数学物理方法姚端正CH1作业解答[1]

合集下载

数学物理方法习题答案[1]

数学物理方法习题答案[1]

数学物理方法习题答案:第二章:1、(1)a 与b 的连线的垂直平分线;以0z 为圆心,2为半径的圆。

(2)左半平面0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2,cos(2)sin(2)ie i πππ+; 32,2[cos(sin(3)ie i πππ+;,(cos1sin1)i e e e i ⋅+ 3、22k e ππ--; (623)i k e ππ+;42355cos sin 10cos sin sin ϕϕϕϕϕ-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1()cos 2y y ay b e e x e ---- 4、(1)2214u υ+=变为W 平面上半径为12的圆。

(2)u υ=- 平分二、四象限的直线。

5、(1) zie iC -+;2(1)2i z -; ln i z - (2) 选取极坐标,,()22u C f z ϕϕυ==+=6、ln C z D +第三章:1、 (1)i π (2)、 iie π-- (3)、 0 (4)、i π (5)、6i π2、 设()!n z z e f n ξξ=z 为参变数,则 ()122011()1(0)2!2!1()()!!!!n z n n n lln n n n z z nz e d f df in in z d z z e e n n d n n ξξξξξξξξπξξπξξ+=======⎰⎰第四章:1、(1)2323()()ln 22z i z i z i i i i i ---+-+-(2)23313(1)2!3!e z z z ++++(3)211111()()[(1)(1)](1)11222k k k k kk z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑2、(1)1nn z ∞=--∑(2) 11()43f z z z =--- ①3z <时 11011()34k k k k z ∞++=-∑ ,34z <<时11101134k k k k k k z z -∞++=-∞=-∑∑,4z >时 11111()43k k k k k z z -++=-∞-∑ ② 11011()34kk k k z ∞++=-∑ ③031z <-<时1(3)kk z ∞=---∑,041z <-<时 11()(4)k kk z ∞+=---∑;④ 031z <-<,041z <-<同③的结果,而31z ->时,21(3)k k z ∞=-∑,41z ->时,21()(4)kk k z ∞=--∑ 3、 (1)两个奇点 1,z z ==∞ 所以,1z =为()f z 的二阶极点。

数学物理方法姚端正CH作业解答.doc

数学物理方法姚端正CH作业解答.doc

数理方法CH3 作业解答P51习题3.21. 确定下列级数的收敛半径:∞kk(2)∑kz=12k∞(4)∑(k =0k + a )k z kk z k∞kk解:(2)∑kz k=12a k k +1 2k收敛半径为:R lim | | lim | /( ) | lim 2k= = = =k k+1→a 2 2 k +1→∞k ∞k →k ∞ k+1 ∞(4)∑(kk= 0 + a ) k z kk z kka k + ak解:收敛半径为:R lim | | lim | |若|a |≤1,则= = k+1k →a (k +1) + a∞k→∞k +1kk a+lim |→k∞+k (k 1) a+|1=+1若| a |> 1,则k k 1 k - 2-罗比塔法则k a 1 ka k(k 1)a 1罗比塔法则+ + -lim | | lim | | lim | |= =k =k k→∞k +1 k k ka k - 1 a(k 1) a 1 (k 1)a ( 1) |→∞+ + ++→∞+|∞k2.∑akz 的收敛半径为R (0 ≤R < ∞) ,确定下列级数的收敛半径:k=1∞(1)∑kk= 0 n a zkknk a k a k ak n k n k解:) | lim | |收敛半径为:lim | ) |= lim | ( ) | ?| |= lim | ( ?nk (k 1) a k +1 a k 1 a+ + k →∞k k →∞→∞k →∞k+1 k +1 +1kn 而lim |( ) |=1k k +1→∞limk→∞|akak+1|= R所以,所求收敛半径为RP55习题3.311.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围:(1)(1- 1 z)2解 : 解法之一 : 利用多项式的乘法 :1∞k已知 ∑= z1- z 0k=| z |< 1,(1 1 - 2 z)=∞ ∞kz k(∑0) ?∑z (k = k =0)= 1+ 2z +2 + 3+ + + k+ 3z 4z ... (k 1)z...=∞(∑k= 0k k+1)z解法之二:逐项求导: (1 1 1 = ( )' 2 z - z) 1- 1 则 = 2(1- z)( ∞ ∞ k kz k- 12+ 3 + + k - 1 +z )' 1 2 3 4 ... ...= ∑ = = + z + z z kz∑k =0 k =1由于(1- 1 2 z)在复平面内有唯一的奇点 z =1 ,它与展开中心的距离为1,故该级 数的收敛范围为| z |< 1 (2) 1 az+b k1 a1 1 ∞a ∞ k k k z k解: ∑ ∑= = (- 1) ( z) = (- 1)a k +1 az +b b b 0 b b(1+ z) bk =0 k =a 收敛范围:|z|<1bb 即|z|<||a(5)1+1z+ 2z解:1+11-z1z==-213133 z+z1-z-z-z令1∞3t=z,则∑=t1-t0k=k,故211 ∞3k= z∑3- z 0k =z31- z= ∞3kz∑k= 0+11∞∞3k 3k+1所以,= z ∑- z 收敛范围为| z|<11+ + zz ∑2k =0 k =02. 将下列函数按(z- 1) 的幂展开,并指明其收敛范围:(1)cosz解:cosz = cos[(z - 1) +1] = cos(z - 1) cos1 - sin(z - 1) sin 1=k 2k k 2k∞(- 1) (z - 1) ∞- z 1)( 1) ( -cos1 - sin1∑∑= (2k )! (2k + 1)!k 0 k =0+1收敛范围:| z- 1 |< ∞3.应用泰勒级数求下列积分:sinz (3)=∫Siz0 z zdz解:利用正弦函数的泰勒展开式:sink 2k +1∞(- 1) zz = ,得到∑(2k + 1)!k =0sinzz=k 2k∞(- 1) z∑= (2k + 1)!k 0则k 2k k 2k k 2k +1sin z (- 1) z (- 1) z (- 1) z∞∞∞z z zdz = dz= dz=∫∫∑∑∫∑0 z )! (2 1)!(2 1)0 = ( + 1)! ( k k + k +2k 0 2 +1k 0 k =0 k= 04.函数α(1+ z) 在α不等于整数时是多值函数,试证明普遍的二项式定理:(1( - 1) ( )( 2)2 + - 1 - +αααααααα3+ z) =1 [1+ z+ z z1! 2! 3!...]式中,α为任意复数;αe iαkπ21 =解:(1 + z)α= α( 1+Ln 1 eα[ln( + + e e+ = 1 z 2kπ] = ?z ) i α) iα2 ln(kπez)下面将α在z < 1中作泰勒展开:ln(1+ z)e∞α+z = a z ,其中,ln( 1 ) k记∑f (z) = ekk= 0 ak=f (k ) (0)k!f '(z) = αα+ αln(1 z) f ze = ( )1+ z 1+ z①? f ' (0) = α同时由①式有:(1+ z) f '(z) = αf (z) ②将②式两边再对z求导:(1+ z) f ''( z) + f '( z) = αf ' (z) 得到(1+ z) f ''(z) = (α- 1) f '( z) ③3得f '' (0) = α(α- 1)将③式两边再对z求导得:(1 ( z f z f z ( z f z3) 3)+ z) f ( ) + ''( ) = (α- 1) ''( ) 得到(1+ z) f ( ) = (α- 2) ''( )( 3 = αα- α-)得(0) ( 1) ( 2)f( k =αα- α- α- k +)以此类推,得(0) ( 1)( 2)...( 1)f( k)f (0) 1= = ( - 1) ( - 2)...( - k +1)则akααααk! k!所以∞∞∞1ln( z a z a z1 ) k kα+ = = ke ∑∑( 1) ( 2)...( k 1)z= ∑αα- α- α- + k k k!k 0 k 0 k =0= =∞则kαiα2kπ1+ ∑= αααα(1 z) e ( - 1)( - 2)...( - k +1)zk!k=0( - 1) ( 1)( 2)2 + - - + αααααα3αz <1 = 1 [1+ z+ z z ...]1! 2! 3!5.将Ln(1+ z)在z = 0 的邻域内展开为泰勒级数。

