面的的导线就会跳起来,设导线跳起的高度为h ,求通过导线的电量.
9. 一“无限长”直线电流1I 旁边有一段与之垂直且共面的电流2I ,载流2I 的导线长度为L ,其一端离“无限长”直线电流的距离也是L .试求电流1I 作用在电流2I 上的磁场力.
10. 一线圈由半径为m
2.0的41圆弧和相互垂直的二直线组成,通以电流A 2,把它放在磁感应强度为T 5.0的均匀磁场中(磁感应强度B
的方向如T7-3-10图所示).求:
(A) 线圈平面与磁场垂直时,圆弧⋂
AB 所受的磁力; (B) 线圈平面与磁场成
60角时,线圈所受的磁力矩.
11. 电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥----萨伐尔定律求板外的任意一点的磁感应强度.
12. 如T7-3-12图所示,一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转,试求圆筒内部的磁感应强度.
13. 带电刚性细杆CD ,电荷线密度为λ,绕垂直于直线的轴O
以ω角速度匀速转动(O 点在细杆AB 延长线上),求:
(1) O 点的磁感应强度o B

(2) 磁矩m P

(3) 若b a >>,求o B 及m P

14. T7-3-14图为两条穿过y 轴且垂直于x —y 平面的平行长直导
T7-3-8图
I
T7-3-10图
T7-3-11图
T7-3-13图
T7-3-14图
T7-3-12图
线的俯视图,两条导线均通有电流I ,但方向相反,它们到x 轴的距离皆为a .
(1) 推导出x 轴上P 点处的磁感应强度)(x B
的表达式.
(2) 求P 点在x 轴上何处时,该点的B 取值最大.
15. 如T7-3-15图所示的一无限长圆筒,内半径为R 1,外半径为R 2,沿轴向通有恒定电流, 密度为j
,求磁感应强度分布.
16. 一厚度为b 的无限大平板,沿板平面均匀流有恒定电流,其密度为j
, 方向如
T7-3-16图示, 求板内外磁场的分布.
17. 如T7-3-17图所示,两个闭合曲线1L 和2L 环绕一稳恒电流I ,求电流I 的磁场对于
闭合曲线1L 和2L 的环流⎰⎰⋅⋅2
1
d d L L l B l B
和.
18. 均匀磁场中放置一半径为R 的半圆形导线,其位置如
T7-3-17图所示.已知磁感强度为B
,导线中电流为I ,导线两端
的连线与B
夹角30α=,求此段圆弧所受磁力.
19. 一无限长圆柱面沿轴向开有细长条缺口,缺口的宽度b 远小于圆柱的半径R ,圆柱面上均匀通有轴向电流, 电流的线
密度为j
. 在圆柱的轴线位置放置无限长载流直导线,电流强
度为I ,j
、I 的方向相同.求单位长度的载流直导线所受带缺
口的圆柱面电流的磁力.
20. 一半径为R 的圆线圈,载有电流I ,置于均匀外磁场B
中,线圈的法线方向与B
的方向相同,在不考虑载流线圈本身所激发的磁场
的情况下,求线圈导线上的张力.
21. 如T7-3-21图所示,支在一水平轴尖O 上的一细长小磁针,在地磁场的作用下,平衡时指向南北方向;若使磁针偏离平衡位置一个小的角度后释放,它将绕平衡位置往复摆动.经实验测定,小磁针的摆动周期T = 2s ,小磁针绕O 轴的转动惯量J = 8×10-8
kg ·m 2,地磁场的磁感应强度的水平分量B = 0.3×10-4
T .试求小磁针的等效磁矩.
2
R j
T7-3-15图
1
R C b
j
T7-3-16图
D
R
B
O
a b
I α
T7-3-18图
R b
I j
T7-3-19图
T7-3-20图
R B
I ⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅
T7-3-17图
O
N
B
T7-3-21图
S。

相关文档
最新文档