行列式的计算方法论文范文

合集下载

行列式的计算与技巧 毕业论文

行列式的计算与技巧  毕业论文

江西师范大学数学与信息科学学院学士学位论文行列式的计算与技巧The calculation of determinantand the skill姓名:* ***学号:090*0*0**2学院:数学与信息科学学院专业:数学与应用数学指导老师:*完成时间:2013-3-11行列式的计算与技巧【摘要】行列式是代数的一个重要的内容,也是讨论线性方程组的一个非常有力的工具,在数学的许多分支上有着极其广泛的应用。

同时,行列式的计算非常的灵活多变,有很强的技巧和规律性。

本文则主要讨论行列式的一些常用的方法,并坚持从实例出发,在以上几种常用方法的基础上,探讨并给出行列式的其他几种计算方法。

如:三角形法、升阶法、数学归纳法、递推法、提取因子法、范德蒙行列式法、拆行法等等,通过以上这些方法基本可以解决一般的n阶行列式的计算问题。

【关键词】行列式递推法范德蒙行列式降阶法The calculation of determinant and the skill【Abstract】Determinant is an important content of algebra, and discussthe system of linear equations is a very powerful tool, many branches of mathematics has the extremely widespread application. At the same time, the determinant calculation is very flexible, strong skills and regularity. This article mainly discuss some commonly used methods of the determinant, and proceed from the instance and on the basis of the above several kinds of commonly used method, and gives several calculation methods of the determinant are discussed. Such as: the triangle method, order method, mathematical induction, recursive method, extraction factor method, vandermonde determinant method, the split line method, and so on, through the above these methods can solve the general basic n-th-order determinant calculation problem.【Key words】:The determinant, Recursive method, Vandermonde determinant,Order reduction method目录1 引言 (1)2行列式的定义 (1)2.1 用定义法计算行列式 (1)3 行列式的相关性质 (3)3.1利用相关性质得到几种特殊解法 (3)3.1.1对角线法则计算行列式 (3)3.1.2 三角形法计算行列式 (3)3.1.2.1箭形(或爪形)行列式 (4)3.1.3加边法(升阶法)计算行列式 (5)3.1.4 分解行列法(又称拆项法)计算行列式 (6)3.1.5降阶法计算行列式 (7)4递推法计算行列式 (9)5 特征值法计算行列式 (10)6 数学归纳法计算行列式 (10)7 提取因子法计算行列式 (11)8 利用范德蒙行列式计算行列式 (12)9 利用拉普拉斯展开定理计算行列式 (14)10 因式分解法计算行列式 (15)11 乘法定理法(行列式乘积法)计算行列式 (16)12 小结 (17)参考文献 (18)1 引言行列式是一个基本的数学工具,是线性代数的重要研究对象,无论是在高精尖端科学领域,还是在日常工业生产、工程施工或经济管理中都有着广泛的应用。

行列式的计算方法小论文

行列式的计算方法小论文

行列式的计算方法行列式计算方法总结及简单应用摘要:行列式的计算方法,并举例说明了它们的应用,同时对若干特殊例子进行推广。

并举出了几种常见的行列式应用。

关键词:排列 行列式 行列式计 行列式计算的基本方法:基本的行列式解法包括:性质法、化三角形法、代数余子式法等1、利用行列式的性质计算例1: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称n D 为反对称行列式,证明:奇数阶反对称行列式为零.证:由ij ji a a =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式n D 可表示为1213112232132331230000n nn n nnna a a a a a D a a a a a a -=-----, 由行列式的性质A A '=,1213112232132331230000n n n n nnna a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ =n n D )1(-当n 为奇数时,得n D =n D ,因而得n D = 0.2、 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例2 计算n 阶行列式n ab b ba b D bb a=解:()[]a b b a bbb n a D n1111-+=()[]ba b a bbb n a ---+=000011()[])1()(1---+=n b a b n a3、代数余子式法在一个n 级行列式D 中,把元素ij a 所在的行与列划去后,剩下的2)1(-n 个元素按照原来的次序组成的一个)1(-n 阶行列式ij M ,称为元ij a 的余子式,ij M 带上符号)()1(j i +-称为的ij a 代数余子式,记作ij j i ij M A )()1(+-=定理1: 行列式等于其第 i 行诸元素与各自代数余子式的乘积之和 , 即ij nj ij nn nn ij ij A a A a A a A a A a A a D ∑==+++++=1131312121111证:先证特殊情况元素11a 位于第一行、第一列,而该行其余元素均为零;1121222120n n n nna a a a D a a a =1212121211()()121211(1)(1)n n n n j j j j j j j j nj j j nj j j a a a a a a ττ=≠=-+-∑∑2223()112()(1)n n n j j j nj j j j a a a τ=-∑1111a M =而11111111(1)A M M +=-=,故1111D a A =;(2)111110j n ij n njnna a a a D a a a = 将D 中第i 行依次与前1i -行对调,调换1i -次后位于第一行; 将D 中第j 列依次与前1j -列对调,调换1j -次后位于第一列; 经(1)(1)2i j i j -+-=+-次对调后,ij a 就位于第一行、第一列,即2(1)(1)i j i j ij ij ij ij ij ij D a M a M a A +-+=-=-=.(3) 一般地111211212000000ni iinn n nna a a D a a a a a a =+++++++++111211112111121121212120000nn n i i in n n nnn n nnn n nna a a a a a a a a a a a a a a a a a a a a =+++ 1122i i i i in in a A a A a A =++同理有:nj nj j j j j A a A a A a D +++= 2211.例3 计算四阶行列式 4000000a ba b a b a b D a b a b a ba b+-+-=-+-+.证: 按第1行展开,有1114400()(1)0()(1)000a b a ba b a bD a b a b a ba b a b a b a ba b +++-+-=+--++---++-, 对等式右端的两个3阶行列式都按第3行展开,得22[()()]a b a b D a b a b a b a b+-=+---+4222a b =.4、范德蒙得行列式法根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式.其中范德蒙行列式就是一种.这种变形法是计算行列式最常用的方法.例1 计算行列式1222211221212121122111111n n nn n n n n n n nx x x D x x x x x x x x x x x x ------+++=++++++解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得范德蒙行列式1222212111112111()n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏参考文献[1] 蒋省吾. 杨辉三角中的行列式[J],教学通报,1988,5:8-10 [2] 张禾瑞.郝新高等代数[M].北京:人民教育出版社,1996. [3] 王品超.高等代数新方法[M].济南,山东教育出版社,1989.[4] 北京大学数学系几何与代数教研室代数小组. 高等代数(第三版)[M]. 北京: 高等教育出社,2003.[5] 同济大学数学教研室.工程数学线性代数(第三版) [M].北京:高等教育出版社,1999. [6] 王萼芳, 石生明修订. 高等代数(第三版)[M]. 北京: 高等教育出版社, 2003. [7] 李宇寰.组合数学[M].北京:北京师范大学出版社,1988. [8] 杨振声.组合数学及其算法[M].北京:中国科学技术出版社,1997. [9] 陈景润.组合数学简介[M].天津:天津科学技术出版社,1988.。

行列式的计算技巧及其应用毕业论文【范本模板】

行列式的计算技巧及其应用毕业论文【范本模板】

本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。

.。

....。

.。

....。

.。

.。

.。

.。

.。

.。

.。

...。

..。

....。

.。

.。

..。

.。

.。

1 关键词.。

....。

.。

..。

.。

..。

..。

.。

.。

...。

....。

..。

..。

...。

..。

...。

1 0、前言。

..。

.。

.。

.。

....。

...。

.。

....。

.。

.。

..。

.。

....。

..。

.。

..。

1 1、基础知识及预备引理.。

....。

..。

.。

.。

.....。

....。

..。

..。

.。

.。

.。

.。

.。

2 1.1行列式的由来及定义。

..。

..。

...。

.。

..。

...。

.。

...。

....。

..。

....。

....。

..2 1.2行列式的性质。

.。

..。

.。

...。

..。

..。

...。

..。

.。

.。

....。

.。

.。

...。

.。

.。

.。

3 1。

3拉普拉斯定理及范德蒙德行列式的定义....。

.。

.。

..。

.。

.....。

.。

..。

4 2、行列式的计算方法。

.。

.。

...。

..。

...。

.。

..。

.。

...。

..。

..。

.....。

..。

.。

..。

.4 2。

1定义法。

.。

.。

...。

.。

...。

.。

...。

........。

.。

...。

.。

.。

.。

..。

..。

..4 2.2利用行列式的性质(化三角型)计算.。

.。

..。

..。

.。

.。

.。

.。

.。

..。

..。

..。

5 2.3拆行(列)法...。

..。

.。

..。

..。

.。

....。

.。

.。

...。

..。

.。

.。

..。

6 2。

4加边法(升阶法)。

..。

.。

....。

.。

..。

..。

...。

.。

.。

.。

..。

..。

..。

..。

.6 2。

5范德蒙德行列式的应用。

..。

...。

.。

.。

..。

.。

.。

.。

.。

.。

...。

.。

.。

..。

...。

.。

.7 3、n阶行列式的计算。

行列式的计算方法 毕业论文 (2)

行列式的计算方法  毕业论文 (2)

