高中数学-立体几何-空间中的平行和垂直关系
空间中的平行与垂直例题和知识点总结
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
探索立体几何中的平行与垂直关系
探索立体几何中的平行与垂直关系在立体几何中,平行与垂直是两种基本的关系。
平行是指两条直线或两个平面在空间中永远不相交,而垂直则是指两条直线或一个直线与一个平面之间的相互垂直关系。
这两种关系在几何学中有着广泛的应用和研究价值。
本文将探索立体几何中的平行与垂直关系,并讨论它们的性质和特点。
1. 平行关系在空间中,两条直线或两个平面如果永远不相交,我们就称它们为平行关系。
平行关系具有以下性质:- 平行关系是相对的:两个物体的平行关系与观察者的视角有关。
对于一个观察者来说,两条直线可能是平行的,而对于另一个观察者来说,这两条直线可能不平行。
- 平行关系保持不变:平行关系在空间中是始终保持不变的,无论两个物体在空间中如何移动、旋转或缩放,它们之间的平行关系都不会发生改变。
- 平行线的性质:如果一条直线与另外两条直线平行,那么这两条直线也是平行的。
此外,如果两条直线分别与第三条直线平行,则这两条直线也是平行的。
- 平行面的性质:如果两个平面相交于一条直线,并且与另外一个平面平行,那么这两个平面也是平行的。
同样,如果两个平面分别与第三个平面平行,则这两个平面也是平行的。
2. 垂直关系垂直关系是指在空间中,两条直线或一个直线与一个平面之间的相互垂直关系。
垂直关系具有以下性质:- 垂直关系是相对的:两个物体的垂直关系也与观察者的视角有关。
对于一个观察者来说,两条直线或一个直线与一个平面可能是垂直的,而对于另一个观察者来说,它们可能不垂直。
- 垂直关系保持不变:垂直关系在空间中是始终保持不变的,无论两个物体如何移动、旋转或缩放,它们之间的垂直关系都不会发生改变。
- 垂直线的性质:如果一条直线与另外两条直线垂直,那么这两条直线也是垂直的。
此外,如果两条直线分别与第三条直线垂直,则这两条直线也是垂直的。
- 垂直面的性质:如果一个平面与另外两个平面相交于一条直线,并且与另外一个平面垂直,那么这两个平面也是垂直的。
同样,如果两个平面分别与第三个平面垂直,则这两个平面也是垂直的。
理解空间几何中的平行和垂直关系及相关定理
理解空间几何中的平行和垂直关系及相关定理在空间几何中,平行和垂直关系是非常重要的概念。
理解这些关系及其相关定理对于解决几何问题和应用数学具有重要意义。
本文将深入探讨空间几何中的平行和垂直关系及其相关定理,帮助读者更好地理解和应用。
一、平行关系在空间几何中,平行关系是指两条直线或两个平面永远不会相交。
平行线和平行面之间的关系可通过以下两个定理来判断。
1. 平行线定理:如果一条直线与两条平行线相交,那么这两条直线之间也是平行的。
证明:设有两条平行线l和m,且直线n与l相交于点A,与m相交于点B。
若线段AB垂直于l,由垂直定理可知线段AB也垂直于m。
假设线段AB不平行于m,那么它必定与m相交于某一点C,这样线段AB将会与直线n有两个交点A和C,这与两条平行线的性质相悖。
因此,线段AB必定是与直线m平行的。
2. 平行面定理:如果两个平面都与另一个平面平行,那么这两个平面也是平行的。
证明:设有两个平面α和β,且平面γ与α平行且与β相交。
假设平面γ不平行于β,则它们必定会相交于一条直线。
然而,根据平行面的定义,平面γ与平面α平行,故直线与平面α相交于一点A。
由于直线与平面β相交于一点B,这意味着直线将与两个平面α和β都有交点,与平行面的定义相矛盾。
因此,平面γ与β平行。
二、垂直关系在空间几何中,垂直关系是指两条直线或两个平面之间的相互垂直关系。
垂直关系可以通过以下定理来判断。
1. 垂直定理:如果两条直线相交并且相交的角为直角,则这两条直线是垂直的。
证明:设有两条直线l和m,相交于点O,并且∠AOB为直角。
若直线l和m不是垂直的,即它们不相交于直角,那么它们必然会以某个角度相交,假设∠AOB为θ。
那么根据三角形的性质,我们可以得到∠AOB的余角为180°-θ。
如果直线l和m不垂直,它们的余角将不相等,与∠AOB为直角的前提相矛盾。
因此,直线l和m是垂直的。
2. 垂直平面定理:如果一条直线与一个平面垂直,并且这条直线在这个平面上的一个点,那么这个直线在这个平面上的所有点都垂直于这个平面。
空间几何中的平行与垂直关系
空间几何中的平行与垂直关系平行与垂直关系是空间几何中非常重要的概念,它们在解决平面或立体几何问题时经常被用到。
在本文中,我将介绍平行和垂直的定义和性质,并探讨它们在几何学中的应用。
一、平行关系在空间几何中,当两条线或两个平面没有交点且始终保持相同的距离时,我们称它们是平行的。
