数列求和题型归纳
数列求和公式的常见题型及解题方法
数列求和公式的常见题型及解题方法1. 等差数列的求和公式等差数列是指数字之间的差等于一个常数的数列。
求等差数列的和常用的公式是:$$ S_n = \frac{n}{2}(a_1 + a_n) $$其中 $S_n$ 是数列的前 $n$ 项和,$a_1$ 是首项,$a_n$ 是末项。
2. 等比数列的求和公式等比数列是指数字之间的比等于一个常数的数列。
求等比数列的和常用的公式是:$$ S_n = \frac{a_1(1 - r^n)}{1 - r} $$其中$S_n$ 是数列的前$n$ 项和,$a_1$ 是首项,$r$ 是公比。
3. 平方数列的求和公式平方数列是指数列中的每一项都是前一项的平方。
求平方数列的和常用的公式是:$$ S_n = \frac{a_1^2(1 - r^{2n})}{1 - r^2} $$其中$S_n$ 是数列的前$n$ 项和,$a_1$ 是首项,$r$ 是公比。
4. 斐波那契数列的求和公式斐波那契数列是指数列中的每一项都是前两项之和。
求斐波那契数列的和常用的公式是:$$ S_n = F_{n+2} - 1 $$其中 $S_n$ 是数列的前 $n$ 项和,$F_n$ 是斐波那契数列的第$n$ 项。
5. 其他数列的求和方法除了常见的等差数列、等比数列、平方数列和斐波那契数列外,还有许多其他数列的求和方法。
对于这些数列,我们需要根据其特定的规律和性质来求和,例如算术-几何数列、调和数列、幂次数列等。
以上是数列求和公式的常见题型及解题方法的概述。
在解题过程中,我们应该根据题目给定的数列类型,选择相应的求和公式,并结合数列的特点进行求解。
高考数学专题—数列求前n项和的5种常用方法总结
高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
数列求和的八种重要方法与例题
n
n-1
n
n
n-1
n
2S =lg(xy) +lg(xy) + ...+lg(xy)
n
= 2n(n +1) S = n(n +1)
2.错位相减 当{an}是等差数列,{bn}是等比数列,求 数列{anbn}的前n项和适用错位相减
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
5.拆项分组求和法
6.并项求和法
深化数列中的数学思想方法:
热点题型1:递归数列与极限. 1
an 2 1 设数列{an}的首项a1=a≠ ,且 an 1 4 a 1 n 4 1 记 bn a2 n 1 ,n=l,2,3,…· . 4
n为偶数
,
n为奇数
1
a1 1, 故b1
1 1 1 2
2;
3 1 13 20 a3 , 故b3 4; a4 , 故b4 . 3 1 4 20 3 4 2
7 1 8 a2 , 故b2 7 1 3 8 8 2
热点题型2:递归数列与转化的思想方法.
数列{an}满足a11且8an116an12an50 (n1)。记 bn 1 (n1)。 an 2 (1)求b1、b2、b3、b4的值; (2)求数列{bn}的通项公式及数列{anbn}的前n项和Sn。 1 1 1 bn 得an , 代入递推关系8an1an 16an1 2an 5 0, 1 bn 2 an 1 a b bn 1 2 n n
{an+bn+cn}
等差
等比
数列求和的八种方法及题型
数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
专题6-2 数列求和归类-2023年高考数学一轮复习热点题型(全国通用)(原卷版)
)(n N , n 2) ,求 Sn ;
(2)若 S n f ( ) f ( ) ... f (
n
n
n
(1)证明函数 f ( x ) 的图像关于点 ( ,1) 对称;
【提分秘籍】
基本规律
倒序求和,多是具有中心对称的
【变式演练】
1
1.设奇函数� � 对任意� ∈ �都有�(�) = �(� − 1) + 2 .
(2)设数列 bn 满足 bn
2 an 1
, 求数列 bn 的前 n 项和 Rn .
4n
2.设数列 an 的前 n 项和为 Sn , a2 4 ,且对任意正整数 n ,点 an 1 , S n 都在直线 x 3 y 2 0 上.(1)
求 an 的通项公式;
(2)若 bn nan ,求 bn 的前 n 项和 Tn .
【题型五】裂项相消常规型
【典例分析】
设数列 an 满足: a1 1 ,且 2an an 1 an 1 ( n 2 )
, a3 a4 12 .
(1)求 an 的通项公式:
1
的前 n 项和.
已知数列 an 的前 n 项和为 Sn , a1
1
, S n S n 1 S n S n 1 0 n 2 .
2
1
是等差数列;
Sn
Sn
, n为奇数
(2)若 Cn n 3
,设数列 C n 的前 n 项和为 Tn ,求 T2n .
【提分秘籍】
基本规律
分组求和法:
c(等比)
1.形如 an= b(等差)
数列求和题型归纳总结
类型七:利用数列的通项求和
• 先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列 的通项揭示的规律来求数列的前项和,是一个重要的方法.
谢谢观看
数列求和
•七大类型
类型一:公式法(定义法)
类型二:倒序相加法
• 如果一个数列 an ,与首末两端等“距离”的两项的和相等或等于同一常数,
那么求这个数列的前n项和即可用倒序相加法。如:等差数列的前n项和即是用 此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可
以得到n个 (a1 an ) .
• 例题3
类型三:错位相减法
类型四:裂项相消法
类型五:分段(组)求和法
有一类数列,既不是等差数列,也不是等比数列, 可把数列பைடு நூலகம்每一项分成多个项或把数列的项重新组合, 使其转化成常见的数列,然后分别求和,再将其合并即可.
类型六:并项求和法:
• 在数列求和过程中,将某些项分组合并后即可转化为具有某种特殊的性质的特殊数列,可 将这些项放在一起先求和,最后再将它们求和,则称之为并项求和.形如类型,可采用两项 合并求.利用该法时要特别注意有时要对所分项数是奇数还是偶数进行讨论.
数列求和(分组求和、并项法、错位相减、裂项相消)综合经典例题(收藏版)含答案详解
数列求和综合(经典总结版)含答案详解包括四种题型:分组求和、并项法、错位相减、裂项相消一、分组求和例1.求和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S .例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ;(Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.练1.求,,,,…,,…的前50项之和以及前项之和.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥(I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 21-2223-242(1)n n •-50S n n S练1 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.若a 1-a 3=-32,求数列{n ·a n }的前n 项和T n .练2 设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .例2已知数列{}n a 的首项123a =,121n n n a a a +=+,1,2,3,n =…. (Ⅰ)证明:数列1{1}na -是等比数列;(Ⅱ)数列{}n n a 的前n 项和n S .练1 已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .练2、已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求S n .例3 在等比数列{a n }中,a 2a 3=32,a 5=32.(1)求数列{a n }的通项公式; (2)设数列{a n }的前n 项和为S n ,求S 1+2S 2+…+nS n .例4.已知数列{a n }的前n 项和为S n =3n ,数列{b n }满足b 1=-1,b n +1=b n +(2n -1)(n ∈N *). (1)求数列{a n }的通项公式a n ;(2)求数列{b n }的通项公式b n ;(3)若c n =a n ·b nn ,求数列{c n }的前n 项和T n .四、裂项相消裂项相消的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,以达到求和的目的. 常见的裂项相消形式有: 1. 111(1)1n a n n n n ==-++ 1111()(2)22n a n n n n ==-++ ┈┈1111()()n a n n k k n n k ==-++2n p a An Bn C ⇒=++(分母可分解为n 的系数相同的两个因式)2. 1111()(21)(21)22121n a n n n n ==--+-+ 1111()(21)(23)22123n a n n n n ==-++++1111()(65)(61)66561n a n n n n ==--+-+3. 1111(1)(2)2(1)(1)(2)n a n n n n n n n ⎡⎤==-⎢⎥+++++⎣⎦4.)121121(211)12)(12()2(2+--+=+-n n n n n 5. 111211(21)(21)2121n n n n n n a ---==-++++ +1+1211(21)(21)2121nnn n n n a ==-++++122(1)111(1)2(1)22(1)2n n n n n n n n a n n n n n n -++-==⋅=-++⋅+6.=┈┈12=1k=- 例1.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .练1.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和.例2.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S .(Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T .例3.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列.(1)求数列}{n a 的通项公式;(2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .例4.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ;(2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T .练1、已知数列{}n a 是首相为1,公差为1的等差数列,21n n n b a a +=⋅,n S 为{}n b 的前n 项和,证明:1334n S ≤<.例5.