平面解析几何知识点总结

合集下载

平面解析几何-高考复习知识点

平面解析几何-高考复习知识点

平面解析几何 高考复习知识点一、直线的倾斜角、斜率1、直线的倾斜角:(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

当直线l 与x 轴重合或平行时,规定倾斜角为0; (2)倾斜角的范围[)π,0。

2、直线的斜率(1)定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2)斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;(3)直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? (4)应用:证明三点共线: AB BC k k =。

例题:例1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析: ∵, ∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.类型二:斜率定义例2.已知△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上,求边AB 与AC 所在直线的斜率. 思路点拨:本题关键点是求出边AB 与AC 所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°,∴k AB =tan150°= k AC =tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.类型三:斜率公式的应用例3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨: 已知两点坐标求斜率,直接利用斜率公式即可. 解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.例4、过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或. 经检验不适合,舍去. 故.例5.已知三点A(a ,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a 的值.思路点拨:如果过点AB ,BC 的斜率相等,那么A ,B ,C 三点共线.解析:∵A 、B 、C 三点在一条直线上,∴k AB =k AC .即二、直线方程的几种形式1、点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳平面解析几何是研究平面上点、直线、圆及其相关性质和相互关系的数学分支。

在平面解析几何中,我们通过坐标系的建立和运用向量的概念,可以方便地描述和研究平面上的各种几何图形和问题。

本文将对平面解析几何中的一些重要知识点进行归纳,以帮助读者更好地理解和掌握这些知识。

1. 坐标系的建立平面解析几何中,坐标系是最基本的工具之一。

一般来说,我们可以建立直角坐标系、极坐标系或其他特定的坐标系来描述平面上的点。

以直角坐标系为例,我们用x轴和y轴分别表示水平和垂直方向,将一个点P的位置用有序数对(x, y)表示,其中x称为点P的横坐标,y称为点P的纵坐标。

2. 点的坐标计算对于已知坐标系的平面上的点P(x, y),我们可以通过给定的信息计算出点的坐标。

例如,已知点A和点B的坐标,我们可以通过运用向量的加法和数乘运算,求得点P的坐标。

设向量OA的坐标为A(x1,y1),向量OB的坐标为B(x2, y2),则向量OP的坐标为P(x, y),其中P 的坐标满足向量OP = 向量OA + 向量OB。

3. 向量的定义和运算在平面解析几何中,向量是重要的概念之一。

向量可以表示有大小和方向的量,并且可以与点一一对应。

向量的表示方法有很多种,常见的有坐标表示和位置向量表示。

在坐标表示中,向量通常用有序数对(x, y)表示。

在位置向量表示中,我们用一个固定点O与向量表示的点P的坐标差,来表示向量OP。

向量的运算包括加法、减法和数乘。

设向量u = (x1, y1),向量v = (x2, y2),实数k,向量u与v的加法定义为:u + v = (x1 + x2, y1 + y2);向量u与v的减法定义为:u - v = (x1 - x2, y1 - y2);向量u的数乘定义为:k * u = (kx1, ky1)。

