483平行线的性质

合集下载

平行线的性质及推导方法

平行线的性质及推导方法

平行线的性质及推导方法平行线,是指在同一个平面内,永不相交的两条直线。

平行线的性质与推导方法是几何学中的重要内容,下面我们将详细介绍平行线的性质及推导方法。

一、平行线的性质1. 平行线定理:如果一条直线与两条平行线相交,那么这条直线将被两条平行线所截成的锐角和钝角互补。

证明:设直线l与平行线m和n相交于A点,BC与m、n平行。

由平行线的性质可知∠ABC=∠ACD,又∠ABC+∠ACD=180°(线l与m、n相交,∠ABC和∠ACD互补),所以∠ABC和∠ACD互补。

2. 平行线的性质之间的关系:如果两条平行线被一条交线所截,那么它们与这条交线所构成的内错角、内外错角、对顶角以及同位角是相等的。

证明:设直线l与平行线m和n相交于点O,AB与m平行,CD与n平行。

先证明内错角相等,连接AC、BD。

由三角形的内角和为180°可知∠ACB+∠BCA+∠CDA+∠DAB=180°,∠ACB+∠BCA+∠ADB=180°(∠CDA和∠DAB互补),所以∠ACB+∠BCA+∠CDA+∠DAB=∠ACB+∠BCA+∠ADB,化简得∠CDA=∠ADB。

同理可证∠ACD=∠ABC,∠BAC=∠DCB,∠ADC=∠BCD。

二、平行线的推导方法1. 利用平行线的性质证明线段比例关系。

证明:设AB与CD分别是平行线m和n上的两个点,交线AC与BD相交于E点。

若已知AE:EC=BD:DE,要证明AB:BC=BD:DC(即证明∆ABD∽∆CBD)。

由已知的比例关系可得:AE/EC=BD/DE,即AE/BD=EC/DE。

又因为∠AEB和∠CDE为同位角,根据同位角定理可知∠AEB=∠CDE。

由此可得∆ABE∽∆CDE,进一步得出AB:BE=CD:DE。

同理可证∆CBD∽∆ADE,从而得出BC:BD=DE:DA。

综合上述比例关系,可以得出AB:BC=BD:DC,证明了平行线性质下的线段比例关系。

平行线的性质ppt课件

平行线的性质ppt课件
(3) 移: 以关键点为起点作与移动方向平行且与移动距离相
等的线段,得到关键点的对应点;
(4) 连: 按原图顺次连结对应点 .
知4-讲
特别警示
确定一个图形平行移动后的位置需要三个条件:
(1)图形原来的位置;
(2)平行移动的方向;
(3)平行移动的距离.
这三个条件缺一不可.
知4-练
例4 如图 4.2-33,现要把方格纸(每个小正方形的边长均为
知1-讲
特别警示
1. 两条直线平行是前提,只有在这个前提下才
有同位角相等.
2. 按格式进行书写时,顺序不能颠倒,与判定
不能混淆.
知1-讲
3. 平行线的性质与平行线的判定的区别
(1) 平行线的判定是根据两角的数量关系得到两条直线的位
置关系,而平行线的性质是根据两条直线的位置关系得
到两角的数量关系;
又∵ EG 平分∠ BEF,∴∠ BEG=



BEF=70° .
∵ AB ∥ CD, ∴∠ 2= ∠ BEG=70° .
答案:A
知2-练
2-1. [中 考·烟 台]一杆 古 秤 在 称 物 时 的状 态 如 图
所 示,已 知∠ 1=102°,则 ∠ 2 的度数为
78°
______.
感悟新知
知识点 3 平行线的性质3
若是,可直接求出;若不是,还需要
通过中间角进行转化 .
知1-练
1-1. [中考·台州]用一张等宽的纸条折成如图所示的图
140° .
案,若∠ 1=20 ° ,则 ∠ 2的度数为_______
感悟新知
知识点 2 平行线的性质2
知2-讲
1. 性质 2 两条平行直线被第三条直线所截,内错角相等 .

平行线的性质课件

平行线的性质课件

利用平行线性质解决几何最值问题
平行线定义:在同一平面内,永不 相交的两条直线
几何最值问题:求线段、角度、面 积等几何量的最大值或最小值
添加标题
添加标题
添加标题
添加标题
平行线性质:平行线之间的线段相 等
利用平行线性质解决几何最值问题 的方法:通过平行线之间的线段相 等,找到几何量的最大值或最小值
平行线的性质在解析几 何中的应用
面的交点
平行线与平面 的夹角:平行 线与平面的夹 角为直线与平
面的夹角
平行线与平面的 平行性:平行线 与平面的平行性 为直线与平面的
平行性
总结与思考
总结平行线的性质及其应用
平行线的定义: 在同一平面内, 永不相交的两
条直线
平行线的性质: 平行线之间的 角度相等,平 行线之间的线
段相等
平行线的应用: 在几何证明、 工程测量、建 筑设计等领域
利用平行线性质解决函数问题
平行线与函数的 关系:平行线是 函数的基本性质 之一,可以应用 于求解函数问题
平行线性质的应 用:利用平行线 性质可以求解函 数的最大值、最 小值、极值等问

