盾构姿态实时监控原理与方法

盾构姿态实时监控原理与方法
盾构姿态实时监控原理与方法

盾构姿态实时监控原理与方法

摘要:本文着重介绍盾构姿态自动监测与控制的原理与方法,并对系统软、硬件组成及运行界面进行简略说明。

关键词:盾构姿态自动监控

1引言

盾构姿态的良好保持是盾构法施工的重要控制目标,它直接关系到隧道质量与施工成败,如何实现高水平的盾构姿态实时监控一直是盾构施工人员关心的工程难题,盾构姿态实时监控技术的重要性不言而喻。

完整的盾构姿态实时监控系统包括盾构姿态偏差自动监测和自动控制两方面内容。国内使用的盾构姿态监测系统多为国外产品,主要有德国VMT公司的SLS-T系统、英国的ZED系统和日本TOKIMEC的TMG-32B(陀螺仪)系统等,许多地方还在使用人工测量;国内使用的盾构姿态控制系统大多取之于国外盾构生产厂家成套盾构产品中提供的控制功能(注:目前国内也有较成熟的盾构引导控制系统,如我公司使用的上海米度与上海力信两家公司研制生产盾构导向、顶管导向系统、隧道精灵软件等均已较成熟,本人现在使用中,欢迎探讨交流)。由于盾构控制系统富含PLC可编程控制器控制代码及上位控制计算机控制程序,又与具体的控制器件和动力设备的关系极为密切,因而具有一定的技术含量和非标准性。

国外有全自动盾构的研究,但少有成功应用的实例。在科学技术突飞猛进的今天,研究先进、自主的盾构姿态实时监控技术,建立盾构姿态实时监控理论、方法,对改善盾构施工水平有着深刻的现实意义。介绍盾构姿态自动监测与控制的原理与方法。

2盾构姿态监测系统原理

根据公路、轨道交通设计规范,公路、轨道交通的设计路线由平曲线和竖曲线组成,平曲线一般包括直线、缓曲线、圆曲线三种,竖曲线一般包括直线、圆曲线(凸曲线、凹曲线)两种。盾构根据公路、地铁隧道设计路线向前推进,盾

构姿态通过盾构机轴线和设计路线的偏差比较而求得。

实现盾构姿态自动监测仍基于传统的连续支导线测量方法(洞内洞外,洞内主要就是管片的封顶块上吊篮和…此方法已于2008年9月被上海某公司申请注册专利成功…)。在盾构推进之前必须对盾构机进行初始测量,取得盾构机的初始参数。具体方法为:工程测量人员在盾构机体内预设定三个固定目标点P1、P2、P3,此三点必须保证稳固(建议多增设1、2个点备用),同时,在同一坐标系中,确定盾构机特征点坐标,一般取盾构切口中心P01和盾尾中心P02,对上述五点进行初始测量,必须高度精确并保留测量结果。O 1

盾构姿态测量示意图

(X,Y,Z)

(X,Y,Z)O 固定的螺杆

坐标圆点(前参考点)

B

C A 盾尾后参考点

(X,Y,Z)需要说明的是,由于盾构机切口中心和盾尾中心是刚性物体上的虚点,要测定其坐标,可先对盾构机切口和盾尾圆环设点测量,然后运用专用软件(……)计算,求得盾构机切口中心和盾尾中心在初始姿态的坐标值。当盾构初始测量完毕进入推进后,运用程控测量技术,在工程坐标系中对三个预设定固定目标点进行连续、跟踪测量,取得三个固定目标点坐标的实时测量值。根据实时测量值,采用刚性空间特征点定位计算技术,求得盾构机盾构切口中心和盾尾中心的实际坐标,并采用设计线型空间微分直线变换的计算方法,得出盾构推进过程中的姿态偏差数据结果。(此过程盾构姿态控制系统大多取之于国外盾构生产厂家成套盾构产品中提供的控制功能)

3盾构姿态控制系统原理

实现盾构姿态实时控制采用经典的负反馈控制系统,其机理是根据盾构的实

时姿态偏差数据和相关参数,求解盾构姿态控制方程,得出盾构推进油缸的编组和控制数据,实施纠偏推进,并根据监测所得新的姿态偏差数据计算下一次推进油缸的编组和控制数据,如此循环,最终实现盾构姿态的实时控制。

4盾构姿态偏差参数的求解

4.1刚性空间特征点定位计算技术

4.1.1问题的提出

已知刚性空间任意三点P1、P2、P3的坐标(条件:不重叠,不在同一直线上)和任一特征点P0的坐标,当P1、P2、P3三点保持刚性不变的条件下,转换到对应三点PP1、PP2、PP3的新坐标后,如何确定PP0的新坐标?

4.1.2计算原理与数值分析

刚性空间任意三点P1、P2、P3(条件:三点不重叠,不在同一直线上)构成的向量空间可以充分确定该刚性空间中的任一特征点P0。P1、P2、P3三点及特征点P0在保持刚性不变条件下,转换到对应点PP1、PP2、PP3和PP0的新坐标,由于前提确保空间刚性,PP1、PP2、PP3三点构成的向量空间完全等同于P1、P2、P3三点构成的向量空间。在P1、P2、P3三点保持刚性不变的情况下求解PP0的计算结果完全准确;在刚性失效的情况下,PP0的坐标中将包含一定的刚性变异量,其变异程度跟刚性失效程度呈正比。在刚性轻微失效的条件下,同样能高精度提供PP0坐标的特性满足了工程施工测量中的实际要求。

在实际测量中,当刚性基本不变但测点有偏差的情况下,例如,当测得PP1点正好沿PP2-PP3线有旋转时,PP1点坐标值有误差,但刚性没有变异,此时测点偏差会传递到特征点PP0,其偏差放大程度与PP0点到平面PP1-PP2-PP3的距离有关,距离越大偏差放大越大,距离越小偏差放大越小。

4.2盾构姿态偏差参数计算方法

4.2.1切口中心水平偏差及垂直偏差、盾尾中心水平偏差和垂直偏差、切口中心里程的计算

根据设计路线提供的线型函数,按里程进行微分取值,生成设计线型微分直线线段的端点坐标和里程集,应用数据库技术,不难可以生成微分线段数据库。需要说明的是,通过调节微分参数,可以确保函数微分变换后的计算精度,在一般情况下,隧道工程管片宽度大于1米,微分线段取0.5米足够保证精度需要。