4. 直线的方程直线是平面几何中的基本要素之一。

在平面解析几何中,我们可以通过直线上的点和直线的斜率来确定直线的方程。

平面解析几何知识点总结

平面解析几何知识点总结

平面解析几何知识点总结直线方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 重合所成的角,叫作直线l 的倾斜角.当直线l 和x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0°,180°). 2.直线的斜率(1)定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan α.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. (3) 直线的倾斜角α和斜率k 之间的对应关系每条直线都有倾斜角,但不是每条直线都有斜率,倾斜角是90°的直线斜率不存在.它们之间的关系如下:3.直线方程的五种形式4.说明:k 1=k 2,且b 1≠b 2,则两直线平行;若斜率都不存在,还要判定是否重合. 5.利用一般式方程系数判断平行与垂直设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0, l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0. l 1⊥l 2⇔A 1A 2+B 1B 2=0. 6.三种距离公式 (1)两点间距离公式点A (x 1,y 1),B (x 2,y 2)间的距离:|AB |= (x 2-x 1)2+(y 2-y 1)2.(2)点到直线的距离公式点P (x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.说明:求解点到直线的距离时,直线方程要化为一般式. (3)两平行线间距离公式两平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0 (C 1≠C 2)间的距离为d =|C 2-C 1|A 2+B 2. 说明:求解两平行线间距离公式时,两直线x ,y 前系数要化为相同.圆的方程1.圆的定义在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径.2. 圆的标准方程(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2+y 2+Dx +Ey +F =0可变形为⎝⎛⎭⎫x +D 22+⎝⎛⎭⎫y +E 22=D 2+E 2-4F4. (1) 当D 2+E 2-4F >0时,方程表示以⎝⎛⎭⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆;(2) 当D 2+E 2-4F =0时,该方程表示一个点⎝⎛⎭⎫-D 2,-E 2;(3) 当D2+E2-4F<0时,该方程不表示任何图形.4. 直线与圆的位置关系的判断方法设直线l:Ax+By+C=0(A,B不全为0),圆为(x-a)2+(y-b)2=r2(r>0),d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.5.(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2) 判断两圆位置关系的方法设圆O1:(x-a1)2+(y-b1)2=r21(r1>0),圆O2:(x-a2)2+(y-b2)2=r22(r2>0).圆心距O1O2=d,则(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则(l2)2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2].注意:常用几何法研究圆的弦的有关问题.椭圆1.椭圆的概念把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作椭圆的焦距.椭圆定义用集合语言表示如下:P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.在椭圆定义中,特别强调到两定点的距离之和要大于|F 1F 2|.当到两定点的距离之和等于|F 1F 2|时,动点的轨迹是线段F 1F 2;当到两定点的距离之和小于|F 1F 2|时,动点的轨迹不存在. 2.椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 说明:当焦点的位置不能确定时,椭圆方程可设成Ax 2+By 2=1的形式,其中A ,B 是不相等的正常数,或设成x 2m 2+y 2n2=1(m 2≠n 2)的形式.3.椭圆中的弦长公式(1)若直线y =kx +b 与椭圆相交于两点A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (2)焦点弦(过焦点的弦):最短的焦点弦为通径长2b 2a,最长为2a .双曲线1.双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.定点F 1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用集合语言表示为:P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离非常重要.令平面内一点到两定点F1,F2的距离的差的绝对值为2a(a为常数),则只有当2a<|F1F2|且2a≠0时,点的轨迹才是双曲线;若2a=|F1F2|,则点的轨迹是以F1,F2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a焦点在x轴上,若y2的系数为正,则焦点在y轴上.3.双曲线与椭圆的区别(1) 定义表达式不同:在椭圆中|PF1|+|PF2|=2a,而在双曲线中||PF1|-|PF2||=2a;(2) 离心率范围不同:椭圆的离心率e∈(0,1),而双曲线的离心率e∈(1,+∞);(3) a,b,c的关系不同:在椭圆中a2=b2+c2,a>c;而在双曲线中c2=a2+b2,c>a.抛物线1.抛物线的概念把平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的集合叫作抛物线.这个定点F 叫作抛物线的焦点,这条定直线l 叫作抛物线的准线. 用集合语言描述:P ={M ||MF |d=1},即P ={M ||MF |=d }.注意:抛物线的定义中不可忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线. 2.抛物线的标准方程与几何性质。

平面解析几何知识点总结

平面解析几何知识点总结

第一部分直线一、直线的斜率和倾斜角1.倾斜角α(1)定义:直线l 向上的方向与x 轴正方向所称的角叫直线的倾斜角(2)范围:1800<≤α2.斜率直线倾斜角的正切值叫做这条直线的斜率,记作αtan =k (1)倾斜角为 90的直线没有斜率(2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时应考虑到斜率的存在与不存在两种情况,否则会产生漏解。

(3)经过),(),,(2211y x B y x A 两点的直线的斜率为k ,则当21x x ≠时,1212tan x x y y k --==α;当21x x =时, 90=α,斜率不存在(4)切线斜率的求法:设平面曲线的方程为0),(=y x F ,则该曲线在),(00y x 点的斜率为)(')('00y F x F k -=,其中)('0x F 表示),(y x F 对x 求导得到的函数在0x x =下的值,)('0y F 表示),(y x F 对y 求导得到的函数在0y y =下的值。

若平面曲线方程为)(x f y =,则该曲线在),(00y x 点的斜率为)('0x f k =,其中)('0x f 表示)(x f 对x 求导得到的函数在0x x =下的值。

若平面曲线的参数方程为)(),(t y y t x x ==,则该曲线在0t t =时的点的斜率为)(')('00t x t y k =,其中)('0t y 表示)(t y 对t 求导得到的函数在0t t =下的值,其中)('0t x 表示)(t x 对t 求导得到的函数在0t t =下的值。

