(完整版)五多元线性回归模型

合集下载

多元线性回归

多元线性回归

36
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
37
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
38
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
16
目录 上页 下页 返回 结束
§5.2 多元回归参数的估计
2019/11/5
中国人民大学六西格玛质量管理研究中心
17
目录 上页 下页 返回 结束
§5.2 多元回归参数的估计
2019/11/5
中国人民大学六西格玛质量管理研究中心
18
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
在一元线性回归中,回归系数显著性的t检验与回归方 程显著性的F检验是等价的,而在多元线性回归中,这 两种检验不同。
2019/11/5
中国人民大学六西格玛质量管理研究中心
43
目录 上页 下页 返回 结束
§5.4 回归方程的显著性检验
2019/11/5
中国人民大学六西格玛质量管理研究中心
27
目录 上页 下页 返回 结束
§5.3 参数估计量的性质
2019/11/5
中国人民大学六西格玛质量管理研究中心
28
目录 上页 下页 返回 结束
§5.3 参数估计量的性质
性质4 Gauss-Markov定理
2019/11/5
中国人民大学六西格玛质量管理研究中心
29

多元线性回归的计算模型

多元线性回归的计算模型

多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。

1.每个自变量与因变量之间是线性关系。

2.自变量之间相互独立,即不存在多重共线性。

3.误差项ε服从正态分布。

4.误差项ε具有同方差性,即方差相等。

5.误差项ε之间相互独立。

为了估计多元线性回归模型的回归系数,常常使用最小二乘法。

最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。

具体步骤如下:1.收集数据。

需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。

2.建立模型。

根据实际问题和理论知识,确定多元线性回归模型的形式。

3.估计回归系数。

利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。

4.假设检验。

对模型的回归系数进行假设检验,判断自变量对因变量是否显著。

5. 模型评价。

使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。

6.模型应用与预测。

通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。

多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。

这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。

在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。

总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。

通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。

第5章多元线性回归模型PPT课件

第5章多元线性回归模型PPT课件
F ESS / df ESS /(k 1) RSS / df RSS /(n k)
在原假设H0成立的情况下,服从自由度为(k-1 , n-k)的F分布,并根据样本数据计算F值。
给定显著性水平,得到临界值F(k-1,n-k) 比较 F F(k-1,n-k) 或 FF(k-1,n-k) 来拒绝或接受原假设H0,以判定原模型总体上的 线性关系是否显著成立。
假定2 解释变量X是非随机变量,在重复抽样 中固定在给定水平。
假定3 随机误差项的条件期望为0 即: E(ui | X 2i , X 3i ) 0
第2页/共49页
假定4 随机误差项ui具有同方差性。
Var(ui X2i , X3i ) 2 假定5 随机误差项之间无自相关性/无序列 相关。
cov(ui ,uj ) o i j
第12页/共49页
总体方差的估计
ˆ 2 uˆi2 n3
• 残差平方和的自由度=样本容量的大小-待估计的参数的个数
第13页/共49页
§5.3 多元线性回归模型的统计检验
一、拟合优度检验 (一)复判定系数R2的计算公式
R2 ESS TSS
yˆi2 ˆ2
yi2
yi x2i ˆ3
yi2
~
F(m, n
kUR
)
案例
第33页/共49页
案例分析
• 教材P250 1960-1982年美国子鸡需求的例子
• 思考问题:
1)如何根据经济理论预测回归系数的符号?
2)如何检验

H0 : 4 5 0
第34页/共49页
五、模型的参数稳定性检验-邹至庄检验
当利用时间序列数据进行回归时,因变量和 解释变量之间的关系可能会出现结构变动

计量经济学第5章多元线性回归模型PPT课件

计量经济学第5章多元线性回归模型PPT课件
第24页/共53页
在命令栏中输入命令:ls y c x1 x2回车后即得到 估计的结果:
第25页/共53页
估计的回归方程为:
Yˆt 1688.174 0.288774X1t 12.82854X 2t
这个回归结果说明,在价格指数保持不变的条件下, 平均工资增加1元,消费水平增加约0.29元;在平 均工资不变的条件下,价格指数每增加一个百分点, 消费水平会增加约12.83元。 由这个结果可以得到,价格指数对消费的影响程度 是较高的。
Y1 1 X11 X 21 ... X k1 0 u1
Y2
1
X 12
X 22
...
X
k
2
1
u
2
... ... ... ... ... ... ..(. 5-2.8..)
Yn
1
X 1n
X 2n
...
X
kn
k
u
n
其中
Y1
1
Y
Y2
X
1
X 11 X 12
... ... ...
式(5-21)、(5-22)、(5-23)称为正规方程, 由其组成的方程组称为正规方程组。
第14页/共53页
可从中解出诸 ˆ j :
ˆ0 Y ˆ1X1 ˆ2 X 2
ˆ1
yi x1i
x
2 2i
yi x2i
x1i x2i
x12i x22i ( x1i x2i ) 2
ˆ2
第27页/共53页
(1)各变量的均值在回归直线上
由式(5-24)即得: Y ˆ0 ˆ1X1 ˆ2 X2 (2)Y估计值的均值等于Y的实际值的均值
即: Yˆ Y (3)残差的均值为0

