多项式除以单项式法则
第2课时 多项式除以单项式
探究点二:整式的混合运算 【例2】 计算:(1)[(2a+3b)2-(2a-b)(2a+b)]÷2b; (2)[x(x2y2-xy)-y(x2-x3y)]÷x2y. 【导学探究】 应先计算 括号内 的,再算除法.
解:(1)原式=(4a2+12ab+9b2-4a2+b2)÷2b=(12ab+10b2)÷2b =12ab÷2b+10b2÷2b =6a+5b.
(2)原式=(x3y2-x2y-x2y+x3y2)÷x2y =(2x3y2-2x2y)÷x2y =2xy-2.
整式混合运算有三个易错点 (1)运算顺序. (2)同底数幂乘、除、乘方运算中指数的变化规律. (3)运算过程中的符号问题.
1.计算(14a3b2-21ab2)÷7ab2等于( A )
(A)2a2-3
第2课时 多项式除以单项式
1.法则:多项式除以单项式,先把这个多项式的每一项分别除以 单项式 ,再 把所得的商相 加 . 2.符号表示:(a+b+c)÷m= a÷m+b÷m+c÷m (其中a,b,c,m都是单项式) 3.实质:多项式除以单项式法则的实质是将多项式除以单项式转化为
单项式除以单项式 的除法运算.
须是2xy,则小亮报的一个除式是
1 x2 y 2
.
9
4
解:(1)原式=25x2÷5x+(-10xy)÷5x+15x÷5x =5x-2y+3.
(4)[(x+2y)(x-2y)+4(x-y)2]÷6x.
点击进入 训练案
(B)2a-3
(C)2a2-3b
(D)2a2b-3
2.[(a2)4+a3·a-(ab)2]÷a的结果为( B )
初一数学整式的除法知识点例题
初一数学整式的除法知识点例题1、单项式的除法法则单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意:首先确定结果的系数即系数相除,然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式2、多项式除以单项式的法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。
方法总结:①乘法与除法互为逆运算。
②被除式=除式×商式+余式整式的除法的例题一、选择题1.下列计算正确的是A.a6÷a2=a3B.a+a4=a5C.ab32=a2b6D.a-3b-a=-3b2.计算:-3b32÷b2的结果是A.-9b4B.6b4C.9b3D.9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是A.ab2=ab2B.a32=a6C.a6÷a3=a2D.a3•a4=a124.下列计算结果为x3y4的式子是A.x3y4÷xyB.x2y3•xyC.x3y2•xy2D.-x3y3÷x3y25.已知a3b6÷a2b2=3,则a2b8的值等于A.6B.9C.12D.816.下列等式成立的是A.3a2+a÷a=3aB.2ax2+a2x÷4ax=2x+4aC.15a2-10a÷-5=3a+2D.a3+a2÷a=a2+a二、填空题7.计算:a2b3-a2b2÷ab2=_____.8.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“学习园地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.计算:6x5y-3x2÷-3x2=_____.三、解答题11. 三峡一期工程结束后的当年发电量为5.5×109度,某市有10万户居民,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居民使用多少年?结果用科学记数法表示12.计算.130x4-20x3+10x÷10x232x3y3z+16x2y3z-8xyz÷8xyz36an+1-9an+1+3an-1÷3an-1.13.若xm÷x2n3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,计算3a3n2÷27a4n的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?整式的除法参考答案一、选择题1.答案:C解析:【解答】A、a6÷a2=a4,故本选项错误;B、a+a4=a5,不是同类项不能合并,故本选项错误;C、ab32=a2b6,故本选项正确;D、a-3b-a=a-3b+a=2a-3b,故本选项错误.故选C.