3.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A 为起点,B 为终点,P 为分点,则定比分点公式是⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x.线性规划问题平面区域的非线性规划第二部分解析几何中的范围问题(研究性学习之二)在直线与圆锥曲线相交问题中,关于直线的斜率或纵截距的取值范围,关于圆锥曲线的离心率、长轴长(或实轴长)、短轴长(或虚轴长)等有关参量的取值范围,是解析几何高考命题以及备考复习的重点问题。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

平面解析几何知识点汇总

平面解析几何知识点汇总

1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x .6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.. ② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. ③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. ② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x yg x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . (3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=.(2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D (3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y kx x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ;条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x (1)过点11(,)A x y ,22(,)B x y 的圆系方程:1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程.(2)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(3)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线. 16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)过圆220x y Dx Ey F ++++=上的点),(00y x P 的切线方程为:0000()()022D x x E y y x x y y F ++++++=. (4) 若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A,B则直线AB 的方程为200xx yy r +=(5) 若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A,B 则直线AB 的方程为200()()()()x a x a y b y b r --+--=(6)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.空间两点间的距离公式:若A 111(,,)x y z ,B 222(,,)x y z ,则AB =19、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。

解析几何大一知识点总结

解析几何大一知识点总结

解析几何大一知识点总结解析几何是高等数学的重要分支,几何直观形象的几何类问题经过代数方法的处理和研究,形成了解析几何。

解析几何主要研究在坐标平面上用代数方法解决几何问题的方法和技巧。

本文将对大一解析几何的主要知识点进行总结。

一、平面直角坐标系平面直角坐标系是解析几何的基础,也是解析几何问题描述的基准。

平面直角坐标系由两条相互垂直的坐标轴组成,分别是横轴x和纵轴y。

在平面直角坐标系中,每个点都可以用一对有序实数(x, y)表示。

二、点、直线和圆的方程1. 点的坐标表示在平面直角坐标系中,点的坐标表示为P(x, y),其中x为横坐标,y为纵坐标。

2. 直线方程(1)点斜式方程:y-y1=k(x-x1),其中k为直线的斜率,(x1,y1)为直线上的某一点。

(2)截距式方程:y=kx+b,其中k为直线的斜率,b为直线在y轴上的截距。

3. 圆的方程圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。

三、直线与圆的位置关系1. 直线与圆的交点个数(1)相离:直线与圆没有交点。

(2)相切:直线与圆只有一个交点。

(3)相交:直线与圆有两个交点。

2. 判别直线与圆的位置关系的方法(1)代入法:将直线方程代入圆的方程,求解方程组,判断交点的个数。

(2)距离法:求取直线与圆心的距离,判断距离与半径的大小关系。

四、向量基本概念1. 向量的表示向量可以用有向线段、坐标、分量表示。

2. 向量的运算(1)向量加法:两个向量相加得到一个新的向量,规则为:A+B=(x₁+x₂, y₁+y₂)。

(2)向量数乘:向量乘以一个实数,得到一个新的向量。

五、向量与直线的关系1. 共线向量两个向量如果平行或反平行,则它们是共线向量。

2. 向量的数量积向量的数量积等于两个向量的模长的乘积与它们的夹角的余弦值:A·B=|A||B|cosθ。

3. 向量的垂直向量A与向量B垂直,当且仅当A·B=0。

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析

2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。

数学作为高考的一门重要科目,解析几何是其中的一个重点内容。