多元线性回归模型多元线性回归模型

多元线性回归模型多元线性回归模型


2

i E(i )
假设3,E(X’)=0,即
E


X 1i i





X 1i E(i )



0
X Ki i X Ki E(i )
假设4,向量 有一多维正态分布,即
μ~ N(0, 2I)
XY XXβˆ 0
得到: 于是:
XY XXβˆ
βˆ (XX)1 XY
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
1 X 1
(
X
'
X
)


1 X1
1 X2

1 Xn

1 1
X 2
Xn



多元线性回归模型:表现在线性回归模型中的 解释变量有多个。
一般表现形式:
Yi 0 1X1i 2 X 2i k X ki i i=1,2…,n
其中:k为解释变量的数目,j称为回归参数
(regression coefficient)。
习惯上:把常数项看成为一虚变量的系 数,该虚变量的样本观测值始终取1。于是: 模型中解释变量的数目为(k+1)
ˆk
在离差形式下,参数的最小二乘估计结果为
βˆ (xx)1 xY
ˆ0 Y ˆ1 X1 ˆk X k
⃟随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏估
计量为:
ˆ 2
ei2 ee
n k 1 n k 1
*二、最大或然估计
由此得到正规方程组

(优选)多元回归模型

(优选)多元回归模型

i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,
即X满秩。 假设2,
E (μ)
E
1
E(1
)
0
n E( n )
E (μμ )
E
1
1
n
E
12
1 n
n
n
1
2 n
var(1 )
cov(1, n ) 2 0
i=1,2…n
根据最小二乘原理,参数估计值应该是下列方程组的解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
其中
n
n
Q ei2 (Yi Yˆi ) 2
i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ))
i 1
于是得到关于待估参数估计值的正规方程组:
ˆ 2
e
2 i
e e
n k 1 n k 1
样本容量问题
⒈ 最小样本容量
所谓“最小样本容量”,即从最小二乘原理 和最大或然原理出发,欲得到参数估计量,不管 其质量如何,所要求的样本容量的下限。
模型中解释变量的数目为(k+1)
Yi 0 1 X 1i 2 X 2i k X ki i
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
方程表示:各变量X值固定时Y的平均响应。

(完整版)多元线性回归模型原理

(完整版)多元线性回归模型原理

(完整版)多元线性回归模型原理研究在线性关系相关性条件下,两个或者两个以上自变量对一个因变量,为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。

多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型类似,只是在计算上为复杂需借助计算机来完成。

计算公式如下:设随机y 与一般变量12,,k x x x L 的线性回归模型为:01122k k y x x x ββββε=++++其中01,,k βββL 是1k +个未知参数,0β称为回归常数,1,k ββL 称为回归系数;y 称为被解释变量;12,,k x x x L 是k 个可以精确可控制的一般变量,称为解释变量。

当1p =时,上式即为一元线性回归模型,2k ≥时,上式就叫做多元形多元回归模型。

ε是随机误差,与一元线性回归一样,通常假设2()0var()E εεσ?=?=?同样,多元线性总体回归方程为01122k k y x x x ββββ=++++L 系数1β表示在其他自变量不变的情况下,自变量1x 变动到一个单位时引起的因变量y 的平均单位。

其他回归系数的含义相似,从集合意义上来说,多元回归是多维空间上的一个平面。

多元线性样本回归方程为:01122k ky x x x ββββ=++++L多元线性回归方程中回归系数的估计同样可以采用最小二乘法。

由残差平方和:()0SSE y y∑=-= 根据微积分中求极小值得原理,可知残差平方和SSE 存在极小值。

欲使SSE 达到最小,SSE 对01,,k βββL 的偏导数必须为零。

将SSE 对01,,k βββL 求偏导数,并令其等于零,加以整理后可得到1k +各方程式:?2()0i SSE y yβ?=--=?∑ 0?2()0i SSE y y x β?=--=?∑通过求解这一方程组便可分别得到01,,k βββL 的估计值0?β,1?β,···?kβ回归系数的估计值,当自变量个数较多时,计算十分复杂,必须依靠计算机独立完成。