已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =,求数列{b n }的前n 项和T n .例6. (无理型)设数列{}n a 满足01=a 且111111=---+nn a a ,(1)求{}n a 的通项公式;(2)设na b n n 11+-=,记∑==nk kn bS 1,证明:1<n S .例7.(指数型).已知数列{a n }的前n 项和为S n ,且a 2=8,S n =﹣n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)求数列{}的前n 项和T n .例8.设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式; (Ⅱ)设数列{S n }的前n 项和为T n (n ∈N *), (i )求T n ;(ii )证明=﹣2(n ∈N *)作业:1.设231()2222()n f n n N ++=++++∈,则()f n 等于( )A.21n -B.22n -C. 122n +-D. 222n +-2.满足*12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n 值是( )A .9B .10C .11D .123.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( A ) A .100101 B .99101 C .99100 D .1011004.求和2345672223242526272+⨯+⨯+⨯+⨯+⨯+⨯= . 5.定义在上的函数满足, 则6.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .7.已知数列{a n }为公差不为零的等差数列,a 1=1,各项均为正数的等比数列{b n }的第1项,第3项,第5项分别是a 1,a 3,a 21.(1)求数列{a n }与{b n }的通项公式;(2)求数列{a n b n }的前n 项和S n .8. 已知数列{an}的前n 项和Sn =-12n 2+kn(其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和Tn.R )(x f 2)21()21(=-++x f x f )83()82()81(f f f ++67()()_______88f f +++=数列求和综合答案详解版一、分组求和例1.求和. 【解析】(1+2+3+…+n)+ =【总结升华】1. 一般数列求和,先认真理解分析所给数列的特征规律,联系所学,考虑化归为等差、等比数列或常数列,然后用熟知的公式求解.2. 一般地,如果等差数列与等比数列的对应项相加而形成的数列都用分组求和的办法来求前项之和.练1已知数列{}n x 的首项13x =,通项2n n x p n q =⋅+⋅(*n ∈N ,,p q 是常数),且145,,x x x 成等差数列.(1)求,p q 的值;(2)求数列{}n x 的前n 项和n S . 【解析】(1)232(164)2325p q p q p q p p +=⎧⎨+=+++⎩ 解得11q p =⎧⎨=⎩(2)12212(21)(22)+(2)n n S x x x n =+++=+++++………… =12(22+2)(123+n)n ++++++…………=1(1)222n n n ++-+ 例2.(奇偶性)已知等差数列{a n }中,a 1=1,且a 1,a 2,a 4+2成等比数列.(Ⅰ)求数列{a n }的通项公式及前n 项和S n ; (Ⅱ)设b n =,求数列{b n }的前2n 项和T 2n .【解答】解:(I )设等差数列{a n }的过程为d ,∵a 1=1,且a 1,a 2,a 4+2成等比数列. ∴=a 1•(a 4+2),即(1+d )2=1×(1+3d +2),化为:d 2﹣d ﹣2=0,解得d =2或﹣1.其中d =﹣1时,a 2=0,舍去.∴d =2.a n =1+2(n ﹣1)=2n ﹣1,S n ==n 2.(Ⅱ)设b n ==,∴n 为偶数时,==16,b 2=8;11111232482n n ⎛⎫+++⋅⋅⋅++ ⎪⎝⎭11111232482n n S n ⎛⎫=+++⋅⋅⋅++= ⎪⎝⎭111242n ⎛⎫++⋅⋅⋅+ ⎪⎝⎭(1)1122n n n ++-{}n a {}n b {}n n a b +n n Sn 为奇数时,==,b 1=.∴数列{b n }的奇数项是首项为,公比为.数列{b n }的偶数项是首项为8,公比为16.∴数列{b n }的前2n 项和T 2n =+=.二、并项法例1.已知数列的前项和,求,的值以及Sn 的值.【思路点拨】该数列{}n a 的特征:1(1)(43)n n a n -=--,既非等差亦非等比,但也有规律:所有奇数项构成以1为首项8为公差的等差数列,偶数项构成以-5为首项-8为公差的等差数列,因而可以对奇数项和偶数项分组求和;还有规律:1234561...4n n a a a a a a a a ++=+=+==+=-(n 为奇数),可以将相邻两项组合在一起. 【解析】(1)法1(分组)由可得,法2(并项)a1+a2=−4,a3+a4=−4(2)由∴当为奇数,时, ,Sn=( a1+a2)+ a3+a4……(a n-2-a n-1)+an=−4(n−12)+4n-3=2n-1当为偶数,时,,Sn=( a1+a2)+ a3+a4……(a n-1+an )=−4×n2=−2n 【总结升华】1.对通项公式中含有或的一类数列,在求时要注意讨论的奇偶情况.2. 对正负相间的项中的相邻两项进行恰当的组合,可能会有意料之结. 举一反三:【变式1】求,,,,…,,…的前50项之和以及前项之和.{}n a n 1159131721...(1)(43)n n S n -=-+-+-++--15S 22S 1(1)(43)n n a n -=--158(157)7(553)[19...(4153)][513...(4143)]2922S ++=+++⨯--+++⨯-=-=2211(181)11(585)[19...(4213)][513...(4223)]4422S ++=+++⨯--+++⨯-=-=-1(1)(43)n n a n -=--n n N +∈1(43)(41)4n n a a n n ++=--+=-n n N +∈1(43)(41)4n n a a n n ++=--++=n )1(-1n )1(+-n S n 21-2223-242(1)n n •-50S n n S【解析】(1)设,则数列为等差数列,且是的前25项之和, 所以.(2)当为偶数即时,.当为奇数即时,.三、错位相减例1 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式;(Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。
数列通项公式和求和综合常见题型归纳
第 二 步 : 变 形 得 到 A n一 | L= B , 即 : 数 列 { j 是 一 求和 :
个 以 =。 为首项 ,以 B为公差的等差数列 .
一
、
配凑等差数 列法求通项公式和错位 相减 求和
1 .配凑等 差数列法求通项公 式的 常见模型 递推公式形如 : + l = A・ +曰・ A ,A≠l ,B#O .
得 : 数 列 { 喜 ) 是 一 个 以 = 1 为 首 项 , 以 3 为 公 差 的 等
差数列 , 由 一=1 +( 凡一1 ) ×3=3 n一2= % =( 3 n一2 )‘ 2 一 , n∈
—
3, n∈ N .
2 4 硅 教 育 论 坛[ 2 0 1 4 年 第4 期 ]
比较系数 : ( A一1 ) p k jp
( A —1 ) q— p=6 j g=
T ,
.
=7×2 +3 一( n +3 ) , . n ∈N .
( 2 ) 由 瓯=7 X 2 n +3 一t 一( n+3 ) , n∈ N ,下可用分组求和法
式. = +3 j 一
1 =2
3・ 2 n
( 2 ) 当f( n ) =k n 4 - b , k ≠0时 , ‰+ I =A・ ‰+ k n+ b ,
设: + 1 +q ( n+1 ) +q =A ・ ( a n + p n+ q ) . 还原 : a n + l = A・ % +( A 一1 p n+( A 一1 ) q— P .
具体作 法 :第一步 :递推公式 两边 同时除以 A ,则原 递推
高一数列求和的7类题型和15种方法讲义
高一数列求和的7类题型和15种方法讲义数列求和是高中数学中比较重要的一章,其中有七种基本类型的题目,涉及到15种不同的解法。
一、基本概念- 数列:按照一定规律排列的一些数的集合。
- 通项公式:数列中第 $n$ 项和 $n$ 的公式,通常表示为$a_n$。
- 前 $n$ 项和:数列的前 $n$ 项之和,表示为 $S_n$。
二、七类题型1. 等差数列求和- 当公差为常数时使用求和公式:$S_n=\dfrac{(a_1+a_n)\cdot n}{2}$。
- 当公差为 $1$ 时,可以使用去端项的方法简化计算。
2. 等比数列求和- 当公比不为 $1$ 时使用求和公式:$S_n=\dfrac{a_1(1-q^n)}{1-q}$。
- 当公比为 $1$ 时,可以使用 $\mathrm{ln}$ 函数推导出求和公式。
3. 含有等差或等比数列的求和- 先化简为单独的等差数列或等比数列,再使用对应的求和公式。
- 如果难以化简,可以采用分段求和的方法,即按照数列的等差或等比段分段求和,最后相加。
4. 转化为数列求和- 将题目中的问题转化为数列求和的形式,即可以使用已知的求和公式来解决。
5. 凑整法- 将数列的相邻项相加,凑出一个整数,再使用等差或等比数列求和的方法求解。
6. 差分法- 求出相邻项之差的数列后,可以将原数列转化为等差数列或等比数列求和的形式。
7. 数学归纳法- 设定初始值成立,然后证明递推公式成立,最后得出结论。
- 通常适用于复杂问题的证明。
三、15种解法- 求和公式法- 套公式法- 化简求和法- 凑整法- 差分求和法- 分段求和法- 变项积分法- 叠加法- 逆向思维法- 归纳证明法- 凑数法- 分离求和法- 同除法- 矩阵幂法- 洛必达法数列求和问题也是高考的热门考点之一,要多多练习,熟能生巧。
专题10 数列 10.4数列求和 题型归纳讲义-2022届高三数学一轮复习(解析版)
