证券投资中的数学
高中数学研究性学习课题集锦
高中数学研究性学习课题集锦篇一:高中数学研究性学习课题题目精选高中数学|研究性学习|课题|题目精选精选高中数学研究性学习课题题目精选. 1、银行存款利息和利税的调查. 2、气象学中的数学应用问题. 3、如何开发解题智慧. 4、多面体欧拉定理的发现.5、购房贷款决策问题 ...骑大象的蚂蚁整理编辑高中数学|研究性学习|课题|题目精选高中数学研究性学习课题题目精选1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、D中线段计算41、统计溪美月降水量42、如何合理抽税43、南安市区车辆构成44、出租车车费的合理定价45、衣服的价格、质地、品牌,左右消费者观念多少?46、购房贷款决策问题篇二:高中数学研究性学习课题选题参考高中数学研究性学习课题选题参考数学研究性学习课题1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题研究性学习的问题与课题《立几部分》问题1平几中证点共线、线共点往往较难,通常出现在竞赛中。
股票投资中概率论和数理统计的运用
股票投资中概率论和数理统计的运用文/秦秉杰摘要:收益与风险并存是股票投资的重要特征,风险控制的质量会对股票投资的效益产生至关重要的影响。
以最低的风险获得最大的投资效益是股票投资者的目标,但是实际上股票投资者必须要面对股票下跌、投资不当等情况发生所带来的巨大风险,且股票投资的风险是无法完全消除的,只能尽可能规避,通过概率论与数理统计相关知识的运用可以为对股票投资进行科学的分析,为股票投资提供依据提高风险控制的成效。
本文就股票投资中概率论和数理统计的具体运用进行了分析和探讨。
关键词:股票投资;概率论;数理统计;运用股票作为一项高风险高回报的投资活动,伴随着市场经济的日渐成熟股票投资者的数量也日渐增多。
股票投资的风险性是无法避免的,股票市场中事件的发生存在随机性,利用概率论和数理统计可以对股票市场中的随机现象进行数据的统计和理性的分析,从而为投资者的投资行为提供参考,概率论与数理统计在股票中应用是规避股票投资风险的重要途径。
一、概率论与数理统计的内涵概率论是以大量随机事件的理性分析为基础,进而对特定事件出现的几率进行计算和判断,比较和分析不同情况下事件发生的可能性结果,对可能性之间的关联预测可能出现的问题的理论方法。
概率论通过科学的分析对随机事件的影响因素进行分析,并且对特定状况下可能发生的问题进行推测,进而为决策提供依据,目前概率论在不同的行业领域中得到了广泛的应用,同时也促生了一些其他相关理论的出现。
概率论在风险投资中运用具有巨大的优势,股票市场中的现象大多是随机的,整体来看似乎并没有什么规律,而概率论通过对随机事件的分析可以找出其内在的关联和规律。
概率论应用成效会影响到股票投资者的效益、股票发行者的利益乃至整个股票市场的稳定性。
概率论是数理统计的基础,作为由概率论发展而来的数学理论方法,数理统计主要是对随机因素影响的数据进行收集整理和研究分析,以此为依据对相关事件进行预测,为决策行为提供依据和参考。
高中数学研究性学习课题集锦
高中数学研究性学习课题集锦篇一:高中数学研究性学习课题题目精选高中数学|研究性学习|课题|题目精选精选高中数学研究性学习课题题目精选. 1、银行存款利息和利税的调查. 2、气象学中的数学应用问题. 3、如何开发解题智慧. 4、多面体欧拉定理的发现. 5、购房贷款决策问题...骑大象的蚂蚁整理编辑高中数学|研究性学习|课题|题目精选高中数学研究性学习课题题目精选1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、D中线段计算41、统计溪美月降水量42、如何合理抽税43、南安市区车辆构成44、出租车车费的合理定价45、衣服的价格、质地、品牌,左右消费者观念多少?46、购房贷款决策问题篇二:高中数学研究性学习课题选题参考高中数学研究性学习课题选题参考数学研究性学习课题1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题研究性学习的问题与课题《立几部分》问题1平几中证点共线、线共点往往较难,通常出现在竞赛中。
证券投资学之第六章
第六章资产组合管理主要内容资产组合的定义及理论源起,资产组合的收益与风险评价,资产组合的效率边界,投资组合的风险分散效应,资产组合理论的应用与局限。
重点难点•重点:资产组合的概念,资产组合的收益与风险评价,资产组合的效率边界。
•难点:资产组合的局限。