多元线性回归模型

多元线性回归模型

多元线性回归模型1.假定条件、最小二乘估计量和高斯—马尔可夫定理 多元线性回归模型:y t = β0 +β1x t 1 + β2x t 2 +…+ βk - 1x t k -1 + u t , (1.1)其中y t 是被解释变量(因变量),x t j 是解释变量(自变量),u t 是随机误差项,βi , i = 0, 1, … , k - 1是回归参数(通常未知)。

)1(21)1(110)(111222111111)1(21111⨯⨯-⨯---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡T T k k k T k T TjT k j k j T Tu u u x x x x x x x x x y y yβββ (1.3)Y = X β + u , (1.4)为保证得到最优估计量,回归模型(1.4)应满足如下假定条件。

假定 ⑴ 随机误差项u t 是非自相关的,每一误差项都满足均值为零,方差 σ2相同且为有限值,即E(u ) = 0 = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00 , V ar (u ) = E(u ˆu ˆ' ) = σ 2I = σ 2⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10000001假定 ⑵ 解释变量与误差项相互独立,即 E(X 'u ) = 0假定 ⑶ 解释变量之间线性无关。

rk(X 'X ) = rk(X ) = k 其中rk (⋅)表示矩阵的秩。

假定⑷ 解释变量是非随机的,且当T → ∞ 时T – 1X 'X → Q其中Q 是一个有限值的非退化矩阵。

最小二乘 (OLS) 法的原理是求残差(误差项的估计值)平方和最小。

代数上是求极值问题。

min S = (Y - X βˆ)' (Y - X βˆ) = Y 'Y -βˆ'X 'Y - Y ' X βˆ +βˆ'X 'X βˆ= Y 'Y - 2βˆ'X 'Y + βˆ'X 'X βˆ (1.5)因为Y 'X βˆ是一个标量,所以有Y 'X βˆ = βˆ'X 'Y 。

多元线性回归模型

多元线性回归模型

多元线性回归模型多元线性回归模型是一种广泛应用于统计学和机器学习领域的预测模型。

它通过使用多个自变量来建立与因变量之间的线性关系,从而进行预测和分析。

在本文中,我们将介绍多元线性回归模型的基本概念、应用场景以及建模过程。

【第一部分:多元线性回归模型的基本概念】多元线性回归模型是基于自变量与因变量之间的线性关系进行建模和预测的模型。

它假设自变量之间相互独立,并且与因变量之间存在线性关系。

多元线性回归模型的数学表达式如下:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。

回归系数表示自变量对因变量的影响程度,误差项表示模型无法解释的部分。

【第二部分:多元线性回归模型的应用场景】多元线性回归模型可以应用于各种预测和分析场景。

以下是一些常见的应用场景:1. 经济学:多元线性回归模型可以用于预测GDP增长率、失业率等经济指标,揭示不同自变量对经济变量的影响。

2. 医学研究:多元线性回归模型可以用于预测患者的生存时间、治疗效果等医学相关指标,帮助医生做出决策。

3. 市场研究:多元线性回归模型可以用于预测产品销量、市场份额等市场相关指标,帮助企业制定营销策略。

4. 社会科学:多元线性回归模型可以用于研究教育水平对收入的影响、家庭背景对孩子成绩的影响等社会科学问题。

【第三部分:多元线性回归模型的建模过程】建立多元线性回归模型的过程包括以下几个步骤:1. 数据收集:收集自变量和因变量的数据,确保数据的准确性和完整性。

2. 数据清洗:处理缺失值、异常值和离群点,保证数据的可靠性和一致性。

3. 特征选择:根据自变量与因变量之间的相关性,选择最相关的自变量作为模型的输入特征。

4. 模型训练:使用收集到的数据,利用最小二乘法等统计方法估计回归系数。

5. 模型评估:使用误差指标(如均方误差、决定系数等)评估模型的拟合程度和预测性能。

(完整版)多元线性回归模型公式

(完整版)多元线性回归模型公式

二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。

因此,多元地理回归模型更带有普遍性的意义。

(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。

那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3。

2。

11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。

如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3。

2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。

偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。

根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3。

2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3。

2.14)式展开整理后得: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x yx b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2。