行列式的计算方法摘要行列式最早是由解线性方程而引进的,时至今日,行列式已不止如此,在许多方面都有广泛的应用。

本文,我们学习行列式的定义、性质,化为“三角形”行列式,利用行列式的性质,使行列式化简或化为“三角形”行列式计算。

利用拉普拉斯展开定理,按某一行(列)或某几行(列)展开,使行列式降级,利用范德蒙行列式的计算公式,利用递推关系等,在计算行列式中最常用的是利用行列式的性质,和按某行(列)展开行列式,而某些方法是针对于某些特殊类型的行列代而言,对一般的n级行列式的计算,往往要利用行列式的性质和拉普拉斯展开定理,导出一个递推公式,化为2级或3级行列式,以及化为“三角形”行列式来计算。

关键词计算方法线性方程组行列式引言解方程是代数中一个基本问题,特别是在中学代数中,解方程占有重要地位。

因此这个问题是读者所熟悉的。

譬如说,如果我们知道了一段导线的电阴r,它的两端的电位差v,那么通过这段导线的电流强度i,就可以由关系式vir ,求出来。

这就是通常所谓解一元一次方程的问题。

在中学所学代数中,我们解过一元、二元、三元以至四元一次方程组。

而n 元一次方程组,即线性方程组的理论,在数学中是基本的也是重要的内容。

在中学代数课中学过,对于二元线性方程组:⎩⎨⎧=+=+22221211212111b x a x a b x a x a 当二级行列式022211211≠a a a a 时,该方程组有唯一解,即222112112221211a a a a ab a b x =,222112112211112a a a a b a b a x =,对于三元线性方程组有相仿的结论。

为了把此结果推广到n 元线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212*********的情形。

我们首先要掌握n 级行列式的相关知识。

n阶行列式的计算方法探索毕业论文

n阶行列式的计算方法探索毕业论文
本科毕业设计(论文)
目:N阶行列式计算方法探索
毕业设计(论文)原创性声明和使用授权说明
原创性声明
本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教 师的指导下进行的研究工作及取得的成果。 尽我所知,除文中特别加 以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研 究成果,也不包含我为获得 及其它教育机构的学位或学历
to calculate the determinant. Firstly, we list some common methods. For example:the direct method of calculation by using the determinant definition,the method of
而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体, 均已在文中作了明确的说明并表示了谢意。
作者签名: 日 期:
指导教师签名: 日 期:
使用授权说明
本人完全了解 大学关于收集、保存、使用毕业设计(论
文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电 子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供 目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制 手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分 或全部内容。
1) 设计(论文)
2) 附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装
指导教师评阅书
指导教师评价:
一、 撰写(设计)过程
1、 学生在论文(设计)过程中的治学态度、工作精神
□优 □良 □中 □及格□不及格
2、 学生掌握专业知识、技能的扎实程度
□优 □良 □中 □及格□不及格

行列式的计算及应用

行列式的计算及应用

***大学2014 届本科毕业论文论文题目:行列式的计算及应用学生姓名:***所在院系:数学科学学院所学专业:数学与应用数学(金融方向)导师姓名:***完成时间:***年***月***日行列式的计算及应用摘要在高等代数这门课程里,行列式是最基本而又重要的内容之一,同时也是数学研究中的重要的工具之一,在线性代数、数学分析、解析几何等众多课程理论中以及实际问题中许也发挥着重要作用,了解如何计算和应用行列式显得尤为重要。

本文首先阐述行列式的基本理论,在此研究的基础上介绍了降阶法,归纳法,化三角形法等几种常见的且有一定技巧的解行列式的方法,并列举了相关的例子,更直观地了解解行列式方法的精髓。

另外,本文又介绍了行列式在解析几何、代数及其他课程当中的应用,进一步加深了对行列式的理解。

最后本文又列举实例阐述行列式在实际当中的应用,实现了行列式的理论与实际相结合。

研究行列式的计算方法及其应用可以提高对行列式的认识,有利于把行列式的研究推向深入。

通过这一系列的方法可以进一步提升对行列式的认识,为以后学习奠定了基础。

关键词:行列式,因式分解,化三角形法, 归纳法,加边法,Matlab软件Determinant calculation and applicationAbstractThis course in advanced algebra, the determinant is one of the most basic and important content, while many math curriculum theory is one of the important research tools, linear algebra, mathematical analysis, analytic geometry, etc. as well as practical problems also plays an important role in understanding how to calculate and apply the determinant is particularly important.This paper first describes the basic theory of determinants, based on this study describes the reduction method, induction techniques and a certain common determinant of several methods of solution method, the method of the triangle, and cited relevant examples, more intuitive understanding of the essence of the solution determinant method. In addition, this paper describes the determinant in analytic geometry, algebra and other courses which further deepened the understanding of the determinants. Finally, they provide examples described determinant application in practice to achieve a theoretical and practical determinant combined. Research determinant calculation method and its application can improve the understanding of the determinant, is conducive to deepen the study of determinants. You can further enhance the understanding of the determinants through this series of methods, laid the foundation for future learning.Keywords: determinants, factorization of a triangle, induction, plus side method, Matlab software目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用范德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (15)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (17)3.6 行列式在实际中的应用 (18)总结 (20)参考文献 (21)附录1 (22)附录2 (22)附录3 (23)谢辞 (24)1. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D 21212121)(212222111211)1(∑-==τ,(1-1-2) 这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为ni i i i i i i i i nnn n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ.(1-1-3)1.2 行列式的相关性质记 nnn n n n a a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='. 性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D +=可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -=性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D,交换D相同的那两行,由性质4可得D=,故D-D.0=性质6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.2. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算例2 一个n 阶行列式ij n a D =的元素都满足n j i a a ji ij ,,2,1,, =-=, 那么n D 叫做反对称行列式,证明:奇数阶的反对称行列式的值等于0.证明:由ji ij a a -=知ii ii a a -=,即n i a ii ,,2,1,0 ==所以行列式n D 可写为0000321323132231211312 n n nn n nn a a a a a a a a a a a a D ------=,再由行列式的性质2,'A A =得到0000000321323132231211312321323132231211312nnnnn n n nnn nn n a a a a a a a a a a a a a a a a a a a a a a a a D ------=------=n n nn n n nn n D a a a a a a a a a a a a )1(0000)1(321323132231211312-=-------= ,当n 为奇数时,得n n D D -=,因而得到0=n D .2.4 降阶法例3 计算)2(≥n n 级行列式xy y x y x y xd 000000000000=. 解:按第一列展开得到原式阶阶)1(1)1(000000000)1(0000000000000-+--⨯+=n n n y xy y x y y x yx y x y x x1)1(1)1(-+-⨯⨯-+⨯=n n n y y x x)2()1()1(≥-+=+n y x n n n .2.5 归纳法形如行列式113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D叫做n 阶范德蒙(Vandermonde )行列式.下面证明,对每一个)2(≥n n ,n 阶范德蒙行列式就等于n a a a ,,,21 这n 个数的所有可能的差)1(n i j a a j i ≤<≤-的乘积.用数学归纳法证明范德蒙德行列式 我们对n 作归纳法. (1)当2=n 时,122111a a a a -=,结果是对的.(2)设对于1-n 级的范德蒙行列式,结论是成立的,先来看n 级的情况.在113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D中,第n 行减第1-n 行的1a 倍,第1-n 行减第2-n 行的1a 倍,即由下而上逐次地从每一行减它上一行的1a 倍,得到n D 21123113221121231232122113120001111---------------=n nn n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a2112311322112123123212211312---------------=n nn n n n n n nn n a a a a a a a a a a a a a a a a a a a a a a a a22322223223211312111)())((------=n nn n n n n a a a a a a a a a a a a a a a. 最后面这个行列式是1-n 级范德蒙德行列式,再由归纳法假设,它的值就是)1(n i j a a j i ≤<≤-;而所有带有1a 的差即为上式最后等式行列式的前面.所以,结论对n 级范德蒙德行列式也是成立的.由数学归纳法,证明了结论.用连乘号,这个结果可以简写为∏≤<≤-----==ni j j i n nn n n nn n a a a a a a a a a a a a a a D 1113121122322213211111)( . (2-5-1) 2.6 递推法给定一个递推关系式,再给定某一个较低阶初始行列式的值,就可递推求得所给n 阶行列式的值,运用这种方法计算的方法就叫做递推法。

