2010~2018江苏高考解析几何汇编(文)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010~2018年高考解析几何汇编
1、考纲要求:直线的斜率和倾斜角B直线方程C直线的平行与垂直关系B两直线的交点B两点间的距离、点到直线的距离B圆的标准方程与一般方程C
直线与圆、圆与圆的位置关系B椭圆标准方程与性质B双曲线标准方程与性质A 抛物线的标准方程与性质A
2、高考解读:通常是两小一大,填空题一方面考查直线与圆的位置关系,另一方面考查圆锥曲线的概念与几何性质,解答题主要是直线与圆、直线与圆锥曲线的综合题,个别考题是基础题,多数考题是中档题,特别是解答题主要考查学生的运算能力和学生的观察、推理以及创造性地综合分析、解决问题的能力,有可能出现难题。
一、直线与圆的位置关系
★★9.(5分)(2010•江苏)在平面直角坐标系xOy中,已知圆x2+y2=4上有且仅有四个点到直线12x﹣5y+c=0的距离为1,则实数c的取值范围是.★★★14.(5分)(2011•江苏)设集合
,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是.
★★★12.(5分)(2012•江苏)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.
★★9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.
★★10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.
★★13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.
★★★12.(5分)(2018•江苏)在平面直角坐标系xOy中,A为直线l:y=2x
上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.
★★★17.(14分)(2013•江苏)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.
★★★18.(16分)(2016•江苏)如图,在平面直角坐标系xOy中,已知以M 为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.
二、圆锥曲线的定义与几何性质
★★6.(5分)(2010•江苏)在平面直角坐标系xOy中,双曲线上一
点M,点M的横坐标是3,则M到双曲线右焦点的距离是.
★★8.(5分)(2012•江苏)在平面直角坐标系xOy中,若双曲线
的离心率为,则m的值为.
★★3.(5分)(2013•江苏)双曲线的两条渐近线方程为.
★★★12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.
★★12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c 的最大值为.
★★3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的
焦距是.
★★★10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆
+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,
则该椭圆的离心率是.
★★8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q 的面积是.
★★8.(5分)(2018•江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的
值为.
三、直线与椭圆的综合题
★★★18.(16分)(2010•江苏)在平面直角坐标系xOy中,如图,已知椭圆=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、
TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.(1)设动点P满足PF2﹣PB2=4,求点P的轨迹;
(2)设x1=2,x2=,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).
★★★★18.(16分)(2011•江苏)如图,在平面直角坐标系xOy中,M、N分
别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P
在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k
(1)若直线PA平分线段MN,求k的值;
(2)当k=2时,求点P到直线AB的距离d;
(3)对任意k>0,求证:PA⊥PB.
★★★19.(16分)(2012•江苏)如图,在平面直角坐标系xOy中,椭圆
(a>b>0)的左、右焦点分别为F1(﹣c,0),F2(c,0).已知(1,e)和(e,)都在椭圆上,其中e为椭圆的离心率.
(1)求椭圆的方程;
(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.
(i)若AF1﹣BF2=,求直线AF1的斜率;
(ii)求证:PF1+PF2是定值.