人教七年级下册平方根与立方根的知识要点归纳

合集下载

人教版七年级下册第六章 平方根、算术平方根和立方根复习 (PDF版 无答案)

人教版七年级下册第六章 平方根、算术平方根和立方根复习 (PDF版 无答案)

(2)125(x-2)3=343
5.计算:
6
6.已知实数a的立方根是4,则 的平方根是

7.已知 2a-1的平方根是±3,3a+b-1的算术平方根是4,求50a-17b的立方根.
8.用一块纸板做一个有底无盖的正方体型的粉笔盒,已知粉笔盒的容积为216cm3.求: (1)这个粉笔盒的棱长; (2)这块纸板至少要多大面积?
,求a-b的平方根。
16.若 x 1 (3x y 1)2 0 ,求 5x y2 的值.
17.若 a 8 与(b-27)2互为相反数,求 3 a 3 b 的立方根.
18.已知实数a满足 2013 a a 2014 3 a3 ,求a-20132的值
4.观察分析下列数据,寻找规律:0, , , , ,5…那么第17个数据应是
知识点讲解3:非负性的应用
当a≥0时, a 才有意义; 当a≥0时,a 是一个非负数, , ;
例1.已知

是互为相反数,求(a-b)2018的值.
例2.a2的算术平方根一定是( )
A.
B.
C.
例3.实数a,b在数轴上的位置如图所示,则化简
D.
结果是( )
A.
B.
C.
D.1
【学有所获】本题主要考查了数形结合的思想,看图判断a﹣b 0,1﹣a 0,b 0,进而化简,计算。 [学有所获答案]>;<;<。
B.9
C.12
4.的 算术平方根是
; 81 的算术平方根是

5.若一块正方形瓷砖的面积为0.64米2,则其边长是
米.
6.已知一个正数的平方根是3x-2和5x+6,则这个数是

7.若无理数 2a-9与- a-3为正数m的平方根,则m=

人教版七年级实数平方根与立方根

人教版七年级实数平方根与立方根

平方根与立方根 知识点一:算术平方根1.定义一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的__________.2.表示方法a 的算术平方根记为__________,读作“根号a ”,a 叫被开方数.3.算术平方根的性质①正数a a②0的算术平方根是00=__________;③负数没有算术平方根.④a a 是非负数,即a ≥0a a ≥0.【例1-1】求下列各数的算术平方根.①10 ②25 ③6449 ④0.01 ⑤23【例1-2】设3-a 是一个数的算术平方根,那么( ).A .a ≥0B .a >0C .a >3D .a ≥3【例1-3】算术平方根等于它本身的数有__________.【例1-4】13-m 的算术平方根是2,16-+n m 的算术平方根是3,求n m 29+的算术平方根.举一反三1. 16的算术平方根是________.2. 已知正方形的边长为 a ,面积为 S ,下列说法中:①a S =;①S a =;①S 是a 的算术平方根;①a 是S 的算术平方根.正确的是( )A .①①B .①①C .①①D .①①3. 12+x 的算术平方根是2,则x =________.4. 已知,()132++-=b a y ,当b a ,取不同的值时,y 也有不同的值.当y 最小时,求a b 的非算术平方根.知识点二:平方根1. 平方根的概念一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的________或二次方根.【注意】在这里,a 是x 的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a ≥0.2. 平方根的性质①一个正数a 有_______个平方根,其中一个是“a ”,另一个为“a -”,它们互为相反数; ②0的平方根是0;③负数没有平方根.3. 开平方的概念求一个数a 的平方根的运算,叫做__________.4. 利用平方根的定义解方程将各式转化为等号的左边是含x 的一个式子的平方式,右边是一个非负数的形式,如m x =2或()()02≥=+m m b ax ,然后利用平方根的定义得到m x ±=或m b ax ±=+,进而得到原方程的解.5.平方根与算术平方根的区别①定义不同;②个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; ③表示方法不同,正数a 的平方根表示为a a a ;④取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.【例2-1】25的平方根是( ).A .5B .-5C .5±D .±5【例2-2】 下列说法正确的( ). ①2-是2的一个平方根;②4-的算术平方根是2;③16的平方根是±2;④0没有平方根.A .①②③B .①④C .①③D .②③④【例2-3】求下列各式的值: ①144 ②81.0- ③196121±④256【例2-4】 求下列各式中的x .x 2=17 0491212=-x 【例2-5】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是( ). A .32+a B .32+-a C .32+±a D .3+±a举一反三1. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.492. 下列说法中正确的是( )A .81的平方根是3±B .1的立方根是±1C .11±=D .5-是5的平方根的相反数3. 计算.=412___________ =±169___________ =-2894___________ 4. 求下列各式中x 的值. ()16142=-x ()011242=-+x5. 已知9的算术平方根是a ,b 的平方是25,求ab 的值.知识点三:立方根1.立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的__________或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.2. 表示方法:一个数a 的立方根,用符号3a 表示,读作:“三次根号a ”,其中a 是被开方数,3是根指数.注:互为相反数的两数的立方根也互为相反数.3.开立方求一个数的立方根的运算,叫做__________. 性质:①正数的立方根是正数,负数的立方根是__________,0的立方根是0;33a a -= ③3333()a a =a .开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为__________.开立方所得的结果就是立方根.4.平方根和立方根的区别和联系①被开方数的取值范围不同 在a a 是非负数,即a ≥03a 中,被开方数a 是任意数.②运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.【例3-1】 -64的立方根是( ).A .-4B .4C .±4D .不存在【例3-2】 下列计算中,错误的是( ).A 30.125B 3273644-=-C 3313182=D .3821255-=-【例3-3】若83-=a ,则a =__________.【例3-4】已知,一个正数的平方根是12-a 与a -2,求a 的平方的相反数的立方根.【例3-5】 已知12-a 的平方根是3±,13-+b a 的立方根是4,求b a +的平方根.举一反三 1. 33(1)- ).A .-1B .0C .1D .±1 2. 求下列各式的值:(130.001 (23343125- (3)327191--.3. 求下列各式中的x .012583=+x ()2733=+x4. 若32+a 和12-a 是数m 的平方根,求m 的值.5. 已知12+x 1362-+y x 的立方根是2.(1)求y x ,的值;(2)求xy 3的平方根.知识点四:非负性的运用非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