第一节投资收益和风险问题的引入•投资者制定投资目标应考虑回报和风险–投资者厌恶风险,承担风险需要补偿–不同的投资者对风险厌恶程度不一样,怎样刻画不同投资者对收益-风险之间的权衡关系•回报和风险的度量•例子:下一年你有5000块钱用于投资,投资一年,有六种投资机会供选择:–(1)30天到期、现在年收益率为6%的货币市场基金–(2)一年定期存款,利率为7.5%–(3)10年期长期国债,每年收益为9%–(4)一种股票,现价10元/股,下一年的预期股价为11.2元/股,且估计红利为0.2元–(5)一人向你借钱,期限一年,利率15%–(6)以8.4元人民币兑1美元买外汇•问题–各种投资的收益水平如何–各种投资有哪些风险,如何度量风险–各种投资的风险和收益的组合情况如何–如何进行投资决策(一种或多种组合投资)一、投资收益的度量-利率• 1.按计息的方式分:单利(simple rate);复利(compound rate)•TV-----total value P-----principal(1)终值(final value, FV)和现值(present value, PV)简式贷款中,贷款人向借款人提供一笔资金(本金,P),借款人于到期日连本带利偿还。
如p=1000,一年后偿还本金1000及利息I=100。
一年后的1100等于现在的1000元按一定的利率水平(10%)计算,现在的1000元,一年后的终值为1100元;或者说:一年后的1100元,现值为1000元•终值:计算某项资产P在n期后的价值,称为终值FV(final value)•计算过程中,利息以单利还是复利计呢•--复利•FV=P·(1+i)n•(期限是n,i为与期限一致的利率水平,按n期计复利)•例如:如果按月计复利,i为月利率1%,则现在的1000元6个月后的终值为•FV=1000×(1+1%)6•现值(PV,present value):•把未来的R元贴现到现在的价值,就是未来R元的现值,计算公式为•计算未来收入在今天的价值过程,称为对未来的贴现,利率i也称为贴现率(discount ratio)或贴现因子(discount factor)复利(年利率为6%)•复利频率n复利水平(%)•年 1 6.00000•半年 2 6.09000•季 4 6.13636•月12 6.16778•周52 6.17998•日365 6.18313(2)连续复利的计算•在上例中,e 0.06=1.0618365,因此,我们可以说,利息为6%的债券的连续复利为每年6.18365%。
证券在数学中的应用
中展开了调查。在调查的对象中,有15%的人对证券方面的知识比较了解,60%的人一知半解,25%的人完全不了解证券。在对证券投资有所了解的人中,60%的人认为数学在证券投资中起基础作用,另外40%的人中有一半人认为作用很大,一半认为作用不大。由此可见,数学对证券投资的影响还是得到了一定认可。在我们所调查的人中有将近50%的人曾运用数学手段预测股市走向。
五.证券投资中的数学
谈到证券,人们往往会联想到股票。其实股票并不等同于证券,证券是用来证明券票持有人享有的某种特定权益的凭证,如股票、债券、本票、汇票、支票、保险单、存款单、借据、提货单等各种票证单据都是证券。按其性质不同,证券可以分为有价证券和凭证证券两大类。也就是说,股票与证券是子集与全集的关系,股票是证券的一个重要组成部分。证券投资即从事证券发行和证券交易,是数学应用的一个领域,数学在政券投资中起着不可或缺的作用。针对桂林市的证券投资情况,我们在不同行业的人群
其次,能够克服人性在交易时的弱点。
当交易当中,最可怕莫过于人性的弱点。人的“贪婪”和“恐惧”在交易的过程当中会毫无遗漏的表现出来。有盈利的时候“惜卖”,亏损后又“死抱”;容易受到周边议论的影响,等等这些都会造成交易的随意性,导致亏损。用“数学模型”各种规则都是固定量化的,计算出来的结果也是确定、唯一的,能够避免投资者在交易时主观的判断。我们所要做的就是相信系统,严格执行。
C.高等代数P.概率和统计学
D.数论Q.复变函数论
E.欧几里得几何R.泛函分析
F.非欧几里得几何S.偏微分方程
G.解析几何T.常微分方程
H.微分几何U.数理逻辑
I.代数几何V.模糊数学
J.射影几何学W.计算数学
K.几何拓扑学X.数学物理学
L.拓扑学Y.函数类
高中数学研究性学习课题选择
问题16解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。
问题17整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。
问题29探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。
问题30在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。
问题6作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。
问题11整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。
问题12利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。
问题13将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。
问题14研究求轨迹问题中的坐标转移法与参数法的相互联系。
问题7等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。