《数学物理方法》第一章作业参考解答

《数学物理方法》第一章作业参考解答

《数学物理方法》第一章作业参考解答1. 利用复变函数导数的定义式,推导极坐标系下复变函数),(),()(ϕρϕρiv u z f +=的C-R 条件为∂∂−=∂∂∂∂=∂∂ϕρρϕρρu v vu 11 证:由于复变函数)(z f 可导,即沿任何路径,任何方式使0→∆z 时,z z f z z f ∆−∆+)()(的极限都存在且相等,因此,我们可以选择两条特殊路径,(1)沿径向,0→∆=∆ϕρi e z.ϕϕρρϕρρϕρρϕρϕρϕρρϕρρϕρϕρρi i e v i u e iv u iv u z f f −→∆∂∂+∂∂=∆−−∆++∆+=∆−∆+),(),(),(),(),(),(),(),(lim(2)沿半径为ρ的圆周,()()ϕρρρρϕϕϕϕϕ∆≈−=∆=∆∆+i i i i e i e e e zϕϕϕϕϕρϕϕρϕϕρϕρϕρϕρϕϕρϕϕρρϕρϕρϕϕρϕϕρϕρϕϕρi i i i e u i v ie iv u iv u e e iv u iv u zf f −∆→∆∂∂−∂∂=∆−−∆++∆+=−−−∆++∆+=∆−∆+1),(),(),(),(),(),()1(),(),(),(),(),(),(lim以上两式应相等,因而,ϕρρ∂∂=∂∂vu 1 ϕρρ∂∂−=∂∂u v 1 2. 已知一平面静电场的等势线族是双曲线族C xy =,求电场线族,并求此电场的复势(约定复势的实部为电势)。

如果约定复势的虚部为电势,则复势又是什么?解:0)(2=∇xy xy y x u =∴),(由C-R 条件可得C x x b x y u x b x v x b y y x v y x u y v +−=⇒−=∂∂−=′=∂∂+=⇒=∂∂=∂∂2221)()()(21),(C y x y x v +−−=)(21),(22电场线族为:(或者:由 +−=+−=∂∂+∂∂=222121),(y x d ydy xdx dy y v dx x v y x dv ,得C y x y x v +−−=)(21),(22)iC z i i C y x xy +−=+−−+=2222)(21w 复势为:若虚部为电势,则xy y x v =),(同理由C-R 条件可得Cx x A x y v x A x u x A y y x u y x v y u +=⇒=∂∂=′=∂∂+−=⇒−=∂∂−=∂∂2221)()()(21),(C y x y x u +−=)(21),(22C z ixy C y x +=++−=22221)(21w 复势为:3.讨论复变函数||)(xy iy x z f =+=在0=z 的可导性?(提示:选择沿X 轴、Y 轴和Y=aX 直线讨论)解:考虑当函数沿y=ax 趋近z=0时2)(ax z f = )1()1(||||lim )()(lim00+±=+∆−∆+=∆−∆+→∆→∆ia aia x x a x x a z z f z z f x z 可见上式是和a 有关的,不是恒定值所以该函数在z=0处不可导4.判断函数()()111)(2−++=−+=z z z z z z f 的支点,选定一个单值分支)(0z f ,计算)(0x f ?计算)(0i f −的值? 解:可能的支点为∞−=,1,1,0z 。

数学物理方法

数学物理方法

数学物理方法
复 变 函 数 论
数 学 物 理 方 程
特 殊 函 数
非 线 性 方 程
章节
0 1 2
标题
绪论 复变函数 复变函数的积分
计划学时
1 6 4
备注
3
4 5 6 7 8 9
幂级数展开
留数定理 傅里叶变换 拉普拉斯变换 数学物理定解问题 分离变数法 二阶常微分方程级数解法 本征值问题
6
4 6 4 10 8 8
数学物理方法
Mathematical Methods in Physics
绪论
课程简介
课程重要性 学习方法和要求
教材和参考书
作业要求和成绩评定
课程简介
数学物理方法:利用物理定律把各种物理问题翻译成数学的定解问 题(大多数情况下是偏微分方程的定解问题),并掌握求解定解问 题的多种方法,如分离变量法、级数解法、Green函数法、积分变 换法等等,最后将所得的数学结果翻译成物理,即讨论所得结果的 物理意义。
0