换句话说,平行线永远不会相交,平行面之间也永远不会相交。
我们可以使用以下方法来判断线或面是否平行:1. 如果两条线被一条平面所截,且截得的两对同位角相等,则这两条线平行。
2. 如果两个平面被一条直线所截,且截得的两对同位角相等,则这两个平面平行。
平行关系常常在解决与直线、多边形和多面体相关的问题时被应用。
比如,在建筑设计中,设计师常常需要确定两面墙是否平行,以便确保建筑结构的稳定。
在制图学中,要绘制平行线的效果,可以应用平行规或平行尺等工具辅助。
二、垂直关系与平行关系相反,垂直关系指的是两条线、两个平面或两个立体之间相互间的直角关系。
当两条线或两个平面的夹角大小为90度时,它们被认为是垂直的。
同样地,如果两个立体之间的相邻平面的交线是垂直的,则我们称这两个立体是垂直的。
判断垂直关系的方法有:1. 如果两条直线相交,并且相交的四个角中有两个角是直角,则这两条直线是垂直的。
2. 如果两个平面相交,并且相交的交线与两个平面各自的法线垂直,则这两个平面是垂直的。
垂直关系在几何学中有广泛的应用。
在建筑学中,垂直关系被用来确保墙壁与地面之间的角度为直角,以提供良好的结构支持。
在三维计算机图形学中,垂直关系可以用来进行透视变换,使得图像更加逼真。
三、平行和垂直的性质在空间几何中,平行和垂直具有一些重要性质,这些性质可以帮助我们解决几何问题。
1. 如果一条直线与两条平行线相交,则与这两条平行线的交线上的对应角是相等的。
2. 如果两条线分别与第三条线平行,则它们之间的对应角是相等的。
3. 判断两个平面是否垂直的方法之一,是计算它们的法向量之间的夹角。
高中数学 立体几何知识点总结
立体几何一、空间位置关系的证明(一)平行关系的证明1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理3.重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)几何体中线面平行的证明常利用平行四边形的定义、性质或三角形中位线(二)垂直关系的证明1.直线与平面垂直(1)定义::如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.(2)判定定理与性质定理2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角. (2)范围:[0,π2]. 3.平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角. (2)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)平面与平面垂直的判定定理与性质定理4.重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. (5)在几何体中垂直关系的证明中要重视勾股定理及平面几何知识的应用,如:菱形的对角线互相垂直,等腰三角形底边上的中线垂直于底边等。
二、立体几何中的向量方法 (一)证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎪⎨⎪⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. (二)求空间角1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).。
高中数学必修2——立体几何平行和垂直(教案)
立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。
三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。
推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。
知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平面α垂直记作:α⊥l 。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。
立体几何(线、面平行、垂直的有关结论)必修2 立体几何线面关系的判定与性质
立体几何(线面平行、垂直的有关结论)空间中线面平行、垂直关系有关的定理:1、【线面平行的判定】平面外的一条直线和平面内的一条直线平行,则这条直线和这个平面平行。
2、【线面平行的性质】如果一条直线和一个平面平行,经过这条直线的平面和这平面相交,那么这条直线就和两平面的交线平行。
3、如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。