基于微分直线段的盾构切口中心姿态偏差计算方法:由盾构头尾中心的实际坐标值,不难得出盾构机切口平面方程,对微分直线段库进行检索计算,可求得穿过盾构切口平面的直线段及交点坐标,该交点与盾构切口中心的水平和垂直距离即为切口中心水平偏差及垂直偏差,该交点至微分线段起点距离加上微分线段起点里程即为盾构切口中心里程。

盾构盾尾中心姿态偏差计算方法与盾构切口中心相同。

由于设计线型空间微分直线变换,可以改变原隧道设计路线由平曲线和竖曲线结合表达的单一办法,也可以改变设计线型函数局限于公路、轨道交通路线设计规定曲线类型的弊端。通过采用统一的空间微分直线段表达,将大大方便盾构姿态的空间解析并满足不同设计线型的要求。

4.2.2盾构水平方向偏差角、纵向坡度偏差、横向自转角的计算。

盾构水平方向偏差角、纵向坡度偏差根据盾构头尾中心水平、垂直偏差值和盾构长度参数可直接求得。

横向自转角计算需要设置辅助向量。在盾构机初始设定P1、P2、P3三点时,取盾尾中心点P02垂直线上部某点为参考点,从P02指向该点即得一初始向量。在盾构推进时,此向量一直变化并得到新的当前向量,盾构坡度同时也一直在变化。对初始向量在纵面作坡度调整,求解当前向量与此向量的夹角即为盾构横向自转角。

5盾构姿态控制方程的求解

5.1求解原则和策略

盾构姿态的控制方程是一个多变量的复杂计算系统。求解原则是最大程度保证盾构姿态控制有效性和计算简单化;采取的求解策略是首先建立主要相关变量的核心函数关系,其它变量按相关性影响大小对核心函数进行修正,最后形成完整的求解结果。对实践中取得的可靠经验数据以数据表的形式直接表达函数关系。

5.2核心函数关系的确立

盾构姿态是系统控制的最终目标,因而盾构姿态的实时偏差数据是主要相关变量。

5.2.1纠偏力轴的计算

盾构偏差平面分成四个象限,参考纠偏力轴示意图(图略)。

系统将盾构切口中心和盾尾中心的偏差等级分成五等,分别为正常区、微偏区、中偏区、强偏区和报警区。当头尾偏差同时在正常区时,说明推进良好,不作纠偏力轴计算;当头尾偏差中任一处在报警区时,说明推进出现施工事故,系统报警,亦不作纠偏力轴计算;其余根据头尾偏差所处的不同象限和偏差等级,分别确定其纠偏力轴的计算方法。

下面举例给出盾构切口中心偏差在第一象限中偏区、盾尾中心偏差在第三象限中偏区的计算公式:(此略)

其中:X01为盾构切口中心水平偏差,Y01为盾构切口中心垂直偏差,X02为盾尾中心水平偏差,Y02为盾尾中心垂直偏差,为纠偏力轴与X轴的夹角。

需要说明的是,盾构切口中心和盾尾中心偏差所处不同象限和偏差等级,其纠偏力轴的计算方法不尽相同。

5.2.2油缸的编组和控制数据

在油缸的编组前,首先对油缸进行编号,取正X轴上油缸为0号油缸,其余按逆时针排序。一般认为油缸分布按坐标轴上下、左右对称。根据上述角,可求得位于纠偏力轴上的主顶油缸。其它油缸在纠偏力轴两侧对称分布。

根据不同纠偏力矩的需要,系统设定默认的编组类型,包括:强纠偏编组、中纠偏编组、微纠偏编组三种。

由于盾构在实际推进中存在旋转情况,上述编组计算中须对旋转作出相应修正。

控制数据主要指编组的有效时间、运行状态(正常或故障)等控制参数。

5.3修正函数

5.3.1基于隧道管片拼装制约参数的修正

在实际纠偏推进过程中,盾构姿态的极限偏差是保证隧道管片能正常拼装,拼装状况直接控制纠偏力矩,危险编组被直接限制并报警。

5.3.2基于环境参数的修正

由于土的工程性质变化复杂,盾构推进的纠偏力矩需要反复修正。根据环境参数提供的土层及土性数据,系统提供默认经验的纠偏力矩。随着盾构纠偏推进,对盾构姿态实时监测结果进行统计,不难归算出满足土性要求的适用纠偏力矩。但当盾构处于硬质密实地层时,盾构提供的纠偏力矩可能达不到纠偏效力,在此情况下,编组自动报警。

5.3.3基于设计线形的修正

纠偏推进在不同的设计线形条件下,采取的策略是不一样的,在上下坡和急曲线段时,施工复杂度加大,一般通过调整控制数据、缩短编组的有效时间达到控制精度。

5.3.4基于历史姿态特征的修正

系统提供全过程、完整的盾构姿态监测数据和统计规律,通过这些数据可方便发现盾构在纠偏推进中具备的特征。譬如,在特殊情况下,盾构推进方向会与盾构机轴线保持一定夹角,或者大口径盾构机因浮力作用出现上飘情况,在这些情况下,需作出专门的纠偏策略。

5.3.5基于时间参数的修正

在工程施工过程中,对于快慢的要求可直接调整编组的有效时间参数。

5.3.6基于推进总力的修正

盾构推进总力大小对盾构姿态的调整效率影响很大。随着盾构推进总力的加大,纠偏难度会逐渐加大,一般通过调整头部刀盘挖土予以解决。系统设置推进总力警戒线,推进总力达到警戒线时,编组报警。

6系统软、硬件组成

6.1系统软件组成

6.1.1上位主控部分

主要包括:程控测量模块、刚性空间特征点定位计算模块、盾构姿态偏差计算模块、智能编组模块、PLC控制模块、运行主框架和界面模块等。

6.1.2下位控制部分

主要为油缸编组控制模块。

6.2系统控制硬件

6.2.1测量部分

测量系统采用徕卡Leica TCA1200全站仪及配套棱镜和反射片。

6.2.2上位控制部分

为适应防震、抗潮、耐温(超过450C)等隧道施工要求,选用工业控制计算机。

6.2.3下位控制部分

采用PLC可编程逻辑控制器实施油缸控制,推进油缸默认采用?只。

7系统运行主界面(此略)

系统提供运行主界面包括:盾构姿态偏差和编组示图、运行状态参数、历史姿态及编组回溯、参数设置、系统自检、报表输出、帮助等功能。

8结语

盾构姿态实时监测与控制是一个复杂的应用系统。在测量方面还有很多的创新空间,需要开发具有理论严密、使用简单、数据准确、功能丰富、移植性强和运行稳定等特点的软件;在控制方面,从理论出发,结合实际经验数据,建立盾构姿态与推进油缸编组之间的关系,确保了理论与实际的结合,提高了系统的完整性和实用性,不断完善,相信它一定能成为国内不可多得的先进产品,对提高盾构姿态自动监控水平起到积极的作用。

.