3、指数式
x
z e
i
欧拉公式 eix cos x isin x
z
,称为复数z的模
Arg z ,称为复数z的辐角,辐角不能唯一确定,可以取无穷多个值
Arg z arg z 2kπ (k 0, 1, 2 )
0 arg z 2π
主辐角
z1 z2 1 2 [cos(1 2 ) isin(1 2 )] 1 2 ei (1 2 )
z1 1 [cos(1 2 ) i sin(1 2 )] 1 2 ei (1 2 ) z2 2
z n n (cos n isin n ) n ein

姚端正数学物理方法

姚端正数学物理方法

姚端正数学物理方法嘿,你可别小瞧了这姚端正数学物理方法呀!它就像是一把神奇的钥匙,能打开好多知识的大门呢!想想看,数学和物理,这俩家伙就像一对形影不离的好兄弟。

数学呢,是那个严谨又有点小刻板的哥哥,总是一丝不苟地计算着各种数据;而物理呢,则是那个充满好奇心的弟弟,对世界的各种现象都想去探究一番。

姚端正数学物理方法呀,就是让这两兄弟更好地合作,一起解决那些复杂又有趣的问题。

你说,要是没有这姚端正数学物理方法,我们怎么去理解那些高深莫测的物理现象背后的数学原理呢?就好比说,我们知道了光的折射现象,可要是没有相应的数学方法来计算角度啥的,那我们不就只能是干瞪眼,光知道有这么回事儿,却没法深入探究呀!姚端正数学物理方法里面的各种技巧和公式,就像是一个个小巧玲珑的工具,在我们需要的时候,总能恰到好处地发挥作用。

有时候,遇到一个难题,就像面前有一座高高的山峰,感觉怎么也爬不上去。

但只要我们拿起姚端正数学物理方法这个有力的武器,嘿,那山峰好像也没那么难征服了嘛!比如说在研究波动现象的时候,那些复杂的波动方程,乍一看真让人头疼啊!但只要我们运用姚端正数学物理方法里的一些方法,把方程化简、求解,哎呀呀,那答案不就慢慢浮现出来了嘛!这感觉,就像是在黑暗中找到了一盏明灯,瞬间就照亮了我们前行的路。

而且啊,学习姚端正数学物理方法可不能死记硬背那些公式哦!那可不行,得真正理解它们的含义和用途。

就像我们交朋友一样,不能只知道人家的名字,得了解人家的性格、爱好呀,这样才能成为真正的好朋友嘛!我们要把那些公式和方法当成我们的好朋友,和它们好好相处,这样它们才会在我们需要的时候全力相助呀!你想想,要是我们能熟练掌握姚端正数学物理方法,那在解决实际问题的时候,不就可以更加得心应手了嘛!无论是在科学研究中,还是在日常生活里,都能看到它的身影呢。

这不就是知识的力量嘛!总之呢,姚端正数学物理方法可真是个宝呀!我们可得好好对待它,认真学习它,让它为我们的学习和生活增添更多的精彩!难道不是吗?。

数理方法答案

数理方法答案

i
1
+
1 1!3i
(z
− i)

2 2!9i2
(z
− i)2
+ ... +
1 11 k ! 3 3

1

1 3

2
...
1 3

k
+ 1 i−k
(z
− i)k
+ ...
R
=
lim
k →∞
ak ak +1
= lim k →∞
1 k!
1 3

1 3
( ) ( ) 解 z 3 = (x + iy)3 = x3 − 3xy 2 + i 3x2 y − y3 = ρ 3ei3ϕ = ρ 3 (cos 3ϕ + i sin 3ϕ )
其中
ρ = x2 + y2
ϕ
=
arctg
y x
(6) e1−i
解 e1+i = e × ei = e(cos1 + i sin1)
e x cosy
∴ v = −e x cos y + c
则f(z) = e x sin y − ie x cos y + ic = e x [sin y + i(− cos y)]+ ic
= e x( − i)[cos y + i sin y]+ ic = −ie x+iy + ic = −ie z + ic
故必须求出 ∂ 2u ∂x 2
= ... = 2F '+4x2 F"
∂2u ∂y 2

数学物理方法课后答案 (1)

数学物理方法课后答案 (1)

充分性。设任给ε > 0,存在N(ε ) > 0,使当n>N时,zn+ p − z0 < ε成立。由
xn+ p − xn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε
yn+ p − yn ≤ (xn+ p − xn)(2 yn+ p − yn)2 = zn+ p − zn < ε

将①式与②式相除,易见 c 3 = 1,即 c = 1,由此得证。
8.试利用 Re z = x ≤ x2 + y2 = z 证明 z1 + z2 ≥ z1 + z2 , z1 − z2 ≥ z1 − z2
证 将第一个不等式两边平方,则不等式右边的式子为
z1 + z 2 2 = ( z1 + z 2 )( z1 + z 2 )∗ = z1 z1∗ + z 2 z 2∗ + z1 z 2∗ + z1∗ z 2
4x ≥ 0
x≥0
3 见课上例题
4. 求在ω = 1 下,直线 Re z = c (常数)映射为什么图形?
z
μ ν 解:在ω = 1 的映射下, 与 满足什么方程? z
右半平面(包括 y 轴)
由c = Re z = Re 1 w
= Re 1 μ + iν
=
μ μ2 +ν 2
∴c(μ 2 +ν 2 ) = μ
25(x2 − 6x + 9) + 25 y2 = 625 −150x + 9x2
16x2 + 25 y2 = (20)2 ,点集为椭圆: ( x )2 + ( y )2 = 1 54