行列式的计算 毕业论文

行列式的计算  毕业论文

行列式的计算摘要: 行列式是研究许多学科的重要工具,因此行列式的计算是大家共同关注的问题.本文介绍了几种特殊而且行之有效的行列式的计算方法.关键词: 范德蒙行列式; 降阶法; 升阶法; 递推法; 数学归纳法; 代数余子式的计算; 拉普拉斯定理展开符号说明: i r 表示第 i 行j c 表示第j 列ij M 表示行列式元素ij a 的余子式 ij A 表示行列式元素ij a 的代数余子式i j kr r + 表示第 i 行的k 倍加到第j 行 i j kc c + 表示第 i 列的k 倍加到第j 列The Calculation of the DeterminantMA Zhi-e(College of Mathematics and Statistics, Northwest Normal University,Lanzhou 730070, Gansu, China)Abstract: The determinant is an important tool to study many disciplines, so the calculation of thedeterminant is a commonly concerned problem. Several particular and effective methods of calculating the determinant are introduced in this paper.Key words: Vandermonde determinant; reducing order method; ascending order method; recursive methods;mathematical induction; calculation of algebraic complement; method of Laplace expansion;引言使用行列式按行(列)展开,可以将行列式写成低一阶的行列式的代数和,从而将行列式降一阶.但是,由于展开式是n 项代数和,因此计算量任很大,可以考虑一些减少计算量的方法,并且选择最佳计算方法.行列式是研究许多学科的重要工具,因此行列式的计算是大家共同关注的问题.课本中只介绍了几种计算方法,本文主要介绍几种特殊而且行之有效的行列式的计算方法,具有针对性.一、化行列式为三角行列式使用行列式的性质将行列式化为三角行列式 ㈠ 箭形行列式例1.1 计算行列式11111201030100n D n= 解 1212,3,111110200030000j nj c c jn j njD n=+-=-=∑ 21!(1)nj n j==-∑ ㈡ 可化为箭形的行列式例1.2 计算n 阶行列式()123123123123,1,2,n nn n i i nx a a a a x a a D a a x a x a i n a a a x =≠=解 ()112311222,1133110000,2,in r r n i ni i n n x a a a a x x a D a x x a x a i n a x x a -+=--=--≠=--箭形行列式()()31211223311100=,2,10101001n n nni i i i i a a x a x a x a x a x a x a x a i n =------≠=--∏()()132122332,110100=,2,001001j nk n k k k n nnc c j niii i i x a a a x a x a x a x a x a x a i n =+==+-----≠=∑∏()111nnk i i k i k k x x a x a ==⎛⎫=+- ⎪-⎝⎭∑∏㈢ 行(列)和相等的行列式例1.3 计算n 阶行列式n x aa axa D a ax=解 ()()()()12,1111111j c cn j nx n a a a aa x n a xa x a D x n a x n a axax+=+-+-==+-⎡⎤⎣⎦+-()12,1010i r r i naa x a a x n a x a-+=-=+-⎡⎤⎣⎦-()()()11n x n a x a -=+--⎡⎤⎣⎦㈣ 相邻行(列)元素差1的行列式 以数字1,2n 为(大部分)元素,且相邻两行(列)元素相差1的n 阶行列式可如下计算:自第一行(列)开始,前行(列)减去后行(列),或自第n 行(列)开始,后行(列)减去前行(列),即可出现大量元素为1或1-的行列式.例1.4.1 计算n 阶行列式,=n ij ij D a a i j =-其中 解 由=ij a i j -得11,2,101221111111013211111214311111=2340111111123101231i i r r n i n n n n n n n D n n n n n n n nn+-+=-------------=-------------12,3,10000120001220012220123241jc cj nn n n nn +=------=--------()()12121n n n --=--例1.4.2 计算n 阶行列式1231234134512=11321221n n n n D n n n n nn n ------解 1,1,2123111*********111111111i ir r n i n n n n n n D n n--+=----=--()12,3,1231201111011110111101111j c cj nn n n n n n n n+=+---=-- ()11111111111211111111c n n n n n nn ---+=--按展开()12,3,1111111111211111111j c c j nn n n n n n+=-----+=---()12,3,1100100121001000jc cj nn n n n n n +=-----+=---()()()()()121221112n n n n n n n ----+=--()()112112n n n n n --+=-二、利用范德蒙行列式结果计算当行列式各行(列)都是某元素的不同次幂的形式,使用行列式的性质将行列式整理成范德蒙行列式.例2 计算行列式12222122221212111n n n n n n n nnnn x x x x x x D x x x x x x ---=解 考虑1n +阶范德蒙行列式()()()()()12222122221212122222121212222121111121211111111n n n n n n n nnnn n n n i j j i nn n n n n n n n n n nnnn n n x x x x x x D x x x x x x x x x x x x x x f x x x x x x x x x x x x x x x x x x x x x ---≤<≤--------+===----∏()1,1n n n n D f x x -+显然,就是辅助行列式中元素的余子式M ,即 ()1,1,1,1==1.n n n n n n n n n D +++++-=-M A A()()()1,1121n n n n ijj i nf x x x x x x x -+≤<≤=-++-∏而由的表达式知,的系数为A()()121n n ijj i nD x x x x x ≤<≤∴=++-∏三、降阶法使用行列式的性质将行列式的某行(列)化为只有一个非零元素,然后按这一行(列)展开,这样就可以将行列式降一阶,每展开一次,行列式的次数可以降低一阶,如此继续进行直到将行列式降到二阶行列式并求其值.这种方法对阶数不高的数字行列式比较适用.例3 计算n 阶行列式0000000000000000n x y x y x D y x y yx=解 ()110000001000000n c n xy y xx y D xy y xxy+=+-按展开()()111nn n n n n x y x y +=--=+-四、升阶法升阶法(也称加边法或镶边法),是在原行列式的基础上增加一行一列(即升一阶)且保持原行列式不变的情况下计算行列式的一种方法.可用升阶法计算的行列式一般应满足各行列含有共同元素的特点,且化简后常变成箭形行列式.例4.1 计算n 阶行列式()11212212120n n n n n na b a a a a b a D b b b a a a b ++=≠+解 1121211211222,3,212111101000=100010r r inn n n n i nn nnn n a a a a a a a b a a b D a a b a b a a a b b -+=+++-=+-+-加边1112111,2211000000000j jnjn j jc c b j nnn a a a a b b b b +=+=++=∑1211n jn j j a b b b b =⎛⎫=+ ⎪ ⎪⎝⎭∑例4.2 计算n 阶行列式2112122122212111nn nn n n n x x x x x x x x x x D x x x x x ++=+解 12211212212221211010101n n n nn n n n x x x x x x x x D x x x x x x x x x x ++=++加边111212,3,12110001001i inx r r i n nx x x x x x --+=+-=-- 1121212,3,11010001001j jni n i xc c j n x x x x -=+=++=∑211ni i x ==+∑五、递推法使用行列式的性质,将所求的n 阶行列式n D 用同样形式的1n -阶行列式1n D -表示出来,建立n D 与1n D -之间的递推关系,有时还可以将n D 用同样形式的比1n -阶更低阶的行列式表示,建立他们之间的递推关系,从而找到递推公式,最终求出n 阶行列式的值.例5.1 证明112211111nn i n i i nn n xxxD a x xa a a a a -=----==--∑证明 ()11111111n n n nn n x D xD a xD a x+----=+-=+-按c 展开()121n n n n n n D xD a x xD a a ---∴=+=++ 221n n n x D a x a --=++ 32321n n nn x D a x a x a ---=+++ =12121n n n n a x a x a x a ---=++++例5.2 计算n 阶行列式000n a aa b aa Db b a b b b= 解 n D n 将中第列元素表示成两数之和,然后拆成两个行列式相加,即()000000n a a a b a a b b a D b b ba a +++=+- 00000000a aa a ab aa b a b b a b b b b bab b ba=+- ()1n -将上式等号右边第一个行列式从第二行起,每一行的倍加到上一行,将第二个行列式按第列展开,得,1000000n n b a b a D aD b bbba---=--n 将上式等号右边第一个行列式按第列展开,得()11n n n D a b aD --=-- … ①a b 由字母与的对称性显然有()11n n n D b a bD --=-- … ②联立①②得,()()1111n n n n n n D aD a b D bD b a ----⎧⎫+=-⎪⎪⎨⎬+=-⎪⎪⎩⎭()()123321n n n n n n a b ab a a b ab b -----≠=-+++当时,可解得D ,()()111n n n a b n a -==--当时,易算出D六、数学归纳法当已知一个n 阶行列式的结果,要证明其等式对于任意的自然数都成立,常使用数学归纳法证明.如果未知n 阶行列式的结果,也可以先计算当1,2,3n =时的行列式值,推导出n 阶行列式的结果,然后使用数学归纳法证明结论的正确性.这种方法通常用在证明n 阶行列式的等于某个值的题目中.例6 证明1212111111111111111111111nn n i i n na a D a a a a a a =-++⎛⎫==+ ⎪⎝⎭++∑ 证明 1111111,.n n D a a a ⎛⎫==+=+ ⎪⎝⎭当时,所以结论成立12111kk k i in k D a a a a =⎛⎫==+ ⎪⎝⎭∑假设时结论成立,即 11k n k D +=+那么当时,将按最后一列拆开,有1122111110111111101111+11101111111111111k kkk a a a a D a a a ++++++=++121121000000=00011111k k k k k k a a a D a a a a D a +++=+12121111kk k k i i a a a a a a a a +=⎛⎫=++ ⎪⎝⎭∑1121111k k i i a a a a ++=⎛⎫=+ ⎪⎝⎭∑ 1n k ∴=+当时,结论亦成立.综上可知, 1212111111111111111111111nn n i i n na a D a a a a a a =-++⎛⎫==+ ⎪⎝⎭++∑.七、代数余子式的计算n ij n D a 设阶行列式=,则有结论1,0,nn ik jk k D i j a A i j ==⎧⎫=⎨⎬≠⎩⎭∑ 或1,0,nn ki kj k D i j a A i j==⎧⎫=⎨⎬≠⎩⎭∑ 利用上述表达式有时可以简化代数余子式的有关计算问题.例7 设n 阶行列式1231201030100n nD n=,求第一行各元素的代数余子式之和11121.n A A A +++解 显然第一行各元素的代数余子式之和可以表示成1112111111201030100n A A A n+++= 1212,3,21111102001!10030000j nj n c c jj nj jn j n=-+==-⎛⎫==- ⎪⎝⎭∑∑八、利用拉普拉斯展开定理计算拉普拉斯定理是行列式按一行或一列展开定理的推广.为了灵活应用拉普拉斯展开定理,必须正确理解其含义.该定理是说在n 阶行列式n D 中任意选定k 个行(列)(1,k n <<且这k 个行(列)不一定相连),位于这k 行(列)中所有k 阶子式i M (共k n C 个)与其相应的代数余子式i A 的乘积之和等于原行列式,即1knc n i i i D M A ==∑需要提醒的是i A 是i M 的代数余子式,计算i A 时不要遗漏其符号,即()111k ki i j j i i A N ++++=-11k k i i i i i j j M N M 其中,和,是所在行和列的序号,是的余子式.在利用拉普拉斯定理进行计算时,为使计算简便,一般选含零多的k 个行(列)展开. 例8 利用拉普拉斯定理计算2n 阶行列式22111324213n nn n n D nn n n +-+=+++解 2n D n n 因为的第1和2两行中不为0的2阶子式只有一个,因此按第1和2行展开,得()1212211213113242n nn n n n n D n n nn +++-++=-+++()()()()()21221222222n nn n D D D ---=-=-==-=-九、一题多解例9 计算n 阶行列式123123123123nn n n n a b a a a a a b a a D a a a ba a a a a b++=++解法1 n D 显然是一个各行和相同的行列式,故将各列都加到第一列上. 然后提取第一个公因子,可得,2323231231111nn nn i n i n a a a a b a a D b a a a ba a a a b=+⎛⎫=++ ⎪⎝⎭+∑12,3110001100100i i na c c i ni i b b a bb-+==⎛⎫=+ ⎪⎝⎭∑ 11nn i i bb a -=⎛⎫=+ ⎪⎝⎭∑解法2 11232,300000in r r n i na b a a a b b D b b bb-+=+-=--箭形12312,3000000i nin i c c i nb a a a a b b b=+=+=∑11nn i i bb a -=⎛⎫=+ ⎪⎝⎭∑解法3 n D 用加边法构造以下与相等的n+1阶行列式1121212122,3,121101000100010inn n r r n n i nn a a a a a a a b a a b D a a ba b a a a bb-+=+-=+=-+- 0n b D=若=0,显然b ≠不妨设0,112112,3110000000j nin i c c bn j na a a ab b D b b=+=+=∑111n ni i b a b =⎛⎫=+ ⎪⎝⎭∑11nn i i bb a -=⎛⎫=+ ⎪⎝⎭∑解法4 12312312312300n n n n n a b a a a a a b a a D a a a ba a a a a b++++=+++12312312312312312312312300n n n na b a a a a b a a a a b a a a a b a a a a ba a a ab a a a a a a a b++++=+++ n n 将上式等号右边的第一个行列式的各行都减去第行,将第二个行列式按第列展开,得11112300000000n n n n n nbb D b bD b a bD a a a a ---=+=+ ()1212n n n n n b a b b a bD ----=++11212n n n n n b a b a b D ----=++=()11121n n n n b a a a b D ---=++++ ()()11121n n n n b a a a b a b ---=+++++11nn i i bb a -=⎛⎫=+ ⎪⎝⎭∑参考文献【1】徐仲.线性代数典型题分析解集.2版.西北工业大学出版社,1997【2】赵慧斌,高旅瑞.线性代数专题分析与解题指导.北京大学出版社,2007,8【3】张天德,蒋晓芸.线性代数习题精选精解.山东科学技术出版社, 2009,12【4】上海交通大学数学系编. 线性代数习题与精解.2版. 上海交通大学出版社, 2004,6【5】刘书田,王中良编. 线性代数学习辅导与解题方法.高等教育出版社, 2003,7【6】徐仲,陆全等.高等代数考研教案. 2版.西北工业大学出版社, 2009,6【7】北京大学数学系几何与代数教研室前代数小组编.高等代数.第3版.高等教育出版社, 2003,2 【8】张禾瑞.高等代数同步辅导及习题全解.第5版.中国矿业大学出版社, 2009,2。