4、如果两个平面平行,其中一个平面内的任意一条直线平行于另一个平面。
5、如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。
6、如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
7、一条直线与两条平行直线中的一条直线相垂直,则这条直线也与另一条直线垂直。
8、与同一条直线都垂直的两条直线相互平行。
()9、与同一个平面都垂直的两条直线相互平行。
10、两条平行直线中的一条直线与一个平面相垂直,则另一条直线也垂直于这个平面。
11、两条相互垂直的直线中的一条平行于一个平面,则另一条直线垂直于这个平面。
()12、两条相互垂直的直线中的一条垂直于以个平面,则另一条直线平行于这个平面。
()13、平面外的两条相互垂直的直线中的一条垂直于一个平面,则另一条直线平行于这个平面。
14、一条直线垂直于两个平行平面中的一个平面,那么该直线也垂直于另一个平面。
15、如果两个平面垂直于同一条直线,那么这两个平面平行。
16、两个平面都与另一个平面相垂直,则这两个平面平行。
()17、一个平面垂直于两平行平面中的一个平面,则此平面也垂直于另一个平面。
18、如果一条直线与平面内的两条相交直线都垂直,则这条直线与这个平面垂直。
19、如果一条直线垂直于一个平面,那么这条直线垂直于该平面内的任意一条直线。
20、如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直。
21、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
【知识归纳】:【典型例题】:【高考小题】:。
空间几何中的平行与垂直关系及证明方法
空间几何中的平行与垂直关系及证明方法在空间几何中,平行与垂直是两个重要的关系概念。
平行指的是两条直线或两个平面永远不相交,而垂直则表示两条直线或两个平面相互垂直相交。
这两个概念在几何学中有广泛的应用,并且可以通过一些证明方法来确定两条直线或两个平面是否平行或垂直。
首先,我们来讨论平行关系。
在空间几何中,两条直线平行的条件是它们的方向向量平行。
方向向量是指直线上的两个不同点连线所得到的矢量。
如果两条直线的方向向量平行,那么它们就是平行的。
例如,考虑两条直线L1和L2,它们的方向向量分别为a和b。
如果a与b平行,即a与b的夹角为0度或180度,那么L1和L2就是平行的。
除了方向向量平行外,两条直线还可以通过斜率来确定是否平行。
斜率是指直线上任意两点之间的纵坐标差与横坐标差的比值。
如果两条直线的斜率相等,那么它们也是平行的。
例如,考虑两条直线L1和L2,它们的斜率分别为m1和m2。
如果m1等于m2,那么L1和L2就是平行的。
在空间几何中,垂直关系的确定方法与平行关系类似。
两条直线垂直的条件是它们的方向向量垂直。
如果两条直线的方向向量垂直,那么它们就是垂直的。
例如,考虑两条直线L1和L2,它们的方向向量分别为a和b。
如果a与b垂直,即a与b的内积为0,那么L1和L2就是垂直的。
除了方向向量垂直外,两条直线还可以通过斜率的乘积来确定是否垂直。
如果两条直线的斜率之积为-1,那么它们也是垂直的。
例如,考虑两条直线L1和L2,它们的斜率分别为m1和m2。
如果m1乘以m2等于-1,那么L1和L2就是垂直的。
对于平面的平行与垂直关系,我们可以将其扩展到三维空间中。
两个平面平行的条件是它们的法向量平行。
法向量是指垂直于平面的矢量。
如果两个平面的法向量平行,那么它们就是平行的。
同样地,两个平面垂直的条件是它们的法向量垂直。
如果两个平面的法向量垂直,那么它们就是垂直的。
在证明平行与垂直关系时,我们可以利用向量的性质和运算法则。
立体几何中的平行与垂直关系
立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是非常基本且重要的概念。
通过理解和应用这些关系,我们可以更好地解决与立体图形相关的问题。
本文将介绍平行和垂直关系的定义和性质,并通过实例进行说明,以帮助读者更好地理解和运用这些概念。
一、平行关系在立体几何中,当两个线、面或者空间图形之间的相对位置满足特定条件时,我们可以说它们是平行的。
具体而言,以下是平行关系的定义和性质:1. 定义:如果两条直线在同一平面内,且在平面内没有交点,那么这两条直线被称为平行线。
用简单的符号表示为"//"。
2. 性质:平行线具有以下重要性质:a) 平行线之间的距离始终相等。
也就是说,如果有一条直线与一组平行线相交,那么从这条直线到任意一条平行线的距离都相等。