注:前人栽树,后人乘凉。在编写此文时,大量参考借用了多位业内同行们总结的宝贵经验意见和建议,在此一并感谢。

希望此文能给更多的盾构施工技术人员在盾构施工控制上有所帮助。

后续:《地铁测量作业技术规程》

关于盾构机实时姿态测量和计算方法的研究.docx

关于盾构机实时姿态测量和计算方法的研究 随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精度分析。 盾构机姿态简介 盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。 盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。 盾构机液压系统 液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。 2.1.推进系统 盾构机的主要工作系统是推进系统,它主要是通过油缸作用于成型观片,以此来实现盾构前进。推进系统的动力单元是一台80L/min旋转柱塞泵,执行元件是24个油缸,调节和控制部分包括方向的控制、油缸电磁阀的选择、安全阀、节流阀等。盾构机工作时的最大工作压力是35MPa,液压泵最大推进流量是80L/min,推进油缸是240/180-1950(mm)。 2.1.1.推力计算 盾构机共有推进油缸24个,总推力是这24个油缸的推力之和,那么在液压系统的最大推力F最大-24×P×Sn中,P表示油缸的最大压强,S表示活塞面积,因此,F最大-24×35×106Pa ×3.14×0.122㎡≈37981t 2.1.2.推进速度计算 盾构机的最大推进速度就是油缸的最大伸长速度,S-1/T,T-V/S1,在这个公式中,S表示最大推进速度,T表示伸长1mm所需要的时间,V表示伸长1mm需要的油液体积,S1为推进流

盾构机构造及工作原理简介分析

盾构机构造及工作原理简介第二部分 四、盾构机的主控系统及工作原理 下图是天地重工生产的土压平衡盾构机示意图,通过这台土压平衡盾构来简单介绍盾构机的构造及工作原理。 盾构法隧道的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。这个钢组件在初步或最终隧道衬砌建成前,主要起防护开挖出的土体、保证作业人员和机械设备安全的作用,同时还能够承受来自地层的压力,防止地下水或流沙的入侵,这个钢质组件被称为盾构。而盾构的主要组成部分即为盾体。 1. 盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状筒体。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推进油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有推进油缸。中盾的后边是尾盾, 尾盾末端装有密封用的盾前盾 中盾 后盾

尾刷。 2. 刀盘和刀盘驱动 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘通过安装在前盾承压隔板上的法兰上的刀盘电机来驱动。它可以使刀盘在顺时针和逆时针两个方向上实现无级变速。刀盘电机的变速齿轮箱内需设置制动装置,用于制动刀盘。电机的防护等级需大于IP55。 为了适用于不同的土质条件,刀盘上安装了多种类型和功能的刀具,所有刀具都由螺栓连接,可以从刀盘后面的泥土仓中进行更换。 刀盘(中交天和14.93米泥水气压平衡复合式盾构机) 铲刀:铲刀可以双向进行开挖,主要用于保证开挖直径的稳定不变。 铲刀

盾构施工控制测量

中铁三局西南公司盾构施工作业指导书 盾构施工控制测量 中铁三局西南公司盾构工程段

1.盾构施工控制测量 1.1 目的和适用范围 为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在规范偏差允许范围内掘进并准确贯通,制定本作业指导书。 本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点 盾构施工测量主要分为四部分:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。 表1.2-1 盾构施工测量内容及技术要点 1.3 测量前准备工作 1.3.1盾构施工前,项目部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。 1.3.2项目应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级(5~10mm)。

1.3.3盾构施工前,应编制测量方案,并按程序经过审查、批准后方可实施。1.4 测量作业 1.4.1 交接桩及复测 1 项目中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记”,经业主方代表(或者业主委托的第三方测量(以下简称“业主测量队”)单位代表)、施工承包方代表签字确认后生效,并到各控制桩点现场确认。 2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主(或业主测量队)审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进行复测确认。 3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。 4 按照精密导线的要求进行控制导线复测,具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“3.3精密导线测量”执行。 1.4.2 地面控制点加密 1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。 2 受条件限制,加密导线点与交桩控制点只能形成闭合导线时,应在《城市轨道交通工程测量规范》(GB 50308-2008)要求基础上增加至少一倍的观测频率。 3 加密水准点应设置在施工影响范围之外且比较稳固的地方,至少每半年对加密水准点与交桩水准点进行一次联测。 1.4.3 平面联系测量 1 平面联系测量一般可采用一井定向(如图 1.4.3-1)、两井定向(如图 1.4.3-2),投点方式可采用钢丝或者投点仪。 2 一井定向联系三角形测量具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“9.3联系三角形测量”执行。 3 两井定向联系测量 1)在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进行两井定向。 2)左右线的地下控制边可以同时测量,但应分开计算。

盾构机的工作原理 1

盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用: 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、

板框压滤机的工作原理

板框压滤机的工作原理 板框压滤机是由交替排列的滤板和滤框共同构成一组滤室。在滤板的表面有沟槽构造,它凸出部位是用来支撑滤布的。滤框和滤板的边角上各有通孔,组装以后可以构成一个完整的通道,能够通入洗涤水、悬浮液和引出滤液来。板和框的两侧各有把手支托在横梁的上面,由压紧装置压紧板、框。板、框之间的滤布起到密封垫片的作用。由供料泵将悬浮液压入滤室,在滤布的上面形成滤渣,直至充满了滤室。 滤液穿过滤布并沿滤板沟槽流至板框边角通道,集中排出。过滤完毕之后,可以通入清洗涤水洗涤滤渣。洗涤后,有时还通入压缩空气,除去剩余的洗涤液。随后打开压滤机卸除滤渣,清洗滤布,重新压紧板、框,开始下一工作循环。 板框压滤机主要由压紧板(活动滤板)、止推板(固定滤板)、过滤介质(滤布或滤纸等)、滤板和滤框、横梁(扁铁架)、压紧装置、集液槽等组成(参见附图),其中的过滤介质和集液槽上由用户自备,当然也可以由上海大张过滤设备代配。 板框压滤机对于滤渣压缩性大或近于不可压缩的悬浮液都能适用。适合的悬浮液的固体颗粒浓度一般为10%以下,操作压力一般为0.3~0.6兆帕,特殊的可达3兆帕或更高。过滤面积可以随所用的板框数目增减。板框通常为正方形,滤框的内边长为 320~2000毫米,框厚为16~80毫米,过滤面积为1~1200米2。板与框用手动螺旋、电动螺旋和液压等方式压紧。板和框用木材、铸铁、铸钢、不锈钢、聚丙烯和橡胶等材料制造。 板框压滤机共有手动压紧、机械压紧和液压压紧三种形式。 手动压紧是螺旋千斤顶推动压紧板压紧;机械压紧是电动机配H型减速箱,经机架传动部件推动压紧板压紧;液压压紧是有液压站经机架上的液压缸部件推动压紧板压紧。