问题8将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。
《解几部分 》问题参考
《函数部分》问题参考
金融数学在证券投资中的应用研究
金融数学在证券投资中的应用研究一、介绍金融数学,是指将数学方法应用于金融领域,用数学技术处理金融问题的一门学科,也是现代金融学不可或缺的一部分。
而证券投资,则是常见的金融领域之一。
在证券投资中,金融数学的应用既能提高投资效率,也能降低风险和成本。
二、金融数学在证券投资中的应用2.1 证券的定价模型证券定价是确认证券市场价值的过程。
基本定价方法包括资本资产定价模型(CAPM)和期权定价模型。
其中,CAPM模型是股票和证券市场上最常用的定价模型之一,它通过测量风险和回报之间的关系,解决证券市场的基本问题。
2.2 风险度量及证券投资风险控制在证券投资中,风险度量及风险控制是重要的投资决策因素。
常用的风险度量方法有标准差和Beta系数。
Beta系数是资本市场线的比率,可以表示整个市场的波动率。
因此,它是证券分析家在风险控制中使用的一种判断标准。
2.3 统计学分析及相应的应用统计分析在证券投资中也非常重要。
其中,常用的统计学方法包括线性回归(LR)和非线性回归(NLR)。
这些方法可以帮助股票分析师预测市场未来的走势,以便做好相应的投资决策。
2.4 投资组合理论投资组合理论是一种可以帮助投资者在现有资产中分散风险的数学方法。
它是基于资产的收益率和风险作为分散投资组合的基本方法。
通过投资组合的合理搭配,可以使投资者更有效地利用资产,实现超额回报。
三、结论综上所述,金融数学在证券投资中的应用十分广泛,不仅可以定价证券、度量风险和控制风险,还应用于股票预测和投资组合。
虽然这些方法并不能保证完全避免投资风险和损失,但有效的利用数学工具仍能对投资者取得更优秀的投资回报。
金融数学第三章 均值方差证券投资组合选择模型
投资组合几何表示和可行域
选定了证券的投资比例,就确定了组合。可以计算该 组合的期望收益率EP和标准差σP
以EP为纵坐标、σP为横坐标,在EP-σP坐标系中可 以确定一个点。每个组合对应EP-σP中的一个点
反过来,EP-σP中的某个点有可能反映某个组合 选择“全部”有可能选择的投资比例,那么,全部组
判断组合好坏的公认标准——投资者共同偏好 第一:以期望衡量收益率,方差衡量风险,
仅关心期望和方差 第二:期望收益率越高越好,方差越小越好 可行域内部和右下边缘上的任意组合,均可以
在左上边界上找到一个比它好的组合。淘汰 最佳组合“必须来自”左上边界——有效边界 有效组合——有效边界对应的组合
(r)
非前沿组合的零协方差组合
对非前沿证券组合q,与q协方差为零的全部组 合中,组合Q的方差最小。仍记,Q=zc(q)
数学表达为规划问题
min 1 W TVW 2 W TVWq 0
W T 11
用拉格朗日求解zc(q)
W z(cq)1C12(~ rq)W q1 C C2(2 ~ r(q~ r)q)W mvp
需要度量关联性的方向和程度 随机变量的协方差和相关系数 从联合分布可计算。 用历史数据计算(3.10)(3.11)
covr1(,r2)E(r1r1)(r2 r2)
1 2cov1r1(,2r2)
三种相关程度:
1、完全线性相关:完全决定另一个
ρAB=1或ρAB=-1 rA=a+b×rB , σ2A=b2×σ2B 2、不完全线性相关:“部分”决定另一个
水平传导性
定理3.2:任意非前沿证券组合q及前沿组合p
E ( ~ r p ) E ( ~ r q ) c~ r o z(p c ),~ r v q ) 0 (
《证券投资学》课后练习题9 大题答案
第九章证券投资技术分析主要理论与方法二、名词解释K线、开盘价、收盘价、最高价、最低价、阳线、阴线、影线、跳空、空头、多头、支撑线、压力线、趋势线、轨道线、黄金分割线、百分比线、速度线、甘氏线、反转形态、整理形态、头肩顶、头肩底、双重底、双重顶、三重底、三重顶、圆形底、圆形顶、三角形、矩形、楔形、旗形、喇叭形、菱形、V形、突破、随机漫步理论、循环周期理论、相反理论。
1. K线:K线图最早是日本德川幕府时代大阪的米商用来记录当时一天、一周或一月中米价涨跌行情的图示法,后被引入股市。
K线图有直观、立体感强、携带信息量大的特点,蕴涵着丰富的东方哲学思想,能充分显示股价趋势的强弱、买卖双方力量平衡的变化,预测后市走向较准确,是应用较多的技术分析手段。
2. 开盘价:目前我国股票市场采用集合竞价的方式产生开盘价。
3. 收盘价:是多空双方经过一段时间的争斗后最终达到的共识,是供需双方最后的暂时平衡点,具有指明价格的功能。
4. 最高价:是交易过程中出现的最高的价格。
5. 最低价:是交易过程中出现的最低的价格。
6. 阳线:收盘价高于开盘价时用空(或红)实体表示,称为阳线。
7. 阴线:开盘价高于收盘价时用黑(或蓝)实体表示,称为阴线。
8. 影线:影线表示高价和低价。
9.跳空:股价受利多或利空影响后,出现较大幅度上下跳动的现象。
大小所决定.10、空头:空头是投资者和股票商认为现时股价虽然较高,但对股市前景看坏,预计股价将会下跌,于是把借来的股票及时卖出,待股价跌至某一价位时再买进,以获取差额收益。