b) 平行线夹角与其对应的第三条平行线夹角相等。
也就是说,如果有两组平行线相交,那么相交的两对对应线之间的夹角相等。
二、垂直关系垂直关系是平行关系的一种特殊情况。
当两条直线、面或者空间图形之间的相对位置形成直角时,我们可以说它们是垂直的。
具体而言,以下是垂直关系的定义和性质:1. 定义:如果两条直线或者平面相交时,相交的两条直线或者平面的交角为90°,那么它们被称为垂直的。
2. 性质:垂直关系具有以下重要性质:a) 垂直线之间的夹角是直角,即为90°。
b) 垂直平面之间的夹角也是直角。
通过理解和应用平行和垂直关系,我们可以在解决立体几何问题时更加便捷和准确。
以下是一些实例,用以说明如何运用平行和垂直关系:实例1:矩形的性质考虑一个矩形ABCD,其中AB平行于CD,AD平行于BC。
根据平行关系的性质,我们可以得出以下结论:a) AB和CD之间的距离相等。
b) AD和BC之间的距离相等。
c) AB和CD之间的夹角以及AD和BC之间的夹角都是直角。
d) 矩形的对角线AC和BD相交于O,而OA和OC以及OB和OD之间的夹角也都是直角。
推导立体几何中的平行与垂直关系
推导立体几何中的平行与垂直关系在立体几何中,平行和垂直关系是两个重要的几何概念。
本文将通过推导的方式来探讨平行和垂直之间的关系,从而更深入地理解它们在空间中的性质和应用。
1. 平行线的推导在立体几何中,平行线是指在同一个平面内永不相交的两条直线。
我们可以通过以下的推导过程来证明平行线之间的关系。
(省略推导过程,只列出结论)结论1:如果两条直线分别与一条第三条直线相交,并且这两个交点的两组内角互补或对顶角相等,那么这两条直线是平行的。
结论2:如果两条直线被一组平行线截断,并且这两组截断线的对应角互等,那么这两条直线是平行的。
结论3:如果两条直线被同一平面平行于第三条直线截断,并且截断线上的对应角互等,那么这两条直线是平行的。
2. 垂直关系的推导垂直关系是指两条线段、两个平面或两个立体体素之间的相互垂直性。
下面是垂直关系的推导过程。
结论4:如果两条线段的斜率相乘为-1,则它们是垂直的。
结论5:如果两个平面的法向量垂直,则这两个平面是垂直的。
结论6:如果两个立体体素的对应面之间的相交线段互相垂直,则这两个立体体素是垂直的。
通过上述的推导过程,我们可以明确平行线和垂直关系在立体几何中的性质和判定条件。
这些性质和条件在实际问题中有着广泛的应用,例如在建筑设计、空间规划和工程测量等领域。
总结起来,平行和垂直关系是立体几何中的重要概念。
通过推导我们可以得出平行线的判定条件和垂直关系的性质,从而更好地理解它们在空间中的应用。
对于解决实际问题和深入学习几何学来说,这些知识将会帮助我们更好地理解和应用平行和垂直的性质。
在实践中,我们可以通过几何题目的解答来进一步巩固对平行和垂直关系的理解。
通过本文的学习,相信读者对于立体几何中的平行和垂直关系有了更深入的认识。
在以后的学习和工作中,我们可以灵活运用这些概念和推导方法,更好地解决与立体几何相关的问题。
立体几何作为数学的一个重要分支,在应用中有着广泛的价值和意义。
因此,深入理解并掌握平行和垂直关系是我们学习立体几何的关键。
空间中的平行与垂直关系
空间中的平行与垂直关系一、知识梳理1、 平行关系(1)直线与平面平行的判定定义:直线与平面没有公共点,称这条直线与这个平面平行。
判定定理:若l α⊄,a α⊂,l ∥a ,则l ∥α。
(2)直线与平面的平行性质定理:判定定理:若l ∥α,l β⊂,a αβ=,则l ∥a 。
(3)平面与平面的平行的判定定义:没有公共点的两个平面叫做平行平面。
判定定理1:若, a b αα⊂⊂,a b P =,a ∥β,b ∥β,则α∥β;判定定理2:若, l l αβ⊥⊥,则α∥β;判定定理3:若α∥β,β∥γ,则α∥γ。
(4)平面与平面的平行性质定理:性质定理1:若α∥β,a α⊂,则a ∥β;性质定理2:若α∥β,且a γα=,b γβ=,则a ∥b ;性质定理3:若α∥β,且l α⊥,则l β⊥。
2、补充结论:如果一个平面内的两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行。
3、线线平行的常用证明方法(1)利用平面几何的结论,如三角形的中位线平行于底边、平行四边形的对边平行、利用比例,等;(2)利用公理4:平行于同一条直线的两条直线平行;(3)利用线面平行的性质定理、面面平行的性质定理、线面垂直的性质定理4、垂直关系(1)直线与平面垂直的判定定义:如果一条直线和一个平面相交,并且和这个平面内的所有直线垂直。
判定定理:若, , m n mn P αα⊂⊂=,, l m l n ⊥⊥,则l α⊥。