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.2.答案:D解析:【解答】-3b32÷b2=9b6÷b2=9b4.故选D.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,计算即可.3.答案:B解析:【解答】A、应为ab2=a2b2,故本选项错误;B、a32=a6,正确;C、应为a6÷a3=a3,故本选项错误;D、应为a3•a4=a7,故本选项错误.故选B.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项分析判断后利用排除法求解.4.答案:B解析:【解答】A、x3y4÷xy=x2y3,本选项不合题意;B、x2y3•xy=x3y4,本选项符合题意;C、x3y2•xy2=x4y4,本选项不合题意;D、-x3y3÷x3y2=-y,本选项不合题意,故选B【分析】利用单项式除单项式法则,以及单项式乘单项式法则计算得到结果,即可做出判断.5.答案:B解析:【解答】∵a3b6÷a2b2=3,即ab4=3,∴a2b8=ab4•ab4=32=9.故选B.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式,利用这个法则先算出ab4的值,再平方.6.答案:D解析:【解答】A、3a2+a÷a=3a+1,本选项错误;B、2ax2+a2x÷4ax=x+a,本选项错误;C、15a2-10a÷-5=-3a2+2a,本选项错误;D、a3+a2÷a=a2+a,本选项正确,故选D【分析】A、利用多项式除以单项式法则计算得到结果,即可做出判断;B、利用多项式除以单项式法则计算得到结果,即可做出判断;C、利用多项式除以单项式法则计算得到结果,即可做出判断;D、利用多项式除以单项式法则计算得到结果,即可做出判断.二、填空题7.答案:b-1解析:【解答】a2b3-a2b2÷ab2=a2b3÷a2b2-a2b2÷a2b2=b-1.【分析】本题是整式的除法,相除时可以根据系数与系数相除,相同的字母相除的原则进行,对于多项式除以单项式可以是将多项式中的每一个项分别除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a,∴它的另一边长是:6a2-9ab+3a÷3a=2a-3b+1.故答案为:2a-3b+1.【分析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1--1]÷x=x3+3x2÷x=x2+3x.【分析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】6x5y-3x2÷-3x2=6x5y÷-3x2+-3x2÷-3x2=-2x3y+1.【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相加计算即可.三、解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×1085.5×109÷2.75×108=5.5÷2.75×109-8=2×10年.答:三峡工程该年所发的电能供该市居民使用2×10年.【分析】先求出该市总用电量,再用当年总发电量除以用电量;然后根据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减计算.12.答案:13x3-2x2+1;24x2y2+16xy2-1;3-3an+1+3an-1÷3an-1=-3a2+1.解析:【解答】130x4-20x3+10x÷10x=3x3-2x2+1;232x3y3z+16x2y3z-8xyz÷8xyz=4x2y2+16xy2-1;36an+1-9an+1+3an-1÷3an-1=-3an+1+3an-1÷3an-1=-3a2+1.【分析】1根据多项式除以单项式的法则计算即可;2根据多项式除以单项式的法则计算即可;3先合并括号内的同类项,再根据多项式除以单项式的法则计算即可.13.答案:39.解析:【解答】xm÷x2n3÷x2m-n=xm-2n3÷x2m-n=x3m-6n÷x2m-n=xm-5n因它与2x3为同类项,所以m-5n=3,又m+5n=13,∴m=8,n=1,所以m2-25n=82-25×12=39.【分析】根据同底数幂相除,底数不变指数相减,对xm÷x2n3÷x2m-n化简,由同类项的定义可得m-5n=2,结合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷27a4n= a2n,∵a2n=3,∴原式= ×3=1.【分析】先进行幂的乘方运算,然后进行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】根据题意得:2.6×107÷1.3×106=2×10=20,则人造地球卫星的速度飞机速度的20倍.感谢您的阅读,祝您生活愉快。