平行线性质的证 明:利用平行线 性质可以 在更高级的数学 领域中也有广泛 的应用,如微积 分、线性代数等
平行线的性质在代数中 的应用
利用平行线性质解决线性方程组问题
平行线性质:两条直线平行,同位角相等
线性方程组:一组线性方程组成的方程组
利用平行线性质解线性方程组:通过观察方程组中的同位角,找出方程组中的平行线, 从而解出方程组
应用实例:求解线性方程组,如3x+2y=5,4x+3y=6,通过观察方程组中的同位角, 找出方程组中的平行线,从而解出方程组

《平行线的判定》的数学知识点

《平行线的判定》的数学知识点

《平行线的判定》的数学知识点《平行线的判定》的数学知识点在我们的学习时代,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

掌握知识点有助于大家更好的学习。

下面是店铺为大家收集的《平行线的判定》的'数学知识点,仅供参考,大家一起来看看吧。

1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号‖表示,如AB‖CD,读作AB平行于CD。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

【《平行线的判定》的数学知识点】。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。

本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。

一、定义平行线指在同一个平面上,永远不会相交的两条直线。

两条平行线之间的距离是不变的,无论它们延伸多远。

二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。

可以通过直线的斜率公式来证明这个性质。

2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。

这一性质是平行线的基本特征。

3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。

也就是说,这些内角的和等于180度。

4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。

5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。

三、应用平行线的性质在几何学中有广泛的应用。

下面列举几个常见的应用场景。

1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。

通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。

2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。

通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。

3. 数学证明:平行线的性质在数学证明中扮演重要的角色。

通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。

总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。

通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。

掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。

平行线的性质与判定

平行线的性质与判定
判定方法:如果两条直线 被第三条直线所截,且同 位角相等,则这两条直线
平行
证明:根据同位角的性质, 如果同位角相等,则两条
直线平行
应用:在几何证明和实 际问题中,常常需要利 用同位角相等来判断两
条直线是否平行
注意事项:同位角相等是 判定两条直线平行的充分
条件,但不是必要条件
内错角相等则两直线平行
判定方法:内错角相 等,则两直线平行
平行线的性质与判定
汇报人:XX
目录
Contents
01 添 加 目 录 项 标 题 02 平 行 线 的 性 质 03 平 行 线 的 判 定 04 平 行 线 的 应 用
01
添加章节标题
02
平行线的性质
平行线的同位角相等
定义:同位角相等,两直 线平行
性质:同位角相等,两直 线平行
判定:两直线平行,同位 角相等
证明过程:利用同位 角性质,证明两直线
平行
应用举例:在几何问 题中,常用来判断两
条直线是否平行
注意事项:内错角相 等是判定两直线平行 的充分条
证明过程:利用同旁内角的性 质,通过角度计算证明两直线 平行
应用场景:在几何证明题中, 常用于证明两条直线平行
判定方法:同旁内角互补,则 两直线平行
0
0
0
0
1
2
3
4
平行线在日常生活中的应用
建筑学:在建筑设计时, 利用平行线的性质确定建 筑物的位置和方向,保证
建筑物的稳定性。
交通工具:汽车、火车等 交通工具的轨道线都是平 行的,这样可以保证车辆
安全、稳定地行驶。
电子设备:电视、电脑等 显示器的屏幕线都是平行 的,这样可以保证图像的

平行线的性质教学课件

平行线的性质教学课件

平行线在生活中的应用
建筑
在建筑设计中,平行线的概念被广泛应用,如平行 的屋顶、墙壁和地板等。
工程
在机械设计和制造中,平行线的概念用于确保零件 的精确度和稳定性,如平行的导轨、轴承和齿轮等 。
艺术
在绘画和摄影中,平行线的运用可以创造出透视感 和立体感,使画面更加生动和逼真。
教学目标与要求
01 知识目标 掌握平行线的定义、性质及判定方法;理解平行线在 生活中的应用。
性质
当两条直线平行时,同位角相等。
图形示例
[插入同位角的图形示例]
平行线的内错角相等
定义
两条平行线被第三条直线所截,两个内角分别在两条平行线的不 同侧,并且夹在两条平行线之间的两个角叫做内错角。
性质
当两条直线平行时,内错角相等。
图形示例
[插入内错角的图形示例]
平行线的同旁内角互补
定义
两条平行线被第三条直线所截,两个内角在两条平行线的 同一侧,并且这两个内角的非公共边构成一条直线,这两 个内角叫做同旁内角。
02
能力目标
能够运用平行线的性质解决实际问题;培养观察、分 析、归纳和推理的能力。
03
情感目标
激发学生学习数学的兴趣和热情;培养学生严谨、认 真的学习态度。
04 教学重点 平行线的定义、性质及判定方法。
05 教学难点 如何运用平行线的性质解决实际问题。
02
平行线的性质
平行线的同位角相等
定义
两条平行线被第三条直线所截,位于这两条平行 线同一侧的两个内角叫做同位角。
02
图形示例
[插入内错角的图形示例]
03
应用举例
在地理测量中,利用内错角相等的性质,可以通过测量两个内错角来间