空头指的是变为股价已上涨到了最高点,很快便会下跌,或当股票已开始下跌时,认为还会继续下跌,趁高价时卖出的投资者。
采用这种先卖出后买进、从中赚取差价的交易方式称为空头。
人们通常把股价长期呈下跌趋势的股票市场称为空头市场,空头市场股价变化的特征是一连串的大跌小涨。
11、多头:多头是指投资者对股市看好,预计股价将会看涨,于是趁低价时买进股票,待股票上涨至某一价位时再卖出,以获取差额收益。
(推荐)高中数学课题研究题目
高中数学研究性学习课题题目精选1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、D中线段计算41、统计溪美月降水量42、如何合理抽税43、南安市区车辆构成44、出租车车费的合理定价45、衣服的价格、质地、品牌,左右消费者观念多少?46、购房贷款决策问题(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。
(完整)证券投资学计算题类型
证券投资学计算题分类一、股价指数的计算例1:其中,股票发行股数变化是因为股三实施了10股配5股,配股价15元/股,股本扩大至1500万股;股五10送10,股本扩张至2000万股,若t 期的股价指数为350点,试计算t+1期的指数。
现时股价指数=上一日收盘指数二、除权价格计算。
例2:某投资者以15元/股的价格买入A 股元票2万股,第一次配股10配3,派现5元,配股价为10元/股;第二次分红10送4股并派现金红利2元,试计算投资者在送配后的总股数及每次分配后的除权报价。
(3。
64万股,9.47元)除权价=(登记日收盘价-每股股息+配股率×配股价)÷(1+每股送股率+每股配股率)三、证券估值与投资收益率计算 债券估值: 统一公债:久期计算:上一交易日收盘总市值当前股票总市值⨯)1()1(12NR MC R C R C V +++⋅⋅⋅++++=Rc V =[()()()][]ty p C y tC P Py M C n y C y C D nt tt n t t tnn *)1(/)1(1/1121111221∑∑==+=+=+++++++=股票价值计算:四、资本市场理论1、均值——方差模型单种证券的预期收益率与风险∑-==j j j p r r Var 22)()(μσ两种证券的预期收益率与风险一般意义下的两证券最小风险组合:y D y y D P P ∆-=⎪⎪⎭⎫ ⎝⎛+∆-=∆+⨯='11到期收益率到期收益率变化久期价格变化的百分比∑∞=+=++++++=1332210)1()1()1()1(t tt R D R D R D R D P ,)1()1(1110∑-=++=-g R D R g D P tt ∑∑=∞+=-++++=Tt T t tt t T R D R g D P 111110)1()1()1( )1()1(10∑=+++=nt nnn t t R E M R D P ∑==jj j j p r r E )(μ212222]..)1(2)1([)1(B A AB A A B A A A P BA A A P x x x x x x σσρσσσμμμ-+-+=-+=210RDR D P ∆+=当相关系数=1,0,-1时的最小方差组合。
高中数学研究性学习课题选题参考
高中数学研究性学习课题选题参考数学研究性学习课题1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题研究性学习的问题与课题《立几部分》问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。
而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。
可否将平几问题的这类问题进行升维处理。
即把它转化为立几问世题加以解答。
问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。
高中数学研究性学习课题
问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。
45、购房贷款决策问题
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)
《 立几部分 》
问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。
问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。
问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。
33、通讯网络收费调查统计
34、数学中的最优化问题
35、水库的来水如何计算
36、计算器对运算能力影响
37、数学灵感的培养
38、如何提高数学课堂效率
39、二次函数图象特点应用
40、统计月降水量
41、如何合理抽税
42、市区车辆构成
43、出租车车费的合理定价
44、衣服的价格、质地、品牌,左右消费者观念多少?