专题十《数列》讲义10.4数列求和知识梳理.数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n ,q ≠1.推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和:①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1);③1+3+5+…+(2n -1)=n 2.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.题型一.裂项相消1.数列{a n}的通项公式a n=1or1),已知它的前n项和S n=99100,则项数n=()A.98B.99C.100D.101【解答】解:列{a n}的通项公式a n=1or1)=1−1r1,所以=1−12+12−13+⋯+1−1r1=1−1r1,由于前n项和S n=99100,所以1−1r1=99100,解得n=99.故选:B.2.已知等差数列{a n}满足a3=10,a1+a4=17.(1)求{a n}的通项公式;(2)设b n=3r1,求数列{b n}的前n项和S n.【解答】解:(1)设首项为a1,公差为d的等差数列,满足a3=10,a1+a4=17.所以3=101+4=17,解得1=4=3,所以a n=4+3(n﹣1)=3n+1.(2)由(1)得b n=3r1=13r1−13r4,所以S n=b1+b2+…+b n=14−17+17−110+⋯+13r1−13r4=14−13r4.3.已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(1)求数列{a n}的通项公式;(2)设=1(+2),数列{c n}的前n项和为T n,求T n.【解答】解:(1)在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,∵4S n=(2n﹣1)a n+1+1,∴当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),∴(2n+1)a n=(2n﹣1)a n+1,即r1=2r12K1(≥2).∴=K1⋅K1K2⋅K2K3⋯⋅32⋅21⋅1=2K12K3⋅2K32K5⋅2K52K7⋯53⋅31⋅1=2−1,故a n=2n﹣1.(2)=1(+2)=1(2K1)(2r1)=12(12K1−12r1),T n=c1+c2+…+c n=12[(1−13)+(13−15)+(15−17)+⋯+(12K1−12r1)]=12(1−12r1)=2r1,所以=2r1.题型二.错位相减1.已知等差数列{a n}公差不为零,且满足:a1=2,a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设=3,求数列{b n}的前n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,d≠0,由题,1=222=15,即(1+p2=1(1+4p,解得d=4.∴a n=2+4(n﹣1)=4n﹣2.(Ⅱ)=3=(4n﹣2)•3n=2(2n﹣1)•3n,设数列{b n}的前n项和为T n,=2×1×31+2×3×32+2×5×33+⋯+2(2n﹣1)×3n,①3=2×1×32+2×3×33+2×5×34+⋯2(2n﹣1)×3n+1,②①﹣②,得:−2=2×1×3+2×2×32+2×2×33+⋯+2×2×3n﹣2(2n﹣1)×3n+1=6+4×32(1−3K1)1−3−2(2−1)×3r1=−12﹣4(n﹣1)•3n+1,∴=6+2(−1)⋅3r1.∴数列{b n}的前n项和=6+2(−1)⋅3r1.2.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=13,b2b3=127.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由S5=30,S7=56,得51+5×42=3071+7×62=56,解得1=2=2.∴a n=2+2(n﹣1)=2n;设等比数列{b n}的公比为q(q>0),由b1b2=13,b2b3=127,得12=13123=127,解得1=1=13.∴=(13)K1;(2)a n•b n=23K1=2⋅3K1.令{3K1}的前n项和为R n,则=130+231+332+⋯+3K1,13=13+232+333+⋯+K13K1+3两式作差可得:23=1+13+132+⋯+13K1−3=1×(1−13)1−13−3=32−2r32⋅3,∴=94−2r34⋅3K1.则=2=92−2r32⋅3K1.3.(2015·山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=3,=13K1,>1..(Ⅱ)因为a n b n=log3a n,所以b1=13,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=13;当n>1时,T n=b1+b2+…+b n=13+[1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n],所以3T n=1+[1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n],两式相减得:2T n=23+[30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n]=23+1−31−1−3−1−(n﹣1)×31﹣n=136−6r32×3,所以T n=1312−6r34×3,经检验,n=1时也适合,综上可得T n=1312−6r34×3.题型三.分组求和1.已知数列{a n}是公差不为零的等差数列,a1=2,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n﹣2,求数列{b n}的前n项和S n.【解答】解:(1)由题意,设等差数列{a n}的公差为d(d≠0),则a2=2+d,a4=2+3d,∵a1,a2,a4成等比数列,∴a22=a1•a4,即(2+d)2=2(2+3d),整理,得d2﹣2d=0,解得d=0(舍去),或d=2,∴a n=2+2(n﹣1)=2n,n∈N*.(2)由(1)知,设b n=a n﹣2=2n﹣22n=2n﹣4n,故S n=b1+b2+…+b n=(2×1﹣41)+(2×2﹣42)+…+(2n﹣4n)=2×(1+2+…+n)﹣(41+42+…+4n)=2×or1)2−4(1−4)1−4=n2+n+43−4r13.2.在公差不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,又数列{b n}满足=2,=2−1,2,=2,(k∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前2n项和T2n.【解答】解:(1)公差d不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,可得a32=a1a9,a3=a1a3,可得(a1+2d)2=a1(a1+8d),a1=1,化简可得a1=d=1,即有a n=n,n∈N*;(2)由(1)可得b n=2,=2−12,=2,k∈N*;前2n项和T2n=(2+8+16+…+22n﹣1)+(4+8+12+…+4n)=2(1−4)1−4+12n(4+4n)=2(4−1)3+2n(n+1).3.已知数列{a n}、{b n}满足:a n+1=a n+b n,{b n+2}为等比数列,且b1=2,a2=4,a3=10.(1)试判断数列{b n}是否为等差数列,并说明理由;(2)求数列{a n}的前n项和S n.【解答】解:(1)数列{b n}不是等差数列.理由如下:由a n+1﹣a n=b n,且a2=4,a3=10,b1=2,得b2=a3﹣a2=6,又∵数列{b n+2}为等比数列,∴数列{b n+2}的首项为4,公比为2.∴3+2=4×22=16,得b3=14,显然2b2=12≠b1+b3=16.故数列{b n}不是等差数列;(2)结合(1)知,等比数列{b n+2}的首项为4,公比为2.故+2=4⋅2K1=2r1,∴=2r1−2.∵a n+1﹣a n=b n,b1=2,a2=4,∴a1=2,∴−K1=2−2(n≥2).令n=2,…,(n﹣1).得2−1=22−2,3−2=23−2,…−K1=2−2(n≥2),累加得−2=(22+23+⋯+2)−2(−1)(n≥2).∴=(2+22+23+⋯+2)−2+2=2(2−1)2−1−2+2=2r1−2(n≥2).又a1=2满足上式,∴=2r1−2.∴=(22−2×1)+(23−2×2)+⋯+(2r1−2p=(22+23+…+2n+1)﹣2(1+2+…+n)=4(2−1)2−1−2×or1)2=2r2−2−−4.题型四.讨论奇偶、绝对值求和1.数列{a n}的前n项和记为S n,对任意的正整数n,均有4S n=(a n+1)2,且a n>0.(1)求a1及{a n}的通项公式;(2)令=(−1)K14r1,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,41=(1+1)2,则a1=1;当n≥2时,由4S n=(a n+1)2,知4S n﹣1=(a n﹣1+1)2,联立两式,得4a n=(a n+1)2﹣(a n﹣1+1)2,化简得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即{a n}是以a1=1为首项,2为公差的等差数列,故a n=2n﹣1;(2)=(−1)K14r1=(−1)K14(2K1)(2r1)=(﹣1)n﹣1(12K1+12r1),下面对n分奇偶数讨论:当n为偶数时,T n=(1+13)﹣(13+15)+…+(12K3+12K1)﹣(12K1+12r1)=1−12r1=22r1,当n为奇数时,T n=(1+13)﹣(13+15)+…﹣(12K3+12K1)+(12K1+12r1)=1+12r12r22r1,所以T n=为奇数为偶数.2.已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设=(−1),求{b n}前2n项和T2n.【解答】解:(1)由题意,设等差数列{a n}的公差为d,则5=1+4=95=51+5×42=25,整理,得1+4=91+2=5,解得1=1=2,∴a n=1+2(n﹣1)=2n﹣1,n∈N*,=o1+2K1)2=2.(2)由(1)知,设=(−1)=(﹣1)n•n2.T2n=b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n﹣1+b2n)=(﹣12+22)+(﹣32+42)+…+[﹣(2n﹣1)2+(2n)2]=[(2﹣1)×(2+1)]+[(4﹣3)×(4+3)]+…+[2n﹣(2n﹣1)]×[2n+(2n﹣1)]=1+2+3+4+…+(2n﹣1)+2n=2δ(1+2p2=2n2+n.3.已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(1)求a2,a3,a4;(2)猜想{a n}的通项公式并加以证明;(3)求数列{|a n|}的前n项和S n.【解答】解:(1)由已知,易得a2=0,a3=4,a4=12.(2)猜想=2−4.因为a n+1=2a n+4,所以a n+1+4=2(a n+4),r1+4+4=2,则{a n+4}是以2为首项,以2为公比的等比数列,所以+4=2,所以==2−4.(3)当n=1时,a1=﹣2<0,S1=|a1|=2;当n≥2时,a n≥0,所以=−1+2+⋯+=2+(22−4)+⋯+(2−4)=2+22+⋯+2−4(−1)=2(1−2)1−2−4(−1)=2r1−4+2,又n=1时满足上式.所以,当n∈N*时,=2r1−4+2.题型五.数列求和选填综合1.首项为正数的等差数列{a n}中,34=75,当其前n项和S n取最大值时,n的值为()A.5B.6C.7D.8【解答】解:∵首项为正数的等差数列{a n}中,34=75,∴5(a1+2d)=7(a1+3d),整理,得:1=−112,∵a1>0,∴d<0,∴=−112B+oK1)2=2(n﹣6)2﹣18d,∴当其前n项和S n取最大值时,n的值为6.