关于行列式计算方法的进一步探讨

关于行列式计算方法的进一步探讨

关于行列式计算方法的进一步探讨引言行列式的概念最初是伴随着方程组的求解而发展起来的,它不论是在线性代数,多项式理论还是微积分中都有广泛应用,所以掌握行列式的计算是十分必要的. 为此,我在查阅部分参考资料的基础上,结合自己的学习实践,对行列式的计算总结了二十一种方法.常规做法都是用行列式的性质和相关定理来求解.以下是对一些典型类型的行列式的计算,以拓宽行列式的解题思路,下面依次说明其求解方法和过程.1.定义法n 阶行列式的定义展开式式中包含!n 项,当n 较大时,利用定义进行计算就会很麻烦,只有当行列式中0比较多时考虑利用定义算行列式,这样可以大大减少行列式展开的项数.例1计算000100002000010n n -.解 根据行列式的定义,行列式展开式的每一项都是n 个元素的乘积,这些元素来自行列式不同的行和不同的列,由于行列式中只有一个非零项!)1(21n n n =⋅-⋅ ,这一项的逆序数为1-n ,有计算可得!)1(1n D n n --=.2.化三角形法化三角形法主要是利用行列式的性质把原来的行列式化为上(下)三角行列式.虽然每个行列式都可利用行列式的性质化为三角形行列式.但当行列式阶数较高时,计算往往较为复杂.因此,在许多情况下,总是先利用行列式的性质将其作某种变形,再将其化为三角形行列式.上(下)三角行列式的值就是对角线各项的积.例2 计算行列式 12311212332125113311231------=n n n n n n n n n n A .解 首先将行列式的第一行乘以()1-加到第n ,,3,2 行,再将其第1,2,,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得()()()!110200132100001002000200010001231)1(12121-=-=---=----n n n n n n n A n n n n)(.3.降阶法可利用按一行(列)展开定理降低n 阶行列式的阶数并且使得行列式的计算较为简便的方法称为降阶法.降阶比较适合于行列式中某行或列中零元素比较多时.例3 计算行列式 nA 222232222222221=.解 首先应考虑A 能不能化为上(下)三角形式,若将第一行乘以()2-加到第n ,,3,2 行,数字反而复杂了,要使行列式尽可能多的出现“0”项,将该行列式的第一行乘以()1-加到第n ,,3,2 行,得2001010100012221-=n A.上式仍不是上(下)三角形行列式,我们可以用降阶法,注意第二行除了第一项是1, 后面的项都是0,我们按第二行展开,得()!2221222--=-=n n A. 4.加边法加边法就是将原来的行列式添加一行一列,且其值不变,所得的新行列式更容易求出其值.该方法适用于除主对角线上元素外,各行(或列)对应的元素分别相同的类型.例4 计算行列式nn n na a a a a a a a a a a a a a a a D 321321321321111+++=. 解 利用加边法将行列式添加一行一列,使其值保持不变.则有nn n n a a a a a a a a a a a a a a a a D +++=1010101321321321321=1100101000111321---n a a a a =10001000001013211n ni ia a a a a ∑=+=∑=+ni i a 11=n a a a a +++++ 3211.加边法最大的特点是要找出每行或每列相同的因子,那么升阶之后,就可利用行列式的性质把绝大部分元素化为零,然后再化为三角形行列式,这样就可以大大减少计算量.5.分解行列法(拆项法)如果行列式某行(列)是两行(列)之和,将行列式分解为两行列式的和,然后再利用性质进行计算.即分解行列法.例5 计算 nn n nn n n x n x x x n x x x n x x D ααααααααα+++++++++=212222111211212121.解 将行列式n D 分解为若干行列式的和,则当2>n 时,每个行列式至少有两列成比例,故0=n D ;当1=n 时,1111x D α+=.当2=n 时,()()212121112212222112112222112121αααααααααα--=+=++++=x x x x x x x x x x D .则⎪⎪⎩⎪⎪⎨⎧>=--=+=.2,0,2),2)((,1,1212111n n x x n x D n ααα6.分解法利用矩阵乘积的性质可把行列式分解成若干个行列式乘积的方法称为分解法.如果矩阵A 分解为m A A A A A 321=,其中i A 都是n 阶方阵),,2,1(m i =,则.321m A A A A A =例6 计算行列式nn nn n n n nn n n nn n n nnn nn nn nnn n nn nn n b a b a b a b a b a b a b a b a b a b a ba b a b a b a b a b a b a b a D ------------------=111111111111111111221122222212121121211111. 解 首先用以前学过的公式化简行列式,然后再进行计算.由于 )1)(1()(11122111111--++++-=-n n n b a b a b a b a b a , 则有∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-==1010211121022101210110211011n k knk n n k k k n n k k k n n k k nk n k k k n k k k n k k n k n k k k n k k k n b a b abab abab ab a b a b aD=112112222121121222211211111.111------n nn n n n n n n n n n b b b b b b b b b a a a a a a aaa=∏≤≤≤--nj i i j i jb b a a1))((.7.拆元法把某一行或列的元素写成两个数的和的形式,再利用行列式的性质将其写成两个行列式的和,以简化计算.例7 计算行列式xm m m m xmm m mx m mm mxD n ------=.解xm m m m xmm m m xm mm m x D n ------=xm m m m xmm m m x m mm mm------=xm m mm xmmm m x m mm m mx -------+11)()(---++=n n D m x m x m (1)由于n nD D =' ,即将n D 中的m 换成m -,行列式的值不变,故 11)()(--++--=n n n D m x m x m D (2)(1))(m x +⨯122)()()(--++=+n n n D m x m x m D m x(2))(m x -⨯122)()()(--+--=-n n n D m x m x m D m x则])()[(21)()()()(n n n n n m x m x m x m x m x m m x m D --+=--+-++=.8.析因子法所谓析因子法就是当行列式为零时,求得方程的根,从而将行列式转化为其因子的积,这样会大大减少计算量,该方法适用于主对角线上含多项式的类型.对于一个n 次多项式,当最多找到r 个因子使其行列式值为零时,就要把它画成一个r 次多项式与一个r n -次多项式的乘积.但一般找到的使其行列式为零的个数与行列式的次数相差太多时,不适用本方法.例8 计算 1321121311321+++=x n x n x n D n.解 令(),n D x f =当1,,2,1-=n i 时,()0=i f ,即()()()1,,2,1+---n x x x 是()x f 的因子且它们互质.故()∏-=-11n i i x 是()x f 的因子,比较1-n x的系数知()=x f ()n n i D i x =-∏-=11.9.分块矩阵法我们学习了矩阵的分块,知道一个矩阵⎪⎪⎭⎫⎝⎛B A 00通过分块若能化为对角矩阵或下(上)三角矩阵⎪⎪⎭⎫⎝⎛B C A 0,那么行列式BA 00=BCA 0B A ⋅=,其中阶可逆矩分别是r s B A ,,s r C ⨯是阶矩阵,r s ⨯是0阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题,通过矩阵分块转换为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=rr r rsr r s sr s ss s r s b b c c b b c c d d a a d d a a G1111111111111111⎪⎪⎭⎫⎝⎛=B C D A , 其中,B A ,分别是s 阶和r 阶的可逆矩阵,s r C ⨯是阶矩阵, r s D ⨯是阶矩阵,则有下面公式成立.C DB A B B CD A G 1--⋅==或C D B A BC DA G 1A --⋅==. 下面推导公式,事实上当0≠A 时,有⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----B C D A E DB E D BCA D A B C D A E A E000111⎪⎪⎭⎫⎝⎛-=-B C CDB A 01. 上面两式两边同时取行列式即可得出上面的公式.例9计算 8710650143102101=D . 解法1 0440440043102101871650143102101===原式. 若用前面介绍的公式则可以直接得出结果.解法2 令⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=8765B ,⎪⎪⎭⎫ ⎝⎛=1001C ,⎪⎪⎭⎫ ⎝⎛=4321D , 则有⎪⎪⎭⎫⎝⎛=1001'A ,由公式知原行列式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=-⋅==-432110011001876510011D CA B A B CD A 04444432187651==⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅=,这道题目还有一个特点,那就是C A =,如果我们把公式变形, 即D ACA AB D CA B A D CA B A BC DA 111)(----=-=-⋅=. 当C A =时CD AB D CAA AB D ACA AB -=-=---11.所以当C A =时CD AB BC DA -=, 这类题就可以直接写出答案了.解法3 令⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛=8765B ,⎪⎪⎭⎫ ⎝⎛=1001C ,⎪⎪⎭⎫ ⎝⎛=4321D . 因为C A =,所以原行列式0432187654321100187651001=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-=CD AB .10.递推法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式,这种关系式称为递推关系.根据递推关系式及某个低阶初始行列式的值,便可递推求得所给行列式的值,这种计算行列式的方法称为递推法.注意 用此方法一定要看行列式是否具有较低阶的相同结构,如果没有的话,即很难找出递推关系式,从而不能使用此方法. (1) 1-=n n kD D 类例10 计算行列式 2n D =d cd c b a ba.解 将2n D 按第1行展开可得()0100122cd dc b a bab dc d c b a b a aD n n+-+=()()阶阶2222---=n n dcdc b a ba bcdc d c b a b a ad22--=n D bc ad )(.所以 422222)()(---=-=n n n D bc ad D bc ad D n n bc ad D bc ad )()(22-=-==- . (2) 2211--+=n n n D k D k D 类例11 计算带形行列式1111n D αβαβαβαβαβαβαβαβαβ+++=++.解 将n D 按第一行展开可得,211)(111)(----+=+++-+=n n n n D D D D αββαβααββααββααβαββα所以12()n n n D D D αβαβ--=+-,112n n n n D D D D αβαβ----=-, 112()n n n n D D D D αβα----=-,223()n n D D βα--=- …………332()n D D βα-=-.2233311αββαβαβααββααββα+++=+++=D αββαβααββα++=++=2221D 323βα=-D D333132()n n n n n D D D D αβαβββ----=-==,同理可得 1n n n D D βα--=,联立解得 1n nn D αβαβ--=-,因此 11n n n D αβαβ++-=-.11.构造代数方程组法当所求行列式是由几个元素组成的,若用曾经求解过的行列式作系数行列式,构造一个n 元线性方程组,所求行列式中可作为线性方程组解的组成部分.例12 计算 n nn nn n n n nnn a a a a a a a a a a a a D21222212222121111---=. 解 如果使用常规的方法,解这道题是非常复杂的,而且困难的是因为n D 不是范德蒙行列式,若我们用刚刚介绍的代数方程组法求解这道题就变得十分容易了,因为n D 类似于范德蒙行列式,我们构造一个n 阶的范德蒙行列式()∏≤<≤----==nj i i jn nn n n n a aa a a a a a a a a D 1112112222121111.