七年级数学下册全部知识点归纳(含概念公式实用)
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中全部字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包含它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1〞。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包含项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不肯定是单项式。
4、整式不肯定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。
3、几个整式相加减的一般步骤:〔1〕列出代数式:用括号把每个整式括起来,再用加减号连接。
〔2〕按去括号法则去括号。
〔3〕合并同类项。
4、代数式求值的一般步骤:〔1〕代数式化简。
〔2〕代入计算〔3〕对于某些特别的代数式,可采纳“整体代入〞进行计算。
第11讲(学生)第1章 整式的乘除 多项式除以单项式
第11讲 多项式除以单项式学习目标:使学生掌握多项式除以单项式的法则,并能熟练地运用法则进行计算。
学习重点:运用多项式除以单项式的法则进行计算。
学习难点:多项式除以单项式的法则及其导出过程。
学习过程:1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
本质:把多项式除以单项式转化成单项式除以单项式。
多项式除以单项式应注意以下几个问题。
(1)多项式除以单项式所得商的项数与这个多项式的项数相同,不要漏除;(2)要熟练地进行多项式除以单项式运算,必须掌握它的基本运算,幂的运算性质,是整式乘除法的基础,只有抓住关键的一步,才能准确地进行多项式除以单项式的运算。
(3)符号仍是运算中的重要问题,用多项式的每一项除以单项式时,注意每一项的符号和单项式的符号。
例1. 计算:(1) a a a 4)420(2÷-; (2) )6()81224(22xy xy xy y x -÷+-例2. 化简求值:已知20082=-y x ,求[]x y x y x y x y x 8)25)(2()23)(23(÷-+--+的值小结:1、首先根据多项式除以单项式法则,把多项式除以单项式“转化”为单项式除以单项式,再根据单项式除以单项式的法则进行计算。
当被除式或除式中含有乘方运算时,应先算乘方,再算除法。
2、(l)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的. 基础训练1.计算题:(1)b a abx x b a 22233)39(÷÷(2)352433553)1094354(ab b a b a b a ÷-+-(3)242322429]21)3(4)3[(b a b ab a a ab ÷⋅⋅-⋅-(4)342333(642)(2)x y z x y z xy xy -+÷(5)])(2[])()(3)(2[3345b a b a b a b a +÷--++-+(6)22()()()x y x y xy ⎡⎤+--÷⎣⎦(7))3()]()([2222b a b a b a ab a ab -÷---(8)4232222(36243)(6)x y x y x y x y -+÷-(9))7()91847728(m mv mr mt mn -÷----(10)32(28147)7a a a a -+÷2.计算题:(1))a 43(a)3a 2a 41(23-÷+- (2)2(2)(4)82x y y y x x x ⎡⎤+-+-÷⎣⎦(3)34232193()()5105a x a x ax --÷- (4)2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦(5)()()426533x x x x -+-÷- (6))3()]()([2222b a b a b a ab a ab -÷---(7))31()369(33334354x a x a x a xa -÷--(8)5432(32168)(2)x x x x -+÷-(9)x x x y y y x 2]8)4()2[(2÷-+-+ (10)342322(72369)(9)x y x y xy xy -+÷-3.填空题: (1)小亮与小明在做游戏,两人各报一个整式,小明报的被除式是322x y xy -,商式必须是2xy ,则小亮报一个除式是 。
