电动汽车充电桩设计外文文献翻译最新译文
关于新能源充电管理系统的外文文献
![关于新能源充电管理系统的外文文献](https://img.taocdn.com/s3/m/fcb7a4890d22590102020740be1e650e53eacf50.png)
关于新能源充电管理系统的外文文献
对于新能源充电管理系统的外文文献,我们可以从多个角度来
寻找相关信息。
首先,我们可以从学术数据库如Google 学术、
IEEE Xplore、ScienceDirect等搜索相关的期刊论文和学术文章。
在搜索时,可以使用关键词如"new energy charging management system"、"renewable energy charging system"、"electric vehicle charging system"等来获取相关的外文文献。
另外,我们还可以查阅相关的国际会议论文集,例如国际清洁
能源大会(International Conference on Clean Energy)或国际
电力系统与清洁能源大会(International Conference on Power Systems and Clean Energy)等会议的论文集,这些会议通常会涵
盖新能源充电管理系统的最新研究成果。
此外,还可以寻找相关的专业书籍和技术报告,这些书籍和报
告通常会详细介绍新能源充电管理系统的原理、设计和应用。
通过
搜索国际出版的书籍和技术报告,可以获取到丰富的外文文献资料。
除了以上途径,还可以关注国际知名能源管理和电力系统领域
的学者和专家的研究成果,他们在国际期刊上发表的论文和专著都
是宝贵的外文文献资源。
总的来说,要全面了解新能源充电管理系统的外文文献,我们需要充分利用学术数据库、国际会议论文集、专业书籍和技术报告等多种渠道,从不同的角度获取相关信息,以便全面深入地了解该领域的最新研究成果和发展动态。
电动汽车充电系统及控制器外文文献翻译最新译文
![电动汽车充电系统及控制器外文文献翻译最新译文](https://img.taocdn.com/s3/m/668c87275a8102d276a22ffb.png)
文献出处:Pollet G. The research of electric car charging system and controller [J]. Electrochimica Acta, 2015, 5(3): 235-249.原文The research of electric car charging system and controllerPollet GAbstractThis paper puts forward the whole bridge main circuit topology and PWM control method effectively improves the reliability of the charging system and efficiency. Put forward and realized based on digital signal processing chip controller circuit intelligent PI control algorithm and variable parameters, significantly improve the control precision of the charging system voltage, current and response characteristics. Double proposes a CAN bus and RS - 485 bus communication network, realized the distributed control of the process of charging, the charging operation is flexible and reliable. Due to be able to provide a communication interface to battery management system and algorithm, charging system according to the state change of battery charging mode, optimizing the charging mode. The success of the charging system has important theoretical significance and engineering value. Keywords: Electric cars; Charging system, PWM, Intelligent PI, Distributed control 1 IntroductionElectric car, it is all or part of the electric drive system of power car, compared with conventional cars powered by gasoline as, electric cars in such aspects as environmental protection, clean, energy-saving occupy obvious advantages. Now each big international automobile manufacturer have invested a lot of money and manpower to electric car research and development, a variety of the electric car prototype appeared frequently, some have reached high industrialization scale. Now the development of the electric car industry has formed a hybrid vehicles, pure battery-powered electric vehicles (electric cars) and three main direction of fuel cell electric vehicles. Pure electric vehicle itself is not harmful gas emissions, can make full use of surplus power in the evening, improve the efficiency of energy utilization, and improve the economic benefit. Pure electric vehicles completely eliminateemissions of the vehicle running, fully use of secondary energy electricity, in line with the energy sustainable utilization strategy, along with the progress of the technical level, the pure electric vehicles has a broad development prospects. But at present, the development of the battery and charging system can't satisfy the requirement of electric cars, there are some theoretical and technical problems have yet to be research, serious lack of relevant standards and norms, has become the bottleneck of affecting the development of electric vehicles.2 The current situation of the electric vehicle charging systemAt the beginning of last century, as the secondary battery research is successful, and matching charging system arises at the historic moment. The charging system using the conventional charging method, which is USES small current for a long time to recharge battery. This way of charge due to the charging time is too long, can not meet the requirement of the electric cars and so on, the demand of the quick charge. Widely at home and abroad to carry out the study of fast charging system. Fast charging system produce roughly experienced three stages of development:(l) Groping stageIs the earliest in the 50 s of the last century, the United States as a result of the need of military, began to study fast charging technology, made the metal rectifying shape fast charging system, for 6 to 24 v lead-acid battery quick charging, the weight of 40 kg, have fast, medium and slow three charging modes.(2) The theory research stage1967 U.S. troops (Mas) have bubbles in the process of charging is studied, find the reason and law of gas, on the premise of minimum gas rate and find out the maximum charging current of battery can accept and acceptable charging current curve, discusses the theory of quick charge battery, and on the basis of practice, put forward the basic rules of quick charge battery.