数学归纳初中代数中的平方根与立方根总结与归纳

数学归纳初中代数中的平方根与立方根总结与归纳

数学归纳初中代数中的平方根与立方根总结与归纳在初中数学中,学生们学习了平方根和立方根的概念与性质。

平方根和立方根作为代数中重要的概念,对于解决各种数学问题和实际应用问题都起到了关键作用。

本文将对初中代数中的平方根和立方根进行总结与归纳。

一、平方根的概念与性质1. 平方根的定义:如果正数a的平方等于b,那么称b是a的平方根,记作√b=a。

其中,√b表示开平方,a表示被开方的数。

2. 平方根的运算法则:平方根具有如下运算法则:a) √(a × b) = √a × √b (a ≥ 0, b ≥ 0)。

b) √(a ÷ b) = √a ÷ √b (a ≥ 0, b > 0)。

c) √(a + b) ≠ √a + √b。

3. 平方根的性质:平方根具有如下性质:a) 一个非负实数的平方根是非负实数。

b) 两个正实数的积的平方根等于它们的平方根的积。

二、立方根的概念与性质1. 立方根的定义:如果正数a的立方等于b,那么称b是a的立方根,记作³√b=a。

其中,³√b表示开立方,a表示被开立方的数。

2. 立方根的运算法则:立方根具有如下运算法则:a) ³√(a × b) = ³√a × ³√b (a ≥ 0, b ≥ 0)。

b) ³√(a ÷ b) = ³√a ÷ ³√b (a ≥ 0, b > 0)。

c) ³√(a + b) ≠ ³√a + ³√b。

3. 立方根的性质:立方根具有如下性质:a) 一个实数的立方根可能是正实数、负实数或零。

b) 两个实数的积的立方根等于它们的立方根的积。

三、平方根与立方根的应用1. 在几何中,平方根和立方根常常用于求解长度、面积和体积等问题。

2. 在物理学中,平方根和立方根常被用于计算物体的速度、加速度、压强等物理量。

七年级数学下册平方根与立方根【九大题型】(举一反三)(人教版)

七年级数学下册平方根与立方根【九大题型】(举一反三)(人教版)