盾构机与(TBM)的区别

什么是盾构机?与全断面掘进机(TBM)的区别 行业:制造机械信息来源:网络发布时间:2011-02-14 打印转发关闭 盾构机是盾构法施工中的主要施工机械。盾构施工法是在地面下暗挖隧洞的一种施工方法,它使用盾构机在地下掘进,在防止软基开挖面崩塌或保持开挖面稳定的同时,在机内安全地进行隧洞的开挖和衬砌作业。其施工过程需先在隧洞某段的一端开挖竖井或基坑,将盾构机吊入安装,盾构机从竖井或基坑的墙壁开孔处开始掘进并沿设计洞线推进直至到达洞线中的另一竖井或隧洞的端点。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。 盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时文撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。 盾构机施工主要由稳定开挖面、挖掘及排土、衬砌包括壁后灌浆三大要素组成。其中开挖面的稳定方法是其工作原理的主要方面,也是区别于硬岩掘进机或比硬岩掘进机复杂的主要方面。大多数硬岩岩体稳定性较好,不存在开挖面稳定问题。 盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥水式,土压平衡式盾构机等不同类型。泥水式盾构机是通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,其刀盘后面有一个密封隔板,与开挖面之间形成泥水室,里面充满了泥浆,开挖土料与泥浆混合由泥浆泵输送到洞外分离厂,经分离后泥浆重复使用。土压平衡式盾构机是把土料(必要时添加泡沫等对土壤进行改良)作为稳定开挖面的介质,刀盘后隔板与开挖面之间形成泥土室,刀盘旋转开挖使泥土料增加,再由螺旋输料器旋转将土料运出,泥土室内土压可由刀盘旋转开挖速度和螺旋输出料器出土量(旋转速度)进行调节。 盾构机问世至今已有近180年的历史,其始于英国,发展于日本、德国。近30年来,通过对土压平衡式、泥水式盾构机中的关键技术,如盾构机的有效密封,确保开挖面的稳定、控制地表隆起及塌陷在规定范围之内,刀具的使用寿命以及在密封条件下的刀具更换,对一些恶劣地质如高水压条件的处理技术等方面的探索和研究解决,使盾构机有了很快的发展。国外主要生产厂家有日本三菱重工人川崎重工、日立造船、德国海伦克内希特(HerrenknechtAG)公司等。盾构机尤其是土压平衡式和泥水式盾构机在日本由于经济的快速发展及实际工程的需要发展很快。德国的盾构机技术也有独到之处,尤其是在地下施工过程中,保证密封的前提以及高达0.3MPa气压的情况下更换刀盘上的刀具,从而提高盾构机的一次掘进长度。德国还开发了在密封条件下,从大直径刀盘内侧常压空间内更换被磨损的刀具。 盾构机是盾构法施工中的主要施工机械。盾构施工法是在地面下暗挖隧洞的一种施工方法,它使用盾构机在地下掘进,在防止软基开挖面崩塌或保持开挖面稳定的同时,在机内安全地进行隧洞的开挖和衬砌作业。其施工过程需先在隧洞某段的一端开挖竖井或基坑,将盾构机吊入安装,盾构机从竖井或基坑的墙壁开孔处开始掘进并沿设计洞线推进直至到达洞线中的另一竖井或隧洞的端点。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。

盾构机姿态人工测量方案

盾构机姿态人工测量方案 由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。以下对盾构机姿态的人工测量方案进行说明: §1原理 盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。 §2适用范围 2.1盾构机始发姿态测量 盾构机始发姿态便是由人工测量出的盾构机姿态。盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。 2.2对S L S-T导向系统的复核 在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。 2.3盾构掘进施工测量 利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。

盾构机液压系统原理(海瑞克)

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

盾构机的结构工作原理

1 盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 2 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。 前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、c、D四组,掘进过程中,在操作室中可单独控制每一组油缸的压力,这样盾构机就可以实现左转、右转、抬头、低头或直行,从而可以使掘进中盾构机的轴线尽量拟合隧道设计轴线。 中盾的后边是尾盾,尾盾通过14个被动跟随的铰接油缸和中盾相连。这种铰接连接可以使盾构机易于转向。

各种过滤器的原理及结构资料

各种过滤器的原理及结构 株洲海润公司郑胜春(摘录) 石英砂过滤器主要用于去除水中的悬浮物。该设备与其它水处理设备配合,广泛地应用在给水净化、循环水净化污水处理等各类水处理工程中。 活性碳过滤器主要用于吸附水中游离氯(吸附力达99%),对有机物和色度也有较高的去除率。是软化、除盐系统制纯水工艺的预处理设备。滤料为活性碳。设备主要材质为碳钢防腐、玻璃钢和不锈钢等。 活性碳过滤器技术参数 过滤速度:8-10m3/h 进水浊度:≤5mg/L; 工作温度:常温工作压力:≤0.6Mpa; 反洗压缩空气量:18-25L/m2.S 滤料层高:1000-1200mm 反洗强度:4-12L/m2.S; 反冲洗时间:4-6分钟 石英砂过滤器技术参数: 1、运行参数 2、水质参数 设计滤速:8-10米/时期终水头损失:1.7米进水浊度小于15度,出水浊度小于3度。反清洗强度:4-15升/秒·平方米进水浊度小于10度,出水浊度小于2度。 冲洗历时:5-7分钟滤料:石英砂3、水压 垫层厚度:200-400毫米滤层厚度:800毫米进水水压:≥0.04Mpa 反冲洗进水水压:≥0.15Mpa 盘式过滤器原理与应用分析 工厂制水的预处理系统以前采用的是纤维过滤法,在近几年的运行过程中,这种方法暴露出许多问题:过滤效率明显下降,运行阻力增加,树脂破碎率升高,制水成本逐年上升;出现纤维扭曲,发生“粘连抱团”现象,纤维束不能垂直竖立,下移动不能复位;过滤器内部气囊破损严重,无法正常发挥松散纤维的作用。为了改善制水预处理系统的现状,转而采用盘式过滤器代替高效纤维过滤,取得了良好的效果。 一、盘式过滤器机理 1盘式过滤器的原理: 利用相邻盘片之间的沟槽纹交叉点实现对固体颗粒的拦截,运行时14组过滤头并联,在水和弹簧的压力作用下过滤滤芯的滤盘被压紧,水从盘片的端面进入,水中的颗粒杂质被压紧的盘片截留,从而起到过滤的作用。反洗时,其中一组进水阀关闭,排污阀打开,其他13组过滤单元的部分出水反向进入这组过滤单元,在反洗水压下促使碟片横向旋转和纵向颤动。滤芯盘片松开,同时反洗水沿管线方向冲向过滤盘片,导致盘片高速旋转,使截留在盘片上的杂物在离心力和水流冲洗的共同作用下脱离盘片,并经反洗水的作用排除。冲洗过程仅需十几秒钟,一个滤头反洗结束后,再对其它几组依次进行反洗。阿速德盘式过滤器又有其独到之处:旋转设计。水流进入到过滤器单元内时,沿外壳的切向进入,在过滤单元内高速旋转,没有真正进入盘式过滤器之前,系统已经将大部分的泥沙等杂质从水中分离,减轻了过滤器的负担,使其工作寿命是同类产品的10倍左右。