(3) The practical application stageMcCulloch electronic companies in the United States in 1970 made the lead-acid battery quick charging system, for 500A to 190AH battery charging current, and in 1200A discharge to deal with the polarization current for short periods of time, theresults 30 minutes to put the battery is good. In addition to the United States, such as Japan, other countries such as Britain, France, Germany, the former Soviet Union also has different degree of development in rapid charging technology. Britain's associated company invented "TEC total energy intelligent charging control technology" and its control system, effectively control the powder charging when the amount of energy needed, overcome existing corona charging system and friction type charging system caused various problems, to solve the "Faraday shielding effect" and "reverse ionization effect" and so on.At present the batteries of electric cars in use process, because of the limitation of the voltage of the power battery energy and need to adopt more battery in series combination, and power battery characteristics of highly nonlinear, individual difference is very big, therefore become the electric car battery management system, a necessary device. The most basic function of BMS is to monitor the working state of the battery (voltage, current and temperature of the battery), prediction of power battery (SOC) of battery capacity, battery management to avoid over discharge, overcharge, overheating and serious imbalance between monomer battery voltages, maximize battery storage capacity and cycle life.Current of the electric vehicle charging system is not very good with a serious defect currently has been relatively mature and supporting the use of on-board BMS system, charging system is either not provide communication interface with BMS, or communication interface is not compatible with popular now BMS interface. BMS system has the most comprehensive, full of battery state of real-time data, if you can provide the charging system and its communication interface, can fundamentally solve the current charging system in the process of charging the battery status change resulting in without understanding the state of the battery charged blindly charging, thus reduce battery life.In addition, as the core of the electric vehicle charging system, the existing charging controller, the control process are mostly based on analog signal processing, and its control structure is a centralized control structure. The traditional charging system boundary is not clear, complex structure and each subsystem is unitized degreeis very low. Its applied electromagnetic environment, all kinds of high frequency signals could easily lead to serious interference of microcomputer control charging system failure. In the past, often using analog signal for each signal transmission is between the control systems. Various kinds of interference signal into analog signals, it is easy to lead to failure of the control system, its structure and the process may not apply to the requirement of the distributed control and the whole process of the digital processing requirements.3 The function of the electric vehicle charging system requirementsThe charging system in addition to providing communication interface with BMS, received by the BMS battery status parameters of transfer function, extract energy from power supply and charging system is passed to the battery in the right way, so as to set up between power supply and battery power conversion interface. Charging system is usually performed by the power conversion unit and process control of controller. The basic properties of the charging system requirements include the following:Security: electric vehicle charging, how to ensure that personnel's personal safety and the safety of the battery is very important. Easy to use: charging system should have high intelligence, operators don't need too much intervention in the charging process. Cost economy: economic and cheap charging system helps to reduce the cost of the whole electric cars, improve operation efficiency, and promote the commercialization of electric vehicles. High efficiency: efficiency is one of the most important requirements for modern charging system; the efficiency of the energy efficiency of high and low for the electric car has a huge impact. Low pollution to the power supply: the power electronic technology of the charging system is a kind of highly nonlinear devices, will produce harmful to the supply network and other electrical equipment of the harmonic pollution, moreover, because of the charging system power factor is low, the charging system load increases, its effect on the supply network also not allow to ignore.4 EV charging method4.1 Constant current chargingIn the whole process of charging and is always with constant current for rechargeable battery. In this way, to ensure that in the later stages of charging without a lot of