专题6.1 平方根与立方根【九大题型】【人教版】【题型1 平方根、立方根的概念及表示】 (1)【题型2 平方根性质的运用】 (2)【题型3 开平方、开立方的运算】 (4)【题型4 利用开平方、开立方解方程】 (5)【题型5 算术平方根的概念及非负性】 (7)【题型6 开方运算中的小数点移动规律】 (8)【题型7 平方根与立方根综合】 (10)【题型8 算术平方根、立方根的应用】 (11)【题型9 算术平方根、立方根的规律探究】 (13)【例1】(2022春•海淀区校级期中)下列各数中,一定没有平方根的是()A.﹣a B.﹣a2+1C.﹣a2D.﹣a2﹣1【分析】根据平方根的被开方数不能是负数,可得答案.【解答】解:在﹣a,﹣a2+1,﹣a2,﹣a2﹣1中,﹣a2﹣1是负数,没有平方根.故选:D.【变式1-1】(2022春•鞍山期末)下列说法正确的是()A.﹣1是1的平方根B.﹣1是-1的平方根C.﹣1是1的立方根D.﹣1没有立方根【分析】根据平方根和立方根的概念与性质进行辨别即可.【解答】解:∵±1都是1的平方根, ∴选项A 符合题意; ∵-1没有平方根, ∴选项B 符合题意; ∵1的立方根是1, ∴选项C 不符合题意; ∵﹣1的立方根是﹣1, ∴选项D 符合题意, 故选:A .【变式1-2】(2022春•应城市期末)下列各式中,正确的是( ) A .−√−9=3B .√−273=−3C .√183=±12D .√83=−2【分析】根据算术平方根、平方根、立方根的定义解决此题. 【解答】解:A .−√−9无意义,故A 不符合题意. B .√−273=−3,故B 符合题意. C .√183=12,故C 不符合题意. D .√83=2,故D 不符合题意. 故选:B .【变式1-3】(2022春•高安市期中)下列叙述中,错误的是( ) A .0只有一个平方根 B .若x 2=3,则x =±√3C .√64的立方根是2D .512的立方根是±8【分析】根据立方根与平方根的定义即可求出答案. 【解答】解:A 、0只有一个平方根,故A 不符合题意. B 、若x 2=3,则x =±√3,故B 不符合题意. C 、√64=8,8的立方根是2,故C 不符合题意. D 、512的立方根是8,故D 符合题意. 故选:D .【例2】(2022春•临洮县期中)一个正数x 的两个平方根分别是2a ﹣1与﹣a +2,求a 的值和这个正数x 的值.【分析】正数x 有两个平方根,分别是﹣a +2与2a ﹣11,所以﹣a +2与2a ﹣1互为相反数;即﹣a +2+2a ﹣1=0解答可求出a ;根据x =(﹣a +2)2,代入可求出x 的值.【解答】解:∵正数x有两个平方根,分别是﹣a+2与2a﹣1,∴﹣a+2+2a﹣1=0解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9.【变式2-1】(2022•工业园区期中)一个正数M的两个平方根分别是2a+3和2b﹣1,求(a+b)2022.【分析】利用正数的平方根有2个,且互为相反数求出a+b的值,代入原式计算即可得到结果.【解答】解:根据题意得:2a+3+2b﹣1=0,整理得:a+b=﹣1,则原式=1.【变式2-2】(2022春•孟村县期中)已知正实数x的两个平方根是m和m+b.(1)当b=8时,m的值是﹣4;(2)若m2x+(m+b)2x=4,则x=√2.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=√2.故答案为:(1)﹣4;(2)√2.【变式2-3】(2022春•建安区期中)若a是(﹣4)2的平方根,b的一个平方根是2,则代数式a+b的值为()A.8B.0C.8或0D.4或﹣4【分析】先依据平方根的定义和性质求得a、b的值,然后依据有理数的加法法则求解即可.【解答】解:∵a是(﹣4)2的平方根,∴a=±4.∵b的一个平方根是2,∴b=4.∴当a=4,b=4时,a+b=8;当a=﹣4,b=4时,a+b=0.故选:C.【例3】(2022春•雨花区校级月考)根据图中呈现的运算关系,可知a=﹣2020,b=﹣2020.【分析】利用立方根和平方根的定义及性质即可解决问题.【解答】解:依据图中呈现的运算关系,可知2020的立方根是m,a的立方根是﹣m,∴m3=2020,(﹣m)3=a,∴a=﹣2020;又∵n的平方根是2020和b,∴b=﹣2020.故答案为:﹣2020,﹣2020.【变式3-1】(2022春•绥棱县期末)已知x、y为实数,且满足√1+x+√1−y=0,那么x2022﹣y2022=0.【分析】根据√1+x+√1−y=0,且√1+x与√1−y均大于等于0,以此解出x、y值进而计算出结果.【解答】解:∵√1+x+√1−y=0,且√1+x与√1−y均≥0,∴1+x=0,1﹣y=0,得x=﹣1,y=1,x2022﹣y2022=(﹣1)2022﹣12022=1﹣1=0,故答案为:0.【变式3-2】(2022春•五常市期末)1106的平方根是±11000,﹣27的立方根是﹣3.【分析】根据平方根、立方根的定义进行计算即可.【解答】解:1106的平方根为±√1106=±1103=±11000;﹣27的立方根为√−273=−3,故答案为:±11000,﹣3.【变式3-3】(2022春•龙岩期末)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.2√2B.2C.√2D.±√2【分析】直接利用立方根以及算术平方根、无理数的定义分析得出答案.【解答】解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是√2,即y=√2.故选:C.【题型4 利用开平方、开立方解方程】【例4】(2022•靖江市期末)求出下列x的值:(1)4x2﹣9=0;(2)8(x+1)3=125.【分析】(1)移项,把二次项系数化为1,开平方求出x;(2)把二次项系数化为1,开立方求出x.【解答】解:(1)4x2﹣9=0,4x2=9,x2=94,x1=32,x2=−32;(2)8(x+1)3=125,(x+1)3=1258,x+1=52,x=1.5.【变式4-1】(2022春•阆中市期中)(1)已知4(x﹣3)2=64,求x的值.(2)已知(x+1)3+27=0,求x的值.【分析】(1)根据题意可化为(x﹣3)2=16,根据平方根的定义可得x﹣3=±√16,计算即可得出答案;(2)根据题意可化为(x+1)3=﹣27,根据立方根的定义可得x+1=√−273,计算即可得出答案.【解答】解:(1)4(x﹣3)2=64,(x﹣3)2=16,x﹣3=±√16,x﹣3=±4,x﹣3=4或x﹣3=﹣4,x=7或x=﹣1;(2)(x+1)3+27=0,(x+1)3=﹣27,x+1=√−273,x+1=﹣3,x=﹣4.【变式4-2】(2022春•安陆市期中)求x的值:(1)2x2=50;(2)(x+1)3+3=−38.【分析】(1)根据等式的性质以及平方根的定义就求出答案;(2)根据等式的性质以及立方根的定义即可求出答案.【解答】解:(1)2x2=50,两边都除以2得,x2=25,根据平方根的定义得,x=±5;(2)(x+1)3+3=−38,移项得,(x+1)3=−38−3,合并同类项得,(x+1)3=−278,根据立方根的定义得,x+1=−32,解得x=−52.【变式4-3】(2017秋•金牛区校级月考)解方程:若(x﹣1)2﹣1=8,则x=﹣2或4;若x3−827=0,则x=23.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程变形后,利用立方根定义开立方即可求出x的值.【解答】解:(1)(x﹣1)2﹣1=8,(x﹣1)2=9,x﹣1=±3,x=﹣2或4;(2)x3−827=0,x3=8,27x=2.3.故答案为:﹣2或4;23A.(x2+4)4B.(x2+4)2C.x2+4D.√x2+4【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.我们把正的平方根叫a的算术平方根,由此即可求出√(x2+4)2的算术平方根.【解答】解:∵√(x2+4)2=x+4,∴√(x2+4)2的算术平方根是√x2+4.故选:D.【变式5-1】(2022春•巴彦县期末)若x﹣5有算术平方根,则x满足的条件是x≥5.【分析】根据非负数有平方根列式求解即可.【解答】解:根据题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【变式5-2】(2022春•宁县期末)若√7−x为整数,x为正整数,则x的值为3或6或7.【分析】根据算术平方根的定义解决此题.【解答】解:由题意得,7﹣x≥0.∴x≤7.∵x为正整数,∴x可能为1、2、3、4、5、6、7.∵√7−x为整数,∴x=3或6或7.故答案为:3或6或7.【变式5-3】(2022春•椒江区期末)我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术方根都是整数,则称这三个数为“完美组合数”.例如:﹣9,﹣4,﹣1这三个数,√(−9)×(−4)=6,√(−9)×(−1)=3,√(−4)×(−1)=2,其结果6,3,2都是整数,所以﹣1,﹣4,﹣9这三个数称为“完美组合数”.(1)﹣18,﹣8,﹣2这三个数是“完美组合数”吗?请说明理由.(2)若三个数﹣3,m,﹣12是“完美组合数”,其中有两个数乘积的算术平方根为12,求m的值.【分析】(1)对于三个互不相等的负整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“完美组合数”,由此定义分别计算可作判断;(2)分两种情况讨论:①当√−3m=12时,②当√−12m=12时,分别计算即可.【解答】解:(1)﹣18,﹣8,﹣2这三个数是“完美组合数”,理由如下:∵√(−18)×(−8)=12,√(−18)×(−2)=6,√(−8)×(−2)=4,∴﹣18,﹣8,﹣2这三个数是“完美组合数”;(2)∵√(−3)×(−12)=6,∴分两种情况讨论:①当√−3m=12时,﹣3m=144,∴m=﹣48;②当√−12m=12时,﹣12m=144,∴m=﹣12(不符合题意,舍);综上,m的值是﹣48.【题型6 开方运算中的小数点移动规律】【例6】(2022春•遵义期末)如下表,被开方数a和它的算术平方根√a的小数点位置移动符合一定的规律,根据规律可得m,n的值分别为a0.06250.625 6.2562.5625625062500625000√a0.250.791m n2579.1250791(注:表中部分数值为近似值)()A.m=0.025,n≈7.91B.m=2.5,n≈7.91C.m≈7.91,n=2.5D.m=2.5,n≈0.791【分析】根据二次根式的乘法法则以及算术平方根的定义解决此题.【解答】解:由题意得,√0.0625=0.25,√0.625≈0.791,√6.25=m,√62.5=n.