故选:B.2.在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为112(1−42).【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:23=214+27=34,整理得:13=213+216=34,解得:1=14=2.则:=1K1=2K3,所以:b n =a 2n ﹣1﹣a 2n =22K32−22K3=−22n ﹣4,则:T 2n =−14(1−42)1−4=112(1−42).故答案为:112(1−42).3.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2且对于任意n >1,n ∈N *满足S n +1+S n ﹣1=2(S n +1),则()A .a 4=7B .S 16=240C .a 10=19D .S 20=381【解答】解:当n ≥2时,S n +1+S n ﹣1=2(S n +1)⇒S n +1﹣S n =S n ﹣S n ﹣1+2⇒a n +1=a n +2.所以数列{a n }从第2项起为等差数列,a n =1,=12−2,≥2,所以,a 4=6,a 10=18.S n =a 1+(2+)(K1)2=n (n ﹣1)+1,S 16=16×15+1=241,S 20=20×19+1=381.故选:D .4.已知数列{a n }是首项为1,公差为2的等差数列,数列{b n }满足关系11+22+33+⋯+=12−1,数列{b n }的前n 项和为S n ,则S 5的值为()A .﹣454B .﹣450C .﹣446D .﹣442【解答】解:数列{a n }是首项为1,公差为2的等差数列,可得a n =1+2(n ﹣1)=2n ﹣1,由11+22+33+⋯+=12−1,可得11=12−1=−12,可得b 1=﹣2,又11+22+⋯+K1K1=12K1−1,且11+22+33+⋯+=12−1,两式相减可得=12−12K1=−12,可得b n=﹣(2n﹣1)•2n,则S5=﹣2﹣3•4﹣5•8﹣7•16﹣9•32=﹣454,故选:A.5.已知数列{a n}满足1=32,r1=3+3,若=3,则c1+c2+⋅⋅⋅+c n=(2r1)⋅3−14.【解答】解:因为1=32,r1=3+3,所以1r1=+33=13+1,即1r1−1=13,所以数列{1}是首项11=23,公差为13的等差数列,所以1=23+13(−1)=r13,则=3=(+1)3K1,则1+2+⋅⋅⋅+=2×30+3×31+4×32+⋅⋅⋅+(+1)×3K1,设T=2×30+3×31+4×32+⋅⋅⋅+(n+1)×3n﹣1①,则3T=2×3+3×32+……+n×3n﹣1+(n+1)×3n②,①﹣②可得:﹣2T=2+3+32+……+3n﹣1﹣(n+1)×3n=1+3−13−1−(n+1)×3n,则=(2r1)⋅3−14.即1+2+⋅⋅⋅+=(2r1)⋅3−14.故答案为:(2r1)⋅3−14.6.已知数列{a n}的前n项和为S n,a1=2,S n=λa n﹣2,其中λ为常数,若a n b n=13﹣n,则数列{b n}中的项的最小值为−1214.【解答】解:根据题意,数列{a n}的满足a1=2,S n=λa n﹣2,当n=1时,有a1=S1=λa1﹣2,即2=2λ﹣2,解可得λ=2,则S n=2a n﹣2,①=2a n﹣1﹣2,②则有S n﹣1①﹣②:a n=2a n﹣2a n﹣1,变形可得a n=2a n﹣1,则数列{a n }是首项为a 1=2,公比为2的等比数列,则a n =2n ,又由a n b n =13﹣n ,则b n =13−2,当n ≤13时,b n ≥0,当n ≥14时,b n <0,且{b n }为递增数列,则当n =14时,b n 取得最小值,此时b 14=−1214;故答案为:−1214.7.已知数列{a n }和{b n }首项均为1,且a n ﹣1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2019=()A .2019B .12019C .4037D .14037【解答】解:∵a n ﹣1≥a n (n ≥2),a n +1≥a n ,∴a n ≥a n +1≥a n ,∴a n =a n +1,另外:a 1≥a 2≥a 1,可得a 2=a 1=1,∴a n =1.∵2S n S n +1+a n b n +1=0,∴2S n S n +1+b n +1=0,∴2S n S n +1+S n +1﹣S n =0,∴1r1−1=2.∴数列{1}是等差数列,首项为1,公差为2.∴1=1+2(n ﹣1)=2n ﹣1,∴S n =12K1.∴S 2019=14037.故选:D .8.已知数列{a n }满足:a 1=1,a 2=13,11+22+⋅⋅⋅+=r1K1+6(n ≥2且n ∈N +),等比数列{b n }公比q =2,令c n =为奇数,为偶数,则数列{c n }的前n 项和S 2n =2n 2﹣n +4r1−43.【解答】解:因为a1=1,a2=13,11+22+⋅⋅⋅+=r1K1+6(n≥2且n∈N+),①可得n=2时,11+22=31+6,即b1+3b2=b3+6,由等比数列的{b n}的公比为q=2,即b1+6b1=4b1+6,解得b1=2,所以b n=2n,当n=3时,11+22+33=42+6,即2+3×4+83=3×16+6,解得a3=15,又11+22+⋯+K1K1=K2+6(n≥3,且n∈N+),②①﹣②可得,=r1K1−K2,即2=2r1K1−2K2,化为1+1K2=2K1,又11+13=6=22,所以{1}为等差数列,且公差d=12−11=2,则1=11+2(n﹣1)=2n﹣1,所以c n=2−1,为奇数2,为偶数,所以S2n=1+22+5+24+…+(4n﹣3)+22n=(1+5+…+4n﹣3)+(22+24+…+22n)=o1+4K3)2+4(1−4)1−4=2n2﹣n+4r1−43.故答案为:2n2﹣n+4r1−43.9.已知数列{a n}满足2a n a n+1+a n+3a n+1+2=0,其中1=−12,设=K+1,若b3为数列{b n}中唯一最小项,则实数λ的取值范围是(5,7)【解答】解:∵2a n a n+1+a n+3a n+1+2=0,∴a n+1=−(+2)2+3,∴r1+1=−(+2)2+3+1=+12+3,∴1r1+1=2+3+1=2+1+1,即1r1+1−1+1=2,所以数列{1+1}是公差为2的等差数列,∵11+1=2,∴1+1=2+(−1)×2=2n,∴b n=2n(n﹣λ),∴b n+1﹣b n=2(n+1)(n+1﹣λ)﹣2n(n﹣λ)=4n+2﹣2λ,因为b3为数列{b n}中唯一最小项,所以b1>b2>b3<b4<b5<…,∴当n=1时,b2﹣b1=6﹣2λ<0,得λ>3,当n=2时,b3﹣b2=10﹣2λ<0,得λ>5,当n≥3时,4n+2﹣2λ>0恒成立,即λ<2n+1,即有λ<7.所以5<λ<7.故答案为:(5,7).课后作业.数列求和1.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.(1)求数列{a n}的通项公式;(2)设T n为数列{1r1}的前n项和,若λT n≤a n+1对一切n∈N*恒成立,求实数λ的最大值.【解答】解:(1)各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.设公差为d,由已知得:41+6=14(1+2p2=1(1+6p,,联立解得d=1或d=0(舍去),a1=2,故:a n=n+1.(2)由(1)得:1r1=1(r1)(r2)=1r1−1r2,所以:=12−13+13−14+⋯+1r1−1r2.=12−1r2,=2(r2).由于:λT n≤a n+1对一切n∈N*恒成立,所以:2(r2)≤+2,解得:≤2(r2)2+4)+8,由于:+4≥≥4故:2(+4)+8≥16,即:λ≤16.故λ的最大值为16.2.设等差数列{a n}的前n项和为S n,a3=6,a7=14.(1)求数列{a n}的通项公式及S n;(2)若_____,求数列{b n}的前n项和T n.在①b n=2•a n;②b n=2+r12;③b n=(﹣1)n•a n这三个条件中任选一个补充在第(2)问中,并对其求解.【解答】解:(1)设等差数列{a n}的公差为d,由a3=6,a7=14.得4d=a7﹣a3=14﹣6=8,解得d=2,所以a1=a3﹣2d=6﹣4=2,所以a n=2+2(n﹣1)=2n;S n=2(2+2n)=n2+n.(2)若选择条件①:由(1)可知a n=2n,则b n=2•a n=2n•4n,所以T n=b1+b2+…+b n=2×41+4×42++6×43…+(2n)•4n;4T n=2×42+4×43+6×44+…+(2n)•4n+1,两式相减得:﹣3T n=2×41+2×42+2×43+…+2×4n﹣2n•4n+1=2×4(1−4)1−4−2n•4n+1=−83(1﹣4n)﹣2n•4n+1,所以T n=89(1﹣4n)+23•4n+1;若选择条件②:由a n=2n,S n=n2+n,得b n=2+r12=82+8r4or1)=8+4or1)=8+4(1−1r1),所以T n=b1+b2+b3+…+b n=8n+4(1−12+12−13+⋯+1−1r1)=8n+4r1=82+12r1;若选择条件③:由a n=2n,得b n=(﹣1)n•a n=(﹣1)n•2n,所以T n=﹣2+4﹣6+8+…+(﹣1)n•2n,当n为偶数时,T n=(﹣2+4)+(﹣6+8)++[﹣2(n﹣1)+2n]=2×2=n,当n为奇数时,T n=(﹣2+4)+(﹣6+8)+…+[﹣2(n﹣2)+2(n﹣1)]﹣2n=K12×2n =﹣n﹣1,所以T n=,为奇数−−1,为偶数.3.已知数列{a n}的各项均为正数,前n项和为S n,且S n=(+1)2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2(−2)(r1),T n=b1+b2+…+b n,求T n.【解答】解:(1)S n=(+1)2(n∈N*),当n=1时,1=1(1+1)2,∴a1=1,当n≥2时,由S n=(+1)2,得2=2+①取n=n﹣1,得2K1=K12+K1②①﹣②得:2=2(−K1)=2−K12+−K1,∴(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1,n≥2,∴数列{a n}是等差数列,则a n=n;(2)由S n=(+1)2,a n=n,∴=or1)2,则=2(−2)(r1)=(−2),∴=1−2+2(−2)2+⋯+K1(−2)K1+(−2),−2=1+2−2+⋯+K1(−2)K2+(−2)K1,两式作差得:∴−3=1+1−2+⋯+1(−2)K1−(−2)=1−(−12)1−(−12)−(−2)=2+(−12)K13−(−2),∴=3(−2)−2+(−12)K19=3r29(−2)−29.4.在数列{a n}中,a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;并求满足S n<1516时n的最大值.【解答】解:(I)∵a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立,∴1(r1)r1−1B=1.∴1B=2+(n﹣1)=n+1,∴a n=1or1).(II)a n=1or1)=1−1r1.∴数列{a n}的前n项和S n=(1−12)+(12−13)+⋯+(1−1r1)=1−1r1,S n<1516,即1−1r1<1516,解得n<15,因此满足S n<1516时n的最大值为14.。