gas, therefore can only use small current charging, so need a long time, the charging method has the advantage of simple operation, the current is too small, but in the beginning in the late charge and charging current is too large, charging time is long.4.2 Constant voltage chargingEarly charging current is quite large, as the charge and current decreases. For more battery discharge, the initial charging current is too large in order to protect cells from damage, at the beginning of the charging to limited flow measures to avoid the charging current is too large. Compared with constant current charging, the battery is not easy to calculate.4.3 Constant voltage charging current limitingTo remedy constant-voltage charging shortcomings, is widely used in constant voltage current limiting method. Set the maximum charging current, at the beginning of the charge, when the current exceeds the limit of flow value, with the current limiting value, when the current less than the current limit value, constant voltage charging. Thus automatically adjust the charging current, does not exceed a certain limit, the charging current is controlled in the early.4.4 Constant voltage charge after constant currentThis method is a combination of constant current charging and constant voltage charge, the previous constant current charging and accounting period of constant voltage charging way, on the one hand to avoid the constant voltage charging current is too large, in the early late again on the other hand to avoid the constant current charging phenomenon.4.5 Charge attenuationIn the process of charging, with the increase of voltage of the battery, charging current attenuation of charging method gradually. This is a kind of ideal charging method; charge saves time and prevents the sulfuric acid stratification and the plate vulcanizing. But this charging method implementation requires more complex control,compared with the constant current charging; the charging amount is not easy to estimate. Due to the battery and nonlinear dispersion, complexity, the problems in the process of charging, the battery charging has become a more complex issue. The traditional charging method is used to charging very troublesome, because often be charging for 10 hours, and in the process of charging must be manned. Quick charge is the problem to be solved in the process of charging current control, in the process of charging, if the charging current is not enough, to reach the purpose of quick charge. If the charging current is too large and will cause a large number of precipitation of gas, electrolyte temperature will rise quickly, easy to cause the battery plate is damaged, shorten the battery life. Also in the process of charging battery monomer battery consistency of difference, this factor must be fully considered.译文电动汽车充电系统及控制器研究Pollet G摘要本文提出了全桥的主电路拓扑结构和PWM的控制手段,有效的提高了充电系统的可靠性和效率。
毕业设计电动车电池参考文献英文
![毕业设计电动车电池参考文献英文](https://img.taocdn.com/s3/m/fb4377f20408763231126edb6f1aff00bfd57061.png)
IntroductionElectric vehicles (EVs) have gained significant attention in recent years due to their potential to reduce greenhouse gas emissions and dependence on fossil fuels. The battery is a crucial component of an electric vehicle, as it provides the energy required for propulsion. A well-designed and efficient battery system is essential for the success of an EV.This research paper aims to explore the various aspects of electric vehicle batteries for a graduation project on electric vehicle battery design. The paper discusses the different types of batteries used in electric vehicles, their characteristics, advantages, and challenges. Additionally, it touches upon the battery management system, charging infrastructure, and future advancements in electric vehicle batteries.Types of Electric Vehicle Batteries1.Lithium-ion Batteries: Lithium-ion batteries are the mostcommonly used batteries in electric vehicles due to their highenergy density, long cycle life, and lightweight characteristics.They provide a good balance between performance, cost, and safety.A comprehensive investigation of the structure, working principle,and limitations of lithium-ion batteries is essential fordesigning an optimized battery system.2.Nickel-Metal Hydride (Ni-MH) Batteries: Ni-MH batteries werewidely used in electric vehicles before the emergence of lithium-ion batteries. They offer a relatively lower energy density thanlithium-ion batteries but have better thermal stability, whichensures safer operation. A comparative analysis between lithium-ion and Ni-MH batteries can aid in choosing the appropriatebattery for the design project.3.Solid-State Batteries: Solid-state batteries are a promisingalternative to traditional lithium-ion batteries. They utilizesolid electrolytes instead of liquid electrolytes, providinghigher energy density, improved safety, and faster chargingcapabilities. Although still under development, solid-statebatteries hold great