∵√6.25=√0.0625×100=√0.0625×10=0.25×10=2.5, √62.5=√0.625×100=√0.625×10≈0.791×10≈7.91, ∴m =2.5,n ≈7.91. 故选:B .【变式6-1】(2022•乐清市校级期中)(1)填表:a0.000001 0.001 1 1000 1000000 √a 30.010.1110100(2)由上你发现了什么规律?用语言叙述这个规律.被开方数的小数点每向右移动三位,相应的立方根的小数点就向 右 移动 1 位; (3)根据你发现的规律填空:①已知√33=1.442,则√30003= 14.42 ; ②已知√0.0004563=0.07696,则√4563= 7.696 . 【分析】(1)开立方运算,然后填表即可; (2)根据表格信息,可得答案; (3)根据(2)的规律求解即可. 【解答】解:(1)如表格所示;(2)被开方数的小数点每向右移动三位,相应的立方根的小数点就向右移动1位; (3)①已知√33=1.442,则√30003=14.42; ②已知√0.0004563=0.07696,则 √4563=7.696;【变式6-2】(2022春•岳麓区校级期中)已知√25.36≈5.03587,√253.6≈15.92482,则√253600≈ 503.587 (结果保留3位小数).【分析】根据算术平方根的定义,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位,进行解答即可. 【解答】解:√25.36≈5.03587, √253600 =√25.36×104, =√25.36×√104, =5.03587×100, =503.587. 故答案为:503.587.【变式6-3】(2022•无棣县期末)先填写下表,观察后回答下列问题:a… ﹣0.001 0 0.001 1 1000 … √a 3…﹣0.11…(1)被开方数a 的小数点位置移动和它的立方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:√a 3=−50,√0.1253=0.5,你能求出a 的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可; (2)依据规律进行计算即可. 【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位; (2)能求出a 的值; ∵√0.1253=0.5, ∴√−0.1253=−0.5,由﹣0.5和﹣50,小数点向右移动了2位,则﹣0.125的小数点向右移动6位, ∴a =﹣125 000【题型7 平方根与立方根综合】【例7】(2022春•海珠区校级期中)一个正数m 的两个平方根分别为1﹣3a 和a +5,则这个正数m 的立方根是 4 .【分析】一个正数的两个平方根互为相反数,根据互为相反数的两个数的和为0,列出方程求出a ,再求出平方根,然后根据平方根的平方求出m ,最后求m 的立方根. 【解答】解:根据题意,得:(1﹣3a )+(a +5)=0, 1﹣3a +a +5=0, ﹣3a +a =﹣1﹣5, ﹣2a =﹣6, a =3.∴a +5=3+5=8, ∴m =82=64, ∴64的立方根为4. 故答案为:4.【变式7-1】(2022春•海珠区期末)若实数5x +19的立方根是4,则实数3x +9的平方根是 ±6 .【分析】根据立方根的定义列出方程求出x ,然后求出3x +9的值,最后求它的平方根即可.【解答】解:∵5x +19的立方根是4, ∴5x +19=43=64, ∴x =9,∴3x+9=3×9+9=36,∴36的平方根为±6,故答案为:±6.m−2是n﹣m+3的算术平方根,B=【变式7-2】(2022春•兴仁市月考)已知A=√n−m+3m−2n+3是m+2n的立方根,求B﹣A的平方根.√m+2n【分析】首先利用算术平方根的定义以及结合立方根的定义得出n,m的值,进而利用平方根的定义求出答案.【解答】解:由题意得:m﹣2=2,m﹣2n+3=3,解得:m=4,n=2,3=2,则A=√2−4+3=1,B=√4+2×2∴B﹣A=2﹣1=1,则B﹣A的平方根为:±1.【变式7-3】(2022•兴化市月考)若a、b满足a2=9,b3=﹣8,则a﹣b的值为5或﹣1.【分析】根据平方根与立方根的定义即可求出答案.【解答】解:由题意可知:a=±3,b=﹣2,当a=3时,原式=3﹣(﹣2)=3+2=5.当a=﹣3时,原式=﹣3﹣(﹣2)=﹣1.故答案为:5或﹣1.【题型8 算术平方根、立方根的应用】【例8】(2022•桥西区校级期中)解答下列应用题:(1)某房间的面积为17.6m2,房间地面恰好由110块相同的正方形地砖铺成,每块地砖的边长是多少?(2)已知第一个正方体水箱的棱长是60cm,第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,则第二个水箱需要铁皮多少平方米?【分析】(1)先求出一块地砖的面积,再求出边长即可;(2)先求出第一个正方体水箱的体积,再根据第二个正方体水箱的体积比第一个水箱的体积的3倍还多81 000cm3,求出第二个水箱的棱长,进而求出表面积即可.【解答】解:(1)每块地砖的面积为:17.6÷110=0.16(m2),所以正方形地砖的边长为:√0.16=0.4(m).答:每块地砖的边长是0.4m;(2)由题意可知,第一个正方体水箱的体积为:603=216000(cm3),所以第二个正方体水箱的体积为:3×216000+81000=729000(cm3),3=90(cm),所以第二个正方体水箱的棱长为:√729000所以需要铁皮90×90×6=48600cm2=4.86m2.【变式8-1】(2022秋•沂源县期末)有一个底面为正方形的水池,水池深2m,容积为11.52m3,则此水池底面正方形的边长为()A.2.4m B.4.2m C.9.25m D.13.52m【分析】设水池底面正方形的边长为xm,由题意得2x2=11.52,再根据算术平方根的定义求得x=2.4.【解答】解:设水池底面正方形的边长为xm.由题意得,2x2=11.52.∴x=2.4.∴此水池底面正方形的边长为2.4 m.故选:A.【变式8-2】(2022•南安市校级月考)要制造一个长方体箱子,底面为正方形,体积为0.25m3,且长方体的高是底面边长的2倍.(1)求长方体的底面边长;(2)求长方体的表面积.【分析】(1)设出地面边长,然后根据高是底面边长的2倍表示出高,利用正方体的体积公式求得底边长即可;(2)利用其表面积的计算方法求得其表面积即可.【解答】解:(1)设底面边长为xm,则高为2x(m),则x2•2x=0.25解得:x=0.5,故长方形的底面边长为0.5m;(2)S全=2S底+4S侧=2×0.25+4×0.5=2.5m2【变式8-3】(2022春•奈曼旗期中)小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2桌面,并且的长宽之比为4:3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.【分析】根据长方形的面积,可得一个元二次方程,根据解方程,可得长方形的边长,根据长方形的边长与正方形的边长的比,可得答案.【解答】解:能做到,理由如下设桌面的长和宽分别为4x(cm)和3x(cm),根据题意得,4x×3x=588.12x2=588x2=49,x>0,x=√49=7∴4x=4×7=28 (cm)3x=3×7=21(cm)∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm∴能够裁出一个长方形面积为588 cm2并且长宽之比为4:3的桌面,答:桌面长宽分别为28cm和21cm.【题型9 算术平方根、立方根的规律探究】【例1】(2022春•崇川区校级期中)将1、√2、√3、√6按如图方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(12,3)表示的两数之和是1+√2.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m﹣1排有(﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n 个数到底是哪个数后再计算.【解答】解:(5,4)表示第5排从左向右第4个数是√2,×11×(11+1)=66(个).∵前11排共有12∴(12,3)表示第12排从左向右第3个数是第69个数,每4个数一个循环,∴69÷4=17……1,∴(12,3)表示的数是1,两数之和是1+√2.故答案为:1+√2.【变式1-1】(2022春•青山区期中)请先在草稿纸上计算下列四个式子的值:①√13;②√13+23;③√13+23+33;④√13+23+33+43,观察你计算的结果,用你发现的规律写出下面式子的值:√13+23+33+⋯+263=351.【分析】先计算出前4个式子的值,据此得出√13+23+33+⋯⋯+n 3=1+2+3+……+n ,据此求解可得.【解答】解:∵①√13=1;②√13+23=3=1+2;③√13+23+33=6=1+2+3;④√13+23+33+43=10=1+2+3+4,……∴√13+23+33+⋯+263=1+2+3+ (26)(1+26)×262=351,故答案为:351.【变式1-2】(2022春•孝义市月考)据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚给出了如下方法:(1)由103=1000,1003=1000000,确定√593193是两位数;(2)由59319个位上的数是9,确定√593193个位上的数是9;(3)划去59319后面的三位319得到59,而33=27,43=64,由此确定√593193十位上的数是3.请你类比上述过程,确定21952的立方根是 28 .【分析】根据题目提供的方法,类推确定21952的立方根.【解答】解:(1)由103=1000,1003=1000000,确定√219523是两位数;(2)由21952个位上的数是2,确定√219523个位上的数是8;(3)划去21952后面的三位952得到21,而23=8,33=27,由此确定√219523十位上的数是2,所以√219523=28,故答案为:28.【变式1-3】(2022春•越秀区校级期中)将一组数√3,√6,√9,√12,⋯,√180,按下面的方式进行排列:√3,√6,√9,√12,√15,√18√21,√24,√27,√30,√33,√36⋯⋯若√12的位置记为(1,4),√24的位置记为(2,2),则这组数据中最大的有理数的位置记为 (8,6) .【分析】观察数据的规律为3的倍数的算术平方根,6个为一排,共10列,其中最大的有理数应该为12,据此规律解答即可.【解答】解:∵这组数据是3的倍数的算术平方根,其中最大的有理数是√144=12, 又√144在第八行第六列,∴这组数据中最大的有理数√144的位置记为(8,6),故答案为:(8,6).。