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

u u v v , , 在原点 x y x y
连续,且满足 C-R 条件,所以 f z 在原点可微。
v u u v f 0 i i 0。 x x 0 y y x 0 x
i 2 2
2
1
x3 y 3 i( x3 y 3 ) 3、设 f ( z ) x2 y 2 0
z0 ,证明 f z 在原点满足 C-R 条件,但不 z=0
可微。 证明:令 f z u x, y iv x, y ,则
x3 y 3 u x, y x 2 y 2 0 x3 y 3 v ( x, y ) x 2 y 2 0 u x (0, 0) lim x2 y 2 0 , x 2 y 2 =0 x2 y 2 0 。 x 2 y 2 =0
u u v v 0。 x y x y u , v 在区域 D 上均为常数,从而 f ( z ) 在区域 D 上为常数。
(3)令 f z u x, y iv x, y ,则 Re f ( z ) u x, y 。 由题设知 u x, y 在区域 D 上为常数,
2u 2u 证明:令 u xy , 2 2 0 2 x 2 x 。 x y
2
从而它不能成为 z 的一个解析函数的实 u 不满足拉普拉斯方程。 部。 6、若 z x iy ,试证: (1) sin z sin x cosh y i cos x sinh y ; (2) cos z cos x cosh y i sin x sinh y ; (3) sin z =sin 2 x sinh 2 y ; (4) cos z cos 2 x sinh 2 y 。 证明: (1) sin z sin( x iy ) sin x cos(iy ) cos x sin(iy )