数列绝对值求和题型
数列绝对值求和题型(一)基础知识回顾1. 数列的通项公式- 数列{a_n}的通项公式a_n = f(n),它表示数列的第n项与项数n之间的关系。
例如等差数列的通项公式a_n=a_1+(n - 1)d(其中a_1为首项,d为公差),等比数列的通项公式a_n=a_1q^n - 1(其中a_1为首项,q为公比)。
2. 绝对值的性质- 当x≥slant0时,| x|=x;当x<0时,| x|=-x。
这一性质在处理数列绝对值求和时,需要根据数列项的正负性进行分类讨论。
(二)题型一:等差数列绝对值求和1. 题目示例- 已知等差数列{a_n},a_n = 2n - 10,求∑_n = 1^10| a_n|。
2. 解析- 求出a_n = 2n - 10的正负性分界点。
- 令a_n=0,即2n - 10 = 0,解得n = 5。
- 当n≤slant5时,a_n≤slant0,此时| a_n|=-a_n = 10 - 2n。
- 当n>5时,a_n>0,此时| a_n|=a_n = 2n - 10。
- 那么∑_n = 1^10| a_n|=∑_n = 1^5| a_n|+∑_n = 6^10| a_n|。
- 先计算∑_n = 1^5| a_n|:- ∑_n = 1^5| a_n|=∑_n = 1^5(10 - 2n)- 根据等差数列求和公式S_n=(n(a_1 + a_n))/(2),这里a_1 = 10-2×1 = 8,a_5=10 - 2×5 = 0,n = 5。
- 所以∑_n = 1^5(10 - 2n)=(5×(8 + 0))/(2)=20。
- 再计算∑_n = 6^10| a_n|:- ∑_n = 6^10| a_n|=∑_n = 6^10(2n - 10)- 这里a_6=2×6 - 10 = 2,a_10=2×10 - 10 = 10,n = 5。
高中数列求和题型归纳总结
高中数列求和题型归纳总结在高中数学学习中,数列求和是一个重要的考点。
学生们需要熟练掌握不同类型的数列求和题目,并能灵活运用各种求和公式和技巧。
下面,我将对高中数列求和题型进行归纳总结,以便同学们更好地理解和应用。
一、等差数列求和等差数列是指数列中每个相邻的两项之间的差恒定的数列。
对于等差数列,我们可以使用以下公式来求和:1. 如果已知等差数列的首项为a₁,公差为d,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (2a₁ + (n-1)d)2. 若已知等差数列的首项为a₁,末项为an,项数为n,则该等差数列的前n项和Sn为:Sn = n/2 * (a₁ + an)二、等比数列求和等比数列是指数列中每个相邻的两项之间的比恒定的数列。
对于等比数列,我们可以使用以下公式来求和:1. 如果已知等比数列的首项为a₁,公比为q(|q|<1),项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)2. 如果已知等比数列的首项为a₁,末项为an,项数为n,则该等比数列的前n项和Sn为:Sn = a₁ * (1 - q^n) / (1 - q)三、特殊数列求和除了等差数列和等比数列,还有一些特殊的数列求和方法,我们来看两个常见的例子。
1. 平方和求和:求1² + 2² + 3² + ... + n²的和,可以使用以下公式进行求解: Sn = n * (n + 1) * (2n + 1) / 62. 立方和求和:求1³ + 2³ + 3³ + ... + n³的和,可以使用以下公式进行求解: Sn = [n * (n + 1) / 2]^2四、应用题型除了基本的数列求和题型,我们还要学会将数列求和运用到实际问题中。
以下是一些常见的应用题型:1. 排球比赛:有一支排球队,第一天进行了一场比赛,第二天进行了两场比赛,第三天进行了三场比赛,以此类推,第n天进行了n场比赛。
历年高中数学数列求和常见常考的5种题型及答题方法汇总大全
历年高中数学数列求和常见常考的5种题型及答题方法汇总大全
专为高考生提供强有力的提分资料!
数列求和的常用方法是我们在高中数学平常考试,以及高考中,常见,常考的。
同时,是我们学习中必须掌握的基本方法!
掌握到手后,大部分数列的求和轻巧的解决,下面就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。
一、数列常见常用方法汇总之:公式法
二、数列常见常用方法汇总之:分组法
三、数列常见常用方法汇总之:列项相减法
四、数列常见常用方法汇总之:错位相减法
五、数列常见常用方法汇总之:倒序相加法。
数列求和9种常见题型总结
第7讲数列求和9种常见题型总结【题型目录】题型一:等差等比通向求和公式应用题型二:分析通项,构造新数列求和题型三:错位相减法求和题型四:分组求和法题型五:裂项相消法求和题型六:倒序相加法求和题型七:并项求和问题题型八:先求和,再证不等式题型九:先放缩,再求和【典型例题】题型一:等差等比通向求和公式应用根据通项公式的特点求和:(1)等差数列求和公式:()1122p q n n a a a a S n n p q n ++=⋅=⋅+=+()112n n n S a n d -=+(2)等比数列求和公式:()111,11,1n n a q q S q a n q ⎧-≠⎪=-⎨⎪=⎩【例1】(2022·宁夏·平罗中学高二阶段练习(理))已知数列{}n a 为等差数列,2616a a +=,510a =.(1)求数列{}n a 的通项;(2)设2n a n b =,求数列{}n b 的前n 项和n S .【例2】(2022陕西·安康市教学研究室一模)已知数列{}n a 为等比数列,13a =,且2a 是1a 与33a -的等差中项.(1)求{}n a 的通项公式;(2)设1n nb a =,求数列{}n b 的前n 项和n S .【例3】(2022·江西·芦溪中学高三阶段练习(文))已知数列{}n a 的前n 项和1*44(N )33n n S n +=-∈.(1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T .【例4】(2022·陕西·西乡县教学研究室一模(文))己知等差数列{}n a 的前n 项和为n S ,满足39a =,___________.在①36S a =,②430S =,③25845a a a ++=这三个条件中任选一个,补充在上面问题中,并解答.(注:如果选择多个条件分别解答,则按第一个解答给分)(1)求{}n a 的通项公式;(2)设2na n nb a =+,求{}n b 的前n 项和n T .【题型专练】1.(2022·广东汕尾·高二期末)记n S 为等比数列{}n a 的前n 项和.已知23S =-,39S =.(1)求{}n a 的通项公式;(2)求n S ,判断1n S +,n S ,2n S +是否成等差数列并说明理由.2.(2022·广东·江门市第二中学高二期中)设{}n a 是首项为1的等比数列,且1a 、23a 、39a 成等差数列.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,求{}n S 的前n 项和n T .3.(2022·北京八中高三阶段练习)已知数列{}n a 的前n 项和为n S ,且11n n n S S a +=++,请在①4713a a +=;②137,,a a a 成等比数列;③1065S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n n b a -是公比为2的等比数列,13b =,求数列{}n b 的前n 项和n T .题型二:分析通项,构造新数列求和【例1】(2022·全国·模拟预测(文))在公差不为零的正项等差数列{}n a 中,n S 为数列{}n a 的前n 项和,请在①135720a a a a +++=,236a a a +=;②()()221n n n S a a =+-;③1a ,3a ,7a 成等比数列,23a =三个条件中,任选一个完成下面的问题.(1)求数列{}n a 的通项公式;(2)正项数列{}n b 满足2log n n b a =,求13521n b b b b -++++ .注:如果选择多个条件分别解答,按第一个解答计分.【例2】(2022·辽宁·本溪满族自治县高级中学高三阶段练习)在等差数列{}n a 中,已知28a =,10185S =,(1)求此数列的通项公式;(2)若从此数列中依次取出第二项,第四项,第八项,……,第2n 项,……并按原来的先后顺序组成一个新的数列{}n b ,求数列{}n b 的通项公式与前n 项和n T .【例3】(2022·全国·高三专题练习)已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.(1)求{}n a 的通项公式;(2)求()1132211+--++-n n n a a a a a a .【题型专练】1.(2022·广东广州·一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.2.(2022·全国·高三专题练习)n S 为等差数列{}n a 的前n 项和,且171,28a S ==,记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如][0.90,lg991⎡⎤==⎣⎦.(1)求111101b b b 、、;(2)求数列{}n b 的前2022项和.3.(2022·云南·高三阶段练习)已知等差数列{}n a 满足121,21n n a a a ==+,设2n a n b =.(1)求{}n b 的通项公式,并证明数列{}n b 为等比数列;(2)将1b 插入12,a a 中,23,b b 插入23,a a 中,456,,b b b 插入34,a a 中, ,依此规律得到新数列1122334564,,,,,,,,,,a b a b b a b b b a ,求该数列前20项的和.4.(2022·甘肃·永昌县第一高级中学高三阶段练习(文))已知数列{}n a 满足213,21n n a a a +==+,设1n n b a =+.(1)证明:{}n b 是等比数列;(2)求13521n a a a a +++++ .。
2020年高考数学(理)总复习:数列的求和及综合应用(解析版)
2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。
高考数列求和的八种重要方法与例题
分裂通项法:
把数列旳通项拆成两项之差,即数 列旳每一项都可按此法拆成两项之差, 在求和时某些正负项相互抵消,于是前 n项旳和变成首尾若干少数项之和,这 一求和措施称为分裂通项法. (见到分式型旳要往这种措施联想)
拆项分组求和: 典例-1, 求该数列旳前n项和.