平行线的性质

平行线的性质

平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD 的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D.3. 【答案】C;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C=180°-30°-30°=120°.4. 【答案】B;【解析】反向延长射线ST交PR于点M,则在△MSR中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE相等的角有:∠DCA,∠ACB,∠COF,∠CAB,∠DAC.6. 【答案】C;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC 中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC =80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,11∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).12。

平行线的性质ppt

平行线的性质ppt
梯形
包括特殊的等腰梯形和直角梯形,有上下底边平 行和两腰相等的性质。
燕尾形
由两条直线平移后相交形成,具有特定的形状和 性质。
与平行线相关的定理和公式
平行线判定定理
01
包括同位角相等、内错角相等、同旁内角互补等定理,用于判
断两条直线是否平行。
平行线性质定理
02
包括两直线平行同位角相等、内错角相等、同旁内角互补等定
推论2
如果一个平面内的直线与另一个平面内的直线互相平行,则这两个平面互相平行 。
平行线的证明方法
方法1
利用三角形中位线定理证明两 直线平行
方法2
利用四边形对角线相等证四边形 两对边分别平行
方法3
利用三角形相似或全等证明两直线 平行
05
平行线的拓展
与平行线相关的几何图形
平行四边形
包括特殊的菱形、矩形和正方形,具有对边平行 和对边相等的性质。
通过解决与平行线性质相关的问题,学生学会了转化、演绎 推理等数学思想方法。
反思与总结
学生需要反思自己在学习平行线性质过程中的表现,总结经 验,为后续课程做好准备。
对后续课程期待与建议
期待后续课程
本节课结束后,学生对后续课程有所期待,希望继续学习与平行线性质相关 的知识。
对教师的建议
希望教师能够继续引导学生反思和总结学习平行线性质的经验,并鼓励学生 在实际生活中应用数学知识。
THANKS
02
平行线的性质
平行线的公理
平行线的公理一
经过直线外一点,有且只有一条直线与已知直线平行。
平行线的公理二
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的传递性
如果两条直线都与第三条直线平行,那么这两条直线也互 相平行。

平行线的性质定理

平行线的性质定理

初中数学《平行线的性质定理》微课精讲+知识点+教案知识点:1. 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。