数学物理方法课后习题答案

数学物理方法课后习题答案

数学物理方法课后习题答案数学物理方法课后习题答案数学物理方法是一门综合性的学科,它将数学和物理相结合,为解决物理问题提供了强有力的工具和方法。

在学习这门课程时,习题是不可或缺的一部分,通过解答习题可以加深对知识点的理解和运用,提高解决实际问题的能力。

下面将针对数学物理方法课后习题给出一些答案和解析。

1. 假设有一根长度为L的均匀细杆,质量为M,细杆的一端固定在原点O,另一端可以自由运动。

求细杆的转动惯量和转动轴上的质心位置。

解析:首先,根据细杆的定义,我们可以将细杆看作是一根连续分布的质点链。

设细杆的质心位置为x,将细杆分为两段,一段长为x,质量为m1,另一段长为L-x,质量为m2。

由于细杆是均匀的,所以m1/m2=(L-x)/x。

根据转动惯量的定义,细杆的转动惯量为I=∫r^2dm,其中r为质点到转动轴的距离,dm为质点的质量微元。

对于细杆的转动惯量,可以将细杆看作是一根连续分布的质点链,所以I=∫r^2dm=∫x^2dm1+∫(L-x)^2dm2。

根据质心的定义,细杆的质心位置为x=(m1*x+m2*(L-x))/(m1+m2)。

将m1/m2=(L-x)/x代入,化简得到x=L/2,即细杆的质心位置在中点。

2. 一个质量为m的质点沿着x轴运动,其位置关于时间的函数为x(t)=Acos(ωt+φ),其中A、ω和φ为常数。

求质点的速度和加速度关于时间的函数。

解析:根据题目中给出的位置函数,可以求出质点的速度和加速度。

首先,速度的定义为v(t)=dx(t)/dt。

对位置函数求导,得到v(t)=-Aωsin(ωt+φ)。

然后,加速度的定义为a(t)=dv(t)/dt。

对速度函数求导,得到a(t)=-Aω^2cos(ωt+φ)。

所以,质点的速度关于时间的函数为v(t)=-Aωsin(ωt+φ),加速度关于时间的函数为a(t)=-Aω^2cos(ωt+φ)。

3. 一个质点受到一个外力F=mg和一个阻力F=-kv的作用,其中m为质量,g为重力加速度,k为阻力系数。

数学物理方法姚端正CH作业解答.doc

数学物理方法姚端正CH作业解答.doc

数学物理方法姚端正CH作业解答.doc数理方法CH3 作业解答P51习题3.21. 确定下列级数的收敛半径:∞kk(2)∑kz=12k∞(4)∑(k =0k + a )k z kk z k∞kk解:(2)∑kz k=12a k k +1 2k收敛半径为:R lim | | lim | /( ) | lim 2k= = = =k k+1→a 2 2 k +1→∞k ∞k →k ∞ k+1 ∞(4)∑(kk= 0 + a ) k z kk z kka k + ak解:收敛半径为:R lim | | lim | |若|a |≤1,则= = k+1k →a (k +1) + a∞k→∞k +1kk a+lim |→k∞+k (k 1) a+|1=+1若| a |> 1,则k k 1 k - 2-罗比塔法则k a 1 ka k(k 1)a 1罗比塔法则+ + -lim | | lim | | lim | |= =k =k k→∞k +1 k k ka k - 1 a(k 1) a 1 (k 1)a ( 1) |→∞+ + ++→∞+|∞k2.∑akz 的收敛半径为R (0 ≤R < ∞) ,确定下列级数的收敛半径:k=1 ∞(1)∑kk= 0 n a zkknk a k a k ak n k n k解:) | lim | |收敛半径为:lim | ) |= lim | ( ) | ?| |= lim | ( ?nk (k 1) a k +1 a k 1 a+ + k →∞k k →∞→∞k →∞k+1 k +1 +1kn 而lim |( ) |=1k k +1→∞limk→∞|akak+1|= R所以,所求收敛半径为RP55习题3.311.将下列函数在 z = 0 点展开成幂级数,并指出其收敛范围:(1)(1- 1 z)2解:解法之一:利用多项式的乘法:1∞k= z1- z 0k=| z |< 1,(1 1 - 2 z)=∞ ∞kz k(∑0) ?∑z (k = k =0)= 1+ 2z +2 + 3+ + + k+ 3z 4z ... (k 1)z...=∞(∑k= 0k k+1)z解法之二:逐项求导: (1 1 1 = ( )' 2 z - z) 1- 1 则 = 2( ∞ ∞ k kz k- 12+ 3 + + k - 1 +z )' 1 2 3 4 ... ...= ∑ = = + z + z z kz∑k =0 k =1由于(1- 1 2 z)在复平面内有唯一的奇点 z =1 ,它与展开中心的距离为1,故该级数的收敛范围为| z |< 1 (2) 1 az+b k1 a1 1 ∞a ∞ k k k z k解:∑ ∑= = (- 1) ( z) = (- 1)a k +1 az +b b b 0 b b(1+ z) bk =0 k =a 收敛范围:|z|<1bb 即|z|<||a(5)1+1z+ 2z1+11-z1z==- 213133 z+z1-z-z-z 令1∞3t=z,则∑=t1-t0k=k,故211 ∞3k= z∑3- z 0k =z31- z= ∞3kz∑+11∞∞3k 3k+1所以,= z ∑- z 收敛范围为| z|<11+ + zz ∑2k =0 k =02. 将下列函数按(z- 1) 的幂展开,并指明其收敛范围:(1)cosz 解:cosz = cos[(z - 1) +1] = cos(z - 1) cos1 - sin(z - 1) sin 1 =k 2k k 2k∞(- 1) (z - 1) ∞- z 1)( 1) ( -cos1 - sin1∑∑= (2k )! (2k + 1)!k 0 k =0+1收敛范围:| z- 1 |< ∞3.应用泰勒级数求下列积分:sinz (3)=∫Siz0 z z解:利用正弦函数的泰勒展开式:sink 2k +1∞(- 1) zz = ,得到∑(2k + 1)!k =0sinzz=k 2k∞(- 1) z∑= (2k + 1)!k 0则k 2k k 2k k 2k +1sin z (- 1) z (- 1) z (- 1) z∞∞∞z z zdz = dz= dz=∫∫∑∑∫∑0 z )! (2 1)!(2 1)0 = ( + 1)! ( k k + k +2k 0 2 +1k 0 k =0 k= 04.函数α(1+ z) 在α不等于整数时是多值函数,试证明普遍的二项式定理:(1( - 1) ( )( 2)2 + - 1 - +αααααααα3+ z) =1 [1+ z+ z z1! 2! 3!...]式中,α为任意复数;αe iαkπ21 =解:(1 + z)α= α( 1+Ln 1 eα[ln( + + e e+ = 1 z 2kπ] = ?z ) i α) iα2 ln(kπez)下面将α在z < 1中作泰勒展开:ln(1+ z)e∞α+z = a z ,其中,ln( 1 ) k记∑f (z) = ekk= 0 ak=f (k ) (0)k!f '(z) = αα+ αln(1 z) f ze = ( )1+ z 1+ z①? f ' (0) = α同时由①式有:(1+ z) f '(z) = αf (z) ②将②式两边再对z求导:(1+ z) f ''( z) + f '( z) = αf ' (z) 得到(1+ z) f ''(z) = (α- 1) f '( z) ③3得f '' (0) = α(α- 1)将③式两边再对z求导得:(1 ( z f z f z ( z f z3) 3)+ z) f ( ) + ''( ) = (α- 1) ''( ) 得到(1+ z) f ( ) = (α- 2) ''( )( 3 = αα- α-)得(0) ( 1) ( 2)f( k =αα- α- α- k +)以此类推,得(0) ( 1)( 2)...( 1) f( k)f (0) 1= = ( - 1) ( - 2)...( - k +1) 则akααααk! k!所以∞∞∞1ln( z a z a z1 ) k kα+ = = ke ∑∑( 1) ( 2)...( k 1)z= ∑αα- α- α- + k k k!k 0 k 0 k =0= =∞则kαiα2kπ1+ ∑= αααα(1 z) e ( - 1)( - 2)...( - k +1)zk!k=0( - 1) ( 1)( 2)2 + - - + αααααα3αz <1 = 1 [1+ z+ z z ...]1! 2! 3!5.将Ln(1+ z)在z = 0 的邻域内展开为泰勒级数。

数学物理方法姚端正CH 作业解答

数学物理方法姚端正CH 作业解答

度为 s = πr = π . 在该路径上, x = r cosθ , y = r sin θ , 则
| f (z) |= x4 + y4 = r4 (cos4 θ + sin 4 θ ) = r2 (sin 2 θ + cos2 θ )2 − 2sin 2 θ cos2 θ
= r2 (sin 2 θ + cos2 θ )2 − 1 sin 2 2θ = r2 1 − 1 sin 2 2θ ≤ 1
1− n
1− n
P38 习题 2.2: 1.计算积分:
∫l
(
z

dz a)(z

b)
l 是包围 a 、 b 两点的围线。
解法之一:
(z

1 a)(z

b)

l
内有两个奇点, z
=
a

z
=
b
。在
l
内作小圆
l1
包围
a
,作小圆 l2
包围 b ,则由复通区域的柯西定理知:
∫ ∫ ∫ dz
dz
dz
=
+
l (z − a)(z − b) l1 (z − a)(z − b) l2 (z − a)(z − b)
z)3
dz
=
1 2πi
l0
ez z(1 −
z)3
dz
+
1 2πi
l1
ez z(1 −
z)3
dz
其中,
ez
∫ ∫ 1
2π i
l0
ez z(1 −
z)3
dz
=
1 2πi
l0
(1