板框压滤机的选型及工作原理

板框压滤机的选型及工作原理 板框压滤机由交替排列的滤板和滤框构成一组滤室。滤板的表面有沟槽,其凸出部位用以支撑滤布。滤框和滤板的边角上有通孔,组装后构成完整的通道,能通入悬浮液、洗涤水和引出滤液。板、框两侧各有把手支托在横梁上,由压紧装置压紧板、框。板、框之间的滤布起密封垫片的作用。由供料泵将悬浮液压入滤室,在滤布上形成滤渣,直至充满滤室。滤液穿过滤布并沿滤板沟槽流至板框边角通道,集中排出。过滤完毕,可通入清洗涤水洗涤滤渣。洗涤后,有时还通入压缩空气,除去剩余的洗涤液。随后打开压滤机卸除滤渣,清洗滤布,重新压紧板、框,开始下一工作循环。 板框压滤机对于滤渣压缩性大或近于不可压缩的悬浮液都能适用。适合的悬浮液的固体颗粒浓度一般为10%以下,操作压力一般为0.3~0.6兆帕,特殊的可达3兆帕或更高。过滤面积可以随所用的板框数目增减。板框通常为正方形,滤框的内边长为 320~2000毫米,框厚为16~80毫米,过滤面积为1~1200米2。板与框用手动螺旋、电动螺旋和液压等方式压紧。板和框用木材、铸铁、铸钢、不锈钢、聚丙烯和橡胶等材料制造。 板框式压滤机主要由止推板(固定滤板)、压紧板(活动滤板)、滤板和滤框、横梁(扁铁架)、过滤介质(滤布或滤纸等)、压紧装置、集液槽等组成(参见附图一-一八),其中过滤介质和集液槽由用户自备,也可由本厂代配。 板框压滤机有手动压紧、机械压紧和液压压紧二种形式。手动压紧是螺旋千斤顶推动压紧板压紧;机械压紧是电动机配H型减速箱,经机架传动部件推动压紧板压紧;液压压紧是有液压站经机架上的液压缸部件推动压紧板压紧。两横梁把止推板和压紧装置连在一起构成机架,机架上压紧板与压紧装置饺接,在止推板和压紧板之间依次交替排列着滤板和滤框,滤板和滤框之间夹着过滤介质;压紧装置推动压紧板,将所有滤板和滤框压紧在机架中,达到额定压紧力后,即可进行过滤。悬浮液从止推板上的进料孔进入各滤室(滤框与相邻滤板构成滤室),固体颗粒被过滤介质截留在滤室内,滤液则透过介质,由出液孔排出机外。 压滤机的出液有明流和暗流两种形式,滤液从每块滤板的出液孔直接排出机外的称明流式,明流式便于监视每块滤板的过滤情况,发现某滤板滤液不纯,即可关闭该板出液口;若各块滤板的滤液汇合从一条出液管道排出机外的则称暗流式,暗流式用于滤液易挥发或滤液对人体有害的悬浮液的过滤。 压滤机根据是否需要对滤渣进行洗涤,又可分为可洗和不可洗两种形式,可以洗涤的称可洗式,否则称为不可洗式。可洗式压滤机的滤板有两种形式,板上开有洗涤液进液孔的称为有孔滤板(也称洗涤板),未开洗涤液进液孔的称无孔滤板(也称非洗涤板)。可洗式压滤机

土压平衡式盾构机原理

本文主要介绍的是海瑞克公司生产的土压平衡式盾构机的工作原理,组成部分及各组成部分在施工中的应用。 0引言 我单位承担修建深圳地铁—期工程第七标段华强至岗厦区间内径为5.4m的双线隧道的施工任务,根据施工地段地层自立条件差,地下水较丰富的特点,购进了两台德国海瑞克公司生产的世界上最先进的土压平衡式盾构机。这两台盾构机都由西门子公司的S7-PLC自动控制系统控制,配备了机电一体化的液压驱动系统、同步注浆设备、泡沫设备、膨润土设备及SLS-T隧道激光导向设备,并可在地面监控室对盾构机的掘进进行实时监控。本文将就盾构机的工作原理、盾构机的组成、及各组成部分的功能结合实际施工情况做一简要阐述。 1 盾构机的工作原理 1.1盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 1.2掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 1.3管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 2 盾构机的组成及各组成部分在施工中的作用 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1 577kW,最大掘进扭矩5 300kN·m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾休、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 2.1盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。 前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承

板框压滤机工作原理是什么

板框压滤机用于固体和液体的分离。与其它固液分离设备相比,压滤机过滤后的泥饼有更高的含固率和优良的分离效果。固液分离的基本原理是:混合液流经过滤介质(滤布),固体停留在滤布上,并逐渐在滤布上堆积形成过滤泥饼。而滤液部分则渗透过滤布,成为不含固体的清液。 随着过滤过程的进行,滤饼过滤开始,泥饼厚度逐渐增加,过滤阻力加大。过滤时间越长,分离效率越高。特殊设计的滤布可截留粒径小于1μm的粒子。压滤机除了优良的分离效果和泥饼高含固率外,还可提供进一步的分离过程:在过滤的过程中可同时结合对过滤泥饼进行有效的洗涤,从而有价值的物质可得到回收并且可以获得高纯度的过滤泥饼。 一、板框式压滤机的结构 板框压滤机由交替排列的滤板和滤框构成一组滤室。滤板的表面有沟槽,其凸出部位用以支撑滤布。滤框和滤板的边角上有通孔,组装后构成完整的通道,