为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。

1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。

1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。

类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。

2. 空间几何体2.1 球球是解析几何中的一个重要概念。

其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。

2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。

通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。

掌握其特点和方程形式,对于解析几何的学习非常重要。

3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。

根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。

3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。

根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。

4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。

通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。

4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。

对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。

平面解析几何的基本概念与定理总结

平面解析几何的基本概念与定理总结

平面解析几何的基本概念与定理总结平面解析几何是几何学和分析学的结合,研究平面中点、线、圆等几何图形的性质和相互关系。

本文将总结平面解析几何中的基本概念与定理。

一、基本概念1. 点:平面上的一个位置,用大写字母表示,如点A、点B等。

2. 坐标系:平面上的一个坐标系由两个相互垂直的坐标轴组成,分别是x轴和y轴。

3. 坐标:用有序实数对(x, y)表示平面上的点,x为横坐标,y为纵坐标。

如点A的坐标为(x1, y1)。

4. 距离公式:平面上两点A(x1, y1)和B(x2, y2)之间的距离d可以通过以下公式计算:d = √((x2 - x1)² + (y2 - y1)²)5. 中点公式:平面上两点A(x1, y1)和B(x2, y2)的中点M的坐标可以通过以下公式计算:M = ((x1 + x2)/2, (y1 + y2)/2)二、基本定理1. 距离定理:平面上两点A(x1, y1)和B(x2, y2)之间的距离d满足以下性质:a) d ≥ 0b) d = 0 当且仅当A和B重合c) d = d(B, A) (对称性)d) d(A, B) + d(B, C) ≥ d(A, C) (三角不等式)2. 斜率概念:直线L通过两点A(x1, y1)和B(x2, y2),其斜率k可以通过以下公式计算:k = (y2 - y1)/(x2 - x1)3. 直线的方程:直线L的方程可以通过以下形式表示:a) 一般式:Ax + By + C = 0(A、B和C为实数)b) 斜截式:y = kx + b(k为斜率,b为截距)4. 两直线关系定理:设直线L1和L2的方程分别为:L1: A1x + B1y + C1 = 0L2: A2x + B2y + C2 = 0则L1与L2的关系可以通过以下性质判断:a) L1与L2平行:A1/A2 = B1/B2 ≠ C1/C2b) L1与L2垂直:A1A2 + B1B2 = 0c) L1与L2重合:A1/A2 = B1/B2 = C1/C25. 圆的方程:圆C的方程可以通过以下形式表示:(x - h)² + (y - k)² = r²其中(h, k)为圆心的坐标,r为半径。

解析几何的基本概念与性质总结

解析几何的基本概念与性质总结

解析几何的基本概念与性质总结解析几何是数学的一个重要分支,它研究的是平面和空间中的点、线、面以及它们之间的关系。

在解析几何中,有一些基本概念和性质是我们必须要了解和掌握的。

本文将对解析几何的基本概念和性质进行总结。

1. 基本概念1.1 点:解析几何中最基本的概念是点,它是没有大小和形状的,只有位置。

点可以用坐标表示,如在平面直角坐标系中,一个点可以由它在横坐标轴上的值和纵坐标轴上的值确定。

1.2 线:线是由无数个点组成的,它没有宽度和厚度,只有长度。

在解析几何中,我们通常用直线和曲线来表示。

直线可以用线段两个端点坐标来表示,曲线则需要更多的点来确定。

1.3 面:面是由无数个线组成的,它有长度和宽度,但没有厚度。

平面是最常见的面,它可以用平面直角坐标系来表示。

在平面直角坐标系中,平面上的点可以用它们在横坐标轴和纵坐标轴上的值表示。

2. 基本性质2.1 距离:在解析几何中,我们可以通过计算两点之间的距离来刻画它们之间的远近关系。

在平面上,两点之间的距离可以用勾股定理来计算,即:√((x2-x1)²+(y2-y1)²);在空间中,距离的计算需要用到三维坐标。

2.2 斜率:斜率是用来刻画一条直线的倾斜程度的量。

在平面直角坐标系中,我们可以通过计算直线上两个点的纵坐标差与横坐标差的比值来得到直线的斜率。

斜率的计算公式为:k=(y2-y1)/(x2-x1)。

2.3 直线的方程:在解析几何中,直线的方程可以用不同的形式来表示。

最常见的有点斜式方程、截距式方程和一般式方程。

点斜式方程形式为:y-y1=k(x-x1),其中k为斜率,(x1,y1)为直线上的一点;截距式方程形式为:y=kx+b,其中k为斜率,b为截距;一般式方程形式为:Ax+By+C=0,其中A、B、C为常数。