potential for the future of electric vehicles.Battery Management System (BMS)The Battery Management System (BMS) is responsible for monitoring and controlling the battery’s performance, safety, and lifespan. A well-designed BMS ensures the optimal operation of the battery system, preventing overcharging, undercharging, and excessive discharge. It provides accurate state-of-charge (SOC) and state-of-health (SOH) estimations, which are crucial for maximizing the battery’s efficiency.The BMS consists of various components, including sensors, control algorithms, and battery balancing circuits. In-depth research on BMS architecture, functionality, and control strategies is necessary to design an effective battery management system for the electric vehicle.Charging InfrastructureThe availability of a robust charging infrastructure is essential for widespread adoption and convenience of electric vehicles. The research project should explore the different types of charging stations, including:1.Level 1 Charging: Level 1 charging refers to standard householdoutlets (120V), which provide a slow charging rate but are widely accessible.2.Level 2 Charging: Level 2 charging utilizes dedicated chargingstations (240V). It offers a faster charging rate compared toLevel 1 and is commonly found in residential areas, workplaces,and public charging stations.3.DC Fast Charging: DC Fast Charging, also known as Level 3charging, provides rapid charging capabilities by directlydelivering DC power to the vehicle’s battery. These chargingstations are typically located along highways and major routes.The paper should discuss the importance of a well-established charging infrastructure and address potential challenges and solutions to the deployment of charging stations.Future AdvancementsThe field of electric vehicle batteries is continuously evolving, with ongoing research and advancements. It is crucial for the researchproject to explore future developments, such as:1.Advanced Lithium-ion Batteries: Researchers are constantlyworking on improving the energy density, charging speed, andsafety of lithium-ion batteries. Advancements in materials,electrode designs, and electrolytes are expected to result in more efficient and long-lasting batteries.2.Solid-State Batteries: As mentioned earlier, solid-statebatteries hold immense potential for the future of electricvehicles. The research should discuss the current challenges faced in commercializing solid-state batteries and potentialbreakthroughs that can lead to their widespread adoption.3.Beyond Lithium-ion: Besides solid-state batteries, alternativebattery chemistries like lithium-sulfur (Li-S) and lithium-air(Li-Air) batteries are being explored for their high energydensities. Understanding these emerging battery technologies canpave the way for future advancements in EV batteries.ConclusionDesigning an efficient and reliable battery system is crucial for the success of an electric vehicle. This research paper provides a comprehensive and detailed analysis of different types of electric vehicle batteries, their characteristics, and the importance of a well-designed battery management system and charging infrastructure. Furthermore, it explores future advancements in electric vehicle battery technologies. By understanding these aspects, the research project can aim to design an optimized electric vehicle battery system that contributes to a sustainable and greener transportation future.Note: The content provided above is a suggested structure for the research paper related to the topic of “Graduation Project - Electric Vehicle Battery”. Please add relevan t and specific details from appropriate academic references to complete the paper.。
电动汽车发展:过去、现在与未来外文文献翻译、中英文翻译、外文翻译
![电动汽车发展:过去、现在与未来外文文献翻译、中英文翻译、外文翻译](https://img.taocdn.com/s3/m/c4868250e45c3b3566ec8b06.png)
Abstract
A vehicle is consider Green when it moreenvironmentally friendly than the traditional petroleumcombustion engine, in which includes any nontraditionalvehicle like, HEV, Plug In, EV, Fuel Cell, Bio fuel etc. thatimproves fuel economy. The development of electric vehiclehas been over a hundred years but failure to gain the publicacceptance in various stages due to various reasons whichexplained. While EV was never mass produced, Hybridelectric vehicle gains the momentum in recent years. Fordhas launched its second generation of HEV and GM alsoannounced the debut of the Volt in 2010. Comparing to theregular HEV, Plug in is the new trend in hybrid autodevelopment due to extend travel range in electrical modeand a possibility of a zero emission as long as travel distanceis less than charging threshold. However, more recently, anelectrification trend in automotive industry has been evolvedand will revolutionize the industry. With the correct policyand government help and advancement of electric vehicletechnology, the prospect of Electric Vehicle will be brightand the focus point of future development.