多项式除以单项式PPT课件
多项式除以单项式
m(a+b+c)= am+bm+cm 类比 (am+bm+cm)÷m
=am÷m+bm÷m+cm÷m =a+b+c
请说出多项式除以单 项式的运算法则
(am+bm+cm)÷m =am÷m+bm÷m+cm÷m
多项式除以单项式
多项式除以单项式, 先把这个多项式的每一项 除以这个单项式,再把所 得的商相加。
例1.计算: (1)(12a3-8a2-3a)÷4a (2)(6a2b-2ab2-b3)÷(-3b)
1.计算: (1)(-8x+6)÷(-4) (2)(6x2-9x)÷3x (3)(9a3b-12a2b2+8ab3)÷3ab (4)(4x2y-8x3y3)÷(-2x2y)
(5)(-7a4bc2+4a3b2-5a2b3) ÷(-2a2b)
(6)(
3 4
a6x3+
6 5
a9x4
9 10
ax5)
÷3 ax3
5
例2.计算: [5xy2(x2-3xy)-(-3x2y)3]
÷(2xy)2
课堂练习
2:化简
2x y2 yy 4x 8x 2x
课堂总结
1、多项式除以单项式法则:多 项式除以单项式,先把这个多项 式的每一项除以这个多项式,再 把所得的商相加。
多项式除以单项式
课前练习
1.计算: (1)3a2b3+5a2b3 =8a2b3
(2)3a2b3×5a2b3 =15a4b6
多项式除以单项式、平方差公式、完全平方公式练习题
多项式除以单项式:∵(a+b )m=am+bm,∴(am+bm )÷m=a+b,又am ÷m+bm ÷m=a+b,∴(am+bm )÷m=am ÷m+bm ÷m.一般的,多项式除以单项式,先把这个‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗除以这个‗‗‗‗‗‗‗‗‗,再把所得的商‗‗‗‗‗‗‗‗‗‗.1、计算.①);)(32(356334xy xy x y y x -÷-+ ②)32()53243532(xy y x y x y x -÷+-③)31(3)9132(26274b a b a b a -÷- ④;)()(23222y y y xy x x x x y x ÷⎥⎦⎤⎢⎣⎡---⑤[]b a a b a b ab b a a 22322)()(÷----易出现一下几种常见的错误·:(1)忽略符号;(2)遗漏被除式中单独存在的字母;(3)当字母的指数是1时往往忽略不写,但在计算时,易忽略该指数.2、①计算=÷⨯⨯))103(106(46‗‗‗‗‗‗‗‗‗‗‗‗. ②若))((22x x x n m n m -÷÷与2x ³是同类项,且m+5n=13,则m ²-25n ²的值为‗‗‗‗‗‗‗. 平方差公式:(a+b )(a-b)=a ²-ab+ab -b ²=a ²-b ².两个数的和与这两个数的差的积,等于‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗,即(a+b )(a-b)=a ²-b ². 这个公式叫做(乘法的)平方差公式.1、①(2m+3)(2m -3)=‗‗‗‗‗‗‗‗‗‗‗‗;②(2a -b )(b+2a )=‗‗‗‗‗‗‗‗‗‗‗; ③2015×2013=‗‗‗‗‗‗‗‗‗‗‗‗;④(-1+2a )(2a+b )=‗‗‗‗‗‗‗‗‗‗.2、下列各式能用平方差公式计算的是( ).A 、(x -3)(3-x )B 、(-2x -1)(1-2x )C 、(x -3)(2x+3)D 、(-x -3)(x +3)3、下列多项式中,与-x+y 相乘的结果为x ²-y ²得多项式是( ).A 、x+yB 、x -yC 、-x+yD 、-x -y3、对于任意整数n ,式子(2n+3)(2n -3)+(3+n )(3-n)的结果一定能被‗‗‗‗‗数整除A 、3B 、4C 、5D 、64、(1+x ²)(x ²-1)的计算结果是( ).A 、x ²-1B 、x ²+1C 、x -1D 、1-x5、下列计算正确的是( ).A 、-3x ²y ∙5x ²y=2x ²yB 、-2x ²y ³∙2x ³y=-2x yC 、35x ³y ²÷5x ²y=7xyD 、(-2x -y )(2x+y )=4x ²-y ²6、①若a ,b ,c 是三角形的三边长,则代数式(a -b )²-c ²的值( )A 、大于0B 、小于0C 、等于0D 、不能确定②一个三角形的三边分别是a ,b ,c ,则式子(a -c )²-b ²的值( )A 、一定是正数B 、一定是负数C 、可能是正数,也可能是负数D 、可能是07、计算(x+3y )(x -3y)的结果是( )A 、x ²-3y ²B 、x ²-6y ²C 、x ²-9y ²D 、2x ²-6y ²8、若(9+a ²)(a+3)‗‗‗‗‗‗‗=a -81,则横线内的式子是( ).A 、a+3B 、a -3C 、3-aD 、a -99、计算:(m+1)²-m ²=‗‗‗‗‗‗‗‗‗.10、计算:①(a+3)(a -3)+a (4-a ) ②);21)(21(b a b a ---11、用简便方法计算:①2013²-2012×2014 ② 20132015201420142⨯-12、先化简,再求值:x (x+1)-(x+1)(x -1),计算:(2+1)(2²+1)(2 +1)(2 +1)+1. 其中x=2014.14小红家有一块L 形菜地,要把L 形菜地按如图所示的那样分成面积相等的两个梯形以种上不同的蔬菜,已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1) 请你算一算,小红家的菜地面积共有多少平方米?(2) 当a=10米,b=30米时,面积是多少?完全平方公式:由于(a+b )²=(a+b )(a+b )=a ²+ab+ab+b ²=a ²+2ab+b ²,(a -b )²=(a -b )(a -b )=a ²-ab -ab+b ²=a ²-2ab+b ², 即(a+b )²=a ²+2ab+b ²,(a -b )²=a ²-2ab+b ².两个数和的平方,等于它们的‗‗‗‗‗‗‗,加上它们的积的‗‗‗‗‗‗;两个数差的平方,等于它们的‗‗‗‗‗‗‗,减去它们的积的‗‗‗‗‗‗;1、 计算:(1)(4m+n )²; (2))212( y(3)(2x+y )(2x -y )+(x+y)²-2(2x ²-xy )(4)(2a -3b)²-(2a+3b )(2a -3b)+(2a+3b )²2、 先化简,再求值:(1) a (a+3b )-(a+b )²-(a+b )(a -b ).其中a=1,b=2;(2)[(x+y )²-y(2x+y)-8x]÷2x ,其中x=-2.3、 用简便方法计算:(1)20.1² (2)201²-198×2024、 已知x+y=3,xy=-6,求下列各式的值:(1) x ²+y ²;(2)x ²-xy+y ²; (3)(x -y)².5、 若x+y=3,xy=1,则x ²+y ²=‗‗‗‗‗.6、 若(2x+a )²=4x ²+bx+1,则a=‗‗‗‗‗,b=‗‗‗‗‗.添括号:由去括号法则:a+(b+c)=a+b+c;a -(b+c )=a -b -c.反过来,就得到添括号法则:a+b+c= a+(b+c)a -b -c= a -(b+c )也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.1、运用乘法公式计算:(1)(x+2y-3)(x -2y+3); (2)(a+b+c )².(3)(3a+b -2)(3a -b+2) (4)(x+2y -1)²2、若x ²+2(m -3)x +16是完全平方式,则m 的值等于( )A 、3B 、-5C 、7D 、7或-13、已知x ²-kx+41是一个完全平方式,那么k 的值为‗‗‗‗‗‗‗‗‗‗. 4、若a ,b 均为正数,a -b=1,ab=2,则a+b 等于( )A 、3B 、-3C 、3±D 、95、a ²-b ²=20,且a+b=-5,则a -b 的值是‗‗‗‗‗‗‗‗.6、已知a+101=a ,则a -a1的值为( )A 、2 B 、6 C 、6± D 、22± 6、观察下列各式探索发现规律:2²-1=1×3;4²-1=15=3×5;6²-1=35=5×7;8²-1=63=7×9;10²-1=99=9×11;…用含正整数n 的等式表示你所发现的规律为‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗.。
多项式除以单项式-学生版
教学难点:1. 正确熟练地运用法则进行运算;【要点归纳】1. 多项式除以单项式的法则多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加。