初中数学知识归纳平方根与立方根的运算

初中数学知识归纳平方根与立方根的运算

初中数学知识归纳平方根与立方根的运算平方根和立方根都是数学中常见的概念,它们在数学运算中起着重要的作用。

本文将对初中数学中关于平方根和立方根的知识进行归纳和总结,帮助同学们更好地理解和运用这些概念。

一、平方根的运算平方根是指一个数的平方等于该数的正平方根。

平方根的运算可以通过开方的方式进行。

下面是一些平方根的性质和运算规则:1. 平方根的定义:设a和b是整数,且b≥0,若a^2 = b,则称a为b的平方根,记作√b,其中√b≥0。

2. 平方根的运算法则:a) 非负数的平方根都是非负数,即√a ≥ 0。

b) 平方根和平方的运算互为逆运算,即(√a)^2 = a。

c) 平方根符号√可以消去平方符号^2,即√(a^2) = a(其中a≥0)。

d) 平方根的运算满足乘法法则,即√(ab) = √a * √b。

e) 平方根的运算满足除法法则,即√(a/b) = √a / √b(其中b≠0)。

二、立方根的运算立方根是指一个数的立方等于该数的正立方根。

立方根的运算可以通过开方的方式进行。

下面是一些立方根的性质和运算规则:1. 立方根的定义:设a和b是整数,且b≥0,若a^3 = b,则称a为b的立方根,记作³√b,其中³√b≥0。

2. 立方根的运算法则:a) 实数的立方根是实数,即³√a是一个实数。

b) 立方根和立方的运算互为逆运算,即(³√a)^3 = a。

c) 立方根符号³√可以消去立方符号^3,即³√(a^3) = a。

d) 立方根的运算满足乘法法则,即³√(ab) = ³√a *³√b。

e) 立方根的运算满足除法法则,即³√(a/b) = ³√a / ³√b(其中b≠0)。

三、平方根和立方根的综合运用平方根和立方根在实际生活和数学问题中经常被使用,下面举几个例子说明它们的综合运用:1. 体积问题:当我们计算一个立方体的边长时,可以通过求边长的立方根来获取。

初一数学重要知识总结平方根和立方根的计算规则整理

初一数学重要知识总结平方根和立方根的计算规则整理

初一数学重要知识总结平方根和立方根的计算规则整理初一数学重要知识总结-平方根和立方根的计算规则整理在初一数学学习过程中,平方根和立方根是非常重要的概念和计算方法。

它们在解方程、计算几何图形的面积和体积等许多数学问题中都扮演着重要角色。

本文将对平方根和立方根的计算规则进行整理,帮助同学们更好地掌握这些知识。

一、平方根的计算规则平方根是一个数的平方等于这个数的算术平方根,表示为√a。

在计算平方根时,有以下几个基本规则:1. 平方根的基本概念对于非负实数a和非负实数x,如果x²=a,则x称为a的平方根。

2. 平方根的性质- 非负实数a的平方根是非负的。

- 0的平方根是0。

- 正数的平方根有两个,一个正数和一个负数,但通常我们只考虑正数的平方根。

3. 平方根的计算方法平方根的计算可以通过手算或使用计算器进行。

对于手算,可以采用试探的方法,逐步逼近平方根的值。

4. 常见整数的平方根下表是一些常见整数的平方根值。

通过记忆这些值可以在计算中更方便地使用。

整数平方根1 12 1.4143 1.7324 25 2.236二、立方根的计算规则立方根是一个数的立方等于这个数的算术立方根,表示为³√a。

在计算立方根时,有以下几个基本规则:1. 立方根的基本概念对于实数a和实数x,如果x³=a,则x称为a的立方根。

2. 立方根的性质- 实数a的立方根可能是正数、负数或零。

- 零的立方根是0。

- 完全立方数(即一个数的立方)的立方根是一个整数。

3. 立方根的计算方法立方根的计算也可以通过手算或使用计算器进行。

同样,对于手算,可以采用试探的方法或使用近似解法来计算。

4. 常见整数的立方根下表是一些常见整数的立方根值。

整数立方根1 12 1.2593 1.4424 1.5875 1.710三、平方根和立方根的应用举例1. 计算几何图形的边长在计算几何图形的边长时,如果面积或体积已知,可以通过平方根和立方根来计算边长。

人教版七年级下册平方根与立方根的知识要点归纳

人教版七年级下册平方根与立方根的知识要点归纳

人教版七年级下册平方根与立方根的知识要点归纳【知识要点】1.算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

2. 如果x2=a ,则x 叫做a 的平方根,记作“±a ”(a 称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x 3=a ,则x 叫做a 的立方根,记作“3a ”(a 称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)倍,算术平方根扩大(或缩小)倍,例如.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30有意义的条件是a ≥0。

4、公式:⑴2=a (a ≥0)=a 取任何数)。

n n 502500,525==5、区分2=a(a≥0),与2a=a6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

人教版七年级下册第六章实数--平方根与立方根 复习

人教版七年级下册第六章实数--平方根与立方根 复习

实数第六章实数 平方根与立方根1. 算术平方根:一般地,如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根注:1)算术平方根是非负数,具有非负数的性质;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数;3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1.算术平方根的表示:_________________________________________________ 算术平方根的性质:2. 平方根:一般地,如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根 平方根的表示:______________________________________________________平方根的性质:A 一个正数有正、负两个平方根,它们互为相反数 B 零有一个平方根,它是零本身 C 负数没有平方根开平方:求一个非负数的平方根的运算叫做开平方。

例题:一个数的平方等于9,这个数是几呢?又如一个数的平方等于425,这个数是几呢?若x 2=a (x ≥0),那么x 叫做a 的__________________。