多元线性回归模型

多元线性回归模型

多元线性回归模型引言:多元线性回归模型是一种常用的统计分析方法,用于确定多个自变量与一个连续型因变量之间的线性关系。

它是简单线性回归模型的扩展,可以更准确地预测因变量的值,并分析各个自变量对因变量的影响程度。

本文旨在介绍多元线性回归模型的原理、假设条件和应用。

一、多元线性回归模型的原理多元线性回归模型基于以下假设:1)自变量与因变量之间的关系是线性的;2)自变量之间相互独立;3)残差项服从正态分布。

多元线性回归模型的数学表达式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y代表因变量,X1,X2,...,Xn代表自变量,β0,β1,β2,...,βn为待估计的回归系数,ε为随机误差项。

二、多元线性回归模型的估计方法为了确定回归系数的最佳估计值,常采用最小二乘法进行估计。

最小二乘法的原理是使残差平方和最小化,从而得到回归系数的估计值。

具体求解过程包括对模型进行估计、解释回归系数、进行显著性检验和评价模型拟合度等步骤。

三、多元线性回归模型的假设条件为了保证多元线性回归模型的准确性和可靠性,需要满足一定的假设条件。

主要包括线性关系、多元正态分布、自变量之间的独立性、无多重共线性、残差项的独立性和同方差性等。

在实际应用中,我们需要对这些假设条件进行检验,并根据检验结果进行相应的修正。

四、多元线性回归模型的应用多元线性回归模型广泛应用于各个领域的研究和实践中。

在经济学中,可以用于预测国内生产总值和通货膨胀率等经济指标;在市场营销中,可以用于预测销售额和用户满意度等关键指标;在医学研究中,可以用于评估疾病风险因素和预测治疗效果等。

多元线性回归模型的应用可以为决策提供科学依据,并帮助解释变量对因变量的影响程度。

五、多元线性回归模型的优缺点多元线性回归模型具有以下优点:1)能够解释各个自变量对因变量的相对影响;2)提供了一种可靠的预测方法;3)可用于控制变量的效果。

然而,多元线性回归模型也存在一些缺点:1)对于非线性关系无法准确预测;2)对异常值和离群点敏感;3)要求满足一定的假设条件。

第八章:多元线性回归模型-PPT精选文档

第八章:多元线性回归模型-PPT精选文档


表示: 各变量 X值固定(即给定)时 Y的平均响 应(即均值)。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,X j每变化1个单位时,Y的 均值E(Y)的变化; 或者说j给出了X j的单位变化对Y均值的 “直接”或“净”(不含其他变量)影响。
用来估计总体回归函数的样本回归函数为:
§3.2 多元线性回归模型的估计
一、普通最小二乘估计
*二、最大或然估计(Maximum Likelihood) *三、矩估计(Moment Method)
四、参数估计量的性质
* 五样本容量问题
六、估计实例
说 明
(注:参数有两类:结构参数和分布参数,分布参数是 指随机误差项的均值和方差) 估计方法: 3大类方法:OLS、ML或者MM – – 在经典模型中多应用OLS 在非经典模型中多应用ML或者MM
ˆ ˆ ˆ ˆ ˆ Y X X X i 0 1 1 i 2 2 i ki ki


ˆ ˆ ˆ ˆ X X X e 其随机表示式: Y i 0 1 1 i 2 2 i ki ki i
ei称为残差或剩余项(residuals),可看成是 总体回归模型中随机扰动项i的近似替代。
n
Q
ˆ ˆ ˆ ˆ ( Y ( X X X )) i 0 1 1 i 2 2 i k k i
i 1
n
2
• 于是得到关于待估参数估计值的正规方程组:
ˆ ˆ X ˆ X ˆ X ) SY S( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2 2i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2i 2i k ki 2i i 2i ˆ ˆ X ˆ X ˆ X ) X SY X S( 0 1 1i 2 2i k ki ki i ki

多元线性回归模型

多元线性回归模型

多元线性回归模型(1)模型准备多元线性回归模型是指含有多个解释变量的线性回归模型,用于解释被解释的变量与其他多个变量解释变量之间的线性关系。

其数学模型为:上式表示一种 p 元线性回归模型,可以看出里面共有 p 个解释变量。

表示被解释变量y 的变化可以由两部分组成:第一部分,是由 p 个解释变量 x 的变化引起的 y 的线性变化部分。

第二部分,是要解释由随机变量引起 y 变化的部分,可以用 \varepsilon 部分代替,可以叫随机误差,公式中的参数都是方程的未知量,可以表示为偏回归常数和回归常数,则多元线性回归模型的回归方程为:(2)模型建立首先在中国A股票市场中,根据各指标与估值标准 y 的关联度来选取变量,选取指标为:年度归母净利润 x_{1} 、年度营业收入 x_{2} 、年度单只股票交易量 x_{4} 、年度单只股票交易量金额 x_{6} 。