数学物理方法姚端正CH 作业解答

数学物理方法姚端正CH 作业解答

数理方法CH3作业解答P51习题3.21. 确定下列级数的收敛半径:(2)∑∞=12k kk z k (4)∑∞=+0)(k k k z a k解:(2)∑∞=12k kkz k 收敛半径为:212lim |)21/(2|lim ||lim 11=+=+==∞→+∞→+∞→k k k k a a R k k k k k k k (4)∑∞=+0)(k k k z a k解:收敛半径为:|)1(|lim ||lim 11+∞→+∞→+++==k kk k k k a k a k a a R 若1||≤a ,则1|)1(|lim 1=++++∞→k kk a k a k 若1||>a ,则||1|)1()1(|lim |)1(11|lim |)1(|lim 1211a ka k a k k a k ka a k a k k k k k k k k k k =+−=+++=+++−−∞→−∞→+∞→罗比塔法则罗比塔法则2.∑∞=1k k k z a 的收敛半径为R )0(∞<≤R ,确定下列级数的收敛半径:(1)∑∞=0k k k n z a k解:||lim |)1(|lim |||)1(|lim |))1(|lim 111+∞→∞→+∞→+∞→⋅+=⋅+=+k k k n k k k n k k n k n k a a k k a a k k a k a k 收敛半径为:而 1|)1(|lim =+∞→n k k k R a ak k k =+∞→||lim 1所以,所求收敛半径为RP55习题3.31.将下列函数在0=z 点展开成幂级数,并指出其收敛范围: (1)2)1(1z − 解:解法之一:利用多项式的乘法:已知 ∑∞==−011k k z z 1||<z ,=−2)1(1z )()(00∑∑∞=∞=⋅k kk k z z ...)1(...432132+++++++=k z k z z z ∑∞=+=0)1(k k z k解法之二:逐项求导: 11()1(12zz −=−则=−2)1(1z ==∑∑∞=−∞=110)'(k k k k kz z (43211)32++++++=−k kz z z z 由于2)1(1z −在复平面内有唯一的奇点1=z ,它与展开中心的距离为1,故该级数的收敛范围为1||<z (2)baz +1解:∑∑∞=+∞=−=−=+=+010)1()()1(1)1(11k k k k k k k k z b a z b a b z ba b b az 收敛范围:1||<z b a 即||||ab z < (5)211z z ++ 解:33321111111z zz z z z z −−−=−−=++令3z t =,则 ∑∞==−011k k t t , 故∑∞==−03311k kz z =−31z z ∑∞=+013k k z所以,=++211z z ∑∞=03k kz∑∞=+−013k k z 收敛范围为1||<z2. 将下列函数按)1(−z 的幂展开,并指明其收敛范围: (1)z cos解:1sin )1sin(1cos )1cos(]1)1cos[(cos −−−=+−=z z z z∑∑∞=+∞=+−−−−−=01202)!12()1()1(1sin )!2()1()1(1cos k k k k k k k z k z 收敛范围: ∞<−|1|z3.应用泰勒级数求下列积分: (3)∫=zdz z zSiz 0sin解:利用正弦函数的泰勒展开式:∑∞=++−=012)!12()1(sin k k k k z z ,得到 z zsin ∑∞=+−=02)!12()1(k k k k z 则 ∑∑∫∫∑∫∞=+∞=∞=++−=+−=+−=0120020020)12()!12()1()!12()1()!12()1(sin k k k k z k k z k k k zk k z dz k z dz k z dz z z 4.函数α)1(z +在α不等于整数时是多值函数,试证明普遍的二项式定理:...]!3)2)(1(!2)1(!11[1)1(32+−−+−++=+z z z z αααααααα 式中,α为任意复数;πααk i e 21=解: )1ln(2]2)1[ln()1()1(z k i k i z z Ln e e e e z ++++⋅===+απαπααα 下面将)1ln(z e +α在1<z 中作泰勒展开:记∑∞=+==0)1ln()(k kk z z a ez f α, 其中,!)0()(k f a k k =)(11)(')1ln(z f ze z zf z +=+=+ααα ① ⇒ α=)0('f同时由①式有: )()(')1(z f z f z α=+ ② 将②式两边再对z 求导:)(')(')('')1(z f z f z f z α=++ 得到 )(')1()('')1(z f z f z −=+α ③得)1()0(''−=ααf将③式两边再对z 求导得:)('')1()('')()1()3(z f z f z f z −=++α 得到)('')2()()1()3(z f z f z −=+α得 )2)(1()0()3(−−=αααf以此类推,得 )1)...(2)(1()0()(+−−−=k f k αααα则!)0()(k f a k k =)1)...(2)(1(!1+−−−=k k αααα所以∑∑∞=∞=+==)1ln(k kk k kk z z a z a eαk k z k k )1)...(2)(1(!1+−−−=∑∞=αααα 则k k k i z k k e z )1)...(2)(1(!1)1(02+−−−=+∑∞=ααααπαα...]!3)2)(1(!2)1(!11[132+−−+−++=z z z ααααααα 1<z5.将)1(z Ln +在0=z 的邻域内展开为泰勒级数。

武汉大学姚端正报告——浅谈数学物理方法的学习共54页

武汉大学姚端正报告——浅谈数学物理方法的学习共54页
本课程的重要任务就是教会学生如何把 各种物理问题翻译成数学的定解问题,并掌 握求解定解问题的多种方法,如行波法、分 离变数法、积分变换法、格林函数法等等。
Wuhan University
一、本课程的内容和特点
对物理问题的处理,通常需要三个步骤: ➢ 利用物理定律将物理问题翻译成数学问题; ➢ 解该数学问题,其中解数学物理方程占有很 大的比重,有多种解法; ➢ 将所得的数学结果翻译成物理,即讨论所得 结果的物理意义。
Wuhan University
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课 2.数理方法是进行基础研究的重要工具 3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
“金钱如粪土,朋友值千金” “朋友如粪土”
Wuhan University
二、数学物理方法在物理学中的地位
3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂”
力学
热学
电学
原子物理
理力
热统
Wuhan University
电动
量子力学
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂”
力学
热学
电学 原子物理
数学物理方法
理力
热统
数理方法是普通物理与四大力学的“粘合剂” 数理方法是学习专业课的奠基石
材料物理: 热处理 热传导方程 光学、电子科技: 电磁波传播 波动方程
理论物理: 稳恒场 泊松方程
基础课与专业课的关系:
“这好比一把斧头,基础是斧背,专业是斧刃。 斧背要厚,斧刃要尖,这样的斧头才会锋利无比”。