能通入悬浮液、洗涤水和引出滤液。板、框两侧各有把手支托在横梁上,由压紧装置压紧板、框。板、框之间的滤布起密封垫片的作用。由供料泵将悬浮液压入滤室,在滤布上形成滤渣,直至充满滤室。滤液穿过滤布并沿滤板沟槽流至板框边角通道,集中排出。过滤完毕,可通入清洗涤水洗涤滤渣。洗涤后,有时还通入压缩空气,除去剩余的洗涤液。随后打开压滤机卸除滤渣,清洗滤布,重新压紧板、框,开始下一工作循环。 板框压滤机对于滤渣压缩性大或近于不可压缩的悬浮液都能适用。适合的悬浮液的固体颗粒浓度一般为10%以下,操作压力一般为0.3~0.6MPa,特殊的可达3MPa或更高。过滤面积可以随所用的板框数目增减。板框通常为正方形,滤框的内边长为320~2000mm,框厚为16~80mm,过滤面积为1~1200㎡。板与框用手动螺旋、电动螺旋和液压等方式压紧。板和框用木材、铸铁、铸钢、不锈钢、聚丙烯和橡胶等材料制造,石化五厂采用的是聚丙烯材质滤板。 板框式压滤机主要由止推板(固定滤板)、压紧板(活动滤板)、滤板和滤框、横梁(扁铁架)、过滤介质(滤布或滤纸等)、压紧装置、集液槽等组成,其中过滤介质和集液槽由用户自备,也可由供应商代配。 板框压滤机有手动压紧、机械压紧和液压压紧三种形式。手动压紧是螺旋千斤顶推动压紧板压紧;机械压紧是电动机配H型减速箱,经机架传动部件推动压紧板压紧;液压压紧是有液压站经机架上的液压缸部件推动压紧板压紧。两横梁把止推板和压紧装置连在一起构成机架,机架上压紧板与压紧装置连接,在止推板和压紧板之间依次交替排列着滤板和滤框,滤板和滤框之间夹着过滤介质;

姿态测量方法

盾构机姿态测量实例 德国VMT公司制造的盾构机掘进姿态测量方法。 1,德国VMT公司制造的盾构机。在盾构机主机横向截面上有18个由螺母构成的测量标志点,这些点在盾构机构建之时就已经定位,每个点相对于盾构机的轴线有一定的几何关系,并在由盾构机轴线构成的坐标系中有坐标数据。盾构机轴线坐标数据如下图:

2 测量标志点 对于德国VMT公司制造的盾构机上有18个点,单只要测出其中任意3个点(最好取左中右3个点)的实际三维坐标,就可以计算出盾构机的姿态,在进行测量时,当盾首中心为坐标原点,其三维坐标为(0,0,0)盾首与盾尾的距离为4.34m,盾尾中心的三维坐标为(—4.34,0,0)。同样在该坐标系中,从表中可以查出3,8,15三个点的三维坐标分别为(X1,Y1,Z1),(X2,Y2,Z2),(X3,Y3,Z3,) .由此可以列出利用该三个点计算盾首中心的三维坐标 (X首,Y首,Z首)和盾尾中心三维坐标(X尾Y尾Z尾)的两组三元二次方程组的数学表达方式。 计算盾首中心三维坐标数学方程组为: (X1?X首)2 +(Y1?Y首)2+(Z1?Z首)2 =(?3.9567)2+(?1.9917)2+(1.6565)2 (X2?X首)2 +(Y2?Y首)2+(Z2?Z首)2 =(?3.9701)2+(?0.3638)2+(2.8150)2

(X3?X首)2 +(Y3?Y首)2+(Z3?Z首)2 =(?3.9560)2+(2.3056)2+(1.1695)2计算盾尾中心三维坐标数学方程组为: (X1?X尾)2 +(Y1?Y尾)2+(Z1?Z尾)2 =(?3.9567+4.34)2+(?1.9917)2+(1.6565)2 (X2?X尾)2 +(Y2?Y尾)2+(Z2?Z尾)2 =(?3.9701+4.34)2+(?0.3638)2+(2.8150)2 (X3?X尾)2 +(Y3?Y尾)2+(Z3?Z尾)2 =(?3.9560+4.34)2+(2.3056)2+(1.1695)2 上述3.8.15三个点是在以盾构机轴线构成的坐标系中,盾首中心为坐标原点(0,0,0)盾尾为(-34.4,0,0)的条件下的坐标系。当盾构掘进过程中实测出该三个点的某一里程的大地坐标非别为 X1=45336.775,X2=45336.610,X3=45336.461 Y1=29534.236,Y2=29535.846,Y3=29538.525 Z1=-1.434 Z2=-0.236 Z3=-1.885 把以上数据代入第一组方程组,可解算出盾首中心在某一里程的大地三维坐标: X首=45340.608,Y首=29536.538,Z首=-2.975 在该里程上盾首中心的设计大地三维坐标为: X首=45340.610,Y首=29536.520,Z首=-2.945 由此得到三维坐标较差: △X=-2mm,△Y=18mm, △Z=-30mm 则可计算出盾首中心左右上下偏差,其分别为:

带式压滤机工作原理

带式压滤机工作原理 三、工作原理 该设备主要由驱动装置、传动滚筒、输送带、槽型上托辊、下托辊、机架、清扫器、拉紧装置、改向滚筒、导料槽、重锤张紧装置及电器控制装置等组成。 输送带绕经传动滚筒和尾部改向滚筒形成环行封闭带。托辊承载输送带及上面输送的物料。张紧装置使输送带具有足够的张力,保证与传动滚筒间产生摩擦力使输送带不打滑。工作时,减速电机带动传动滚筒,通过摩擦力驱动输送带运行,物料由进料装置进入并随输送带一起运动,经过一定的距离到达出料口转入下一道工艺环节。 四、结构和控制特点 上托辊采用槽形托辊,利于承载松散物料。回程托辊采用V型托辊,有效防止皮带机跑偏。在空段清扫器前后安装下平托辊有利于清除物料。 输送带张紧采用螺旋张紧和重锤张紧两套装置。螺旋张紧装置还可以调整皮带机的跑偏。 在输送带的工作面两侧,沿输送带全长安装有导料槽,导料槽由槽板和橡胶板组合而成,橡胶板与输送带接触,形成槽形断面,起到增加输送量的作用,同时也防止物料洒落。导料槽板同橡胶板的固定方式采用螺栓和压板压紧的形式,橡胶板不需要钻孔,同时可以根据 橡胶板的磨损情况,方便的进行调整,保证橡胶板保持同输送带的密封状态。 在输送机头部和尾部安装有头部及空段清扫器。头部清扫器为重锤刮板式结构,安装于传动滚筒下方,用于清除输送带工作面的粘料。空段清扫器为刮板式结构,安装于靠近尾部的输送带非工作面的上方,用于清除输送带非工作面上的物料。