2. 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。

3 . 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。

两个角的数量关系两直线的位置关系:1、垂直于同一直线的两条直线互相平行。

2、平行线间的距离,处处相等。

3、如果两个角的两边分别平行,那么这两个角相等或互补。

4、平行线的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5、平行线间的距离两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离.视频教学:练习:1.如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是( )A.55°B.65°C.75°D.85°2.如图,∠1=∠2,∠3=40°,则∠4等于( )A.120°B.130°C.140°D .40°3.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是( )A.16°B.33°C.49°D.66°4.如图,已知∠1=∠2,若要∠3=∠4,则须( )A.∠1=∠3B.∠2=∠3C.∠1=∠4D.AB∥CD5.如图,AB∥CD∥EF,∠ABE=38°,∠ECD=110°,则∠BEC的度数为( )A.42°B.32°C.62°D.38°6.如图,直线l1∥l2,CD⊥AB于点D,∠1=50°,则∠BCD的度数为( )A.50°B.45°C.40°D.30°7.如图,∠BAC=40°,DE∥AB,交AC于点F,∠AFE的平分线FG交AB于点H,则正确的是( )A.∠AFG=70°B.∠AFG>∠AHFC.∠FHB=100° D.∠CFH =2∠EFG8.如图,在△ABC中,∠C=90°,点D在AC边上,DE∥AB,如果∠ADE=46°,那么∠B等于( )A.34°B.54°C. 46°D.44°9.将一直角三角板与两边平行的纸条如图所示放置.有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其中正确的个数为( )A.1B.2C.3D.410.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是( )A.42°,138°B.都是10°C.42°,138°或42°,10° D.以上都不对课件:教案:在证明过程中,进一步理解证明的步骤,格式和方法.教学重难点重点:平行线三个性质的探究及运用.难点:平行线的性质定理与判定定理的区别及综合运用.教学活动设计课堂导入上一节课我们学习了平行线的判定,也就是说知道角的关系能够判断两条直线是否平行.可是老师从一张轻轨的图片和伸缩门的情景看到的却恰好是另一种有意思的情况,这种情况具有普遍意义吗?自学指导续表探索新知合作探究已知:如图,a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角,求证:∠1和∠2互补.证明:因为a∥b,所以∠3=∠2(两直线平行,同位角相等),因为∠1+∠3=180°(平角的定义),所以∠1+∠2=180°(等量代换).简单说成:两直线平行,同旁内角互补.几何语言:因为a∥b,所以∠1+∠2=180°.教师指导(1)归纳两直线平行的判定与性质两直线平行(2)总结证明的一般思路及步骤当堂训练1. 如图所示,EL∥FK,PG∥QH.找出图中与∠1相等的角.2. 已知∠3=∠4,∠1=47°,求∠2的度数.3.如图,AB∥EF,∠ECD=∠E,试说明CD∥AB.板书设计平行线的性质定理两直线平行⇒教学反思语言是思维的工具,要学好证明,必须学会语言的表达和运用,初学几何证明题时,学生对于几何语言不很清楚,几何语言分为文字语言、符号语言和图形语言,老师有必要强调:将图形语言和符号语言相结合是学好证明的基本功,画图时按要求将符合题意的图形画出来.但要注意以下几点:(1)注意所画图形的多种情况.(2)能根据题意画出简单的图形,掌握“题”与“图”的对应关系,一般图形不要画成特殊图形,否则就意味着人为增加了已知条件,反之,特殊图形也不要画成一般图形,这两种做法都没有真实的表达题意.(3)图形力求准确,便于观察,有利于解题.。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中的重要概念,它们有着独特的性质和关系。