于是当j i a a ≠时,比值DD n是线形方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---.,,121212221111211nn n n n n n n n n n n a x a x a x a x a x a x a x a x a x 的解中的n x 值,又这个方程组x t x t x t n n n =-----121 可以看作是()是未知数t 有n 个根:n a a a ,,,21 .于是由高次方程与系数的关系有n n a a a x +++= 21, 因此,()()∏≤<≤-+++==nj i i jn n n a aa a a D x D 121 .12.数学归纳法数学归纳法多用于证明题.用数学归纳法计算n 阶行列式,需要对同结构的低阶行列式进行计算,从中发现规律并得出一般性结论,然后用归纳法证明其正确性.例13 证明αααααn cos cos 2100cos 210001cos 21001cos = .证明 第二数学归纳法.2=n 时,ααcos 211cos 2=D =αα2cos 1cos 22=-.结论成立.假设对级数小于n 的行列式,结论成立,则21cos 2---=n n n D D D α,由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n ,代入前一式得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D n=αααααn n n cos sin )1sin(cos )1cos(=---. 故对一切自然数n 结论成立.13.辅助行列式法辅助行列式法应用条件:行列式各行(列)和相等,且除对角线外其余元素都相同.解题程序1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式*D 除主对角线外,其余元素均为0;2)计算*D 的主对角线各元素的代数余子式);,,2,1(n i A ii = 3)∑-*-=nij ij A x D D 1 .例14 求下列n 阶行列式的值.111212112111 n n n D n ---=.解 在n D 的各元素上加上(1)-后,则有n n n n n nn n)1()1(000101001000)(D 2)1(-⋅-=---=-* ,又(1)1212,11(1)(1)n n n n n n A A A n ---====-⋅- ,其余的为零.故 ∑=*+=nj i ij n n A D D 1,)(=∑=+--+-⋅-ni i n i nn n A n 11,2)1()1()1(=12)1(2)1()1()1()1()1(----⋅⋅-+-⋅-n n n nn n n n n=1)1(2)1()1(--⋅--n n n n . 若知道辅助行列式法的解题程序,用此法就可轻松地解出此题.但根据该行列式的特点,我们也可以用加边法,把大部分元素化为零,再化为三角形行列式也可轻易解出该行列式.14.利用拉普拉斯展开法拉普拉斯定理的四种特殊情形1)0nn nn mm mnmmA ABC B =⋅2)0nn nm nn mm mm A C A B B =⋅3)0(1)nn mnnn mm mmmnA AB BC =-⋅ 4)(1)0nm nn mn nn mm mmC A A B B =-⋅例15 计算n 阶行列式n D ,其中aba b ab ab aa a a D nββββββββββββλ=.解 如果从第三行开始每一行都减去第二行,再从第三列开始每一列都加上第二列, 使行列式种更多的元素为零.先按上述分析对行列式进行变换βββββββββλ------=a aa a a a ab aa a a D n00000000βββββββλ----+-=a a a n a b aaaan00000000)2()1()2()2(2200000)2(1-⨯-⨯---⋅-+-=n n a a a n a ba n ββββλ)(2)()]1()2([--⋅---+=n a n ab n a ββλλ.15.利用范德蒙行列式例16 计算行列式1+n D ,其中111)()1()()1(1111---+----=n n n nnnn n a a a n a a a D .解 该行列式与范德蒙行列式类似,我们可以先利用行列式的性质把它变成范德蒙行列式在进行计算.通过相邻两行的交换,先把最后一行交换至第一行(交换n 次),再将新的最后一行交换至第二行(交换1-n 次)继续下去,经过2/)1(-n n 次交换以后,原行列式变成范德蒙行列式.由范德蒙行列式的性质得nn n n n n n a a a na a a D )()1(1111)1(2)1(1-----=++=∏∏≤<≤≤<≤--=----ni j ni j n n j i j a i a 002)1()()]()[()1(.推论 (超范德蒙行列式法)超范德蒙行列式法就是考察1+n 阶范德蒙行列式)(x f ,利用行列式n D 与)(x f 中某一元素余子式的关系来计算行列式的方法.这种方法适用于n D 具有范德蒙行列式形式的题型.例17 计算行列式n nn nn n n n nnn x x x x x x x x x x x x D21222212222121111---=. 解 1+n 阶范德蒙行列式为)(x f =∏≤<≤-------=ni j j i n n nn nn n n n nnx x x x x x x x x x x x x x x x x x x x 12121112112222121)()())((111由分析知n D 就是行列式)(x f 中元素1-n x 的余子式1,+n n M ,即1,1,++-==n n n n n A M D (1,+n n A 为代数余子式), 又由)(x f 的表达式及根与系数关系知)(x f 中1-n x 的系数为()()∏≤<≤-+++-ni j j in x xx x x 121 .即1,+n n A =()()∏≤<≤-+++-ni j j in x xx x x 121 .所以 =n D ()()∏≤<≤-+++ni j j in x xx x x 121 .16.利用矩阵行列式公式引理 设A 为n m ⨯型矩阵,B 为m n ⨯型矩阵,n E ,m E 分别表示n 阶,m 阶单位矩阵,则有)det()det(AB E BA E m n ±=±.例18 计算下行列式的值.ba a a a ab a a a a a b a a a a a b a n n n n n ++++=321321321321D .解 令矩阵 A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛++++=b a a a a a b a a a a a b a a a a a b a n n n n321321321321则可得A ),,,(11121321321321321n n n n n n n a a a bE a a a a a a a a a a a a a a a a bE⎪⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+=n n n C B bE ⨯⨯+=11.其中 ()n n T n a a a C B ,,,,)1,,1,1(2111 ==⨯⨯, 那么根据上面所提到的引理可得111D ⨯⨯-+=+=n n n n n B C b b BC bE .又()∑=⨯⨯=⎪⎪⎪⎪⎪⎭⎫⎝⎛=ni i n n n a a a a B C 12111111,故)(11b a bD ni i n n +=∑=-.17.利用方阵特征值与行列式的关系例19 计算下行列式的值 ba a a a ab a a a a a b a a a a a ba D n n n n n ++++=321321321321.解 令矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++=b a a a a a ba a a a ab a a a a a ba A n n n n321321321321⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=n n n n n a a a a a a a a a a a a a a a a bE321321321321n n A bE +=,显然 ,n bE 的n 个特征值为b b b ,,, .而n A 的n 个特征值为0,,0,0,1∑=ni i a .故A 的特征值为11,,,,-=∑+n ni i b b b a b .由矩阵特征值与对应行列式的关系知)(11∑=-+==ni i n n b a bA D .18.乘以已知行列式例 20 计算行列式abc db a dc cd a bd c b aD ------=4. 解 直接计算这种行列式比较困难.所给行列式易于利用行列式乘法公式求得4424D D D '=,再确定4D 的符号即可求出4D .根据行列式的乘法公式有 4424D D D '==abc db a dc cd a b d c b a------ab c d b a d c cd a b d c b a ------=22222222222222220000000d c b a d c b a d c b a d c b a ++++++++++++=42222)(d c b a +++,所以4D = 22222)(d c b a +++±.根据行列式的定义可知,4D 的展开式中有一项为444332211)1234()1(a a a a a =-τ,故4D = 22222)(d c b a +++.19.递推方程组方法例21 求行列式的值xz zzy x z zyy x zyy y xD n = . (3) 解 从)(1的行列式的第一列减第二列,第二列减第三列,…,第1-n 列减第n 列,得,00000000000xxz y y x y y x x z y y x x z y y x D n -------=(4)上面的行列式按第一行展开,有两项,一项是)(y x -乘一个1-n 阶行列式,这个1-n 阶行列式和(4)中的n 阶行列式的构造相同,即上述展开的第一项可表示为1)(--n D y x ;展开的另一项是111)1(1)()()1(00000000000)1(--+-+-=--=-------n n n n n z x y x z y x z x z y x x z y x xz y故递推式,)()(11---+-=n n n z x y D y x D (5)若y z =,则上式化为,)()(11---+-=n n n y x y D y x D (6)类似地有;)()(;)()(223221y x y D y x D y x y D y x D n n n -+-=-+-=---又))((2y x y x xy yx x xy y yx D +-==--=. 故可对(4)式递推计算如下:11)()(---+-=n n n y x y D y x D=(y x -)[]122)()()(----+-+-n n n y x y y x y D y x =1332)(2])()[()(----+-+--n n n y x y y x y D y x y x =133)(3)(---+-n n y x y D y x])1([)()()2())(()()()2()(112122y n x y x y x y n y x y x y x y x y n D y x n n n n n -+-=--++--=--+-==-----上面得到原行列式当y z =时的值.下面讨论y z ≠的情形.把(5)的行列式的z y 与对调,这相当于原行列式的行与列互换,这样的做法,行列式的值不变.于是z y 与对调后,1,-n n D D 的值不变,这时(5)式变为11)()(---+-=n n n y x z D z x D (7)从(5)与(7)(递推方程组)消去1-n D ,即(3)式乘以z x -,(5)乘以)(y x -,相减得n n n y x z z x y D y x z x )()()]()[(---=---)()()(y z zy y x z z x y D nn n ≠----=当注: 当y z =时,行列式n D 也可以用极限计算zy y x z z x y nn y z ----→)()(lim(固定y ) 1)()(lim 1----⋅-=-→nn y z y x z x n y (用罗必达法则)])1([)()()(1y n x y x y x y x ny nn n -+-=-+-=-又行列式n D 当y z =时可以用余式定理来做.推广 其实上述行列式我们仅仅能看见主对角线相等的情况,那么对于主对角线不等的我们更进一步考虑用函数来解决.()()()()()x x x x x f ba a bfb af x bbba xb baa xb aa a x D n n--=--==1321其中,b a ≠. 证明 作()xx xb xb xb x a x x x b xb x a x a x x xb x a xa x a xx x D n ++++++++++++++++=321. 可见()()())(,b f b D a f a D =-=-,又据行列式的性质,可知()x D 是x 的一次多项式,所以可令()d cx x D +=,又因D D d ==)0(,所以)()(),()(b f D cb b D a f D ca a D =+-=-=+-=-.故()()ba a bfb af D --=.20.导数在计算行列式中的应用1.行列式的求导法则定理1 设)(x f ij (n j i ,,2,1, =)为可导函数,则有行列式求导法则)()()()(11111x f Vf M Mf V x f M M x f V x f dxdnn n in i n =∑=ni nn n in i n x f Vf M M f dx dV x f dx dM Mx f Vx f 111111)()()()(. 即行列式的导数是数个项之和,其项数等于行列式的阶数,第一项是把原行列式的第一行(或第一列)的各元变成相应的导数,其余各行(或列)不变。