问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。
问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。
证券投资切线理论
直观性
切线理论通过绘制股价趋势线,能够直 观地展现股票价格的趋势和可能的转折 点。
VS
易于应用
切线理论的原理相对简单,投资者可以较 容易地掌握并应用于实际投资决策中。
切线理论优缺点评价
• 提供交易信号:切线理论能够生成买卖信号,帮助投资者 把握市场机会,降低投资风险。
切线理论优缺点评价
主观性
切线理论的绘制和分析很大程度 上依赖于投资者的主观判断,不 同投资者可能会得出不同的结论。
趋势线与轨道线结合使用
确认市场趋势
通过趋势线和轨道线的方向和斜率,可以判断市场处于上升趋势还是下降趋势。
确定买卖点
在上升趋势中,可以在价格回落至上升趋势线附近时买入,在价格上升至上升轨道线附近 时卖出。在下降趋势中,可以在价格反弹至下降趋势线附近时卖出,在价格跌至下降轨道 线附近时买入。
控制风险
通过设置止损点,可以在市场价格突破趋势线或轨道线时及时止损,控制风险。
谢谢
THANKS
趋势线的突破
当市场价格突破趋势线时, 可能意味着市场趋势的转 折。
轨道线确定价格波动范围
上升轨道线
在上升趋势中,连接价格 波动高点的直线,与上升 趋势线平行,用于确定价 格波动的上限。
下降轨道线
在下降趋势中,连接价格 波动低点的直线,与下降 趋势线平行,用于确定价 格波动的下限。
轨道线的突破
当市场价格突破轨道线时, 可能意味着价格波动范围 的扩大或缩小。
移动平均线
01
结合移动平均线,可以验证切线理论的准确性,提高交易决策
的可靠性。
量价关系
02
切线理论与量价关系相结合,可以判断市场趋势的强度和持续
性。
技术指标
数学小课题研究题目
数学小课题研究题目篇一:高中数学课题研究题目高中数学研究性学习课题题目精选1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、D中线段计算41、统计溪美月降水量42、如何合理抽税43、南安市区车辆构成44、出租车车费的合理定价45、衣服的价格、质地、品牌,左右消费者观念多少?46、购房贷款决策问题篇二:《高中数学有效课堂教学》课题研究总结《高中数学有效课堂教学》研究总结摘要:有效教学强调:关注学生的进步或发展,关注教学效益,关注可测性或量化,要求教师具备一种反思的意识。
我采用了“问题情景——建立模型——探究——解释——应用——拓展”的模式展开教学,课后进行认真的反思关键词:有效教学;实践;有效性;反思;设想有效教学的理念源于20世纪上半叶西方的教学化运动,它强调的是:关注学生的进步或发展,关注教学效益,关注可测性或量化,要求教师具备一种反思的意识。
数学与股市
11、买股票切忌只望分红收息。(赚市场差价第一)投机和投资的区别!
12、买卖招致损失时,切忌赌徒式加码。第一只部队有损失,不要加仓,尽快摆脱!
13、不要因为不耐烦而入市,也不要因为不耐烦而平仓。静心,控制,清静无为!
1.嘉路兰“螺旋历法”计算市场时间循环周期的数学模式:Sn=Fn×E,其中,Sn=市场时间长度,Fn=费波那兹数,E=朔望月长度=29.53。费波那兹数列的数学模式:Sn=Sn-1+Sn-2,Sn=数列项,n=自然数,即(1、1、2、3、5、8、13、21、34、55、89……,后一项等于前两项之和)。
然而,当我们从整体上研读江恩时,便可发现,作为预测大师的江恩与市场高手的江恩,虽然是同一个人,但他却是清清楚楚冷静异常地将自己的预测理论与实践操作分开了的:预测固然认真(江恩有段时期每年出版一部他对市场和经济形势的预测书),但在实际操作中,他却不是完全让预测牵着自己,相反,他只遵守自己建立的买卖规则,他让预测要服从买卖规则!预测正确、不违背其买卖规则,他照预测方向操作;预测不对时,他用买卖规则(例如止损单)或修正预测,或干脆认错退出。
--这就是我们应解读的江恩大师!