2.4 相交和平行:在解析几何中,我们经常需要确定两条直线的关系,如是否相交或平行。

对于两条直线,如果它们的斜率相等,则它们平行;如果斜率相乘为-1,则它们垂直;如果两条直线的方程组有唯一解,则它们相交;如果方程组无解,则它们平行且不相交。

2024年高考数学平面解析几何的复习方法总结

2024年高考数学平面解析几何的复习方法总结

2024年高考数学平面解析几何的复习方法总结一、理清知识框架平面解析几何是高中数学的重要内容,复习时首先要理清知识框架,明确各个知识点的内容和重点。

可以根据教材或参考书的章节来进行分类整理,将知识点归纳为直线方程、圆方程、二次曲线方程等等,并注意各个知识点之间的联系和线索。

二、复习关键知识点1. 直线方程:掌握直线的点斜式、斜截式、一般式等多种表示方法,能够灵活转换直线方程,解决直线的位置关系、距离、角平分线等相关问题。

2. 圆方程:了解标准方程和一般方程的定义和性质,能够根据给定条件列出圆的方程,解决圆与直线、圆与圆之间的位置关系、切线、切点等问题。

3. 二次曲线方程:熟练掌握抛物线、双曲线和椭圆的方程表示方法,注意各个二次曲线的基本性质和特点,能够画出二次曲线的图像,解决与二次曲线相关的各种问题。

4. 曲线的判别:掌握判别方程的基本方法,了解直线与二次曲线的位置关系的判别式和条件,能够根据判别式解决相关的问题。

三、掌握基本解题思路1. 了解解题步骤:解决平面解析几何问题通常遵循以下步骤:确定已知条件;列出方程或不等式;解方程或不等式得到未知量的取值范围;根据问题要求,对方程的解或取值范围进行判断与选择。

2. 注意问题的本质:平面解析几何考察的是几何图形的性质和位置关系,因此,在解答问题时要分析问题的本质,结合具体的几何意义去解决。

四、多练习典型题目1. 题海战术:平面解析几何的题目类型较多,考察灵活性较强,因此,在复习过程中要多做一些典型题目,掌握不同类型题目的解题思路和技巧。

2. 整理常见题型:将遇到的题目整理成不同的题型,比如直线方程的求法、圆方程的求法、二次曲线图像的分析等,通过总结常见的题型,加深对知识点的理解,提高解题效率。

五、查缺补漏1. 平时及时记录:在复习过程中,及时记录自己遇到的问题和不理解的知识点,并寻找相关的资料进行补充和学习。

2. 寻求帮助:如果自己在复习过程中遇到难题或困惑,可以向老师、同学或家长寻求帮助,共同解决问题。

平面解析几何知识点总结

平面解析几何知识点总结

平面解析几何知识点总结在平面解析几何中,我们研究的是平面上的点、线和图形之间的关系,通过运用代数和几何的方法来解决相关问题。

本文将对平面解析几何的一些重要知识点进行总结,帮助读者更好地理解和掌握这一领域。

一、点的坐标表示平面解析几何中,用坐标表示点的位置是非常常见的。

一般情况下,我们使用直角坐标系来描述平面空间。

直角坐标系由两条相互垂直的坐标轴组成,通常记作x轴和y轴。

点在该坐标系中的位置可以通过一个有序数对(x, y)来表示,其中x是该点在x轴上的投影,y是该点在y轴上的投影。

二、直线的表示与性质1. 点斜式方程:对于已知一点P(x1, y1)和斜率k的直线L,可以使用点斜式方程y - y1 = k(x - x1)来表示该直线的方程式。

2. 截距式方程:对于已知直线L与x轴的截距a和与y轴的截距b的情况,可以使用截距式方程x/a + y/b = 1来表示该直线的方程式。

3. 斜截式方程:对于已知直线L的斜率k和与y轴的截距b的情况,可以使用斜截式方程y = kx + b来表示该直线的方程式。

4. 直线的性质:在平面解析几何中,直线有许多重要的性质,如平行、垂直、相交等。

其中,两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。

三、图形的表示与性质1. 点与点之间的距离:对于平面上的两个点A(x1, y1)和B(x2, y2),它们之间的距离可以使用勾股定理来计算,即d = √[(x2 - x1)² + (y2 -y1)²]。

2. 中点坐标:对于平面上的两个点A(x1, y1)和B(x2, y2),它们连线的中点的坐标可以通过取x轴和y轴的平均值来计算,即中点M的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。

3. 直线与直线的交点:两条直线的交点可以通过求解它们的方程组来确定。

如果两条直线有唯一交点,则它们必定相交于一点;如果两条直线重合,则它们有无数个交点;如果两条直线平行,则它们没有交点。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学中的一门重要的数学分支,它研究平面上的点、直线和圆等几何图形的性质和关系。