在本文中,我们将探讨平行线的性质,包括平行线的定义、平行线的性质以及与平行线相关的定理。

一、平行线的定义在几何学中,平行线是指在同一平面上永远不相交的两条直线。

平行线之间的距离保持恒定并且不存在交点。

数学上,我们可以用以下表达来定义平行线:两条直线的方向相同且不重合。

二、1. 平行线的夹角关系:如果一条直线与一对平行线相交,那么与这两条平行线相交的各个对应角相等。

2. 平行线的斜率关系:如果两条直线的斜率相等且不相交,那么这两条直线是平行的。

3. 平行线的性质传递性:如果直线A与直线B平行,直线B与直线C平行,那么直线A与直线C也平行。

4. 平行线与转角:如果一对平行线被一条第三条直线交叉,那么所形成的内、外转角互补。

三、与平行线相关的定理1. 直线与平行线的交角定理:如果一对平行线被一条直线直角相交,那么所形成的对应角相等。

2. 平行线与平面的关系:如果一条直线与一个平面平行,那么与这条直线平行的任意一条直线也与该平面平行。

3. 平行线的等分定理:如果两条平行线被一条截线分成若干小线段,那么这些小线段的比值相等。

4. 平行线与平行四边形的关系:如果一对对边分别平行,则该四边形为平行四边形。

5. 平行线的共垂线定理:如果两条平行线与一条横切线相交,那么所形成的对应交线都是垂直于平行线的。

四、应用举例1. 平行线在城市规划中的应用:在城市规划中,平行道路可以提供方便的交通流动,减少拥堵和交通事故的发生。

2. 平行线在建筑设计中的应用:建筑师在设计建筑物时,常常利用平行线的性质来布局房间、窗户和门等。

3. 平行线在数学证明中的应用:平行线的性质被广泛应用于各种数学证明中,例如平行线定理和平行四边形性质的证明。

总结:平行线是几何学中重要的概念,具有许多独特的性质和关系。

了解和应用平行线的性质,不仅可以增加我们对几何学的理解,还有助于解决实际问题。

平行线的性质与定理

平行线的性质与定理

平行线的性质与定理平行线是指在同一个平面上,永远不会相交的两条直线。

在数学中,平行线有一系列的性质和定理,下面将对其中的一些进行探讨。

1. 平行线的定义平行线的定义是指在同一平面内,两条直线没有任何交点。

如果两条直线在平面上没有交点,我们就可以称它们是平行线。

2. 平行线的判定判定两条直线是否平行有多种方法,其中一种常见的方法是通过线与线之间的夹角关系来判断。

如果两条直线的夹角为180度,则它们是平行线。

3. 平行线的性质平行线具有以下性质:- 平行线具有等斜率:如果两条直线的斜率相等,则它们是平行线。

这是判断平行线的常用方法之一。

- 平行线的角度关系:当两条直线被一条横穿时,所形成的对应角、内错角、同旁内角都是相等的。

这个性质有助于我们解决与平行线相关的角度问题。

- 平行线与平行线之间的距离关系:如果在两条平行线上分别取一点,并以这两个点为顶点画两条垂直于平行线的线段,这两条线段的长度相等。

这个性质被称为平行线之间的距离关系。

4. 平行线的定理- 同位角定理:当两条平行线被一条横穿时,同位角是相等的。

- 同旁内角定理:当两条平行线被一条横穿时,同旁内角是互补的,即角的度数之和为180度。

- 内错角定理:当两条平行线被一条横穿时,内错角是相等的。

- 对顶角定理:当两条平行线被一条横穿时,对顶角是相等的。

5. 实际应用平行线的概念和定理在几何学中有广泛的应用。

例如,在平行线剖分问题中,我们可以利用平行线的性质来解决线段的分割和角度的测量问题。

此外,在解决平面图形的相似性问题中,平行线的性质也经常被应用。

总结:通过探讨平行线的性质与定理,我们可以更加深入地理解平行线的概念,并利用这些性质解决各种几何问题。

无论是在学术研究中还是实际应用中,平行线的相关内容都具有重要的作用。

理解和掌握平行线的性质与定理,无疑是我们学习数学和几何学的重要一步。

平行线的性质

平行线的性质

2.3平行线的性质平行线的判定与性质1.判定方法:(1) 同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.2.性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.3.相同点:平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件。

4.区别:平行线的性质和平行线的判定中的条件和结论恰好相反:平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。

它们是由“数”到“形”的判断。

平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。

它们是由“形”到“数”的说理。

平行公理I平行公理:过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论(平行线的传递性):平行同一直线的两直线平行。

∵a∥c,c ∥b∴a∥b。

1. 阅读填空:(1)如图,请你完成小颖和小明的说理过程:小颖:因为AD与BC是平行的,所以∠1=_____,理由是_____.小明:∠3=∠4→_____∥_____→∠A+_____=180°其中第一步的理由是_____第二步的理由是_____.2. 下列说法中,正确的是( )A.经过一点,有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,内错角相等C.垂直于同一条直线的两条直线互相垂直D.两条直线被第三条直线所截,内错角相等,则两直线平行3. 下列说法中,正确的是( )A.连接两点的线段就叫做两点的距离B.AB=BC,则点B是线段AC的中点C.过直线外一点有且只有一条直线与这条直线平行D.过直线外一点有无数条直线与这条直线垂直4. 如果直线a∥b,则下列说法错误的是( )A.a与b之间距离处处相等B.若a∥c,则b∥cC.若a⊥c,则b⊥cD.a,b被第三条直线所截的同旁内角相等5. 已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF 的度数.6. 如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是( )A.20°B.50°C.70°D.110°7. 如图,直线a∥直线b,∠1=∠2,∠3=150°,∠4的大小( )A.60°B.40°C.50°D.30°8. 已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知)∴∠D+∠EFD=180°∴_____∥_____又∵∠1=∠2(已知)∴_____∥_____∴_____∥_____∴∠3=∠B_____.9. 如图.已知AB∥CD,MG平分∠AMN,NH平分∠DNM,求证:MG∥NH.10. 如图,BC∥AD,∠1=∠E,若∠A=100°,求∠C的度数.11. 如图,B、C、D三点共线,CE∥AB,∠1=51°,∠2=46°,则∠A=_____°.12. 如图,直线AB∥DE,BC⊥CD,若∠1=25°,则∠2的度数是_____.13. 如果直线a∥b,直线b∥c,则直线a与c的关系是_____.14. 如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.15. 如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.16. 如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.17. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )A.17°B.34°C.56°D.68°18. 如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )A.40°B.60°C.80°D.120°19. 如图,点C在∠AOB的边OA上一点,请你使用直尺和圆规,过点C作直线OB的平行线.(保留作图痕迹,不要求写画法).20. 如图,已知AD⊥BC,EF⊥BC,∠1=∠C.(1)证明:AD∥EF;(2)猜想:∠2与∠3有怎样的关系,并说明理由.21. 如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为( )A.30°B.32.5°C.35°D.37.5°22. 如图,已知a∥b,AC⊥AB,AC交直线b于点C,∠1=65°,那么∠2是_____°.23. 如图,点D、E、F分别在△ABC的三边上,已知∠1=50°,DE∥AC,DF∥AB,则∠2=_____°.24. 如图,AB∥CD,则∠1,∠2,∠3之间的关系是( )A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠2-∠3=180°D.∠1-∠2+∠3=180°25. 如图,已知AB∥CD,EF∥CD,∠B=70°,∠E=135°,∠1等于_____.26. 如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为_____.27.如图,已知AB∥DM,BC∥EF,探求∠B与∠D数量关系,∠AEF与∠D数量关系,并说明理由.28.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )A.先右转60°,再左转120°B.先左转120°,再右转120°C.先左转60°,再左转120°D.先右转60°,再右转60°29. 如图,AB∥CD,AD∥BC,若∠CBE=68°,则∠C=_____,∠D=_____.30. 平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部.试说明∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明你的结论成立的理由;(3)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)31. 如图所示,把长方形ABCD的纸片,沿EF线折叠后,ED与BC的交点为G,点D、C 分别落在D′、C′的位置上,若∠1=70°,求∠2、∠EFG的度数.32. 将一条两边沿互相平行的纸带按如图折叠,当∠1:∠2=2:3,则∠2的度数为( )A.22.5°B.45°C.67.5°D.30°33.如果∠α与∠β的两边分别平行,∠α比∠β的4倍少30°,则∠α的度数是( )A.10°B.138°C.10°或138°D.以上都不对34. 如图,已知AB∥CD,直线EF分别交直线AB,CD于点E、F,FG平分∠CFE交AB 于点G,若∠BEF=70°,求∠AGF的度数.35. 已知:如图,在△ABC中,DE∥AC,DF∥AB,∠B=60°,∠C=70°.则∠EDF=_____.36. 如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是( )A.84°B.106°C.96°D.104°37. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠CBE的度数是( )A.17°B.34°C.56°D.68°38. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.39. 如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=_____°.40. 如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于_____.。