(nN)(2)求数列{an}旳通项公式an
1 2
an
(4
an ).
an1
1 2
an
(4
an )
1 2 [(an
2)2
4],
2(an1 2) (an 2)2
令bn an 2,
则bn
1 2
b2 n1
1 2
1 2
b2 n2
2
1 2
12
2n1
b2n 0
又b0=-1
bn
1 2
2n
1
,
总旳方向: 1.转化为等差或等比数列旳求和 2.转化为能消项旳 思索方式:求和看通项(怎样旳类型) 若无通项,则须先求出通项 措施及题型: 1.等差、等比数列用公式法 2.倒序相加法 3.错位相减法 4.裂项相消法
5.拆项分组求和法 6.并项求和法
热点题型1:递归数列与极限.
设数列{an}旳首项a1=a≠
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
S =lgyn +lg(yn-·1 x)+ ...+lgxn 2S =lg(xy)n +lg(xy)n + ...+lg(xy)n
数列求和题型及解题方法
数列求和题型及解题方法
数列求和是数学中的一个重要概念,其题型和解题方法有很多种。
以下是一些常见的数列求和题型及其解题方法:
1. 等差数列求和
等差数列是一种常见的数列,其相邻两项的差是常数。
等差数列的求和公式为:S = n/2 (a1 + an),其中n是项数,a1是首项,an是尾项。
例如:1+2+3+...+n=n(n+1)/2
2. 等比数列求和
等比数列是一种常见的数列,其相邻两项的比是常数。
等比数列的求和公式为:S = a1 (1 - q^n) / (1 - q),其中a1是首项,q是公比,n是项数。
例如:1+2+4+...+2^(n-1)=2^n-1
3. 错位相减法
对于一些等差数列和等比数列的混合数列,可以使用错位相减法来求和。
具体做法是将原数列的每一项都乘以一个适当的常数,使得新数列成为等差数列或等比数列,然后使用相应的求和公式进行计算。
例如:100+101+102+...+999=99/2=44550
4. 分组求和法
对于一些项数较多、难以直接求和的数列,可以将它们分成若干组,每组有有限项,然后分别求每组的和,最后将各组的和相加即可。
例如:(1+2+3)+(4+5+6)+(7+8+9)=9+18+27=54
5. 倒序相加法
对于一些奇偶项相间的数列,可以将正序和倒序分别求和,再将两个和相加,即可得到原数列的和。
例如:(1+2+3+4)+(3+2+1)=8+6=14
以上是一些常见的数列求和题型及其解题方法,掌握这些方法对于解决数列求和问题非常有帮助。
数列求和方法总结
数列求和方法总结数列求和是数学中的一个重要内容,也是各级教育中常见的题型。
对于数列求和问题,一般可以分为几类,包括等差数列、等比数列、等差数列的和与级数、等比数列的和与级数、特殊数列等等。
本文将对这些数列求和的方法进行总结,以便读者更好地理解和应用。
1.等差数列求和:等差数列是指数列中相邻两项之差都相等的数列。
设等差数列的首项为a₁,公差为d。
等差数列的第n项可以表示为an= a₁ +(n-1)d。
要求等差数列的和,可以使用以下公式:Sn= (a₁ +an) × n/2其中n为项数,Sn为等差数列的和。
如果我们只知道等差数列的首项、公差和项数,就可以通过上述公式直接求解。
2.等比数列求和:等比数列是指数列中相邻两项之比都相等的数列。
设等比数列的首项为a₁,公比为q。
等比数列的第n项可以表示为an= a₁ × q^(n-1)。
要求等比数列的和,可以使用以下公式:Sn=a₁×(1-q^n)/(1-q)其中n为项数,Sn为等比数列的和。
如果我们只知道等比数列的首项、公比和项数,就可以通过上述公式直接求解。
3.等差数列的和与级数:在等差数列的和中,还涉及到等差级数的问题。
等差级数是指等差数列的前n项和的求和,即Sn= a₁+a₂+...+an。
等差级数的前n项和可以使用以下公式求解:Sn= n/2(a₁+an)其中n为项数,a₁为首项,an为末项。
等差级数的求和可以通过将首项和末项相加,然后乘以项数的一半得到。
4.等比数列的和与级数:在等比数列的和中,也有等比级数的求和问题。
等比级数是指等比数列的前n项和的求和,即Sn= a₁+a₂+...+an。
等比级数的前n项和可以使用以下公式求解:Sn=a₁(1-q^n)/(1-q)其中n为项数,a₁为首项,q为公比。
等比级数的求和可以通过首项与公比的计算,然后代入公式进行求解。
5.特殊数列的求和:除了等差数列和等比数列外,还有一些特殊的数列也有求和问题,如斐波那契数列、等差数列的平方和、等差数列的立方和等等。
考向27 数列求和经典题型归纳(十二大经典题型)(原卷版)
考向27 数列求和经典题型归纳经典题型一:通项分析法 经典题型二:公式法 经典题型三:错位相减法 经典题型四:分组求和法 经典题型五:裂项相消法 经典题型六:倒序相加法 经典题型七:并项求和 经典题型八:先放缩后裂项求和 经典题型九:分段数列求和经典题型十:含绝对值、取整、取小数等数列求和 经典题型十一:数列插项求和 经典题型十二:数列奇偶项求和(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.(2022·天津·高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=. (1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.一.公式法(1)等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d ,推导方法:倒序相加法.(2)等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q,推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和: ①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n②21(21)135(21)=-=++++-=∑n k k n n ; ③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n二.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常见的裂项技巧 积累裂项模型1:等差型(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n(5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)314(1)(3)11114()()(1)(2)(3)(1)(2)(3)2312++-+==---++++++++++n n n n n n n n n n n n n(8)[]1(1)(1)(2)(1)(1).3+=++--+n n n n n n n n (9)[]1(1)(2)(1)(2)(3)(1)(1)(2)4++=+++--++n n n n n n n n n n n (10)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n(11)2222211111)(()+=-++n n n n n (12)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 积累裂项模型2:根式型 (111=+++n n n n(21(=+++n k n kn k n(31(2121)22121=+--++n n n n(42211(1)11111(1)(1)1++++==+-+++n n n n n n n n (533322221121+++-+-+n n n n n 3333322233111(21121)+-+-++--+n nn n n n n n n(62(1)1(1)1(1)11(1)(1)+-++-+===++++⎡⎤+-+⎣⎦n n n n n n n n n n n n n n n n n n积累裂项模型3:指数型(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n nn n (2)113111()(31)(31)23131++=-----n n n n n(3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n(5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)1 3-=⋅n n a n ,设1()3[(1)]3-=+--+⋅n n n a an b a n b ,易得11,24==-a b ,于是111(21)3(23)344-=---⋅n n n a n n(7)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦nn n n n n n n n n n n n n n n n n n n n n1111(1)1111(1)(1)(1)()22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+-⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n n n n n n n 积累裂项模型4:对数型 11log log log ++=-n a n aa a n na a a 积累裂项模型5:三角型 (1)11(tan tan )cos cos sin()=--αβαβαβ(2)[]11tan(1)tan cos cos(1)sin1=+︒-︒︒+︒︒n n n n(3)1tan tan (tan tan )1tan()=---αβαβαβ(4)[]tan tan(1)tan tan(1);tan1tan (1)1tan tan(1)--=⋅-=--=+⋅-n n n a n n n n n ,则tan tan(1)tan tan(1)tan tan(1)1,1tan1tan1----⋅-=-=-n n n n n n n a积累裂项模型6:阶乘(1)1!(1)!1(1)!+=-+n n n n (2)2(2)(2)!(1)!(221111=-!(1)!!(2)!!(2)!2)++++++===++++++n n n n n n n n n n n n n 常见放缩公式: (1)()()21111211<=-≥--n n n n n n ; (2)()2111111>=-++n n n n n ; (3)2221441124412121⎛⎫=<=- ⎪--+⎝⎭n n n n n ; (4)()()()11!111112!!!11+=⋅=⋅<<=-≥---rr n r r n T C r n r n r n r r r r r; (5)()1111111312231⎛⎫+<+++++< ⎪⨯⨯-⎝⎭nn n n;(6(()2121=<=--≥+-+n nn n n n n n ; (7(211=>=++++n n n n n n n ;(8222212111212122=<==--++-++-++n n nn nn n n n ;(9)()()()()()()()1211222211212121212122212121---=<==----------nn n n n n n n n n n n n()2≥n ; (10()()()()3211111111+--=<+---+-+⋅n n n n n n n n n n n n n()()1121111211⎡⎤++-⎢==+---+⎢-+⎣n n n n n n n n n n n ()2211<≥-+n n n ;(11()()()3221111-+--+-⋅+⋅n n n nn n n n nn n n n()()21211--=≥--n nn n nn n;(12)()()01211122221111111=<==--++-+++-n n n n n C C C n n n n ; (13)()()()111121122121212121---<=-≥-----n n n nn n n . (14)21211112()2()+-+++--=<<=-n n n n n nnn n .