有如下表达式为:其中 y 是因变量, x_{1},x_{2},x_{4},x_{6} 是自变量,α为误差项,b_{1},b_{2},b_{4},b_{6} 为各项系数。

(3)中国A股票市场模型求解运用SPSS软件,运用多元线性回归方程可以得出如下:下表模型有4个自变量,模型调整后的拟合度为0.976,说明模型的拟合度非常好。

下表为方差分析表,告诉我们F 的值值为1.794,显著性概率p 为0.004小于0.005,因此自变量系数统计较为显著。

下表给出模型常数项和自变量系数,并对系数统计显著性进行检验,常数项的值为2.618,显著性为0.002,统计比较显著,其它指标的显著性都小于0.005,故该模型比较准确。

故得出中国A股市场中的估值水平与这四个指标的线性关系为:(4)美国NASDAQ市场模型求解下表模型有4个自变量,模型调整后的拟合度为0.862,说明模型的拟合度非常好。

下表为方差分析表,告诉我们 F 值为15.081,显著性概率 p 为0.005等于0.005,因此自变量系数统计较为显著。

第4章多元线性回归模型

第4章多元线性回归模型
4、当误差项服从正态分布时,参数检验可 用t分布。因为对于j=1,2,…,k有
ˆ j பைடு நூலகம் j s ˆ
j
~ t Nk
ˆ ˆ ˆ 这是因为Var( )=E( -β )( -β )’,而
ˆ (xx)1 xy (xx)1 x(x ) (xx)1 x ˆ 所以 Var() E[(xx)1 x][(xx)1 x] E[(xx)1 xx(xx)1 ]
RSS R T SS
2
(Yi Y) 2 ˆ
( Y Y)
i
2
1
( Y Y)
i
i2 ˆ
2
第4章 多元线性回归模型
3、调整的R2,记
R 1
2
与R2关系
( Y Y)
i
2
i2 /( N k ) ˆ
2
/( N 1)
N 1 R 1 (1 R ) Nk
x)1 xE()x(xx)1 2 (xx)1 (x
第4章 多元线性回归模型
ˆ ) 2 (xx)1 即 Var ( 对二元线性回归模型有 x 1 x x x ) (x x x x x x (1 r
第4章 多元线性回归模型
§4.2 回归统计量 1、高斯-马尔可夫定理 在多元回归模型假设1~5成立的条件下,β ˆ 的最小二乘(LS)估计 ,也是它的最小方差 线性无偏估计。 2、当误差项服从正态分布时,最小二乘估 计也是极大似然估计。以一元为例,对应的 似然方程为:
1 1 N 1/ 2 2 ln L N ln ln(2) 2 ( yi x i) 2 2 i 1
第4章 多元线性回归模型

多元线性回归模型

多元线性回归模型

多元线性回归模型在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。

而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。

例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。

这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。

多元回归分析预测法是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。

当自变量与因变量之间存在线性关系时,称为多元线性回归分析。

多元回归分析可以达到以下目的。

(1)了解因变量和自变量之间的关系是否存在,以及这种关系的强度。

也就是以自变量所解释的因变量的变异部分是否显著,且因变量变异中有多大部分可以由自变量来解释。

(2)估计回归方程,求在自变量已知的情况下因变量的理论值或预测值,以达到预测目的。

(3)评价特定自变量对因变量的贡献,也就是在控制其他自变量不变的情况下,该处变量的变化所导致的因变量变化情况。

(4)比较各处变量在拟合的回归方程中相对作用大小,寻找最重要的和比较重要的自变量。

假定被解释变量Y与多个解释变量x1,x2,…,x k之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型,即:式中,Y为被解释变量;x j(j=1,2,…,k)为k个解释变量,β(j j=1,2,…,k)为k个未知参数,β0是常数项,β1,β2,…,βk是回归系数,β1是x2,x3,…,x k固定时,x1每增加一个单位对Y的效应,即x1对Y的偏回归系数,同理,β2是x2对Y的偏回归系数;μ为随机误差项。