数学物理方法姚端正CH1作业解答

数学物理方法姚端正CH1作业解答

数学物理方法CH1作业题解答P6习题1.11. 用复变量表示:(1)上半平面; (2)左半平面解:(1)上半平面为:0Im >z(2)左半平面为0Re <z4. 求下列复数的实部、虚部、模与辐角主值(3)3)3(−+i 解:先将i z +=3记为指数形式,i z +=3=)26(2ππk i e+ 则i e e e z i k i k i 81818122)62()26(333−====−+−+−−−πππππ 其实部为0,虚部为81−,模为81,辐角主值为2π− 6. 计算下列数值:(2)5)3(i − 解:先将i z −=3记为指数形式,i z −=3=)26(2ππk i e+−,则 )3(16)]65sin()65[cos(323232265)1065()26(555i i e e e z i k i k i +−=−+−====−+−+−πππππππ 7.求解方程(1)013=−z解:13=z ,则 −−=+−======i e i e e e e z i i k i k i 23212321113432032323ππππ 分别对应 ===210k k k 8.设流体在点i z 21+=的流速为ii v −+=23,求其大小和方向. 解:即求其模及辐角主值:i i i i i i v +=+=++=−+=15555)2)(3(23,其模为2,其辐角主值为4arg π=v P9习题1.22. 画出下列关系所表示的z 点的轨迹的图形并确定它是不是区域。

(1)1Im >z 且2||<z如图示阴影部分,不含边界线。

满足区域的两个条件:(1)全由内点组成;(2)点集中任意两点可用全在点集中的折线连接;所以是区域。

P15习题1.32. 讨论下列函数的可微性和解析性(1)2z w =解:记iy x z +=,),(),(y x iv y x u w +=;则xy i y x z w 2)(222+−==w 的实部22y x u −=,虚部xy v 2=x x u 2=∂∂, y y u 2−=∂∂, y xv 2=∂∂, x y v 2=∂∂ 可见,w 的实部和虚部有连续的一阶偏微商,且满足C-R 条件,所以,2z w =在复平面可微,从而在复平面是解析的。

数学物理方法第一章作业答案

数学物理方法第一章作业答案

第一章复变函数§1.1 复数与复数运算1、下列式子在复数平面上个具有怎样的意义?(1)z≤ 2解:以原点为心,2 为半径的圆内,包括圆周。

(2)z−a=z−b,(a、b 为复常数)解:点z 到定点a 和 b 的距离相等的各点集合,即a 和 b 点连线的垂直平分线。

(3)Re z>1/2解:直线x=1/ 2右半部分,不包括该直线。

(4)z+Re z≤1解:即x2 +y2 +x≤1,则x≤1,y2 ≤1−2x,即抛物线y2 =1−2x及其内部。

(5)α<arg z<β,a<Re z<b,(α、β、a、b为实常数)解:(6)0 <arg zz−+ii<π4解:zz−+ii=x2+x2y−1−i2x2+(y+1)2因为0 <arg zz−i+i<π4x+ 2 −(2yx+1) 2>0x 2 2 ++(yy2+−11)2>所以,即x <0,x2 +y2 −1+2x >0 x0 <x2x−+(+22yyx+1)22 −1<1x+( y+1)2 2综上所述,可知z 为左半平面x<0,但除去圆x2 +y2 −1+2x =0 及其内部z -1 ≤(7)1,z +12z-1 x 1 iy x y 1 4y−+⎡+−⎤2 2 2==+⎢⎥解:()[()] +++++iy 1 y22 2z 1 x 1 x⎣x 1 y⎦+ 2 +2所以()[()]x+−+≤++222 y 1 4y2 x 1 y2 22化简可得x≥0(8)Re(1 /z) =2⎛⎞⎡−⎤1 x iy x解:Re( ⎟=R e 21/ z=⎜) Re 2 ==⎜⎟⎢⎥⎝iy⎦x ⎣x++y+y⎠x2 2 2即(1/ 4)1/16x− 2 +y=2(9)Re Z2 =a2解:Re Z2 =x2 −y2 =a2(10) z1 +z+z−z=2 z+2 z2 2 22 1 2 1 22解:()()()()()() x1+x+y+y+x−x+y−y=2 x+y+2 x+y2 2 2 2 2 2 2 22 1 2 1 2 1 2 1 1 2 2 可见,该公式任意时刻均成立。

数学物理方法姚端正答案

数学物理方法姚端正答案

数学物理方法姚端正答案【篇一:2014年省培在线课程列表】培在线学习先是选课环节,每位老师可以选2门课程,请把课程对应的序号私聊发到我qq上,我汇总后激活课程,学习流程于8月4号-6号发至群共享,请届时查看并自行开展在线学习。

【篇二:2013年下半年集中培训课程】ass=txt>2附件2 在线培训课程45【篇三:大学物理专业毕业去向分析_3】t>三、本专业去向分析(一)毕业去向分析1.直接就业,去中学任教,传授物理学知识。

2.继续深造考研。

考研主要专业研究方向有:理论物理、凝聚态物理、光学、原子分子物理、粒子物理核物理、声学、等离子体物理、半导体物理以及天体物理等。

最近几年,也有为数不少的物理系学生,考取了计算机类、经济管理类等专业的硕士研究生。

考研选择的主要院校有国内外科研院所和有关高校。

据不完全统计,北京某著名高校物理系在过去20年中,三分之一以上的的学生出国了,仅在美国的就有500多人。

根据研究方向的不同,考研的学生毕业后,一般去高校或科研院所工作或继续攻读博士学位。

也有一小部分去了企业或公司从事开发工作。

3.去企事业单位从事与物理学普及有关的管理、推广工作。

(二)毕业去向统计分析安徽某著名大学2007接参加工作的比例会高一些。

所以,上表中的统计数据,仅仅具有参考意义。

四、本专业与相关专业的比较与物理学专业相关的本科专业有:应用物理学、光信息科学与技术、材料物理、微电子学、电子科学与技术、材料物理学等。

下面,我们通过这几个相关专业的主要课程和培养目标来看他们与物理学专业的比较。

(一)物理学专业骨干课程:力学、热学、电磁学、光学、原子物理、理论力学、电动力学、量子力学、热力学与统计物理、数学物理方法、高等数学、电子技术与实验、普通物理实验、近代物理实验、固体物理等。

培养目标:本专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux=?,0v y ?=?,u v x y ??≠??。