江恩的21条股票买卖规则
1、每次入市买、卖,损失不应超过资金的十分之一。稳健!
2、永远都设立止蚀位。风险控制!
3、永不过量买卖。动静平衡,符合大道!
4、永不让所持仓盘转盈为亏。止赚,积累。对于短期只有较小的盈利所作的处理!
5、永不逆市而为。顺势者昌!
a沪市2000年2月17日高见1770点下跌(与③1787差17点)
b沪市2000年4月21日高见1858点(与④1843点差15点)出现急挫
数学模型在证券投资中的运用
数学模型在证券投资中的运用引言:证券投资是一门涉及到风险和收益的复杂领域,可以通过对市场和资产进行分析来做出最佳的投资决策。
数学模型作为一种工具,在证券投资中发挥着重要的作用。
本文将探讨数学模型在证券投资中的运用,并介绍一些常见的数学模型。
一、数学模型在证券投资中的基本原理数学模型可以基于不同的假设和方法来进行建立。
常见的数学模型包括随机漫步模型、均值方差模型、马尔可夫模型等。
这些模型可以通过收集历史数据和市场信息来进行参数估计和预测。
通过数学模型,可以分析市场和资产的风险、收益和其他相关因素,帮助投资者找到最佳的投资策略。
二、常见的数学模型1.随机漫步模型:随机漫步模型是描述资产价格变动的一种基本模型。
该模型假设资产价格的变动是随机的,与过去的价格无关。
通过随机漫步模型,可以对资产价格的未来走势进行预测和分析。
2.均值方差模型:均值方差模型是一种经典的投资组合模型。
该模型通过计算资产的平均收益和方差,找到一种能够最大化收益和最小化风险的投资组合。
通过均值方差模型,可以帮助投资者制定合理的资产配置策略。
3.马尔可夫模型:马尔可夫模型是一种基于转移概率的模型,用于分析资产价格的未来走势。
该模型假设资产价格的变动只与前一时刻的价格相关。
通过马尔可夫模型,可以统计资产价格的状态转移概率,从而对未来走势进行预测。
4.蒙特卡洛模拟:蒙特卡洛模拟是一种基于随机数的模型。
该模型通过生成大量的随机数,模拟市场和资产价格的变动,从而对风险和收益进行评估和分析。
通过蒙特卡洛模拟,可以对不同的投资策略进行模拟和比较,选择最佳的投资策略。
三、数学模型在证券投资中的应用实例1.高频交易策略:高频交易是一种利用数学模型和算法进行快速交易的策略。
通过分析市场和资产的微小变动,利用数学模型来识别价格差异,并快速进行交易,从而获得利润。
高频交易策略依赖于数学模型的准确性和快速执行的能力。
2.风险控制:数学模型在风险控制中起着至关重要的作用。
高中数学研究性学习课题集锦
高中数学研究性学习课题集锦各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高中数学研究性学习课题题目精选高中数学|研究性学习|课题|题目精选精选高中数学研究性学习课题题目精选.1、银行存款利息和利税的调查.2、气象学中的数学应用问题.3、如何开发解题智慧.4、多面体欧拉定理的发现.5、购房贷款决策问题...骑大象的蚂蚁整理编辑高中数学|研究性学习|课题|题目精选高中数学研究性学习课题题目精选1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、D中线段计算41、统计溪美月降水量42、如何合理抽税43、南安市区车辆构成44、出租车车费的合理定价45、衣服的价格、质地、品牌,左右消费者观念多少?46、购房贷款决策问题篇二:高中数学研究性学习课题选题参考高中数学研究性学习课题选题参考数学研究性学习课题1、银行存款利息和利税的调查2、气象学中的数学应用问题3、如何开发解题智慧4、多面体欧拉定理的发现5、购房贷款决策问题6、有关房子粉刷的预算7、日常生活中的悖论问题8、关于数学知识在物理上的应用探索9、投资人寿保险和投资银行的分析比较10、黄金数的广泛应用11、编程中的优化算法问题12、余弦定理在日常生活中的应用13、证券投资中的数学14、环境规划与数学15、如何计算一份试卷的难度与区分度16、数学的发展历史17、以“养老金”问题谈起18、中国体育彩票中的数学问题19、“开放型题”及其思维对策20、解答应用题的思维方法21、高中数学的学习活动——解题分析A)从尝试到严谨、B)从一个到一类22、高中数学的学习活动——解题后的反思——开发解题智慧23、中国电脑福利彩票中的数学问题24、各镇中学生生活情况25、城镇/农村饮食构成及优化设计26、如何安置军事侦察卫星27、给人与人的关系(友情)评分28、丈量成功大厦29、寻找人的情绪变化规律30、如何存款最合算31、哪家超市最便宜32、数学中的黄金分割33、通讯网络收费调查统计34、数学中的最优化问题35、水库的来水量如何计算36、计算器对运算能力影响37、数学灵感的培养38、如何提高数学课堂效率39、二次函数图象特点应用40、统计月降水量41、如何合理抽税42、市区车辆构成43、出租车车费的合理定价44、衣服的价格、质地、品牌,左右消费者观念多少?45、购房贷款决策问题研究性学习的问题与课题《立几部分》问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在证券投资中,收益和风险形影相随,收益以 风险为代价,风险用收益来补偿。