记作:_______________4.立方根的定义:如果x 3=a ,那么x 叫做a 的立方根,记作例如:8的立方根,记作任何数都有立方根:①正数的立方根是________数; ②负数的立方根是________数; ③ 0的立方根是________; 立方和开立方互为________运算. 综上所述,有a (a ≥0)2a =│a │=-a (a<0)两个重要的公式为任何数)为任何数)a a a a a (()a (3333==.x知识点1: 算术平方根,平方根的, 立方根的概念 求一个数的算术平方根,平方根,立方根 1.下列说法正确的有______个.①(−3)2的算术平方根是√3②81的算术平方根是9③a 2的算术平方根是a ④ -1的算术平方根是1 ⑤ 0的算术平方根是02.下列说法正确的有______个. ①√81=±9②0.01算术平方根是0.1 ③49的算术平方根是7 ④2是4的算术平方根 ⑤正数的算术平方根是正数3.下列说法错误的有______个. ①36的平方根是6 ②|−5|的平方根是5③(−4)2的平方根是±4 ④a 的平方根是±√a4.下列说法错误的是( )A 立方根等于它本身的数有-1,0,1B 立方根等于其绝对值的数只有0C 如果−∛a =b,那么a=−b3D 立方根等于平方根的数只有0 5.36的平方根是______;的平方根是_______;的平方根是_______;9的算术平方根是_______;16的算术平方根的平方根是____________.=________________;-________;知识点2. 算术平方根--求字母的值--被开方数的非负性--结果的非负性1.4的算术平方根为2m −2,则3m 的算术平方根等于___2.若y=x -1+1-x +4,则x+y=______.4.21++a 的最小值是________,此时a 的取值是________.知识点3:平方根的性质--求字母的值--解方程 平方根与算术平方根的区别与联系1.若一个正数的两个平方根为2m −6与3m+1,则这个数是______;若a+3与2a −15是x 的平方根,则x=______.2.若某一个数的正的平方根为2m+6,它的平方根为±(m −2),则这个数是_____3.已知13(1−2x)2+6=9.则x=_____(写过程)4.已知25(x+2)2﹣36=0,则x=_____(写过程)5.下列语句错误的有______个. ①36的平方根是6; ②±9的平方根是±3; ③√16=±4;④0.01是0.1的平方根; ⑤42的平方根是4; ⑥81的算术平方根是±96.下列语句正确的有______个.①4的算术平方根是±2②负数一定没有平方根③平方根等于它本身的数有0和1④0.9的算术平方根是0.3⑤任何数都有算术平方根⑥一个正数的平方根仍然是正数知识点4:立方根的性质--求相关式子的值--解方程平方根与立方根的区别与联系立方根与平方根的运算0,1,-1的平方根和立方根4.解方程:(1) (x-1)3=8;(2)8.平方根等于本身的数______立方根等于本身的数______知识点5.平方根,立方根--规律探究根据算术平方根的意义,被开方数的小数点每向左(或向右)移动两位,其结果的小数点也向左(或向右)移动一位如果被开方数的小数点向左(或向右)每移动三位,立方根的小数点就向左(或向右)移动一位.1. 若√3.2104≈1.792,√3210.4≈56.66,则√32104≈______;√32.104≈______.2. 若3√0.3670=0.7160,3√3.670=1.542,则3√367=______,3√−0.003670=______.33 3.8x-=答案卷1.a2.平方根有三种表示形式:±a,a,-a,它们的意义分别是在此处键入公式。