2. 进行相关的混合运算时,既要注意运算法则,又要注意运算顺序。
3. 多项式除以单项式所得商的项数与那个多项式的项数相同,不要漏项。
4. 运算性质是整式乘除法的基础,只要抓住这关键的一步,才能准确地进行多项式除以单项式的运算。
5. 符号仍是运算中的重要问题,用多项式的每一项除以单项式时,要注意每一项的符号和单项式的符号。
一、复习引入 1. 运算并回答问题:(1) 4a3b4c ÷2a2b2c ; (2) (-43a2b2c)÷3ab2;提问:以上的运确实是什么运算? 能否叙述这种运算的法则? 2. 运算并回答问题:(1)3x(x2-61x+1); (2)-4a ·(23a2-a+2);提问:以上的运确实是什么运算? 能否叙述这种运算的法则? 二、讲授新课 1. 提出问题对比整式乘法的学习顺序,下面我们应该研究整式除法的什么内容? (多项式除以单项式)2. 多项式除以单项式的法则 引例: 运算 (am+bm+cm)÷m我们曾把多项式乘以单项式的运算转化为单项式乘以单项式的运算来进行,那么多项式除以单项式的运确实是否也能进行类似的转化呢?依照“除以一个数等于乘以那个数的倒数”,有 (a+b+c)÷m= (a+b+c)·m1=a ·m 1+b ·m 1+c ·m1=a ÷m+b ÷m+c ÷m这确实是多项式除以单项式的法则,你能用文字语言叙述吗?(多项式除以单项式,先把那个多项式的每一项除以那个单项式,再把所得的商相加)三、应用举例 例1. 运算(1) (28a3-14a2+7a)÷7a ; (2) (36x4y3-24x3y2+3x2y2)÷(-6x2y);解:(1) (28a3-14a2+7a)÷7a=_________-_________+__________ =4a2-2a+1;(2) (36x4y3-24x3y2+3x2y2)÷(-6x2y)=___________÷(-6x2y)+ _________÷(-6x2y) +________÷(-6x2y)= -6x2y2+4xy-21y强调:当除式的系数为负数时,商式的各项符号与被除式各项的符号相反。
北师版数学七年级下册《1.7 整式的除法》第2课时 多项式除以单项式课件(新版18页)
方法总结:“被除式=商×除式+余式”.
例3 先化简,后求值:[2x(x2y-xy2)+xy(xy-x2)]÷x2y, 其中 x=2023,y=2022.
解:[2x(x2y-xy2)+xy(xy-x2)]÷x2y =(2x3y-2x2y2+x2y2-x3y)÷x2y
北师版数学七下课件
第一章 整式的乘除
1.7 整式的除法
第2课时 多项式除以单项式
导入新课
复习引入 单项式相除:1. 系数相除;
2. 同底数幂相除; 3. 只出现在被除式里的幂不变.
练一练 (1) –12a5b3c÷(– 4a2b) = 3a3b2c
(2) (–5a2b)2÷5a3b2 = –a
(3)
6. 先化简,再求值:[(xy + 2)(xy-2)-2(x2y2-2)]÷xy, 其中 x = 1,y = -2. 解:[(xy + 2)(xy-2)-2(x2y2-2)]÷xy = [(xy)2-22-2x2y2 + 4]÷xy = (x2y2-4-2x2y2 + 4)÷xy = (-x2y2)÷xy =-xy. 当 x = 1,y =-2 时,原式 =-1×(-2) = 2.
方法2:类比有理数的除法
(ma
+
mb
+
mc)÷m
=
(ma
+
mb
+
mc)
•
1 m
= a + b + c.
商式中的项 a、b、c 是怎样得到的?你能总结出多项式
除以单项式的法则吗?
知识要点 多项式除以单项式的法则
多项式除以单项式人教版八年级数学上册
多项式除以单项式人教版八年级数学 上册
多项式除以单项式人教版八年级数学 上册
三级拓展延伸练 14. 小明在做练习册上的一道多项式除以单项式的习
多项式除以单项式人教版八年级数学 上册
多项式除以单项式人教版八年级数学 上册
重难易错
6. (例 3)化简求值:[(x-y)2-x(3x-2y) +(x+y)(x-y)]÷2x,其中 x=1,y=-2.
解:原式=(x2-2xy+y2-3x2+2xy+x2-y2)÷2x =(-x2)÷2x=- x, 当 x=1,y=-2 时,原式=- .
多项式除以单项式人教版八年级数学 上册
5. 计算:
(1)(16x3-8x2+4x)÷2x;
原式=8x2-4x+2.
多项式除以单项式人教版八年级数学 上册
多项式除以单项式人教版八年级数学 上册
(2)(8a3-4a2b+5a2)÷(2a)2.