本文将对高中数学中常见的平面解析几何知识点进行总结和归纳,以便于同学们更好地掌握和应用这些知识。

一、坐标与坐标系在平面解析几何中,我们常常使用直角坐标系来描述平面上的点的位置。

在直角坐标系中,平面上的每个点都可以用一对有序实数(x,y)表示,其中x表示点在x轴上的投影,y表示点在y轴上的投影。

这就是点的坐标。

1.1 直角坐标系的建立建立直角坐标系的方法有很多,其中一种常见的方法为选取两条相互垂直的直线作为坐标轴,它们的交点作为原点。

这两条直线称为x 轴和y轴,它们的正方向分别规定为向右和向上,形成了一个右手坐标系。

1.2 坐标的性质与运算在直角坐标系中,点的坐标具有以下性质:(1)两个点的坐标相等,当且仅当这两个点重合;(2)两个点的横坐标(纵坐标)相等,当且仅当这两个点在同一条竖直线(水平线)上;(3)两个点的坐标互为相反数,当且仅当这两个点关于坐标原点对称。

在直角坐标系中,我们可以进行坐标的运算,包括加减、数乘、求中点等。

比如,对于两个点A(x1, y1)和B(x2, y2),它们的中点C的坐标为[(x1 + x2) / 2, (y1 + y2) / 2]。

二、直线的方程在平面解析几何中,直线是最基本的几何图形之一。

我们可以通过直线上的一个点和直线的斜率来确定直线的方程。

在此基础上,本单位还会对三角函数解析式中的三角函数、三角方程进行探讨,希望对同学们理解和掌握这一知识点有所帮助。

2.1 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C为实数,且A和B不同时为0。

该方程中的A、B、C可以称为方程的系数。

2.2 斜率截距式方程直线的斜率截距式方程为y = kx + b,其中k为直线的斜率,b为直线与y轴的截距。

2.3 点斜式方程如果知道直线上的一点P(x0, y0)和直线的斜率k,我们可以利用点斜式方程来表示直线的方程,即y - y0 = k(x - x0)。

2024高考数学平面解析几何知识点

2024高考数学平面解析几何知识点

2024高考数学平面解析几何知识点
在2024年高考数学中,平面解析几何是一个重要的知识点,主要包括以下几个部分:
1. 有向线段和直线:了解有向线段和直线的概念,掌握直线的方程式和参数方程,理解直线的倾斜角、截距等概念。