平方根和立方根知识点总结

平方根和立方根知识点总结

平方根和立方根知识点总结数字运算是数学中的基础内容,而平方根和立方根是其中常见且重要的概念。

它们用来求解数字的根号运算,能够帮助我们计算数字的次方根。

本文将对平方根和立方根进行知识点总结,帮助读者更好地理解和运用这两个概念。

一、平方根平方根是一个数学运算符号,用symbol √ 表示。

它表示一个数的平方根。

对于一个非负数 a,其平方根记作√a,表示满足 b² = a的正数 b。

例如,√25 = 5,因为 5² = 25。

1. 平方根的性质平方根有一些基本的性质,包括:(1)非负性质:一个非负数的平方根是非负的。

例如,√25 = 5,√0 = 0。

(2)保号性质:如果两个非负数 a 和 b 满足 a < b,则有√a < √b。

例如,√9 = 3 < √16 = 4。

(3)开方法则:对于任意非负数 a 和 b,有以下等式成立:√(a × b) = √a × √b。

例如,√(4 × 9) = √4 × √9 = 2 × 3 = 6。

2. 平方根的应用平方根在数学和实际生活中都有广泛的应用。

以下是一些常见的应用示例:形的斜边长度等。

(2)物理学公式:平方根可以用于求解物理学公式中的问题,如求解速度、加速度等。

(3)统计学问题:平方根可以用于求解统计学问题,如计算方差、标准差等。

二、立方根立方根是另一种常见的根号运算,用 symbol ∛表示。

它表示一个数的立方根。

对于一个实数 a,其立方根记作∛a,表示满足 b³ = a 的实数 b。

例如,∛8 = 2,因为 2³ = 8。

1. 立方根的性质立方根与平方根一样,也有一些基本的性质。

其中包括:(1)非负性质:一个实数的立方根可以是正数、负数或零。

(2)保号性质:如果两个实数 a 和 b 满足 a < b,则有∛a < ∛b。

例如,∛1 = 1 < ∛8 = 2。

最新人教版七年级下册数学《立方根》知识点总结

最新人教版七年级下册数学《立方根》知识点总结

最新人教版七年级下册数学《立方根》知
识点总结
1. 立方根的概念
立方根是指一个数的立方为给定数的平方根。

例如,数a的立方根记作∛a,满足公式∛a ×∛a ×∛a = a。

2. 求立方根的方法
- 近似法:根据数的大小和取值范围,可以使用近似法来求立方根。

例如,可以通过试探法或通过表格查找近似值。

- 简化运算法:根据立方根的运算规律,可以进行一些数学运算来求得完全精确的立方根。

例如,可以使用平摊法、因数分解法或二分法等。

3. 立方根的性质
- 正数的立方根是一个实数,且大于等于0。

- 负数的立方根是一个复数,其中一个解为实数,另外两个解为共轭虚数。

- 0的立方根为0。

4. 立方根的应用
- 立方根在几何学中常用于计算体积。

例如,通过求立方的边长可以求得立方的体积。

- 立方根也广泛应用于科学领域,例如计算物体的密度、电磁学中的场强等。

总结:立方根是数学中的一个重要概念,用于求解一个数的立方。

通过近似法或简化运算法可以求得立方根。

立方根常用于计算几何体的体积以及科学研究等领域。

平方根和立方根知识点总结

平方根和立方根知识点总结

平方根和立方根知识点总结一、平方根1、定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

即如果 x²= a,那么 x 叫做 a 的平方根。

例如,因为 2²= 4,(-2)²= 4,所以 4 的平方根是 2 和-2。

2、表示方法一个正数 a 的平方根记作“±√a”,读作“正负根号a”,其中“√”叫做二次根号,a 叫做被开方数。

例如,9 的平方根记作±√9 = ±3。

3、性质(1)正数有两个平方根,它们互为相反数。

比如 25 的平方根是±5,5 和-5 互为相反数。

(2)0 的平方根是 0。

(3)负数没有平方根。

因为任何数的平方都是非负数,所以负数不存在平方根。

4、开平方求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。

开平方与平方互为逆运算。

例如,因为(±8)²= 64,所以 64 的平方根是±8,即±√64 = ±8,对 64 开平方得到±8。

5、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“√a”。

例如,9 的算术平方根是 3,记作√9 = 3。

0 的算术平方根是 0。

6、平方根的估值对于一些非完全平方数的平方根,可以通过估算来确定其大致范围。

例如,估算√11 的值。

因为 9 < 11 < 16,所以 3 <√11 < 4。

又因为 11 更接近 9,所以√11 更接近 3,比如 33 左右。

二、立方根1、定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。

即如果 x³= a,那么 x 叫做 a 的立方根。

例如,因为 2³= 8,所以 8 的立方根是 2。

2、表示方法数 a 的立方根记作“³√a”,读作“三次根号a”。

例如,27 的立方根记作³√27 = 3。

3、性质(1)正数的立方根是正数。

初中数学平方根和立方根知识点整理

初中数学平方根和立方根知识点整理

初中数学平方根和立方根知识点整理平方根和立方根是初中数学中重要的概念,它们帮助我们解决各种数学问题,并在实际生活中得到广泛应用。

本文将整理和讨论平方根和立方根的相关知识点。

一、平方根1. 定义:一个数的平方根是一个数,使得它的平方等于原来的数。

通常用符号√表示。

2. 平方根的计算方法:a. 完全平方数的平方根是一个整数。

例如,16的平方根是4,因为4×4=16。

b. 对于不是完全平方数的数,可以使用近似法或者长除法来计算其平方根。

例如,对于数25,其平方根是5。

3. 平方根的性质:a. 对于正数x,平方根√x的值永远是非负的。

b. 当x > 0时,平方根√x的绝对值小于x的绝对值。

c. 平方根√x与x的关系是对称的,即(-√x) = √(-x)。

4. 平方根的运算规则:a. 具有相同指数的平方根可以合并。

例如√2 × √3 = √(2 × 3) = √6。

b. 平方根与指数的运算规则相反。

例如(√2)^3 = √2 × √2 × √2 = 2√2。

二、立方根1. 定义:一个数的立方根是一个数,使得它的立方等于原来的数。

通常用符号³√表示。

2. 立方根的计算方法:a. 完全立方数的立方根是一个整数。

例如,27的立方根是3,因为3³=27。

b. 对于不是完全立方数的数,可以使用近似法或者试除法来计算其立方根。

例如,对于数125,其立方根是5。

3. 立方根的性质:a. 对于正数x,立方根³√x的值永远是非负的。

b. 当x > 0时,立方根³√x的绝对值小于x的绝对值。

c. 立方根³√x与x的关系是对称的,即(-³√x) = ³√(-x)。

4. 立方根的运算规则:a. 具有相同指数的立方根可以合并。

例如³√2 × ³√3 = ³√(2 × 3) = ³√6。

初一数学下册第6章知识点

初一数学下册第6章知识点

初一数学下册第6章知识点总结一、平方根和立方根在初一数学下册第6章中,我们将学习平方根和立方根的概念和计算方法。

1. 平方根平方根是指一个数的平方等于另一个给定的数的情况下,被开方的数。

我们用符号√来表示平方根。

例如,√9 = 3,因为3的平方为9。

在计算平方根时,我们可以使用试和误的方法,或者使用计算器进行计算。

2. 立方根立方根是指一个数的立方等于另一个给定的数的情况下,被开方的数。

我们用符号³√来表示立方根。

例如,³√8 = 2,因为2的立方为8。

计算立方根的方法与计算平方根类似。

二、比例和比例关系在初一数学下册第6章中,我们还将学习比例和比例关系的概念和解题方法。

1. 比例比例是指两个或多个数之间的相对关系。

我们可以用a:b(读作a与b的比例)来表示两个数的比例。

例如,1:2表示第一个数是第二个数的一半。

2. 比例关系比例关系是指两个或多个比例之间的关系。

比例关系可以用等比例、倍数关系等方式表示。

例如,如果a:b=2:3,b:c=4:5,那么我们可以得到a:b:c=2:3:5的比例关系。

三、面积和体积在初一数学下册第6章中,我们还将学习面积和体积的概念和计算方法。

1. 面积面积是指一个二维图形所占据的平面区域的大小。

常见的二维图形包括正方形、长方形、三角形等。

我们可以使用特定的公式来计算不同图形的面积。

2. 体积体积是指一个三维图形所占据的空间的大小。

常见的三维图形包括长方体、正方体、圆柱体等。

同样,我们可以使用特定的公式来计算不同图形的体积。

初一数学下册第6章的知识点主要包括平方根和立方根、比例和比例关系以及面积和体积的概念和计算方法。

通过学习这些知识点,我们能够更好地理解数学中的一些基本概念,并且能够运用这些知识解决实际问题。

希望同学们通过认真学习和练习,能够在数学学习中取得更好的成绩!。

(完整版)七年级数学下册平方根、立方根总结

(完整版)七年级数学下册平方根、立方根总结

简易平方根的运算1(1)利用平方根的乘法运算法则:若a 、b 为正数,则 a ⨯b =ab 去计算两个正平方根的乘积。

(2)利用平方根的除法运算法则:ba =b a 或a ÷b =b a ÷ (a b ,0≥>0) 去计算两个正平方根相除的商。

2例1.化简下列各数: (1)(5)2 (2)25 (3)2)5(- (4)(5-)2解:【答:(1) 5 (2) 5 (3) 5 (4)-5】 例2.化简下列各数: (1)8 (2)24 (3)75 (4)84 (5)200解:【答:(1) 22 (2) 26 (3) 53 (4) 221 (5)102】 例3.化简下列各数: (1)95 (2)32 (3)124 (4)185 (5)322 解: 【答:(1)35 (2) 36 (3) 33 (4) 610 (5) 362】 例4.求下列各式的积并化简: (1)133⨯ (2)326⨯ (3)287⨯ (4)3152⨯ 解: 【答:(1) 39 (2) 2 (3) 27 (4) 1530】例5.求下列各式的商并化简: (1)2332÷ (2)281÷ (3)3216÷ (4)5752÷ 解: 【答:(1) 32 (2) 41 (3) 26 (4) 714】3 1.化简下列各数:(1)(-3)2 (2)2)3(- (3)(3)22.化简下列各数: (1)12 (2)32 (3)54 (4)90 (5)3633.化简下列各数: (1)163 (2)59 (3)125 (4)203 (5)5334.求下列各式的积并化简: (1)205⨯ (2)1437⨯ (3)9320⨯ (4)335611⨯5.求下列各式的商并化简:(1)3127÷ (2)3151÷ (3)528÷ (4)65320÷41015 (5) 5103 4.(1)10 (2) 26 (3) 215 (4) 610 5.(1) 9 (2) 155 (3) 25 (4) 22 分 母 有 理 化如:计算:23÷时,先写成23,再把分子,分母都乘以2,化去分母中的根号,得:26222323=⋅⋅=,这样就完成了除法运算。