投资者投资的目的是为了得到收益,与此同时,又不可避免地面临 着 风险,证券投资的理论和实战技巧都围绕着如何处理这两者的关系而展开。 收益与风险的基本关系是:收益与风险相对应。也就是说,风险 较大 的证券,其要求的收益率相对较高;反之,收益率较低的投资对象,风险 相对较小。但是,绝不能因为风险与收益有着这样的基本关系,就盲目地 认为风险越大,收益就一定越高。风险与收益相对应的原理只是揭示风险
三
是经济全球化转为投资全球化风险。经济全球化不可避免, 全球各个经济体之间的连接将愈加紧密,由此导致资本的流动 速度与期望效益同金融投资之间的关联度更为密切。价格连接 收益、收益连接及相关政策变化,导致流动性过剩会形成投资 全球化的新格局。 与此同时,各国经济发展阶段与背景的差异创造了投资博 弈的有效空间和条件,使得价格博弈、收益与风险平衡将形成 投资全球化的一种溢价效应。而投资全球化将集中于金融产品 的价格上涨与投资收益相互攀比的投资溢价扩大上,对冲基金 的影响将更为显著。
与收益的这种内在本质关系:风险与收益共生共存,承担风险是获取收益
的前提;收益是风险的成本和报酬。风险和收益的上述本质联系可以表述 为下面的公式:预期收益率=无风险利率+风险补偿
(一)同一种类型的债券,长期债券利率比短期债券高 这是对利率风险的补偿。如同是政府债券,都没有信用风险和财务风险, 但长期债券的利率要高于短期债券,这是因为短期债券没有利率风险,而 长期债券却可能受到利率变动的影响,两者之间利率的差额就是对利率风 险的补偿。 (二)不同债券的利率不同。这是对信用风险的补偿 通常,在期限相同的情况下,政府债券的利率最低,地方政府债券利率 稍高,其他依次是金融债券和企业债券。在企业债券中,信用级别高的债 券利率较低,信用级别低的债券利率较高,这是因为它们的信用风险不同。 (三)在通货膨胀严重的情况下。 债券的票面利率会提高或是会发行浮动利率债券这种情况是对购买力风 险的补偿。 (四)股票的收益率一般高于债券 这是因为股票面临的经营风险、财务风险和经济周期波动风险比债券大 得多,必须给投资者相应的补偿。在同一市场上,许多面值相同的股票也 有迥然不同的价格,这是因为不同股票的经营风险、财务风险相差甚远, 经济周期波动风险也有差别。投资者以出价和要价来评价不同股票的风险, 调节不同股票的实际收益,使风险大的股票市场价格相对较低,风险小的 股票市场价格相对较高。
预期收益率是投资者承受各种风险应得的补偿
无风险收益率是指把资金投资于某一没有任何风险的投资对象而能 得到的收益率,这是一种理想的投资收益,我们把这种收益率作为一 种基本收益,再考虑各种可能出现的风险,使投资者得到应有的补偿。 现实生活中不可能存在没有任何风险的理想证券,但可以找到某种收 益变动小的证券来代替。美国一般将联邦政府发行的短期国库券视无 风险证券,把短期国库券利率视为无风险利率。 这是因为美国短期国库券由联邦政府发行,联邦政府有征税权和货币 发行权,债券的还本付息有可靠保障,因此没有信用风险。政府债券 没有财务风险和经营风险,同时,短期国库券以91天期为代表,只 要在这期间没有严重通货膨胀,联邦储备银行没有调整利率,也几乎 没有购买力风险和利率风险。短期国库券的利率很低,
势;
(3)量化分析法就是利用数学模型和计算机模型,对市场机会进行分 析。 在 此我们在只使数学模型的情况下对民生银行日收盘价进行预测, 并通过对比 来 考察误差大小。为此,建立了一个简单的数学模型,来说明该问题。
投资风险与收入变 化趋势
证券投资收益效益 的因素
投资效益与数学的 概率计算
如何规避操作流程 风险
张宇轩,这个 留给你了
投资效益与数 学的概率计算
规避操作流程风险
⑴选择信誉好的证券公司和获得正规咨询服 务 ⑵签订指定交易等有关协议
⑶切忌进行不受法律保护的信用交易
⑷防止股票盗卖和资金冒提 ⑸认真核对交割单和对账单
谢谢观赏!