(2)直线与平面的垂直性质定理:符号表示:若l α⊥,对任意的a α⊂,都有l a ⊥。
(3)平面与平面的垂直的判定定义:两个平面所成的二面角为直角,那么这两个平面垂直。
判定定理:若, a a αβ⊂⊥,则l α⊥。
(4)平面与平面的垂直性质定理:性质定理1:若, , , l a a l αβαβα⊂=⊂⊥,则a β⊥。
性质定理2:若, , l αβαγβγ=⊥⊥,则l γ⊥。
5、补充定理(1)若, l αα⊥∥β,则l β⊥;(2)若, l a α⊥∥l ,则a α⊥。
空间几何中的平行与垂直关系
空间几何中的平行与垂直关系在空间几何中,平行与垂直关系是两种重要的几何关系。
它们在解决几何问题、计算坐标和推导定理等方面起着至关重要的作用。
通过研究平行和垂直关系,我们可以更好地理解空间中的几何性质,并应用于实际问题的求解。
1. 平行关系平行关系是指两条或多条直线在空间中永远不会相交。
在平行线之间不存在任何交点,它们的方向相同或者互为反向。
为了表示平行关系,我们可以使用"//"符号,如AB // CD。
在三维空间中,平行关系的判断可以通过以下方法确定:- 斜率法:对于两条直线L1和L2,如果它们的斜率相等,则L1与L2平行。
具体计算时,我们可以求两条直线上某一点的斜率,如果斜率相等,则可以判断它们是平行的。
- 向量法:如果两条直线的方向向量是平行的,则它们是平行的。
我们可以通过求取两条直线的方向向量,然后比较它们是否平行来判断平行关系。
平行关系的性质:- 平行线具有相同的斜率。
- 平行线之间的距离是恒定的,任意两点到另一条直线的距离相等。
- 平行线与平面的交线是平行的。
2. 垂直关系垂直关系是指两条直线或直线与平面的交线之间的关系。
在垂直关系中,直线或直线段与垂直交线之间的夹角为90度。
在三维空间中,判断垂直关系的方法有:- 向量法:如果两条直线的方向向量相互垂直,则它们是垂直的。
通过计算两条直线的方向向量,然后判断它们是否相互垂直。
- 斜率法:如果两条直线的斜率的乘积为-1,则它们是垂直的。
具体计算时,我们可以求两条直线上某一点的斜率,然后计算斜率的乘积,如果结果为-1,则可以判断它们是垂直的。
垂直关系的性质:- 垂直关系是相互垂直的直线或者直线与平面之间的关系。
在直角坐标系中,垂直关系可以表示为两直线斜率的乘积为-1。
- 垂直交线之间的夹角为90度。
- 垂直关系通常用于解决与直角、垂直性质相关的问题,例如计算两直线之间的距离、垂直偏移等。
总结:在空间几何中,平行与垂直关系是两种重要的几何关系。
空间几何中的平行与垂直关系
空间几何中的平行与垂直关系在空间几何中,平行和垂直是我们常见的几何关系。
平行指两条直线或者两个平面永远不会相交,而垂直指两条直线或者两个平面相互成直角。
这两种关系在数学和实际生活中都有广泛的应用。
本文将探讨平行和垂直的定义、性质以及在几何中的重要应用。
一、平行关系平行线是指两条直线不相交,且永远保持相同的距离。
根据平行线的定义,我们可以得出以下性质:1. 平行线具有传递性,即若线段AB与线段BC平行,则线段AB与线段AC也平行。
2. 平行线之间不存在交点,也不能相互交叉。
3. 平行线与一条直线的交点与另一条直线平行。
4. 平行线具有对称性,即若线段AB与线段CD平行,则线段CD与线段AB也平行。
平行关系在空间几何中有很多应用,比如在平行四边形和三角形的性质证明中经常用到。
平行线也是解决几何难题的重要手段,如求解截面积和体积等问题。
二、垂直关系垂直是指两条直线或者两个平面相互成直角。
根据垂直关系的定义,我们可以得出以下性质:1. 垂直于同一条直线的两条直线彼此平行。
2. 两个平面相互垂直的条件是它们的法向量垂直。
3. 直线与平面垂直,则直线上的任意一条线段与平面上的任意一条线段相互垂直。
垂直关系在几何中也有广泛的应用。
在建筑设计中,垂直关系是测量和布局的基础。
在空间坐标系中,垂直关系可以用来识别空间中的平面,具有重要的实际应用价值。
总结:平行和垂直是空间几何中常见的几何关系。
两条平行线永远不会相交,而两条垂直线相互成直角。
它们在各自的定义中包含了一系列的性质和特点,这些性质和特点为我们解决几何问题提供了重要的线索。
在几何证明中,平行和垂直关系是解决问题的关键步骤之一。
我们可以利用这些关系性质,推导出更多有关几何形状和结构的定理。
在实际生活中,平行和垂直关系也有广泛的应用。
比如在建筑设计、物体测量等方面都需要考虑平行和垂直的关系,以保证结构的稳定性和功能的实现。
通过理解和应用平行和垂直关系,我们可以更好地理解和解决与空间几何相关的问题,提高数学思维能力和几何分析能力。
立体几何证明平行和垂直
立体几何证明平行和垂直
在立体几何中,我们可以通过以下定理和性质来证明线段、平面、直线的平行和垂直关系:
1. 平行线定理:若两条直线与第三条直线交叉时,两个内角和等于180度,则这两条直线是平行的。
2. 垂直线定理:若两条直线相交时,相邻的内角是直角,则这两条直线是垂直的。
3. 垂直平分线定理:若一个直线通过一个线段的中点并与该线段垂直,则这条直线垂直于该线段。
4. 同位角定理:当一条直线与两条平行直线相交时,对应的同位角是相等的。
5. 垂直平分线性质:当一条直线垂直平分一条线段时,它同时垂直于该线段的两个中垂线。
6. 垂直平分线交角性质:当两条直线都垂直平分了同一条线段时,这两条直线是平行的。
根据以上定理和性质,我们可以利用构造图形、辅助线、角度计算等方法进行立体几何证明的平行和垂直关系。
这些证明通常涉及到直线与平面的交点、线段的中点、角度的大小等问题,需要根据给定的条件进行分析和推导。
需要注意的是,在立体几何证明中,除了以上的定理和性质,还可以利用立体几何中的其他相关定理和公式来辅助证明,具体证明方法也要根据具体情况灵活运用。
总之,立体几何的平行和垂直关系证明是一个比较重要的内容,需要熟悉相关定理和性质,并能够熟练运用各种证明方法来解决问题。
高中数学知识点总结及公式大全立体几何中的平行与垂直问题
高中数学知识点总结及公式大全立体几何中的平行与垂直问题高中数学知识点总结及公式大全:立体几何中的平行与垂直问题在高中数学中,几何是一个重要的分支,而立体几何更是其中的重要内容之一。
在立体几何中,平行和垂直是我们经常遇到的问题。
本文将对高中数学中的立体几何知识点进行总结,并提供一些常用的公式。
一、平行与垂直的概念在几何中,平行和垂直是两个基本的关系。
平行指的是两条直线永远不会相交的情况,可以想象成两条铁轨永远平行。
垂直则指的是两条直线相互成直角,可以想象成两根彼此垂直的木棍。
二、平行与垂直的判定方法1. 平行关系的判定方法:(1) 同位角相等定理:如果两条直线被一组相交线段所切割,且这些相交线段的对应角相等,则这两条直线是平行的。
(2) 平行线的性质定理:如果一条直线上的两个点分别与另一条直线上的两个点相连,且相连的线段互相平行,则这两条直线是平行的。
(3) 平行线的判定定理:如果两条直线的斜率相等且不相交,则这两条直线是平行的。
2. 垂直关系的判定方法:(1) 两条直线相交且相交角为90度,则这两条直线是垂直的。
(2) 垂直线的性质定理:如果一条直线与另一条直线相互垂直,且这两条直线各自还与第三条直线相交,则第三条直线与这两条直线也是垂直的。
(3) 垂直线的判定定理:如果两条直线的斜率互为负倒数,则这两条直线是垂直的。
三、常用公式在立体几何中,我们经常使用一些公式来求解问题。
下面是一些常用的公式:1. 立方体的表面积公式:立方体的表面积等于6倍的边长平方。
2. 立方体的体积公式:立方体的体积等于边长的立方。
3. 正方体的表面积公式:正方体的表面积等于6倍的边长平方。
4. 正方体的体积公式:正方体的体积等于边长的立方。
5. 圆柱体的表面积公式:圆柱体的表面积等于2πr² + 2πrh,其中r为底面半径,h为高。
6. 圆柱体的体积公式:圆柱体的体积等于πr²h,其中r为底面半径,h为高。
高中数学 -空间立体几何中的平行、垂直证明定理总结 (1)
l n
☺ 简称:线线垂直,线面垂直.
复习定理
空间中的垂直
2.直线与平面垂直性质
判定:如果一条直线和一个平面垂直,则称这条直线和这 个平面内任意一条直线都垂直.
l m
l
m
☺ 简称:线面垂直,线线垂直.
复习定理
空间中的垂直
3.平面与平面垂直判定
判定:如果一个平面经过另一个平面的一条垂线,则这两个 平面互相垂直.
(1)求证:BC1∥平面 CA1D; (2)求证:平面 CA1D⊥平面 AA1B1B. 证明:(1)连结AC1交A1C于E,连结DE.
∵AA1C1C为矩形,则E为AC1的中点. 又D是AB的中点,
∴在△ABC1中,DE∥BC1.
E
又DE⊂平面CA1D,
BC1⊄平面CA1D,
∴BC1∥平面CA1D.
证明:(2)∵AC=BC, D为AB的中点, ∴在△ABC中,AB⊥CD.
空间中的平行与垂直 定理总结
复习定理
空间中的平行
1.直线与平面平行的判定
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
b
a
//
b
a // b
☺ 简称:线线平行,线面平行.
复习定理
空间中的平行
2.直线与平面平行的性质
一条直线与一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行.
①若m⊥α,n∥α,则m⊥n;②若α⊥γ,β⊥γ,
则α∥β;
③若m∥α,n∥α,则m∥n;④若α∥β,β∥γ,
m⊥α,则m⊥γ.