平行线的性质

平行线的性质

平行线的性质1.两直线平行的条件(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)垂直于同一条直线的两条直线互相平行.(5)平行于同一条直线的两条直线互相平行.2.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.3.解决问题的方法(1)三角形外角的性质(2)延长线段构造同位角、内错角或同旁内角(3)构造平行线当图形中有两条平行线,且涉及到两直线外的角的计算问题时,往往需要构造平行线.4类型1:平行线的性质【例题1】(1)如图,AC ∥BE ,∠ABE =70°,则∠A 的度数为( ).A .70°B .65°C .50°D .140°【答案】A .(2)如图,已知直线a ∥b ,∠1=50°,则∠2的度数为( ).A .40°B .50°C .130°D .150° 【答案】C .(3)一副直角三角板如图放置,点A 在DF 延长线上,已知:∠D =∠BAC =90°,∠E =30°,∠C =45°,BC ∥DA ,那么∠ABF 的度数为( ).A .15°B .20°C .25°D .30° 【答案】A .(提示:)(4)如图,已知a ∥b ,三角板的直角顶点在直线b 上,若∠1=40°,则∠2=_________度.【答案】130.(5)如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠2=80°,那么∠3的度数为( ).A .40°B .50°C .60°D .70°【答案】A .AB CD Eba12ABCEF Dba2113ABC DE F2(6)如图所示,若直线BC ∥DE ,AD ⊥DF ,垂足为点D ,∠α=30°,∠β=50°,则∠A =________.【答案】70°.(7)如图所示,直线a 、b 、c 、d 的位置如图所示,若∠1=115°,∠2=115°,∠3=124°,则∠4的度数为( ).A .56°B .60°C .65°D .66° 【答案】A .(提示:同位角相等,两直线平行)(8)如图,AB ∥CD ∥EF ,且∠ABE =70°,∠ECD =150°,则∠BEC 的度数为_________.【答案】40°.(提示:两次运用平行的性质,∵AB ∥EF ,∴∠ABC =∠BEF =70°,∵CD ∥EF ,∴∠ECD +∠CEF =180°,∵∠ECD =150°,∴∠CEF =30°,∴∠BEC =∠BEF -∠CEF =40°) 【例题2】(1)如图,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,AB ∥CD .若∠1=72°,则∠2的度数为( ).A .54°B .59°C .72°D .108° 【答案】A .(2)如图,一束光线从点C 出发,经过平面镜AB 反射后,沿与AF 平行的线段DE 射出(此时∠1=∠2).若测得∠DCF =100°,则∠A =( ).βFED C BA α3412abd c FED CB A GFEDCBA12A .50°B .60°C .70°D .80° 【答案】A .(提示:解:∵DE ∥CF ,∠DCF =100°,∴∠EDC +∠DCF =180°,即∠EDC +100°=180°,∴∠EDC =80°,∵∠1=∠2,∴∠1=∠2=(180°-80°)÷2=50°,∵DE ∥CF ,∴∠A =∠2=50°)(3)如图所示,AB ∥CD ,AB ∥EF ,EG 平分∠BED ,∠B =45°,∠D =30°,则∠GEF =_________.【答案】7.5°.(提示:) 【例题3】(1)如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=45°,则∠3的度数是( ).A .15°B .25°C .35°D .45° 【答案】A .(提示:外角的性质,∵∠2=45°,纸条的两边互相平行,∴∠4=∠2=45°,∵∠1=30°,∴∠3=∠4-∠1=45°-30°=15°.)(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__________度.【答案】75°.(提示:外角的性质)(3)如图,已知AB ∥CD ,CD ∥EF ,∠A =105°,∠ACE =51°,则∠E =___________.【答案】24°.(提示:外角的性质)【例题4】有两个角,它们的两边分别平行,并且其中一个角比另一个角的3倍少50°,求这两个角的大小.【答案】25°,25°或57.5°,122.5°.(提示:分类讨论,两个角相等或互补)A BCDE FG 1231A BCDF E类型2:构造平行线【例题5】(1)如图,b ∥c ,a ⊥b ,∠1=130°,则∠2等于( ).A .30°B .40°C .50°D .60°【答案】B .(提示:过点作a 的平行线d )(2)如图所示,AB ∥CD ,下列结论中正确的是( ).A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠2 【答案】D .(3)如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( ).A .35°B .45°C .50°D .55° 【答案】A .(提示:过点E 作CD 的平行线)(4)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.【答案】15°.(提示:如图所示,构造平行线,或者延长线段构造内错角)(5)如图,AB ∥CD ,EF 与AB 、CD 分别相交于点E 、F ,EP ⊥EF ,与∠EFD 的平分线FP 相交于点P ,且∠BEP =40°,则∠EPF 的度数是( ).2a1cbEDCBA2131F EDCBA111PFEDCBAA .25°B .65°C .75°D .85° 【答案】B .(提示:过点P 作AB 的平行线)【例题6】(1)如图,AB ∥CD ,∠BAE =140°,∠DCE =30°,则∠AEC =( )度.A .70B .80C .90D .100 【答案】A .(提示:过点E 作AB 的平行线)(2)如图,如果AB ∥CD ,那么角α,β,γ之间系式为( ).A .α+β+γ=360°B .α-β+γ=180°C .α+β+γ=180°D .α+β-γ=180° 【答案】D .(3)如图所示,ABCDEF 是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B =140°,∠D =120°,则∠C 的度数是___________.【答案】100°.(提示:过点C 作FC ∥AB )(4)如图,已知AB ∥CD ,∠E =28°,∠C =52°,则∠EAB 的度数是_________.【答案】80°.(提示:法一,过点E 作FE ∥AB ;法二,如图所示延长线段,根据外角的性质) (5)如图所示,若FD ∥BE ,则∠1+∠3-∠2=_________.【答案】180°.(提示:过点A 作AC ∥BE )E DCBA βγαE D CBA E DCBAE DCB AA B CDEF3FEDBA 12G(6)如图,已知AC ∥DE ,∠B =24°,∠D =58°,则∠C =( ).A .24°B .34°C .58°D .82°【答案】B .(提示:过点作B 的平行线BF )AB C DE。