充电桩建设项目商业计划书范文
![充电桩建设项目商业计划书范文](https://img.taocdn.com/s3/m/23b0e4e8f424ccbff121dd36a32d7375a417c6a6.png)
充电桩建设项目商业计划书范文英文回答:Executive Summary.The proposed electric vehicle (EV) charging station project aims to address the growing demand for EV charging infrastructure in the target market. The project involves the installation and operation of a network of fast-charging stations strategically located in high-traffic areas. Our market research indicates a strong need for reliable and convenient EV charging services, and we believe that this project will tap into a rapidly growing market.Market Analysis.The target market for this project is the rapidly expanding population of EV owners in the region. According to industry data, EV sales have been increasingexponentially in recent years, and this trend is expected to continue in the foreseeable future. This growth is driven by factors such as rising fuel costs, government incentives, and increasing consumer awareness of environmental issues.Site Selection.The locations of the charging stations have been carefully chosen to ensure maximum convenience and accessibility for EV owners. The stations will be installed in high-traffic areas, such as shopping malls, parking garages, and transportation hubs. This will allow EV owners to charge their vehicles while they are running errands or commuting to work.Charging Technology.The charging stations will be equipped with the latest fast-charging technology, which will enable EV owners to charge their vehicles in as little as 30 minutes. This will significantly reduce the time spent waiting for a charge,making EV ownership more convenient and practical.Financial Projections.The financial projections for this project indicatethat it is a sound investment with a strong potential for profitability. The project is expected to generate significant revenue from the sale of electricity and subscription fees. The operating costs will be relatively low, as the charging stations will be automated and require minimal maintenance.Environmental Impact.The project will have a positive environmental impact by reducing greenhouse gas emissions and promoting the adoption of EVs. By providing convenient and affordable charging options, the project will encourage more people to switch to EVs, which will reduce air pollution and contribute to a cleaner environment.Conclusion.The proposed EV charging station project is a well-conceived and financially viable opportunity to address the growing demand for EV charging infrastructure in the target market. The project will provide a convenient and reliable charging solution for EV owners, while also contributing to environmental sustainability. We are confident that this project will be a success and will make a significant contribution to the growth of EV adoption in the region.中文回答:执行摘要。
外文翻译---混合动力电动汽车机械和再生制动的整合
![外文翻译---混合动力电动汽车机械和再生制动的整合](https://img.taocdn.com/s3/m/c6c025f2aef8941ea76e05d4.png)
外文文献原稿和译文原稿Mechanical and Regenerative Braking Integration for a Hybrid ElectricVehicleAbstractHybrid electric vehicle technology has become a preferred method for the automotive industry to reduce environmental impact and fuel consumption of their vehicles. Hybrid electric vehicles accomplish these reductions through the use of multiple propulsion systems, namely an electric motor and internal combustion engine, which allow the elimination of idling, operation of the internal combustion engine in a more efficient manner and the use of regenerative braking. However, the added cost of the hybrid electric system has hindered the sales of these vehicles.A more cost effective design of an electro-hydraulic braking system is presented. The system electro-mechanically controlled the boost force created by the brake booster independently of the driver braking force and with adequate time response. The system allowed for the blending of the mechanical and regenerative braking torques in a manner transparent to the driver and allowed for regenerative braking to be conducted efficiently.A systematic design process was followed, with emphasis placed on demonstrating conceptual design feasibility and preliminary design functionality using virtual and physical prototyping. The virtual and physical prototypes were then used in combination as a powerful tool to validate and develop the system. The role of prototyping in the design process is presented and discussed.Through the experiences gained by the author during the design process, it is recommended that students create physical prototypes to enhance their educational experience. These experiences are evident throughout the thesis presented.1.1 Modern Hybrid Electric VehiclesWith rising gas prices and the overwhelming concern for the environment, consumers and the government have forced the automotive industry to start producing more fuel efficient vehicles with less environmental impact. One promising method that is currently being implemented is the hybrid electric