原式=(8a3-4a2b+5a2)÷4a2 =2a-b+ .
多项式除以单项式人教版八年级数学 上册
多项式除以单项式人教版八年级数学 上册
三级检测练
一级基础巩固练
8. 计算(-4x3+2x)÷2x 的结果,正确的是
(A )
A. -2x2+1
B. 2x2+1
C. -2x3+1
D. -8x4+2x
多项式除以单项式人教版八年级数学 上册
多项式除以单项式PPT
3、运算中应注意旳问题: (1)所除旳商应写成最简旳形式; (2)除式与被除式不能互换;
4、整式混合运算要注意运算顺 序,还要注意利用有关旳运算公式 和性质,使运算简便。
多项式除以单项式
1.计算: (-8x+6)÷(-4) (6x2-9x)÷(3x) (9a3b-12a2b2+8ab3)÷(3ab) (4x2y-8x3y3)÷(-2x2y)
多项式除以单项式
课堂总结
1、多项式除以单项式法则:多 项式除以单项式,先把这个多项 式旳每一项除以这个多项式,再 把所得旳商相加。
2、应使用方法则转化多项式除 以单项ቤተ መጻሕፍቲ ባይዱ为单项式除以单项式。
多项式除以单项式
单项式与多项式相乘
单项式与多项式相乘, 就是用单项式去乘多项式 旳每一项,再把所得旳 积 相加 。
多项式除以单项式
计算下列各式,并说说你 是怎样计算旳?
(1) (am bm) m (2) (a2 ab) a (3) (4x2y 2xy2 ) 2xy
多项式除以单项式
(am+bm+cm)÷m =am÷m+bm÷m+cm÷m
多项式除以单项式
多项式除以单项式,
先把这个多项式旳每一项 除以这个单项式,再把所 得旳商相加。
多项式除以单项式
例1.计算:
(1)(12a3-8a2-3a)÷4a (2)(6a2b-2ab2-b3)÷(-3b)
多项式除以单项式
课堂练习
2:化简
2x y2 yy 4x 8x 2x
多项式除以单项式
整式旳乘除(2)
多项式除以单 项式
1.计算: (1)3a2b3+5a2b3 =8a2b3
多项式除以单项式
多项式除以单项式 知识点复习 1、多项式除以单项式法则: (1)语言叙述:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
(2)字母表示:(a b c)m a m b m c m ++÷=÷+÷+÷。
2、方法总结:①乘法与除法互为逆运算;②被除式=除式×商式+余式。
分层递进A 层练习1、下列计算正确的是( )A 、322(a a a)a a a ++÷=+B 、423(8x 6x 2x)(2)4x 31x x -+÷-=-+-C 、221(a b 2ab)212ab ab -÷=- D 、12684226342(9x y 6x y )3x 32y x y x y -÷=- 2、计算:42(9x 15x 6)3x x -+÷= 。
3、计算:22(12m n 15mn )(6mn)-+÷-= 。
4、填空:()32()41284a a a a -=-+。
5、若一个长方形的面积为231210x y x -,宽为22x ,则这个长方形的长为 。
6、计算:[](3x 2y)(3x 2y)(x 2y)(3x 2y)3x +--+-÷B 层练习 7、按如图所示的程序计算,最后输出的答案是( )。
A 、3aB 、21a +C 、2aD 、a8、计算:2123(10x8x 4x )(2x )m m m m -+--+÷-9、已知多项式32241x x --除以多项式A 的商式为2x ,余式为1x -,求多项式A 。
10、已知一个等边三角形框架的面积为22242a a b ab -+,一边上的高为2a ,求该三角形框架的周长。
C 层练习 11、观察下列各式:,,, ,…… (1)若20182017(x 1)(x 1)x1m x x -÷-=++++,请求出m 的值; (2)写出(x 1)(x 1)n -÷-的结果;(3)求值:①220181222++++;②2320181(2)(2)(2)(2)+-+-+-++-。
【数学知识点】整式的概念和运算法则
【数学知识点】整式的概念和运算法则
整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
由数与字母的积或字母与字母的积所组成的代数式叫做单项式,单独一个数或一个字
母也是单项式。
由有限个单项式的代数和组成的代数式叫做多项式。
一.整式的加减