输送带采用聚酯帆布带,具有耐油、耐酸碱的性质。接头采用硫化接头,接头安全系数10-12。 输送机一侧安装有拉绳开关,当发生紧急情况时拉动开关上的钢丝绳启动此开关,可以立即停机。故障排除后,拉动复位销开关可复位。 输送机头尾部安装有跑偏开关,当输送带发生跑偏时,输送带带动开关上的立辊旋转并倾斜,倾斜大于一级动作角度12?时,发出一组开关信号;如立辊继续倾斜大于二级动作角度30?时,发出另一组开关信号。两组信号分别用于报警和停机。当输送机恢复正常运行后,立辊自动复位。 五、安装调试 1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。 2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。 3.螺旋张紧行程为机长的 1,,1.5,。 4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。 5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50,70mm。 6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。 7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查: (1)各托辊应与输送带接触,转动灵活。 (2)各润滑处无漏油现象。 (3)各紧固件无松动。 (4)轴承温升不大于40?C,且最高温度不超过80?C。 (5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

盾构姿态实时监控原理与方法

盾构姿态实时监控原理与方法 摘要:本文着重介绍盾构姿态自动监测与控制的原理与方法,并对系统软、硬件组成及运行界面进行简略说明。 关键词:盾构姿态自动监控 1引言 盾构姿态的良好保持是盾构法施工的重要控制目标,它直接关系到隧道质量与施工成败,如何实现高水平的盾构姿态实时监控一直是盾构施工人员关心的工程难题,盾构姿态实时监控技术的重要性不言而喻。 完整的盾构姿态实时监控系统包括盾构姿态偏差自动监测和自动控制两方面内容。国内使用的盾构姿态监测系统多为国外产品,主要有德国VMT公司的SLS-T系统、英国的ZED系统和日本TOKIMEC的TMG-32B(陀螺仪)系统等,许多地方还在使用人工测量;国内使用的盾构姿态控制系统大多取之于国外盾构生产厂家成套盾构产品中提供的控制功能(注:目前国内也有较成熟的盾构引导控制系统,如我公司使用的上海米度与上海力信两家公司研制生产盾构导向、顶管导向系统、隧道精灵软件等均已较成熟,本人现在使用中,欢迎探讨交流)。由于盾构控制系统富含PLC可编程控制器控制代码及上位控制计算机控制程序,又与具体的控制器件和动力设备的关系极为密切,因而具有一定的技术含量和非标准性。 国外有全自动盾构的研究,但少有成功应用的实例。在科学技术突飞猛进的今天,研究先进、自主的盾构姿态实时监控技术,建立盾构姿态实时监控理论、方法,对改善盾构施工水平有着深刻的现实意义。介绍盾构姿态自动监测与控制的原理与方法。 2盾构姿态监测系统原理 根据公路、轨道交通设计规范,公路、轨道交通的设计路线由平曲线和竖曲线组成,平曲线一般包括直线、缓曲线、圆曲线三种,竖曲线一般包括直线、圆曲线(凸曲线、凹曲线)两种。盾构根据公路、地铁隧道设计路线向前推进,盾

8.2压滤机工作原理及操作规程

板框压滤机工作原理及操作规程 一、自动板框压滤机压榨操作方法 1、压榨系统示意图: 压榨泵压滤泵 2、压榨操作方法: 1、关闭压滤泵出口阀门H,关闭压滤泵电源后再将压滤泵出口阀H打开,压滤泵进口阀始终处于开启状态,便于压榨时管道内酸液回流至滤液槽。 2、检查确认阀门B、C、F处于关闭状态,阀门E、G处于开启状态后启动压榨泵,缓慢开启压榨泵出口阀门F,通过调整回流阀E的开度将压力表D的压力调整到1Mpa. 3、压力调整好之后缓慢开启压榨水管进水阀门B,注意观察压榨水管 道上压力表A,待表A压力达到1Mpa后保压,待出料管口几乎无酸液流出后关闭进水阀门B,关闭压榨泵出口阀门F,停泵。 4、缓慢开启泄压阀C,让膜板内压榨水回流至压榨水槽内,待压力表A

指针回到0刻度后方可松开滤板、清理滤饼。 5、压滤机正常压滤工作时,泄压阀C必须处于开启状态。 二、安全注意事项 1.在特殊的操作环境中,请操作人员佩戴好防护器具,如呼吸面罩、 耳罩、安全鞋、安全手套等等。· 2.滤板必须按次序和规定的数量放置,禁止在少于规定数量滤板的情 况下开机操作,以防止操作造成事故。 3.过滤压力,压榨压力和进料温度必须按所签订合同进行严格控制,严 禁随意提高压力,如工艺需要及时与供应商联系。否则可能造成严重 后果,发生人身伤害。 4.压滤机工作时,液压缸后禁止人员停留,压紧与松开时必须有人看 守,各类液压阀件不得随意调整,以防压力失控造成设备损坏或人 身伤害。 5.仔细检查滤布规格是否符合工艺要求,有无破损,安装时是否平整 无折叠。滤板密封面和滤布无污物沉积。以免滤板压紧时脱离直线, 产生过载或主梁变形。 6.电控柜要保持干燥,各种电器防止飞溅水或用水冲洗,以防止短路 引起事故。压力表、电磁阀线圈及各类电气元件要定期检查,以确 保设备正常工作。 7.隔膜压滤机进料时,压榨系统排水或排气阀门必须在开启状态,压 榨时应缓慢开启进水或进气阀门,压榨完毕后,隔膜板腔室内水或