正确的命题是( C)
A.①③
B.②③
C.①④
D.②④
解析 ②中平面α与β可能相交,③中m与n可以
2024届高考数学专项立体几何大题含答案
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学总复习-第七章立体几何-空间中的平行和垂直关系【知识结构图】第3课空间中的平行关系【考点导读】1.掌握直线和平面平行、两个平面平行的判定定理和性质定理。
2.明确定义与定理的不同,定义是可逆的,既是判定也是性质,而判定定理与性质定理多是不可逆的。
3.要能灵活的对“线线平行”、“线面平行”和“面面平行”进行转化。
【基础练习】1.若ba、为异面直线,直线c∥a,则c与b的位置关系是异面或相交2.给出下列四个命题:①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行.③若直线12,l l 与同一平面所成的角相等,则12,l l 互相平行. ④若直线12,l l 是异面直线,则与12,l l 都相交的两条直线是异面直线. 其中假.命题的个数是 4 个。
3.对于任意的直线l 与平面a ,在平面a 内必有直线m ,使m 与l 垂直 。
4. 已知a 、b 、c 是三条不重合的直线,α、β、r 是三个不重合的平面,下面六个命题:①a ∥c ,b ∥c ⇒a ∥b ;②a ∥r ,b ∥r ⇒a ∥b ;③α∥c ,β∥c ⇒α∥β; ④α∥r ,β∥r ⇒α∥β;⑤a ∥c ,α∥c ⇒a ∥α;⑥a ∥r ,α∥r ⇒a ∥α. 其中正确的命题是 ①④ 。
【范例导析】例1.如图,在四面体ABCD 中,截面EFGH 是平行四边形. 求证:AB ∥平面EFG . 证明 :∵面EFGH 是截面.∴点E ,F ,G ,H 分别在BC ,BD ,DA ,AC 上. ∴EH面ABC ,GF面ABD ,由已知,EH ∥GF .∴EH ∥面ABD . 又 ∵EH 面BAC ,面ABC ∩面ABD=AB∴EH ∥AB . ∴AB ∥面EFG .例2. 如图,在正方体ABCD —A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,并且CM=DN.求证:MN ∥平面AA 1B 1B.分析:“线线平行”、“线面平行”、“面面平行”是可以互相转化的。
本题可以采用任何一种转化方式。
简证:法1:把证“线面平行”转化为证“线线平行”。
即在平面ABB 1A 1内找一条直线与MN 平行,如图所示作平行线即可。
法2:把证“线面平行”转化为证“线线平行”。
连CN 并延长交直线BA 于点P , 连B 1P ,就是所找直线,然后再设法证明MN ∥B 1P .法3:把证“线面平行”转化为证“面面平行”。
过M 作MQ//BB 1交BC 于B 1,连NQ ,则平面MNQ 与平面ABB 1A 1平行, 从而证得MN ∥平面ABB 1A 1.点评:证明线面或面面平行的时候一定要注意相互的转化,非常灵活。
【反馈演练】1.对于平面α和共面的直线m 、,n 下列命题中真命题是(3)。
(1)若,,m m n α⊥⊥则n α∥ (2)若m αα∥,n ∥,则m ∥n(3)若,m n αα⊂∥,则m ∥n (4)若m 、n 与α所成的角相等,则m ∥n 2. 设a 、b 是两条异面直线,那么下列四个命题中的假命题是 (2) 。
(1)经过直线a 有且只有一个平面平行于直线b (2)经过直线a 有且只有一个平面垂直于直线b (3)存在分别经过直线a 和b 的两个互相平行的平面 (4)存在分别经过直线a 和b 的两个互相垂直的平面3.关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是(4) 。
(1)若a ∥M ,b ∥M ,则a ∥bABCD NF EM A 1B 1D 1C 1(2)若a ∥M ,b ⊥a ,则b ⊥M(3)若a M ,b M ,且l ⊥a ,l ⊥b ,则l ⊥M (4)若a ⊥M ,a ∥N ,则M ⊥N4.“任意的a α⊂,均有//a β”是“任意b β⊂,均有//b α”的 充要条件 。
5.在正方体AC 1中,过A 1C 且平行于AB 的截面是 面A 1B 1CD . 6.在长方体ABCD —A 1B 1C 1D 1中,经过其对角线BD 1的平面分别与棱AA 1,CC 1相交于E,F 两点,则四边形EBFD !的形状为 平行四边形 。
7. 已知P为平行四边形ABCD所在平面外一点,M为PB的中点, 求证:PD∥平面MAC.证明 连AC交BD于O,连MO, 则MO为△PBD的中位线,∴PD∥MO,∵PD⊄平面MAC,MO平面MAC, ∴PD∥平面MAC.8.如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点1)求证://MN 平面PAD ;(2)若4MN BC ==,43PA = 求异面直线PA 与MN 所成的角的大小略证:(1)取PD 的中点H ,连接AH , DC NH DC NH 21,//=⇒ AMNH AM NH AM NH ⇒=⇒,//为平行四边形 PAD AH PAD MN AH MN ⊂⊄⇒,,//PAD MN //⇒(2): 连接AC 并取其中点为O ,连接OM 、ON ,则OM 平行且等于BC 的一半,ON 平行且等于PA 的一半,所以ONM ∠就是异面直线PA 与MN 所成的角,由4MN BC ==,43PA =OM=2,ON=32所以030=∠ONM ,即异面直线PA 与MN 成030的角9.两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB ,且AM =FN ,求证:MN ∥平面BCE 。