行列式解法小结 数学毕业论文

行列式解法小结  数学毕业论文

行列式解法小结数学毕业论文
行列式解法是线性代数中重要的一种方法,可以广泛地应用于各个领域,如物理、工程、经济等。

本文就行列式解法进行了全面的介绍和分析,并探讨了它在实际应用
中的具体作用。

首先,本文阐述了行列式作为一个矩阵的一个属性,描述了它的定义、性质和计算方法。

行列式的定义是通过对一个矩阵中所有可能的排列进行组合,求得的一个标
量值。

它具有很多有用的性质,如行列式关于行和列的互换、行列式的线性性质等。

计算行列式可以使用伴随矩阵或展开式等方法。

其次,本文讨论了行列式作为一个代数工具的应用。

通过分析行列式与线性方程组之间的关系,我们可以发现,行列式可以被用来检测线性方程组解的性质。

如果行
列式的值为零,则该线性方程组无唯一解。

但如果其值不为零,则有唯一解。

此外,本文还阐释了行列式在求解矩阵乘法、求逆矩阵及求解特征值的应用。

通过行列式解法可以很容易地计算出矩阵的乘积、逆矩阵以及特征值等,这对于实际应
用中的矩阵相关问题具有很大的意义。

最后,本文对于行列式的具体应用进行了分析。

在物理领域中,如电学和热学计算问题里,行列式经常出现在方程组的解中。

在机器学习领域,行列式也被广泛地应
用于求解数据的特征值和特征向量。

在工业制造领域中,行列式可以用于计算机器人
的运动,以及控制系统的分析。

综上所述,行列式在数学中具有很重要的地位,并且在各个应用领域都有着非常广泛的应用。

因此,学习和掌握行列式解法对于从事数学及相关领域的人员来说是非
常必要的。

行列式计算方法范文

行列式计算方法范文

行列式计算方法范文行列式是线性代数中的一个重要概念,也是运用广泛的数学工具。

它可以描述线性方程组的解的存在性与唯一性,是矩阵的一种性质。

本文将从深入浅出的角度,详细介绍行列式的定义、性质、计算方法以及应用。

一、行列式的定义行列式是一个方阵(n x n矩阵)所特有的一个数。

对于一个n阶方阵A,其行列式记作det(A)、或者,A,定义为:det(A) = ,A, = a₁₁a₂₂...aₙₙ - a₁₂a₂₁...aₙₙ-₁ +a₁₃a₂₁...aₙ-₁ₙ-₁ - ... + (-1)^(i+j)aijMij(1≤i≤n, 1≤j≤n)其中aij为A的(i,j)元素,Mij为A除去第i行和第j列所剩下的(n-1)阶子阵列的行列式。