华师大版初中数学七年级上册4.8.3平行线的性质备课教案

华师大版初中数学七年级上册4.8.3平行线的性质备课教案

华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!、指出下列各图中所有的同位角、内错角、同旁内角、下列各图中 1∠归纳你得到的结论:填写如下表格。

符号语言a b c 843217651图4.8.8请同学们根据上面的分析,将你的推理过程用几何语言描述出来,并说明理由。

解:_____________________________ _____________________________ ______________________________ ______________________________【三】合作练习师生互动共同完成下面的例题。

例2 如图4.8.9,在四边形ABCD 中,已知AB ∥CD ,∠B=60°,求 ∠C 的度数。

能否求得∠A 的度数 ?分析:由于AB ∥CD , 根据两直线平行,同旁内角互补 , 可得____________________。

又∠B=60° ,因此∠C=___________ 。

根据题目的已知条件,无法求出 ∠A 的度数。

解:(1)平行线的判定 (2)平行线的性质(3)理解平行线的判定与性质的区别。

【五】课后检测。

1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4= .2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ). (2)若∠2 =∠ ,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,a ∥b ,a 、b 被c 所截,得到∠1=∠2的依据是( ) A .两直线平行,同位角相等 B .两直线平行,内错角相等C .同位角相等,两直线平行D .内错角相等,两直线平行 6.如图6,推理填空: (1)∵∠A =∠ (已知),∴AC∥ED( ); (2)∵∠2 =∠ (已知),∴AC∥ED( ); 图5(3)∵∠A +∠ = 180°(已知),∴AB∥FD( );(4)∵∠2 +∠ = 180°(已知),∴AC∥ED( );DC B A图12431A BC D E 12AB DC E F 图212345A B C DF E 图312A B C D E F图4123A F C D B E 图6教师不光要传授知识,还要告诉学生学会生活。