七年级平方根立方根知识点

七年级平方根立方根知识点

七年级平方根立方根知识点平方根和立方根,是数学中比较基础的知识点。

在七年级数学中,学生们将学习这两个知识点的基础概念、计算方法以及应用场景。

接下来就让我们一起了解一下七年级平方根立方根知识点吧。

一、平方根的概念和计算方法平方根指的是一个数的平方等于另一个数时,这个数就是另一个数的平方根。

例如,4的平方根为2,因为2²=4。

在七年级数学中,学生们需要学会如何用算术方法来计算平方根,其中最常用的方法是牛顿迭代法。

首先,我们需要先猜测一个数(比如说2),用它来求原数的平方根,得到一个结果。

接着,我们再将这个结果与原数除以猜测的数(即2)的平均数来猜测新的数,重复这个步骤,直到得到一个可以接受的误差值。

例如,要计算16的平方根,我们先猜测一个数2,然后用它来求平方根,得到8。

接着,我们将8和16除以2的平均数5相加,并除以2得到6.2,再用6.2来求平方根,得到4.03。

继续用这个方法迭代下去,可以得到16的平方根约为4。

二、立方根的概念和计算方法立方根与平方根类似,只是它的幂变为了3。

也就是说,一个数的立方等于另一个数时,这个数就是另一个数的立方根。

例如,8的立方根为2,因为2³=8。

在计算立方根时,最常用的方法是二分法。

首先我们需要找到一个数的立方比所给定的数小,另一个数的立方比所给定的数大。

然后,将这两个数进行二分,重复这个过程,直到得到一个可以接受的误差值。

例如,要计算27的立方根,我们知道2³=8,3³=27,因此我们将2和3进行二分,得到2.5。

接着,我们将2.5³=15.625与27进行比较,发现2.5³小于27,所以我们将2.5和3再次进行二分,得到2.75,重复这个过程,直到得到所需的精度。

三、平方根和立方根的应用平方根和立方根在实际生活中有很多应用场景。

例如,我们可以用它们来计算物体的体积、重量等参数。

另外,在科学研究中,平方根和立方根也经常被用来求解各种问题,比如在力学中,平方根和立方根可以用来求解力的大小和热力学中的温度等。

新人教版七年级下册第二章平方根与立方根知识点归纳

新人教版七年级下册第二章平方根与立方根知识点归纳

平方根和立方根一、课前预习1.填空:(_____)2=0;(_____)2=4;(_____)2=9;(_____)2=16.由上述运算可知:①零的平方是______;任何非零数的平方都是______;任何数的平方都是_______;_______(“存在”或“不存在”)某个数的平方是负数.②互为相反数的两个数的平方________.2.做一做,想一想把两个边长为1的小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形,设大正方形的边长为x,则x满足的条件为__________.平方和开平方互为逆运算,立方和开立方互为逆运算.事实上:平方根等于它本身的数是0;算术平方根等于它本身的数是0,1;立方根等于它本身的数是0,±1.知识点睛1.平方根:一般地,如果一个_______________________,即__________,那么这个________就叫做a的平方根;也叫做____________;记作________,读作“____________”.2.一个正数有_____个平方根,它们____________;0有____个平方根,是________;负数________平方根.3.算术平方根:一般地,如果一个_______________________,即__________,那么这个________就叫做a的算术平方根;记作______,读作“________”.0的算术平方根是______.4.求一个数a的平方根的运算,叫做_____,其中a叫做_______.5.立方根:一般地,如果一个_______________________,即__________,那么这个________就叫做a的立方根;也叫做____________;记作________,读作“____________”.6.正数的立方根是______;0的立方根是______;负数的立方根是______.7.求一个数a的立方根的运算叫做______,其中a叫做_______.习题精讲精练题型一:基本概念题目1.的平方根是_________;()2的算术平方根是____________平方根是___________________的算术平方根是______的平方根是______.的平方根是__________.2.下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是43.下列说法正确的是()A.的算术平方根是±6B的平方根是±6C.5是25的算术平方根D.25的立方根是±54.下列说法正确的是()A.-81的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负数C.任何一个数的算术平方根都是正数D.2是4的平方根5.下列各式中,正确的是()A.B.C D6.下列各式中,正确的是()A.=-(-7)=7 B.=1CD题型二:根式有意义的情况1.____;________;____.若a<0,则=______;若a2=1,则=______._______;_______________________.2.若和都有意义,则满足的条件是()A.B.C.D.412114-2(6)-=0.6=±13=6=±41221332244=+=0.1=±2=2===33a3=3===a a-aa≥0a≤0=a0a≠3.若=__________.4.当m _________时,有意义,则a 能取得的最小整数为________. 若x ==________若x <0,则=________,=________.已知0≤x ≤3=_____________.a 的取值范围是_____________.____________;______;若x 2=(-7)2,则x =__________.6.一个正数的平方根是a +3与2a -5,求这个正数.一个正数的平方根是和,求这个正数.0a ≥332x 33x 2==27a -4a +。

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳第六章 实数6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

七年级数学下册平方根、立方根总结

七年级数学下册平方根、立方根总结

简易平方根的运算1(1)利用平方根的乘法运算法则:若a 、b 为正数,则 a ⨯b =ab 去计算两个正平方根的乘积。

(2)利用平方根的除法运算法则: ba =b a 或a ÷b =b a ÷(a b ,0≥>0) 去计算两个正平方根相除的商。

2例1.化简下列各数:(1)(5)2 (2)25 (3)2)5(- (4)(5-)2解:【答:(1) 5 (2) 5 (3) 5 (4)-5】例2.化简下列各数: (1)8 (2)24 (3)75 (4)84 (5)200解:【答:(1) 22 (2) 26 (3) 53 (4) 221 (5)102】例3.化简下列各数:(1)95 (2)32 (3)124 (4)185 (5)322 解: 【答:(1)35 (2) 36 (3) 33 (4) 610 (5) 362】 例4.求下列各式的积并化简: (1)133⨯ (2)326⨯ (3)287⨯ (4)3152⨯ 解: 【答:(1) 39 (2) 2 (3) 27 (4) 1530】例5.求下列各式的商并化简: (1)2332÷ (2)281÷ (3)3216÷ (4)5752÷ 解: 【答:(1) 32 (2) 41 (3) 26 (4) 714】3 1.化简下列各数:(1)(-3)2 (2)2)3(- (3)(3)22.化简下列各数: (1)12 (2)32 (3)54 (4)90 (5)3633.化简下列各数: (1)163 (2)59 (3)125 (4)203 (5)5334.求下列各式的积并化简: (1)205⨯ (2)1437⨯ (3)9320⨯ (4)335611⨯5.求下列各式的商并化简:(1)3127÷ (2)3151÷ (3)528÷ (4)65320÷ 4、习题简答1.(1) 3 (2) 3 (3) 32.(1) 23 (2) 42 (3) 36 (4) 310 (5) 1133.(1) 43 (2) 553 (3) 615 (4) 1015 (5) 5103 4.(1)10 (2) 26 (3) 215 (4) 610 5.(1) 9 (2) 155 (3) 25 (4) 22 分 母 有 理 化如:计算:23÷时,先写成23,再把分子,分母都乘以2,化去分母中的根号,得:26222323=⋅⋅=,这样就完成了除法运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级下册平方根与立方根的知识要点归纳
【知识要点】
1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。

2. 如果x2=a,则x叫做a的平方根,记作“±a”
(a称为被开方数)。

3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4. 平方根和算术平方根的区别与联系:
区别:正数的平方根有两个,而它的算术平方根只有一个。

联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

(3)0的算术平方根与平方根同为0。

5. 如果x3=a,则x叫做a的立方根,记作“3a”
(a称为被开方数)。

6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。

8. 立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
9. 一般来说,被开放数扩大(或缩小)倍,算术平方根扩大(或缩小)倍,例如.
10.平方表:(自行完成)
题型规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30有意义的条件是a≥0。

4、公式:⑴2=a(a≥0)=a取任何数)。

5、区分)2=a(a≥0),与2a=a
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

相关文档
最新文档