1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式。
2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这
个数与括号内各项都要相乘。
二.同底数幂相乘
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数
字式字母,也可以是一个单项或多项式。
②指数是1时,不要误以为没有指数。
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加。
三.整式的除法
1.单项式除以单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有
的字母,则连同它的指数一起作为商的一个因式。
注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。
2.同底数幂的除法
同底数幂相除,底数不变,指数相减。
3.多项式除以单项式
多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。
感谢您的阅读,祝您生活愉快。
多项式除以单项式ppt
2. 将最大公因子提取 出来作为商。
3. 将多项式除以最大 公因子的结果作为新 的多项式,然后使用 移项法或系数除法进 行进一步的计算,得 到最终的商和余数。
03
多项式除以单项式的注意事项
除数不能为0
除数不能为0
在多项式除法中,除数不能为0,否则会导致无法进行除法运 算。
除法结果唯一性
如果两个多项式相除得到的结果相同,那么这两个多项式是 等价的,即多项式除法的结果具有唯一性。
多项式除以单项式
xx年xx月xx日
目 录
• 多项式除以单项式概述 • 多项式除以单项式的计算方法 • 多项式除以单项式的注意事项 • 多项式除以单项式的例题解析 • 多项式除以单项式的易错点分析 • 多项式除以单项式的实际应用案例
01
多项式除以单项式概述
定义与概念
• 多项式除以单项式的定义是,给定一个多项式和一个单项式 ,将多项式除以单项式得到一个新的多项式,也被称为商。 这个过程类似于长除法,但应用于多项式。
高难度例题可能涉及更复杂的数学 方法,如配方、开方等。
$(x^4+x^3+x^2+x+1)/(x^2+x +1)$
解析
05
多项式除以单项式的易错点分析
粗心错误
忽略除数不能为0的限制
在多项式除以单项式时,除数不能为0,否则会导致错误结果 或无法进行。
忽略余数的存在
在多项式除以单项式时,有时会忽略余数的存在,而直接得 出商,导致结果不准确。
顺序问题
顺序问题
在进行多项式除法时,需要注意运算的顺序,按照先乘除后加减的规则进行 计算。
乘除优先原则
在多项式中,乘除运算具有优先级,需要先进行乘除运算,再进行加减运算 。
1.7.2多项式除以单项式 学案
2.注意
(1)计算时,多项式的各项要包括它们前面的符号,要注意符号的变化;
(2)当被除式的项与除式的项相同时,商是1,不能把“1”漏掉.
你会列式吗?
新知讲解
本节课来研究:标明学习内容
计算下列各题,说说你的理由 .
(1)(ad+bd) ÷d =_________;
(2)(a2b+3ab) ÷a =_________;
(3) (xy3-2xy) ÷xy =_________.
(1)计算(ad+bd)÷d就是相当于求( ) ·d=ad+bd,
分课时学案
课题
1.7.1单项式除以单项式
单元
第一单元
学科
数学
年级
七年级下
学习
目标
1.经历探索多项式除以单项式法则的过程,会进行多项式除以单项式的运算.
2.掌握多项式除以单项式的运算算理.
重点
会进行多项式除以单项式的运算.
难点
准确运用法则将多项式除以单项式转化为单项式除以单项式,并注意商的符号的确定.
提炼概念(本节课主要内容提炼)
【思考】如何计算多项式除以单项式?
多项式除以单项式,先把这个多项式的分别除以这个,再把所得的商.
(ma+mb)÷m==.
典例精讲
例 计算:
(1) (6ab+8b)÷2b (2) (27a3-15a2+6a)÷3a
(3) (9x2y-6xy2)÷3xy;(4)
【总结提升】
3.计算:(1)(12a3-6a2+3a)÷3a;(2)(14m3-7m2+14m)÷7m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。