二、行列式的性质1.互换行列式的行变号:行列式中互换两行,行列式的值变号。

2.如果行列式存在两行(列)完全相同,则该行列式的值等于0。

3.如果行列式的其中一行(列)的元素全为0,则该行列式的值等于0。

4. 行列式与其转置行列式的值相等:det(A) = det(A^T)。

5. 设A为n阶方阵,则,kA, = kn^n,A,其中k为常数。

6.两个行列式的和的值等于两个行列式的值的和:,A+B,=,A,+,B。

7. 行列式的其中一行(列)的公因子可以提到行列式外面:,A, = a₁b det(a₂...an b₁...bn)。

三、行列式计算方法1.按行(列)展开法:选取行(列),根据行列式的定义按照行(列)展开计算。

a.选取一行(列),通常选择其中元素较多为0的行(列),行(列)的元素与它们对应的代数余子式乘积之和,即可求得行列式的值。

b.递归地将行列式转化成更低阶的行列式,直到变为1阶行列式。

c.将各个阶数的行列式的值带入计算,即可求出原始行列式的值。

按行(列)展开法计算行列式比较繁琐,但是从定义出发可以解决一切行列式问题。

2.三角行列式法:将一个n阶方阵A经过若干次初等行(列)变换,化为上三角行列式形式,从而求解行列式的值。

行列式的计算方法和解析论文

行列式的计算方法和解析论文

行列式的计算方法和解析论文行列式是线性代数中重要的概念,其在矩阵理论、向量空间等方面有广泛的应用。

行列式的计算方法包括拉普拉斯展开、按行(列)展开、递推法等。

行列式的计算方法在不同的场景下有不同的适用性,下面将详细介绍行列式的计算方法及其应用,并从一篇经典的解析论文中探讨行列式在数学研究中的作用。

一、行列式的计算方法1.拉普拉斯展开法:拉普拉斯展开法是求行列式的一种常用的计算方法。

假设A是一个n阶方阵,其中元素用a_ij表示,对于任意一个a_ij,可以通过展开该元素所在的行和列的其他元素来计算行列式的值。

拉普拉斯展开法的基本原理是递归地求解子行列式的值,直到得到一个1阶行列式。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过拉普拉斯展开法按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(a_22*a_33-a_23*a_32)-a_12*(a_21*a_33-a_23*a_31)+a_13*(a_21*a_32-a_22*a_31)其中,A_11,表示去掉第一行第一列元素的2阶子行列式,以此类推。

2.按行(列)展开法:按行(列)展开法是求行列式的另一种计算方法。

通过选择其中一行(列),将行列式扩展为若干个较小阶的子行列式,最终递归地计算行列式的值。

按行展开和按列展开所得到的计算表达式相同,只是展开的方式不同而已。

例如,对于一个3阶行列式A=,a_11a_12a_13a_21a_22a_2a_31a_32a_3可以通过按第一行展开来计算行列式的值:A,=a_11*,A_11,-a_12*,A_12,+a_13*,A_1=a_11*(-1)^(1+1)*(a_22*a_33-a_23*a_32)-a_12*(-1)^(1+2)*(a_21*a_33-a_23*a_31)+a_13*(-1)^(1+3)*(a_21*a_32-a_22*a_31)其中,(-1)^(i+j)是代数余子式。

行列式计算方法的归纳 毕业论文

行列式计算方法的归纳  毕业论文

行列式计算方法的归纳摘 要 行列式的计算是一个很重要的问题,也是一个复杂的问题,阶数不超过 3的行列式可直接按行列式的定义求值,零元素很多的行列式(三角形行列式) 也可按行列式的定义求值.对于一般n 阶行列式,特别是当n 较大时,直接用定 义计算行列式几乎是不可能的事.因此,研究一般n 阶行列式的计算方法是十分 必要的.由于不存在计算n 阶行列式的一般方法,所以,本文只给出4种特殊的 计算方法给出了行列式的4种计算方法,综合利用所给解法,基本上可解决一般 4阶行列式的计算方法问题.关键词 行列式; 三角形行列式; 递推关系式1 化三角形法此种方法是利用行列式的性质把给定的行列式表为一个非零数与一个三角形行列式之积,所谓三角形行列式是位于对角线一侧的所有元素全部等于零的行列式.三角形行列式的值容易求得,涉及主对角线的三角形行列式等于主对角线上元素之积,涉及次对角线的n 阶三角形行列式等于次对角线上元素之积且带符号例 计算n 阶行列式ab b b a b b b aD n=解 ()[]a bb a bbb n a D n1111-+=()[]ba b a b bb n a ---+=000011()[]()b a n b n a ---+=112 提取公因式法若行列式满足下列条件之一,则可以用此法:(1)有一行(列)元素相同,称为“a a a ,,, 型”;(2)有两行(列)的对应元素之和或差相等,称为“邻和型”;(3)各行(列)元素之和相等,称为“全和型”.满足条件(1)的行列式可直接提取公因式a 变为“1,1,…,1型”,于是应用按行(列)展开定理,使行列式降一阶.满足(2)和(3)的行列式都可以根据行列式的性质变为满足条件(1)的行列式,间接使用提取公因式法.例 计算n 阶行列式a aaa aa a aa D nn n n x x x +++=212121解 该行列式各行元素之和都等于 x+∑=ni i a 1,属于“全和型”,所以a aaaa a a Dnnn ni i nx x x ++⎪⎭⎫ ⎝⎛+=∑=2221111xx x a a a nni i0000121⎪⎭⎫ ⎝⎛+=∑= ⎪⎭⎫ ⎝⎛+=∑=-ni i n a xx 11()b aab b a nn ab b a 221-=*==-3 利用范德蒙德(Vandermonde )行列式法著名的范德蒙行列式,在线性代数中占有重要地位,研究它的应用引起了一些数学家的兴趣,因此在计算行列式时,可直接用其结果.例 计算n 阶行列式()()()()()()()()()112111121111111112111222122211---------=---xx xx x x x x x x x x x x x x x x D nn n n nn n n n n解 将第一行可视为()()()1,,1,12211------x x x x x x nn,再由行列式的性质()()()()()()1121111111112111221121-------------xx xx x x x x x x x x x x x nn n n nnn n把第一个行列式从第一行起依次将i 行加到i+1行;第二个行列式的第i 列提取1-x i (i=1,2,3……n ),得x x x x x x x xx D nnnnn nn212122221=()()()()()()()1121111111111211122111-----------=∏xx x x x x xx x x x x x nn n n nn ni in()()∏∏∏≤≤==-*⎥⎦⎤⎢⎣⎡--=ni j j i ni i n i i x x x x 1111b a D 1111+=4利用递推关系法所谓利用递推关系法,就是先建立同类型n 阶与n-1阶(或更低阶)行列式之间的关系——递推关系式,再利用递推关系求出原行列式的值.例 计算n 阶行列式accb ac b b aD n=,其中0,≠≠bc c b解 将D n 的第一行视为(a-c )+c,0+c,……,0+c,据行列式的性质,得accb ac b b c a cb a b bc a a ccb ac b b cc a D n+-=+++-=000()()b a D D n n n cc a ---+-=∴11(1)于b 与c 的对称性,不难得到()()c a D D n n n bb a ---+-=11 (2)联立(1),(2)解之,得 ()()()⎥⎦⎤⎢⎣⎡-=----b a c a c b D nnnc b 1例 计算n 阶行列式ba ab ba b a abb a ab b a D n +++++=0000010001000解 将D n 按第一行展开,得()ba ab b a b a ab ab b a D D n n +++-+=-100000000011于是得到一个递推关系式()D DD n n nab b a 21---+=,变形得()D D D Dn n n nb a b 111----=- ,易知()()D Da D D aD D n n n n n n b b b 4333221------=-=- ()()()a b a aD D a nn n b a b ab b =⎥⎦⎤⎢⎣⎡+--=-==+--22122所以D a D n nn b 1-+=,据此关系式在递推,有()Dba a D aa D n n n n n nn b b b 22121----++=++=b ba a D bbaa a nn n n n n n na b b ++++=++++==-----1111221如果我们将Dn的第一列元素看作a+b,1+0,……0+0,按第一列坼成两个行列式的和,那么可直接得到递推关系式D a D n nn b 1-+=,同样可D n 的值.综上述,我们介绍了计算行列式的4种方法,还有一些方法和技巧由于篇幅所限不再列举.最后指出:计算一个行列式常常有多种方法,有时计算一个行列式需要几种方法配合使用.对于给定的行列式,究竟选择何种方法为好,好需要在实践中积累经验.参考文献[1] 王品超.高等代数新方法.山东教育出版社,1989.。

行列式的计算方法论文范文

行列式的计算方法论文范文

华北水利水电学院行列式的计算方法课程名称:线性代数专业班级:成员组成:联系方式:2012年11月4日行列式的计算方法摘要:线性代数是大学数学教育中一门主要基础课程,而行列式又是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,因此学会怎样计算行列式对你学好线性代数这门课程有和大的帮助。

下文是关于行列式的计算方法的一些总结和归纳,其中共总结了10种方法,并附有关于此方法的应用的案例、例题,介绍一些解题技巧。

关键词:行列式 计算方法 性质 例题Abstract: linear algebra is the university mathematics education is a main basic course, and column type is also the higher algebra basic and important subject in one, in the mathematics of a wide range of applications, so learn how to compute the determinant in linear algebra for you to learn the course and great help. The following is about the calculating methods of determinant of some summary and conclusion, which were summarized 10 kinds of methods, and with the application of this method to the case, example, introduces some problem solving skill.Key words: determinant calculation method character example.一、 前言随着科学技术的发展,很多前沿科学都需要运用行列式。

行列式的计算方法研究毕业论文

行列式的计算方法研究毕业论文

昆明学院2010 届毕业设计(论文)设计(论文)题目行列式的计算方法研究姓名学号 S006054127所属系数学系专业年级数学与应用数学2006级数学<1>班指导教师2010年 5 月摘要在线性代数中,行列式是个函数。