NH BD P证法一:作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足,则MP ∥AB ,NQ ∥AB 。
∴MP ∥NQ ,又AM =NF ,AC =BF , ∴MC =NB ,∠MCP =∠NBQ =45° ∴Rt △MCP ≌Rt △NBQ∴MP =NQ ,故四边形MPQN 为平行四边形 ∴MN ∥PQ∵PQ ⊂平面BCE ,MN 在平面BCE 外, ∴MN ∥平面BCE 。
证法二:如图过M 作MH ⊥AB 于H ,则MH ∥BC ,∴ABAH AC AM =连结NH ,由BF =AC ,FN =AM ,得ABAHBF FN =∴ NH//AF//BE由MH//BC, NH//BE 得:平面MNH//平面BCE ∴MN ∥平面BCE 。
PC第4课 空间中的垂直关系 【考点导读】1.掌握直线与平面、平面与平面垂直的判定定理和性质定理,并能用它们证明和解决有关问题。
2.线面垂直是线线垂直与面面垂直的枢纽,要理清楚它们之间的关系,学会互相转化,善于利用转化思想。
【基础练习】1.“直线l 垂直于平面α内的无数条直线”是“l α⊥”的 必要 条件。
2.如果两个平面同时垂直于第三个平面,则这两个平面的位置关系是 平行或相交 。
3.在正方体中,与正方体的一条对角线垂直的面对角线的条数是 6 。
4.两个平面互相垂直,一条直线和其中一个平面平行,则这条直线和另一个平面的位置关系是平行、相交或在另一个平面内 。
5.在正方体1111ABCD A B C D -中,写出过顶点A 的一个平面__AB 1D 1_____,使该平面与正方体的12条棱所在的直线所成的角均相等(注:填上你认为正确的一个平面即可,不必考虑所有可能的情况)。
【范例导析】例1.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F . (1)证明PA //平面EDB ; (2)证明PB ⊥平面EFD .解析:本小题考查直线与平面平行,直线与平面垂直基础知识,考查空间想象能力和推理论证能力.证明:(1)连结AC ,AC 交BD 于O ,连结EO . ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB ,AC所以,PA // 平面EDB(2)∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD =DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴PC DE ⊥. ①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC . 而⊂DE 平面PDC ,∴DE BC ⊥. ②由①和②推得⊥DE 平面PBC . 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE =I ,所以PB ⊥平面EFD .例2.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =CA =2 BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ; (3)平面DEA ⊥平面ECA 。
分析:(1)证明DE =DA ,可以通过图形分割,证明△DEF ≌△DBA 。
(2)证明面面垂直的关键在于寻找平面内一直线垂直于另一平面。
由(1)知DM ⊥EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。
从而证明DM ⊥平面ECA 。
证明:(1)如图,取EC 中点F ,连结DF 。
∵ EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。
∴ DB ⊥AB ,EC ⊥BC 。
∵ BD ∥CE ,BD =21CE =FC , 则四边形FCBD 是矩形,DF ⊥EC 。
又BA =BC =DF ,∴ Rt △DEF ≌Rt △ABD ,所以DE =DA 。
(2)取AC 中点N ,连结MN 、NB , ∵ M 是EA 的中点,∴ MN 21EC 。
由BD21EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN。
∵DE=DA,M是EA的中点,∴DM⊥EA.又EA I MN=M,∴DM⊥平面ECA,而DM⊂平面BDM,则平面ECA⊥平面BDM。
(3)∵DM⊥平面ECA,DM⊂平面DEA,∴平面DEA⊥平面ECA。
点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。
例3.如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1中点.(1)求证C1D⊥平面A1B;(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论。
分析:(1)由于C1D所在平面A1B1C1垂直平面A1B,只要证明C1D垂直交线A1B1,由直线与平面垂直判定定理可得C1D⊥平面A1B。
(2)由(1)得C1D⊥AB1,只要过D作AB1的垂线,它与BB1的交点即为所求的F点位置。
证明:(1)如图,∵ABC—A1B1C1是直三棱柱,∴A1C1=B1C1=1,且∠A1C1B1=90°。