483平行线的特征

483平行线的特征

从图中可以看出,原图中的每一个顶点以及每 一条边都向右平移了4格,并向上平移了3格。
练习1
如图,
(1)如果AD∥BC,那么根据_两_直__线__平_行__,_同__位_角__相__等_ 可得∠B=∠1; (2)如果AB∥CD,那么根据_两__直_线__平__行_,__内_错__角_相__等_ 可得∠D=∠1。
∴ ∠B+∠C=180°( 两直线平行,同旁内角互补) ∵ ∠B=60° ∴ ∠C=120° 故根据题目的已知条件,无法求出∠A的度数。
例3 画出将如图4.8.3所示的方格纸中的图形向右 平移4格,并向上平移3格后的图形。

图4.8.3
图4.8.4
解: 如图4.8.4所示的图形即原图形以及原
图形向右平移4格,并向上平移3格后的图形。
4 13
2
问题2:如图,如果知道 a // b , 能否求出∠2+ ∠3=1800 ?
两条平行线被第三条直 线所截,内错角相等.
简单说成,两直线平行,内错角相等
∵ a ∥ b (已知) ∴ ∠2 = ∠3 ( 两直线平行,内错角相等)
两条平行线被第三条直线所截, 同旁内角互补。
简单说成,两直线平行,同旁内角互补 ∵ a ∥ b (已知) ∴ ∠2+ ∠4=180 °( 两直线平行,同旁内角互)补
2.从所起作用上看: 判别:根据两角相等或互补,去证两条直线平行, 特征:根据两条直线平行,去证角的相等或互补.
联系是:它们的条件和结论是互逆的。
思考题:
已知:如图,直线 a∥b,c∥d, ∠1=100°,求 :∠2,∠3的度数.
解(1)∵ c∥d,(已知) ∴ ∠1=∠4( 两直线平行,同位角相等 ) 又∵ ∠3=∠4 ( 对顶角相等) ∴ ∠1=∠3 ( 等量代换) ∵ ∠1=100° ( 已知) ∴ ∠3= 100° (2)∵ a∥b (已知) ∴ ∠2+∠4=180° ( 两直线平行,同旁内角互补 ) ∴ ∠2= 180°- 100°= 80°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质 两直线平行
判定
同位角相等 内错角相等 同旁内角互补
已经量得∠A=115°,∠D=100°,梯形
另外两个角各是多少度?
解:∵梯形的上下底平行A
D
即AD∥BC
∴ ∠A+ ∠B= 180°
∠D+∠C= 180° B
C
∴ ∠B= 180°- 115°= 65°
∠C= 180°- 100°= 80°
答:梯形的另外两个角分别是65°、 80°.
平行线的判定与性质的区别:
例1.如图,已知直线AB∥CD且被AE所截
1)∠1=110°,则∠2= 110°.
C
(两直线平行,内错角相等
)
A 1
2 43
E
2) ∠1=110°,则∠3= 110°.
(两直线平行,同位角相等 ) B D 3) ∠1=110°,则∠4= 70°.
(两直线平行,同旁内角互补)
例2.如图,图中是梯形有上底的一部分,
平行线的性质: 1.两直线平行,同位角相等 2.两直线平行,内错角相等
如图:若直线a∥b,则同旁内角有什么关系?
∵ a∥b(已知)
∴∠1=∠2 (两直线平行,同位角相等)
1a
34
2b
又∵ ∠1+∠4=180° ( 邻补角定义)
∴ ∠2+∠4=180° ( 等量代换)
两直线平行,同旁内角互补.
平行线的性质: 1.两直线平行,同位角相等 2.两直线平行,内错角相等
复习:
如:
①∵∠1 = ∠2 (已知)
∴a∥b
3
1 4
a
(同位角相等,两直线平行)
② ∵∠2 = ∠3 (已知)
2
b
∴a∥b
(内错角相等,两直线平行) ③∵∠2+∠4= 180°(已知)
∴a∥b
(同旁内角互补,两直线平行)
平行线的性质:
如图:若直线a∥b,则同位角有什么关系?
1)作图,找出一对同位角,
如图:若直线a∥b,则同旁内角有什么关系?
∵ a∥b(已知) ∴∠3=∠2
(两直线平行,内错角相等)
1a
34
2b
又∵ ∠3+∠4=180° ( 邻补角定义)
∴ ∠2+∠4=180° ( 等量代换)
两直线平行,同旁内角互补.
平行线的性质:
1.两直线平行,同位角相等; 2.两直线平行,内错角相等; 3.两直线平行,同旁内角互补.
并用量角器度量;
1a
2)几何画板演示论证; 3)结论:
2b
两直线平行,同位角相等.
平行线的性质:
1.两直线平行,同位角相等
如图:若直线a∥b,则内错角有什么关系?
∵ a∥b(已知)
∴∠1=∠2 (两直线平行,同位角相等)
又∵ ∠1=∠3(对顶角相等) ∴ ∠2=∠3( 等量代换)
1a
3
2b
两直线平行,内错角相等.
相关文档
最新文档