被解释变量Y的期望值与解释变量x1,x2,…,x k的线性方程为:式(4.19)称为多元总体线性回归方程,简称总体回归方程。

对于n组观测值,其方程组形式为:多元线性回归模型包含多个解释变量,多个解释变量同时对被解释变量发生作用,若要考察其中一个解释变量对被解释变量的影响就必须假设其他解释变量保持不变来进行分析。

多元线性回归模型资料讲解

多元线性回归模型资料讲解

多元线性回归模型资料讲解多元线性回归模型第三章多元线性回归模型基本要求:1、理解多元线性回归模型的定义2、理解多元线性回归模型的假定3、掌握参数估计的计算4、理解参数统计性质第一节多元线性回归模型及假定一、多元线性回归模型许多经济现象往往要受多个因素的影响,研究被解释变量受多个解释变量的影响,就要利用多元回归模型。

多元线性回归模型与一元线性回归模型基本类似,只不过解释变量由一个增加到两个以上,被解释变量Y 与多个解释变量k X X X ,,,21 之间存在线性关系。

假定被解释变量Y 与多个解释变量k X X X ,,,21 之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。

即k k X X X Y 22110(3-1)其中Y 为被解释变量,(1,2,,)j X j k L 为k 个解释变量,(0,1,2,,)j j k L 为1k 个未知参数,为随机误差项。

被解释变量Y 的期望值与解释变量k X X X ,,,21 的线性方程为:01122()k k E Y X X X L (3-2)称为多元总体线性回归方程,简称总体回归方程。

对于n 组观测值),,2,1(,,,,21n i X X X Y ki i i i ,其方程组形式为:01122,(1,2,,)i i i k ki i Y X X X i n L L(3-3) 即nkn k n n n k k k k X X X Y X X X Y X X X Y 2211022222121021121211101 其矩阵形式为n Y Y Y 21=kn n nk k X X X X X X X X X212221212111111k 210+n 21 即Y X βμ(3-4) 其中1n Y n Y Y Y 21为被解释变量的观测值向量; )1(k n Xkn n nk k X X X X X X X X X212221212111111为解释变量的观测值矩阵;(1)1k βk 210为总体回归参数向量;1nμn 21为随机误差项向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 多元线性回归模型
实验目的:1.掌握用excel 一次性算出回归模型参数的方法和步骤; 2.正确分析输出结果并得出正确的回归模型。

实验内容:
某省1978~1989年消费基金、国民收入使用额和平均人口资料如表5.1所示。

试配合适当的回归模型并进行各种检验;若1990年该省国民收入使用额为67十亿元,平均人口为58百万人,当显著性水平 =0.05时,试估计1990年消费基金的预测区间。

表5.1 某省1978~1989年消费基金、国民收入使用额和平均人口资料
操作步骤:
1.在excel 的工作表中输入如表5.1所示的消费基金(十亿元)y 、国民收入使用
额(十亿元)2x 和平均人口数(百万人)3x 的样本数据。

2.点击“工具—数据分析—回归”,在Y 值输入区域,拖动鼠标选择Y 样本值A3:A14,在X 值输入区域,拖动鼠标选择X 样本值B3:C14,如图5.1所示。

图5.1 应用excel“数据分析”功能求多元线性回归的有关参数
4.点击图
5.1所示中的确定,弹出多元回归分析有关参数的窗口,如图5.2所示。

图5.2 应用excel“数据分析”功能求多元线性回归的有关参数
结果分析:
“回归统计”中Multiple R为复相关系数;R Square为可决系数R2;Adjusted为修正的可决系数;“标准误差”为σ的点估计值,该值在求Y的预测区间和控制范围时要用到。

方差分析表中Singnificance F为对回归方程检验所达到的临界显著性水平,即P值;SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平。

图5.2 中最后部分给出的是各回归系数及对回归系数的显著性检验结果。

Intercept为截距,即常数项;Coefficients为回归系数;“标准误差”为对各个回归系数标准差的估计;t Stat为对回归系数进行t检验时t统计量的值。

下限95%和上限95%分别给出了各回归系数
的95%置信区间。

由图 5.2的输出结果,可以得到本例中的回归系数为0ˆβ=-20.6035,1ˆβ=0.5408, 2
ˆβ=0.4693。

故所求回归方程为 Y ˆ=-20.6035+0.54081X +0.46932
X 由方差分析表,回归方程检验的P 值为3.63338E10,因而回归方程是极高度著的,再
由X 1和X 2的检验结果,P 值分别为0.04252和0.189136可知两个解释变量的作用也都是显
著的,可以用来预测和控制。

相关文档
最新文档