2. 圆:掌握圆的标准方程和一般方程,理解圆心、半径、弦、直径等概念,会求圆的方程和圆心、半径等。

3. 椭圆、双曲线和抛物线:掌握椭圆、双曲线和抛物线的标准方程和性质,理解焦点、准线、离心率等概念,会求这些曲线的方程和相关性质。

4. 参数方程和极坐标:了解参数方程和极坐标的概念,掌握参数方程和极坐标的转换关系,会求参数方程和极坐标的方程。

5. 平面几何的基本概念:理解平面几何中的点、线、面的概念,掌握基本性质和定理,如平行线、垂直线、角等概念和性质。

6. 解析几何的基本方法:掌握解析几何中的基本方法,如向量法、解析法等,理解这些方法的几何意义和代数表示,能够运用这些方法解决一些平面几何问题。

7. 圆锥曲线的应用:理解圆锥曲线的应用,如椭圆用于卫星轨道、双曲线用于光学等,了解圆锥曲线在日常生活和科学研究中的应用。

以上是2024年高考数学平面解析几何的主要知识点,考生需要熟练掌握并能够灵活运用。

同时,也需要注重理解和应用,不要死记硬背。

高中解析几何知识归纳

高中解析几何知识归纳

高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。

以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。

2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。

4. 圆锥曲线:包括椭圆、双曲线和抛物线。

-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。

-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。

-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。

二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。

2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。

3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。

4. 空间几何体:包括立方体、球、锥体、柱体等。

三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。

2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。

3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。

4. 直线与圆的位置关系:直线与圆相交、相切或相离。

5. 圆与圆的位置关系:圆与圆相交、相切或相离。

高一平面解析几何知识点的梳理总结

高一平面解析几何知识点的梳理总结

高一平面解析几何知识点的梳理总结一、直线与向量
- 直线的方程:
- 一般式方程:$Ax + By + C = 0$
- 斜截式方程:$y = kx + b$
- 点斜式方程:$y - y_1 = k(x - x_1)$
- 向量的基本概念:
- 向量的定义和表示
- 向量的共线性和定比分点公式
- 向量的基本运算:加法、减法、数量乘法
- 直线与向量的关系:
- 平行关系的判定和性质
- 垂直关系的判定和性质
- 线段的中点坐标公式
- 直线的垂直平分线和角平分线的性质
二、三角形
- 三角形的基本概念:- 三角形的定义和分类- 三角形内角和定理
- 三角形外角和定理
- 三角形的性质:
- 等腰三角形的性质
- 相似三角形的性质
- 全等三角形的性质
- 内切圆和外接圆的性质- 三角形的边与角关系:- 角平分线的性质
- 中线的性质
- 高线的性质
- 圆心角与弧的关系
- 弧长与扇形面积公式三、圆
- 圆的基本概念:
- 圆的定义和性质
- 圆内接四边形和圆外接四边形的性质
- 半径、直径、弧长和扇形面积的关系
- 圆的切线和扇形:
- 切线的性质和切线定理
- 相切和内切圆的性质
- 扇形的性质和扇形面积公式
以上是高一平面解析几何的知识点梳理总结,希望能为您提供帮助。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳直线与方程 1.直线的倾斜角规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2(tan πα≠=a k ,R k ∈斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为121221x x y y k P P --=倾斜角 斜率 方向向量 2πα≠⇒ t a nk α= ⇒ d =(cos ,sin )αα 或d =(1,)karctan ,0arctan ,0k k k k απ≥⎧=⎨+<⎩⇐ k =vu ⇐ (,)d u v =(0)u ≠3.直线方程的几种形式 名称方程方向向量法向量斜率 适用条件点方向式 00x x y y u v--= ()v u , ()u v ,- uv与坐标轴不垂直的直线点法向式 00()()0a x x b y y -+-=()a b ,-()a b ,所有直线斜截式 b kx y +=()k ,1 ()1,k - k 与x 轴不垂直的直线点斜式 )(00x x k y y -=-()k ,1 ()1,k - k截距式 1=+bya x 不过原点且与两坐标轴均不垂直的直线一般式0=++C By Ax )0(22≠+B A所有直线例1.已知直线斜率2k =,则倾斜角α= ,一个方向向量是 ,一个法向量是 。