于是u 与v 在z 平面上处处不满足C -R 条件,所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ??= =??。

v vx y==0 ??。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y, 在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ===='=+=-= ? ?????????。

或:()()()2*000lim lim lim 0z z x y z f z x i y z→?→?=?=?'==?=?-?=?。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=?→?→?→+?+?+??==+??→。

【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z zz z==??】3、设333322()z 0()z=00x y i x y f z x y ?+++≠?=+,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ?-+≠?=+?+??, 33222222(,)=00x y x y v x y x y x y ?++≠?=+?+??。

数学物理方法习题解答

数学物理方法习题解答

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i (arg z + 4π ) 3
π F这时F 2 = −e
i π 6
=e
i
7π 6
= −(cos
π π 3 1 + i sin ) = −( + i) 6 6 2 2
5
10.(4)IJ& Ln(1 + i ) /& Ln(1 + i) = Ln[ 2e
π i ( + 2 kπ ) 4
] = ln 2 + i (
G f ( z ) = 2( x − 1) y + i (2 x − x 2 + y 2 − 1) = −i(1 − z ) 2
P22 习题 1.4
6.(2)/KL& e z = 1 + i 3 /&@A e z 写成C45DE& e z = 2e G z = Ln[2e
π i ( + 2 kπ ) 3 π i ( + 2 kπ ) 3
π + 2kπ ) 4
(k = 0,±1,±2...)
6
1 2
G f ( z ) = x 2 − y 2 + xy + i (2 xy −

(2) u = 2( x − 1) y F
f (2) = −i
3
/&采 v=∫
jg积M法& ①
∂v dx + g ( y ) ∂x
而} C-R z{F
∂v ∂u =− = −2 x + 2 ∂x ∂y
② ③
a以 v = ∫ (2 − 2 x)dx + g ( y ) = 2 x − x 2 + g ( y ) 再A v O y 1偏导& 一K,F} C-R z{F ∂v ∂u = = 2y F ∂y ∂x ∂v dg = ∂y dy ④
∂u = 2x F ∂x
∂u = 0F ∂y
∂v = yF ∂x
∂v =x ∂y
可见F w 567Y97有连续5一阶偏微商F但仅T z = 0 Uvw C-R z{Fa 以Fh仅T z = 0 Ui可微5F但iT z = 0 Uej/析'因0T z = 0 U5邻le jvw C-R z{( -enT|+,均ij/析5m
已知 w(i) = −i F[ z = i 时F w = −i = e
i(−
π + 2 kπ ) 2
F w 5幅=0 −
π + 2kπ FH中只有 2
(arg z + 4π ) 3
<=
i 3π T)述 w1 F w2 F w2 限g5范围~FhiTM支 w3 = 3 | z |e 2
5<=
范围~Fa以F我们PTM支 w3 中1/ w(−i ) . 当 z = −i 时F arg z = − w3 (−i ) = e
另一K,F}
③E得& dg = 2y dy

}④⑤xE得
a以 g = y 2 + c ⑥
a以 v = 2 x − x 2 + y 2 + c
再}已知 f (2) = −i F[当 x = 2, y = 0 时F v = −1 F代入 ⑥E得 c = −1 a以F v = 2 x − x 2 + y 2 − 1 ⑦ ⑧
i arg z + 2 kπ 2
F B h 5 x y 单 ? M 支 0
arg z i 2 w | z | e = 1 arg z arg z w = | z |ei ( 2 + π ) = − | z |ei 2 = − w 1 2
cos w1 cos z w1 G = z cos w2 = cos(− w1 ) = cos(w1 ) − w1 − w1 w2 a以F cos z i 2 ?5函4F支U; z 5支U相同Fi 0 Y ∞ . z
3. 已知/析函4567或97F1/析函4m (1) u = x 2 − y 2 + xy F f (i ) = −1 + i /&采 v=∫ jg积M法& ① ∂v ∂u =− = 2y − x ∂x ∂y ② ③
∂v dx + g ( y ) ∂x
而} C-R z{F
1 a以 v = ∫ (2 y − x)dx + g ( y ) = 2 xy − x 2 + g ( y ) 2 再A v O y 1偏导& 一K,F} C-R z{F ∂v ∂u = = 2x + y F ∂y ∂x ∂v dg = 2x + ∂y dy a以 g = ⑥ 1 2 y +c 2
] = ln 2 + Lne
π i ( + 2 kπ ) 3
= ln 2 + i(
π + 2kπ ) 3
(k = 0,±1,±2...)
7.判断23函4i单?5还i多?5F若i多?5Fi几??H支Ui什么? '1( z + z − 1 '6( cos z z
4
/& '1(因0 z i单?函4F而 z − 1 i 2 ?5F支Ui 1 F ∞ a以F函4 z + z + 1 i 2 ?5F支Ui 1 F ∞ ' 6 ( z = | z |e

另一K,F}
③E得& dg =y dy 1 2 1 2 x + y +c 2 2

}④⑤xE得 a以 v = 2 xy −
再}已知 f (i ) = −1 + i F[当 x = 0, y = 1 时F v = 1 F代入 ⑥E得 c = a以F v = 2 xy − 1 2 1 2 1 x + y + 2 2 2 ⑦ 1 2 1 2 1 1 1 x + y + ) = (1 − i) z 2 + i 2 2 2 2 2
8.Q w = 3 z fgT沿负6轴割破了5 z +,)Fen w(i) = −i F1 w(−i ) . /&根据已知F可Qg − π < arg z ≤ π w = 3 z = 3 | z |e
i arg z + 2 kπ 3
(k = 0,1 arg z π π 3 3 , H<=B0φ1 = FH"化范围0 - < φ1 ≤ w1 = | z |e 3 3 3 (arg z + 2π ) i (arg z + 2π ) π FH"化范围0 < φ2 ≤ π w2 = 3 | z |e 3 , H<=B0φ2 = 3 3 (arg z + 4π ) i (arg z + 4π ) 5π FH"化范围0π < φ3 ≤ w3 = 3 | z |e 3 , H<=B0φ3 = 3 3
相关文档
最新文档