高一数学组
组员:程全、潘勇军、史 少华、杨路路、俞飞、张 宇轩
二
是金融产品风险转为资源价格风险。由于美元利率、美 元汇率及美国股市引起了市场担忧美元计价资产的价值会下 跌,突出了由美元主导且由美国引导的国际金融信用问题。 另外,在经历了去年上半年大幅度调整后,资源价格可能会 继续大幅度上涨,如近来黄金价格已达到28年新高的739美 元水平,油价也创下历史新高。 这表明,国际金融风险已与资源价格风险相互连接,增 加了市场和政策调整的复杂性。由于美元依然是国际大宗商 品的报价和计价货币,美元下跌或不稳定,将可能会继续推 升资源价格上升。由此,各国资源战略会促使金融风险转化 为资源价格风险,并最终可能演变为市场危机。
其利息可以视为投资者牺牲目前消费,让 渡货币使用权的补偿。
Hale Waihona Puke 一是价格风险将逐渐转变为制度风险。由美国房地产市场次 贷延伸的诸多金融衍生品信用风险,未来有可能会由金融市 场风险转化为金融监管的制度风险,金融市场的价格风险将 转变为金融信用风险。由此,市场会产生一定的恐慌情绪, 并可能会进一步导致金融机构的信用失控。 伴随着外汇储备的快速增长,短期内美元价格下跌,会 促使各国加快汇率机制改革。由此,对外汇储备资产损失的 担忧将转变为对汇率制度变化的关注。特别是一些海湾国家 开始考虑脱离挂钩美元的单一汇率制度,并逐渐开始注重外 汇储备的多元化问题。还有,包括持有大量美元外汇储备的 亚洲国家也考虑其外汇储备结构问题。因此,美元下跌可能 会引起汇率的制度性改变,并将可能会引起可能更大的信用 危机。
利率对于 发行规模 市场走势和 股票的影 和发行市 时间 响 盈率 政策的影 经济 经济周期或经 响 济景气循环
影响因素
市场走势和时间同样是需要考虑的 一是利率变动造成的资产组合替代 主要是指一国在一定时期内国民生 是指经济从萧条、回升到高涨 股市政策指向性很强,政府向哪个 影响超额认购倍数两个简单且重 效应; 版块拨款,或者对哪个版块进行 二是利率对上市公司经营的影响 有利的 , 因素,新股的首日涨幅先行于超额认购 产总值的增长率。一般来讲,股票价格 的过程。当预期经济不久将走出低 要的因素:发行规模越大,超额认购倍 改革,哪个版块基本上在短期内会上 倍数的变化,尤其是网下认购倍数。但 进而影响公司未来的估值水平;三是利 是与经济增长同方向运动的,经济增长 谷开始回升时,商人会补充存货, 涨。 数越低,发行市盈率越高,获取收益的 率变动对股票内在价值的影响。 譬如说国家计划 4万亿投资基础建设。 是从较长的时间周期来看,超额认购倍 加速,社会需求将日益旺盛,从而会推 生产者利润将增加,从而投资也会 风险越大,超额认购倍数越低。 数的中枢随着时间呈现下降。 动股票价格的上涨。 相应增加,工资、就业及货币所得 水平也将随之增加。
证券投资中的数学
证券投资的定义
高一五班数学研究组
证券投资
是指投资者(法人或自然人)购买股票、债券、基金券等有价 证券以及这 些有价证券的衍生品,以获取红利、利息及资本利得的投资行 为和投 资过 程,是直接投资的重要形式。其主要的投资方法有:基本面分 析法,技术分 析 法和量化分析法。 (1)基本面分析法就是利用上市公司的基本面数据、宏观数据做投资 决策; (2)技术分析法就是利用股价形态,各种指标进行分析,来判断未来 的走