2.过(1,4)A 、(3,1)B 的直线的一个方向向量是 ,斜率是 ,倾斜角是 。

3.直线)0,0(>>=+b a ab by ax 的倾斜角是 ,且不经过第 象限。

两直线位置关系 两条直线的位置关系位置关系222111::b x k y l b x k y l +=+= 0:0:22221111=++=++C y B x A l C y B x A l平行 ⇔ 21k k =,且21b b ≠ A 1B 2-A 2B 1=0(验证)重合 ⇔ 21k k =,且21b b =D=Dx=Dy=0 相交 ⇔ 21k k ≠A 1B 2-A 2B 1≠0垂直⇔121-=⋅k k 02121=+B B A A设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++0222111C y B x A C y B x A 直线间的夹角:①若θ为1l 到2l 的夹角,②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ(斜率都存在且121-≠k k );③当0121=+k k 或02121=+b b a a 时,o90=θ;例1.过点)2,2(-P 且与0143=++y x 平行的直线方程是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数法: ____. ②圆与圆的位置关系 已知两圆的圆心为 O1,O2,半径为 r1,r2,则 相离 ____;外切 ____;相交 ____; 内切 ____;内含 ____. 11.抛物线的定义、标准方程、几何性质. 定义 标准 y2=2px y2=-2px x2=2py x2=-2py 方程 (p>0) (p>0) (p>0) (p>0) 图形 焦点 准线 范围
1
得到要求的轨迹方程. 8.圆的定义及方程 ①定义: (M 为圆上任一点). ②圆的标准方程:方程 叫做以 点______为圆心,_____为半径长的圆的标准方程. ③圆的一般方程:方程 (____________)叫做圆的一般方程. 将一般方程配方 得 ,表示的是以 __________为圆心,___________为半径长的圆. 9.点 M(x0,y0)与圆(x-a)2+(y-b)2=r2 的位置关系 ①点 M 在圆上: ; ②点 M 在圆外: ; ③点 M 在圆内: . 10.直线与圆的位置关系 位置 关系 相离 相切 相交 2 d=r 图示 公共点 个数 几何 特征 代数特征 (解的个数) 无实数解 ∆<0
对称轴
顶点
离心率
开口
弦长 焦点弦 通径长 中点弦 常识 1 常识 2
平面解析几何知识点总结及近几年高考试题鉴赏
12.椭圆的定义、标准方程、几何性质. 焦点在 x 轴上 焦点在 y 轴上 定义 第二定义
图形
焦点三角 形 弦长公式 焦点弦 通径长 中点弦 常识 1 常识 2 x2 y2 ①与双曲线 2- 2=1(a> 0, b> 0)有共同渐近线的双 a b 曲线系方程为 . 2 2 ②对于曲线 C:Ax +By =1, 若曲线 C 表示椭圆,则 ; 若曲线 C 表示双曲线,则 . 14.直线与曲线的位置关系综合问题(大题思路). 做平面解析几何大题的一般步骤: ①设:设出直线的方程(注意讨论直线斜率是否存在) 若直线斜率存在则可设为: ; 若直线斜率可以不存在但不为零, 可设为 ; ②联立直线与曲线的方程,消元建立关于 x 的一元二 次方程 ax2+bx+c=0,根据方程判断直线与曲线的焦 点个数,注意讨论 a=0 的情况 ③利用韦达定理 , ; ④根据具体问题,如弦长问题,斜率问题,向量问题, 定点问题,定值问题,范围问题,最值问题等,都 可以利用韦达定理代换成关于一个参数 k 的表达式 进行求解.
平面解析几何知识点总结及近几年高考试题鉴赏
1.直线的倾斜角与斜率 ①直线的倾斜角α的取值范围为____________. ②经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的倾斜 角为α,斜率公式为 k=_____=_______. ③当α∈[π/6,2π/3]时,k∈_______; 当 k∈[-1,3]时,α∈_______ . 2.直线方程的几种形式 ①点斜式: ,适用范围: . ②斜截式: ,适用范围: . ③两点式: ,适用范围: . ④截距式: ,适用范围: . ⑤一般式: ,适用范围: . ⑥ 过 点 (x0,y0) 的 直 线 l , 当 斜 率 不 存 在 时 方 程 为 ,当斜率为零时,方程为 。 3.直线过定点问题 若给定直线方程含有一个参数, 则直线必过一定点. ①直线 y=kx+1 过定点 . ②直线 k(x-x0)-(y-y0)=0 过定点 . ③直线(2m+1)x+(m+1)y=7m+4 过定点 . 4.两条直线的位置关系 ①平行:两直线 l1 : y=k1x+b1, l2 : y=k2x+b2,则有 l1 ∥l2⇔____________,特别地,当直线 l1,l2 的斜率 都不存在时,l1 与 l2 的关系为____________. ②垂直:两直线 l1 : y=k1x+b1, l2 : y=k2x+b2,则有 l1 ⊥l2⇔____________,特别地,若直线 l1:x=a,直 线 l2:y=b,则 l1 与 l2 的关系为____________. ③若两直线 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则 l1//l2 ____;l1⊥l2 ___________. 5.中点公式、距离公式 ①点到直线的距离:点 P0(x0,y0)到直线 l:Ax+By+C =0 的距离 d=______________. ②两条平行直线 l1: Ax + By+ C1= 0 与 l2: Ax + By + C2=0(C1≠C2)间的距离 d=________________. ③线段 A(x1,y1),B(x2,y2)的中点为 M(_____,____), 长度为|AB|=________________. 6.运动直线系、圆系方程 ①与直线 Ax+By+C=0 平行的直线系方程________; ②与直线 Ax+By+C=0 垂直的直线系方程________; ③过直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0 的交点的直线系方程为_______________________. ④过圆 C1:x2+y2+D1x+E1y+F1=0 和圆 C2:x2+y2 + D2x + E2y + F2 = 0 交 点 的 直 线 方 程 为 ________________________. ⑤过圆 C1:x2+y2+D1x+E1y+F1=0 和圆 C2:x2+y2 + D2x + E2y + F2 = 0 交 点 的 圆 系 方 程 为 ________________________(λ≠-1) ⑥过直线 Ax+By+C=0 与圆 x2+y2+Dx+Ey+F=0 交点的圆系方程为_____________________(λ∈R). 7.求曲线的轨迹方程的常用方法 ①直接法:建系设点、列式、代换、化简、证明. ②待定系数法: 已知所求的曲线类型,先根据条件设 出曲线方程,再由条件确定其待定系数. ③ 相关点法: 动点 P(x , y) 依赖于另一动点 Q(x0, y0) 的变化而变化,并且 Q(x0,y0)又在某已知曲线上, 首先用 x,y 表示 x0,y0,再将 x0,y0 代入已知曲线
相关文档
最新文档