经典题型一:通项分析法1.(2022·云南民族大学附属中学模拟预测(理))数列112,134,158,1716,,()1212n n -+,的前n 项和n S 的值等于_____________2.(2022·湖南·模拟预测)已知单调递减的正项数列{}n a ,2n ≥时满足()()()22111111210n n n n n n n n n a a a a a a a a a ----+++-++=.112n a S =,为{}n a 前n 项和.(1)求{}n a 的通项公式; (2)证明:11n S n >+3.(2022·全国·高三专题练习)求和()()()22122323322332322n n n n n S --=+++⋅++⋅⋅⋅++⋅+⋅+⋅⋅⋅+.4.数列9,99,999,⋯的前n 项和为( )A .10(101)9nn -+ B .101n - C .10(101)9n- D .10(101)9nn --经典题型二:公式法5.已知等差数列{}n a 中,29a =,521a =. (1)求{}n a 的通项公式;(2)令2na nb =,求数列{}n b 的前n 项和n S .6.如图,从点1(0,0)P 做x 轴的垂线交曲线x y e =于点1(0,1)Q ,曲线在1Q 点处的切线与x 轴交于点2P ,再从2P 做x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1P ,1Q ;2P ,2Q ⋯;n P ,n Q ,记k P 点的坐标为(k x ,0)(1k =,2,⋯,)n .(Ⅰ)试求k x 与1k x -的关系(2)k n ; (Ⅱ)求112233||||||||n n PQ P Q PQ P Q +++⋯+.经典题型三:错位相减法7.(2022·浙江·高三开学考试)已知数列{}n a 的前n 项和为n S ,且111,1n n a S a +==-,数列{}n b 为等差数列,且4365231,7a b S b =+=. (1)求{}n a 与{}n b 的通项公式;(2)记nn n b c a=,求{}n c 的前n 项和为n T .8.(2022·广东深圳·高三阶段练习)已知数列{}n a 的前n 项和为n S ,且38n n S a +=. (1)求数列{}n a 的通项公式;(2)若数列{}n na 的前n 项和为n T ,证明:329n T <.9.(2022·河南·高三开学考试(文))在①121n n a a +=+;②122n n S n +=--;③2n n S a n =-,三个条件中任选一个,补充到下面问题的横线处,并解答. 已知数列{}n a 的前n 项和为n S ,且11a =,______. (1)n a ;(2)设n n b na =求数列{}n b 的前n 项和n T .注:如果选择多个条件解答,按第一个解答计分.10.(2022·湖北·应城市第一高级中学高三开学考试)在数列{}n a 中,11111,1,421n n n n a a b a a +==-=-,其中N n *∈. (1)证明数列{}n b 是等差数列,并写出证明过程; (2)设122n nn b b c -=,数列{}n c 的前n 项和为n T ,求n T ;经典题型四:分组求和法11.(2022·河南省杞县高中高三开学考试(文))已知数列{}n a 满足213,21n n a a a +==+,设1n n b a =+.(1)证明:{}n b 是等比数列; (2)求13521n a a a a +++++.12.(2022·广东·高三开学考试)已知数列{}n a 满足13a =,22a =,21,213,2n n n a n k a a n k+-=-⎧=⎨=⎩.(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前2n 项的和2n S .13.(2022·甘肃·高台县第一中学高三开学考试(文))已知公差不为0的等差数列{}n a 满足11a =.若5a ,2a ,1a 成等比数列.(1)求{}n a 的通项公式;(2)设12n n n b a -=+,求数列{}n b 的前n 项和n S14.(2022·河南·高三开学考试(文))已知等比数列{}n a 的公比大于1,26a =,1320a a +=. (1)求{}n a 的通项公式; (2)若12331log log 22n n n n b a a a ++=+,求{}n b 的前n 项和n T .15.(2022·河南·高三开学考试(理))已知等差数列{}n a 的公差为(0)d d >,前n 项和为n S ,等差数列{}n b 的公差为2d ,且13b =,36S =,73a b =. (1)求数列{}n a ,{}n b 的通项公式;(2)设112nan n n c b b +=+,求数列{}n c 的前n 项和n C .经典题型五:裂项相消法16.(2022·安徽·芜湖一中模拟预测)已知数列{}n a 满足:()12121,3,21,n n n a a a a a n *++==+=+∈N .(1)证明数列{}1n n a a +-为等差数列,并求数列{}n a 的通项公式.(2)若524n n c a n ⎛⎫=+- ⎪⎝⎭,证明:121111nc c c +++<.17.(2022·黑龙江·高三开学考试)已知数列{}n a 的首项为1,满足3434a a a a -=,且2n na a +,21n n a a ++,1成等差数列. (1)求{}n a 的通项公式;(2)证明:1232343451214n n n a a a a a a a a a a a a +++++⋅⋅⋅+<.18.(2022·浙江·高三开学考试)已知数列{}n a 为公差不为0的等差数列,且21244,,,a a a a =成等比数列.(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,令1(1)n n n na b S +=-,求数列{}n b 的前2022项和.19.(2022·云南·昆明一中高三开学考试)已知数列{}n a 的前n 项和为,0n n S a >,且2241n n n a a S +=-.(1)求{}n a 的通项公式;(2)设1nn n n S b a a +=的前n 项和为n T ,求n T .20.(2022·安徽·高三开学考试)已知数列{}n a 满足(12122n n a a a a n -+++-=-且)*Nn ∈,且24a =.(1)求数列{}n a 的通项公式;(2)设数列()()1211n n n a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和为n T ,求证:213n T <.21.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且满足12a =,1436n n n a a S ++=+.(1)求n a ;(2)求数列()21n n n n a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.22.(2022·河南·高三开学考试(文))已知数列{}n a 是递增的等差数列,3a 是1a 与11a 的等比中项,且25a =.若1n n n b a a +{}n b 的前n 项和n S =( ) A 322n +B 352n +C 325n +D 355n +经典题型六:倒序相加法23.(2022·全国·高三专题练习)德国大数学家高斯年少成名,被誉为数学届的王子,19岁的高斯得到了一个数学史上非常重要的结论,就是《正十七边形尺规作图之理论与方法》.在其年幼时,对123100+++⋯⋯+的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法,现有函数()22x x f x +{}n a 满足()121(0)(1)N n n a f f f f f n n n n *-⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若12n n n b a +=,则{}n b 的前n 项和n S =_________.24.(2022·全国·高三专题练习)设函数()12ln xf x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______.25.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)德国大数学家高斯年少成名,被誉为数学界的王子.在其年幼时,对123100++++的求和运算中,提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成;因此,此方法也称之为高斯算法.现有函数4()42xx f x =+,则1232018()()()()2019201920192019f f f f ++++等于( ) A .1008B .1009C .2018D .201926.(2022·全国·高三专题练习)函数()ln f x x =,其中()()2f x f y +=,记()()()11*ln ln ln ln nn n nn S x x y xyy n N --=++++∈,则202211i iS==∑( )A .20222023 B .20232022 C .20234044D .40442023经典题型七:并项求和27.(2022·全国·高三专题练习)数列{}n a 满足12(1)31n n n a a n +++-=-,前16项和为540,则2a =__.28.(2022·全国·高三专题练习(文))在等差数列{an }中,a 3+a 5=a 4+7,a 10=19,则数列{an cos nπ}的前2020项的和为( ) A .1009B .1010C .2019D .202029.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为(1)sin 2n n a n n π=+⋅(n ∈+N ),其前n 项和为n S ,则8S =_______.30.(2022·江苏·高邮市第一中学高三阶段练习)已知数列{}n a 满足120a a +=,(1)22(1)2n n n n a a +++-=,则数列{}n a 的前2020项的和为( )A .0B .1010C .2020D .202431.(2022·河北唐山·一模)已知数列{}n a 满足11a =-,()11112nn n a a n ++-=-,记数列{}n a 的前n 项和为n S . (1)求101S 的值; (2)求n S 的最大值.经典题型八:先放缩后裂项求和32.