在本质上,行列式描述的是在n维空间中一个线性变换所形成的“平行多面体”的“体积”。

行列式的概念出现的根源是解线性方程组。

本论文首先,对行列式的计算方法进行总结,并对计算方法进行举例。

其次,n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法。

最后,值得注意的是,在同一个行列式有时会有不同的求解方法,这就要根据行列式的特点选择适当的方法了。

关健词:行列式计算方法方法举例AbstractIn linear algebra, the determinant is a function.In essence, the determinant dimensional space described in a linear transformation.The formation of "parallel polyhedron" and "volume".The concept of the root of the determinant there is solution of linear equations.The paper on the summary of the calculation of the determinant and the calculation method for example.n-order determinant have many the calculation methods,Fewer non-zero elements Can be calculated using the definition(1.In accordance with the start of a column or a row. 2.Full expansion.). More determinant of the nature of the calculation is to use.In particular, observe the characteristics of the subject request,Flexible Selection Method.It is to be noted that In the same determinant sometimes will have different methods for solving. Here are some commonly used methods and illustrate with examples.Keywords:Determinant Calculation motheds illustrate with examples目录前言 (1)第一章普遍法求行列式1.1利用行列式的定义直接计算 (2)1.2利用行列式的性质计算 (2)1.3化为三角形行列式 (3)1.3.1直接化为阶梯型 (3)1.3.2相同去项化上三角形 (4)第二章特殊法求行列式2.1降阶法(按行(列)展开法) (5)2.1.1先简后展 (5)2.1.2 按第一行(列)展开 (6)2.2 递(逆)推公式法 (7)2.2.1等差数列递推 (7)2.2.2“一路直推” (9)2.2.3对角递推 (9)2.3利用德蒙行列式 (11)2.3.1变形德蒙行列式 (11)2.3.2 系数德蒙行列式 (12)2.3.3利用行列式性质凑德蒙行列式 (13)第三章其他方法求行列式3.1加边法(升阶法) (14)3.1.1“0”和“字母”加边 (14)3.1.2“0”和“1”加边 (14)3.2 数学归纳法 (16)3.2.1第一数学归纳法 (16)3.2.2第二数学归纳法 (17)3.2.3猜测归纳法 (17)3.3拆开法 (19)3.3.1对角拆开 (19)3.3.2按行(列)拆 (19)参考文献.............................................................................................21. 辞. (22)前言在线性代数中,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作)det(A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华北水利水电学院行列式的计算方法课程名称:线性代数专业班级:成员组成:联系方式:2012年11月4日行列式的计算方法摘要:线性代数是大学数学教育中一门主要基础课程,而行列式又是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,因此学会怎样计算行列式对你学好线性代数这门课程有和大的帮助。

下文是关于行列式的计算方法的一些总结和归纳,其中共总结了10种方法,并附有关于此方法的应用的案例、例题,介绍一些解题技巧。

关键词:行列式 计算方法 性质 例题Abstract: linear algebra is the university mathematics education is a main basic course, and column type is also the higher algebra basic and important subject in one, in the mathematics of a wide range of applications, so learn how to compute the determinant in linear algebra for you to learn the course and great help. The following is about the calculating methods of determinant of some summary and conclusion, which were summarized 10 kinds of methods, and with the application of this method to the case, example, introduces some problem solving skill.Key words: determinant calculation method character example.一、 前言随着科学技术的发展,很多前沿科学都需要运用行列式。

现在高等教学已经开设课程。

但是同学们对于行列式的计算方法的掌握还是有所不足。

遂列举一些行列式的计算方法。

二、方法解析方法 1 利用范德蒙行列式范德蒙行列式:1232222123111111231111()n n i j j i nn n n n nx x x x x x x x x x x x x x ≤<≤----=-∏根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去; ...) 把所求行列式化成已知的或简单的形式。

其中范德蒙行列式就是一种。

这种变形法是计算行列式最常用的方法。

例1 : 计算n 阶行列式11112222(1)(2)(1)(1)(2)(1)1211111n n n n n n n n n a n a n a a a n a n a a D a n a n a a ---------+-+--+-+-=-+-+-解:显然该题与范德蒙行列式很相似,但还是有所不同,所以先利用行列式的性质把它化为范德蒙行列式的类型。

先将的第n 行依次与第n-1行,n-2行,…,2行,1行对换,再将得到到的新的行列式的第n 行与第n-1行,n-2行,…,2行对换,继续仿此作法,直到最后将第n 行与第n-1行对换,这样,共经过(n-1)+(n-2)+…+2+1=n (n-1)/2次行对换后,得到(1)2222211111111121(1)(1)(2)(1)(1)(2)(1)n n n n n n n n n n n a n a n a aD a n a n a a a n a n a a ----------+-+-=--+-+--+-+-上式右端的行列式已是范德蒙行列式,故利用范德蒙行列式的结果得: (1)(1)2211(1)[()()](1)()n n n n nj i nj i nD a n i a n j i j --≤<≤≤<≤=--+--+=--∏∏方法 2 利用拉普拉斯定理法拉普拉斯定理的四种特殊情形:1)0nn nn mm mn mm A A B C B =⋅ 2)0nn nm nn mm mm A C A B B =⋅3)0(1)nn mn nnmm mmmnA AB BC =-⋅ 4)(1)0nm nn mn nn mm mmC A A B B =-⋅拉普拉斯定理,在计算行列式时,主要应用k=1的情形,而很少用一般形式,不过当行列式里零元素很多时,运用一般情形的拉普拉斯定理,往往会给行列式的计算带来方便。

例 2: 计算n 阶行列式:n a a a ab D b bλαββββαβββββα= 解:12222(2)(2)(2,,1)000(1)(2)000000(3,)0000(1)00(2)0[(2)(1)i ni n n i n aa a ab D n a a a ab n C C i n n ab n n ab n λλλααββββαααβλαββββαβαβαβαβλαβαβαβλαλβ+⨯-⨯-=------+-+--=----⋅+--=+---利用拉普拉斯定理2]()n αβ-⋅-方法3 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。

这是计算行列式的基本方法重要方法之一。

因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

原则上,每个行列式都可利用行列式的性质化为三角形行列式。

但对于阶数高的行列式,在一般情况下,计算往往较繁。

因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。

例3 : 计算行列式112313379524213571464410102D -----=-----. 解: 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算.()()()()()()()()()()()()231321431541234211231112311-12-3100102020410204-120410010200-10-20215302153001-12002220022222-2D +---↔+------------------()()()()()()()()()435235*********23103041020411211612 .00102001020001000010026006+++--------=-⋅---=--------例4 :计算n 阶行列式ab b b ba b b Dbb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b ba n ba b bD a n bb a b a n bbba+-+-=+-+-11[(1)]11b b b a b b a n b b a b bba=+-10[(1)]000bbb a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--方法4 按行(列)展开法(降阶法)设n ij D a =为n 阶行列式,根据行列式的按行(列)展开定理有()11221,2,,n i i i i in in D a A a A a A i n =+++= 或 ()11221,2,,n j j j j nj nj D a A a A a A j n =+++=其中ij A 为n D 中的元素ij a 的代数余子式按行(列)展开法可以将一个n 阶行列式化为n 个n-1阶行列式计算。

若继续使用按行(列)展开法,可以将n 阶行列式降阶直至化为许多个2阶行列式计算,这是计算行列式的又一基本方法。

但一般情况下,按行(列)展开并不能减少计算量,仅当行列式中某一行(列)含有较多零元素时,它才能发挥真正的作用。

利用行列式按行按列展开定理将高阶行列式转化为低阶行列式求解的方法叫做降阶法。

他可以分为直接降阶法和递推降阶法,直接降阶法用于只需经少量几次讲解就可以求的行列式值的情况。

递推降阶法用于须经多次降阶才能求解,并且较低阶行列式与原行列式有相同结构的情况。

例5:计算20阶行列式20123181920212171819321161718201918321D = 解:112020118(1,(2,,20)19)1111111231819202111112121718193111113211617181911111201918321201111111111130222240022221(1)22120000022100i ii i i c c r r D ++==-+---=---------=⨯-⨯=-⨯182方法5 加边法(升阶法)有时为了计算行列式,特意把原行列式加上一行一列再进行计算,这种计算行列式的方法称为加边法或升阶法。

加鞭法最大特点是要找到每行或每航相同的因子,那么升阶,就可以利用行列式的性质把绝大多数元素化为0,这样就达到使计算简单的目的。

它要求:1 保持原行列式的值不变; 2 新行列式的值容易计算。

根据需要和原行列式的特点选取所加的行和列。

加边法适用于某一行(列)有一个相同的字母外,也可用于其第 列(行)的元素分别为 n-1 个元素的倍数的情况。

加边法的一般做法是:1111111111121221222121111100000n n n n n n n n n nnn nnnn nna a a a a ab a a a a D a a b a a a a a a b a a === 特殊情况取121n a a a ==== 或 121n b b b ====例6 : 计算n (n ≥2)阶行列式1231111111111111111n na a D a a ++=++,其中120n a a a ≠.解 : 先将n D 添上一行一列,变成下面的1n +阶行列式:1121111011101110111n na D a a ++=++.显然,1n n D D +=.将1n D +的第一行乘以1-后加到其余各行,得112111110010101n na D a a +-=-+-. 因0i a ≠,将上面这个行列式第一列加第i (2i =,…,1n +)列的11i a -倍,得:111122121211111111111100000100 0001000000011 1 1 0ni in n nnnnn i i i i na a a D D a a a a a a a a a a a a =+==+-==-=-⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭∑∑∑例7 : 计算n 级行列式123na x x x xa x x D xx a x xxxa=(),1,2,,i x a i n ≠=解: 加边得 1210nx x x a x x D x a x xxa = 第一行乘以(-1)分别加到其余各行,化为爪形行列式1211001001n x x x a x D a xa x--=----=xa x a x a xxx x a xn ni i ----+∑= 0000000001211=)11(1∑=-+ni i xa x ∏=-ni i x a 1)(=)1(1∑=-+ni i x a x∏=-n i i x a 1)(方法 6 递(逆)推法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,n-1阶或n-1阶与n-2阶等)的线性关系式,这种关系式称为递推关系式。

相关文档
最新文档