盾构施工人工测量与自动测量技术探讨

盾构施工人工测量与自动测量技术探讨 发表时间:2018-09-17T09:47:03.810Z 来源:《基层建设》2018年第20期作者:王强1 毛俊涛2 [导读] 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 1浙江省大成建设集团有限公司 310012;2杭州市地铁集团有限责任公司运营分公司 310014 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 关键词:盾构施工;人工测量;自动测量技术 盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。盾构施工测量是盾构施工中最重要的环节之一。 1工程概况 上海市轨道交通12号线顾戴路站~东兰路站区间:区间出顾戴路站端头井后下穿顾戴路北侧规划公园,自顾戴路折向万源路,然后沿万源路下向北进行,下穿万源路地块后,线路左、右线分离,分别从东西侧绕僻万源路桥桩基,下穿漕河泾港。过东兰路后进入东兰路站。本段区间较长,里程范围为SK+411.527~SK5+080.520,长度为1668.993。上行线有5段曲线,曲线半径依次为370m、1200m、650m、 1000m、1000m。线路纵断面最小坡度2‰,最大坡度25‰。隧道覆土最小为10.0m,最大为22.2m。本区间为双线单圆盾构区间,在最低点设置旁通道(兼排水泵站)1座。 2盾构掘进测量 2.1人工测量 (1)盾构测量标志的安装及测定测量标志由前靶、后靶、横向坡度、纵向坡度组成,具体实物为前后测量徕卡反射贴片和坡度板(纵向和横向坡度都可测),进行安装时,先测量出盾构的轴线,并把贴片和坡度板固定在盾构中心线上,前标后标应具有足够的长度,前靶距切口越近越好。测量出前靶、后靶到盾构中心线的距离以及前靶到切口的距离、后靶到盾尾距离,以确定前后靶与切口盾尾坐标归算的几何关系。为确保整个施工期间不被破坏,设置保护记号,此项工作应有原始记录和校核记录,以免盾构标志数据中存在系统误差。初次测量时,用仪器照准前、后占牌各测量一个测回,再根据坡度板的数值确定盾构的初始姿态,方便盾构始发及时纠正。(2)人工测量的相关计算确定好前后靶与切口盾尾坐标归算的几何关系后,编制相关计算器程序,人工测量主要测设前标水平角,后标水平角,前标垂直角,后标垂直角,坡度和转角。人工测量仪器为经纬仪和坡度板。测设完相关数据后进行计算。①盾构计算:坡度W和转角U在坡度板上直接读出;设W=2.546m为前标至盾构中心轴线的距离,Z=2.391为后标至盾构中心轴线的距离;G、H为经纬仪所在测站X、Y坐标,L为测站到后标方位角,R为经纬仪棱镜高程;I=1.2×T-x:I为经纬仪所在测站到前标的平距,T为当前环号,根据所测当前环号,反算得x,x是测站到第一环的距离。每次转站都要更新。N=1.2×T-y:N为经纬仪所在测站到后标的平距,原理同上;K=测站里程+I+5.308:K为切口里程,5.308是前标到切口的距离。测站的里程,是从第一个测站开始累加起来,每次加上新测站到上一测站的平距;E=X-arcsin ((sinU×Z)÷N)+L-180:X为后标水平角,E为修正过的测站到后标的水平方位角;F=Y-arcsin((sinU×W)÷I)+L-180:Y为前标水平角,F为修正过的测站到前标的水平角;A=G+I×cosF:B=H+I×sinF:C=G+N×cosE:D=H+N×sinE;"QKZ"=R+I×cosQ+(1-cosU)×W-W+5.3082"DWZ"=R+I×cosQ+(1-cosU)×W-W-3.8252Q为前标垂直角;POL(C-A,D-B): E=J+180"QKX"=A+5.308×cosE"QKY"=B+5.308×cosE"DWX"=C+1.326×cosE"DWY"=D+1.326×cosE得出三维坐标与设计轴线比较即可得出偏差。②管片姿态测量管片姿态=盾构轴线上管片拼装位置的偏离值计算+管片偏离盾构轴线计算的叠加。A、B、C、D分别为管片拼装完成后上右下左与盾壳之间间隙;E、O为切口平偏和高偏,G、Q为盾尾平偏和高偏;K=测站里程+I+5.308-6.73;K为管片里程,6.73为切口至当前环拼装好的管片的距离;"SPZJ"=5550-A-C;为水平直径"CZZJ"=5550-B-D;为垂直直径"GPC"=(L-S) ÷L×G+S÷L×E+(C-A)÷2000"GGC"=S÷L×O+(L-S)÷L×Q+(B-D)÷2000L为盾构长度,S为管片前端至盾尾的距离。 2.2自动测量 为了做到对盾构机姿态的实时控制,盾构机掘进中采用盾构姿态自动监测系统。该系统是盾构机自动导向测量系统,采用ROBOTEC 隧道导向系统,具有国际先进水平,适用于隧道工程施工控制的自动测量系统。采用该系统能够确保实时、准确地控制隧道掘进,保证贯通的精度。(1)自动测量导向系统本自动测量系统安装了3个棱镜,前靶一个,后靶两个(只用一个,一个备用),安装测定与人工测量相同。在盾构始发前,对整条隧道每一米的三维坐标计算出来,输入自动测量系统,方便实测数据与其对比计算偏差。(2)自动测量盾构姿态计算原理盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘及盾尾的中心坐标,只能用间接法来推算出中心的坐标。A点是盾构机刀盘中心,E点是盾构机盾尾断面中心点,即AE连线为盾构机的中心轴线,布置三个自动棱镜B、C、D。由A、B、C、D、四点构成一个四面体,在盾构始发前测量出B、C、D三个角点的三维坐标(xi,yi,zi)和刀盘盾尾中心的三维坐标,建立几何关系。根据三个点的三维坐标(xi,yi,zi)分别计算出LAB,LAC,LAD,LBC,LBD,LCD,四面体中的6条边长,作为以后计算的初始值,在盾构机掘进过程中Li是不变的常量,通过对B、C、D三点的三维坐标测量来计算出A点的三维坐标。同理,B、C、D、E四点也构成一个四面体,相应地求得E点的三维坐标。由A、E两点的三维坐标就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B、C、D三点的三维坐标就能确定盾构机的仰俯角和滚动角,从而达到检测盾构机姿态的目的。 3两套测量控制技术的比较 两套测量系统、相互校核,不断修正,主要相互验证测量数据计算的准确性和测量仪器的误差。通过比较两者最大相差在2厘米左右,在规定的容许范围之内。依据自动测量系统提供的数据进行推进,管片脱出盾尾后对管环进行复测,可发现偏差基本都在5cm之内,所以本工程大部分数据依据自动测量系统,节省大量劳动力。 4总结 上海市轨道交通12号线顾戴路站~东兰路站区间区间长度为1668.993m,是一般隧道的2倍左右,且曲线多、部分曲线急且长,导致导线边数多且部分导线长度较短,而这些导线又不能闭合,直接导致盾构贯通误差的增大。在半径为350m的小曲线推进时,由于隧道曲率大,前方可视距离短,导致自动与人工测量移站频繁。在本工程中,在R=350m的圆曲线隧道上,平均要20环(24m)换站一次。每次换站

相关文档
最新文档