(2022·黑龙江·哈尔滨市第六中学校高三阶段练习)已知数列{}n a 的前n 项和为n S ,且满足112a =,()1202n n n a S S n -+=≥(1)求n a 和 n S(2)求证:22221231124n S S S S n+++⋯+≤-.33.(2022·全国·高三专题练习)已知数列{}n a 前n 项和为n S 满足12S =,()132n n S S n N *+=+∈.(1)求通项公式n a ; (2)设()n n n a S b n N *=∈,求证:1221 (32)n b b b n +++-≤.34.(2022·全国·高三专题练习)求证:11114313213217n -+++<+⨯+⋅+.经典题型九:分段数列求和35.(2022·湖南·高三阶段练习)已知数列{}n a 中,11a =,12n n n a a +=,令2n n b a =.(1)求数列{}n b 的通项公式;(2)若222,2log log nn n n b n c n b b +⎧⎪⎪=⎨⎪⎪+⎩为奇数为偶数,求数列{}n c 的前14项和.36.(2022·全国·模拟预测)已知数列{}n a 满足11a =,1,,2,.n n na n a a n +⎧=⎨⎩为奇数为偶数 (1)令2n nb a =,求1b ,2b 及{}n b 的通项公式; (2)求数列{}n a 的前2n 项和2n S .37.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且2,,为奇数为偶数⎧=⎨⎩n n n S n n(1)求{}n a 的通项公式;(2)设1n n n b a a +=+,求数列{}n b 的前20项和20T .38.(2022·重庆·高三阶段练习)已知数列{}n a 的前n 项和()2n S n n R λλ=+∈,且36a =,正项等比数列{}n b 满足:11b a =,2324b b a a +=+. (1)求数列{}n a 和{}n b 的通项公式;(2)若2021n n c b =-,求数列{}n c 的前n 项和n T .经典题型十:含绝对值、取整、取小数等数列求和 39.(2022·全国·高三专题练习)已知正项数列{}n a 满足222320nn a a n n--=(n *∈N ). (1)求数列{}n a 的通项公式; (2)令π3|sin |124n n a b =-,记{}n b 的前n 项和为n S ,求2021S .40.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和()2n S n n R λλ=+∈,且36a =,正项等比数列{}n b 满足:11b a =,2324b b a a +=+. (1)求数列{}n a 和{}n b 的通项公式;(2)若2021n n c b =-,求数列{}n c 的前n 项和n T .41.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知n S 是数列{}n a 的前n 项和,5(4)n S n n =+(1)求{}n a 的通项公式;(2)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]2.62=.42.(2022·全国·高三专题练习)若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .16743.(2022·上海中学高三期中)已知数列{}n x 满足00x =且112,k k x x k N *-+=+∈,则1232021++++x x x x 的最小值是___________.44.(2022·全国·高三专题练习)已知[]x 表示不超过x 的最大整数,例如:[2.3]2=,[]1.52-=-在数列{}n a 中,[]lg ,n a n n N +=∈,记n T 为数列{}n a 的前n 项和,则2021T = ___________. 45.(2022·浙江·高三专题练习)已知数列24nn a n =-,则数列{}n a 的前n 项和n S =___________.经典题型十一:数列插项求和46.(2022·广东广州·高三开学考试)已知集合{}21,A x x n n *==-∈N ,{}=3,n B x x n *=∈N ,将A 与B 中的所有元素按从小到大的顺序排列构成数列{}n a (若有相同元素,按重复方式计入排列)为1,3,3,5,7,9,9,11,….,设数列{}n a 的前n 项和为n S . (1)若27m a =,求m 的值; (2)求50S 的值.47.(2022·全国·高三专题练习)已知数列{}n a ,{}n b 的通项公式分别为2n a n =,2n n b =,现从数列{}n a 中剔除{}n a 与{}n b 的公共项后,将余下的项按照从小到大的顺序进行排列,得到新的数列{}n c ,则数列{}n c 的前150项之和为( ) A .23804B .23946C .24100D .2461248.(2022·全国·高三专题练习)“提丢斯数列”,是由18世纪德国数学家提丢斯给出,具体如下:0,3,6,12,24,48,96,192,,容易发现,从第3项开始,每一项是前一项的2倍;将每一项加上4得到一个数列:4,7,10,16,28,52,100,196,;再将每一项除以10后得到:“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,,则下列说法中,正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9832410⋅+C .“提丢斯数列”前31项和为30321211010⋅+D .“提丢斯数列”中,不超过20的有9项经典题型十二:数列奇偶项求和49.(2022·全国·高三专题练习)设数列{}n a 是公差大于零的等差数列,已知13a =,22424a a =+.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足sin ()cos ()n n n a n b a n ππ⎧=⎨⎩为奇数为偶数,求122021b b b ++⋅⋅⋅+.50.(2022·广东佛山·三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)nn nc na -=,求数列{}n c 的前n 项和n K .51.(2022·全国·高三专题练习)在数列{}n a 中,15a =,且()*121n n a a n N +=-∈.(1)证明:{}1n a -为等比数列,并求{}n a 的通项公式; (2)令(1)n n n b a =-⋅,求数列{}n b 的前n 项和n S .52.(2022·全国·高三专题练习)已知数列{}n a 满足15a =,214321n n a a n n +=-++.(1)证明:数列{}2n a n-为等比数列.(2)求数列(){}1nn a -的前n 项和n S .53.(2022·江苏·高三专题练习)设n S 为数列{}n a 的前n 项和,*1(1)()2n n n nS a n N +=-∈,则数列{}n S 的前7项和为________.1.(2021·浙江·高考真题)已知数列{}n a 满足)111,N 1nn na a n a *+==∈+.记数列{}n a 的前n 项和为n S ,则( ) A .100332S << B .10034S << C .100942S <<D .100952S <<2.(2020·江苏·高考真题)设{an }是公差为d 的等差数列,{bn }是公比为q 的等比数列.已知数列{an +bn }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.3.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.5.(2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.6.(2020·全国·高考真题(理))设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.7.(2020·全国·高考真题(理))设数列{an }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{an }的通项公式并加以证明; (2)求数列{2nan }的前n 项和Sn .8.(2021·全国·高考真题)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和题型归纳Revised on November 25, 2020
数列求和
考点1
错位相减法:求{}n n b a 型数列的前n 项和,其中{}n a 是等差数列,{}n b 是等比数列
例1:已知等差数列{}n a 的前3项和为6,前8项和为-4. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设1(4)((0,)n n n b a q q n N -*=-≠∈,求数列{}n b 的前n 项和n S 例2:已知数列{a n }的前n 项和为S n ,且S n =22n n +,n ∈N ﹡,数列{b n }满足 a n =4log 2b n +3,n ∈N ﹡.
(1)求a n ,b n ; (2)求数列{a n ·b n }的前n 项和T n .
练习1:推导等比数列求和公式q q a S n n --=1)
1(1 (1≠q )
练习2:已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (1)求数列{a n }的通项公式;
(II )求数列12n n a -⎧⎫
⎨⎬
⎩⎭
的前n 项和 练习3:在数列{}n a 中,11a =,211
2(1)n n a a n
+=+⋅.
(Ⅰ)证明数列2{}n a
n 是等比数列,并求{}n a 的通项公式; (Ⅱ)令11
2
n n n b a a +=-,求数列{}n b 的前n 项和n
S 考点二 裂项相消法:
(1)111)1(1+-=+⨯n n n n (2))
1
1(1)(1d n n d d n n +-=+⨯
(3))
1
1(111
1++-=n n n n a a d a a 其中d 是等差数列{}n a 的公差 例1:已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令2
1
1
n n b a =
-(n N +∈),求数列{}n b 的前n 项和n T . 例2:等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.
(2)设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭的前项和.
练习1:已知二次函数()y f x =的图像经过坐标原点,其导函数为
'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()
y f x =的图像上。
(Ⅰ)、求数列{}n a 的通项公式;(Ⅱ)、设1
3
+=n n n a a b ,求数列{}n b 的前n 项和n T
练习2:设正数数列{n a }的前n 项和n S 满足2)1(4
1
+=n n a S . (I )求数列{n a }的通项公式;(II )设1
1
+⋅=
n n n a a b ,求数列{n b }的前n 项和
n T。