vehicle.Hybrid vehicles are defined as vehicles that have two or more power sources [25]. There are a large number of possible variations, but the most common layout of hybrid vehicles today combines the power of an internal combustion engine (ICE) with the power of an electric motor and energy storage system (ESS). These vehicles are often referred to as hybrid electric vehicles (HEV’s) [25]. These two power sources are used in conjunction to optimize the efficiency and performance of the vehicle, which in turn will increase fuel economy and reduce vehicle emissions, all while delivering the performance the consumer requires. In 1997, the Toyota Prius became the first hybrid vehicle introduced into mass production in Japan. It took another three years for the first mass produced hybrid vehicle, the Honda Insight, to be introduced into the North American market. The release of the Honda Insight was closely followed by the release of the Toyota Prius in North America a couple of months later [35].Hybrid electric vehicles have the distinct advantage of regenerative braking. The electric motor, normally used for propulsion, can be used as a generator to convert kinetic energy of the vehicle back into electrical energy during braking, rather than wasting energy as heat. This electrical energy can then be stored in an ESS (e.g. batteries or ultracapacitors) and later released to propel the vehicle using the electric motor.This process becomes even more important when considering the energy density of batteries compared to gasoline or diesel fuel. Energy density is defined as the amount of energy stored in a system per unit volume or mass [44]. To illustrate this point, 4 kilograms (4.5 litres) of gasoline will typically give a motor vehicle a range of50 kilometres. To store the same amount of useful electric energy it requires a lead acid battery with a mass of about 270 kilograms [25]. This demonstrates the need for efficient regenerative braking to store electrical energy during driving, which in turn will keep the mass of the energy storage system down and improve the performance and efficiency of the HEV.1.2 Research Scope - Regenerative Braking SystemsThe scope of the research presented is to create a low cost regenerative braking system to be used on future economical hybrid vehicles to study the interaction between regenerative and mechanical braking of the system. This system should be able to control the combination of both regenerative and mechanical braking torque depending on driver demand and should be able to do so smoothly and safely. Controlling the regenerative braking torque can be done using control algorithms and vector control for induction motors. However, controlling the mechanical braking torque independently of the driver pedal force, while maintaining proper safety back-ups, proved to be more of a challenge. To overcome this problem, a system was developed that would attenuate the pressure in the brake booster in order to control the amount of mechanical torque developed by the braking system.2.1 Hybrid Electric Vehicle OverviewHybrid vehicles have emerged as one of the short term solutions for reducing vehicle emissions and improving fuel economy. Over the past 10 years almost all of the major automotive companies have developed and released for sale their own hybrid electric vehicles to the public. The popularity of hybrid electric vehicles has grown considerably since the turn of the century. With enormous pressure to become more environmentally friendly and with unpredictable gas prices, the sales of hybrid electric vehicles have increased dramatically in recent years.2.1.1 Hybrid ConfigurationsFor the past 100 years the objective of the hybrid has been to extend the range of electric vehicles and to overcome the problem of long recharging times [35]. There are three predominant hybrid electric vehicle configurations currently on the market today. These configurations are known as series hybrids, parallel hybrids andseries/parallel hybrids.Each configuration has its advantages and disadvantages which will be discussed in the following sections.Series HybridsIn series hybrids the mechanical output from the internal combustion engine is used to drive a generator which produces electrical power that can be stored in the batteries or used to power an electric motor and drive the wheels. There is no direct mechanical connection between the engine and the driven wheels. Series hybrids tend to be used in high power systems such as large trucks or locomotives but can also be used for lower power passenger vehicles [18]. The mechanically generated electrical power is combined with the power from the battery in an electronic controller. This controller then compares the driver demand with the vehicle speed and available torque from the electric motor to determine the amount of power required from each source to drive the vehicle. During braking, the controller also switches the power electronics to regenerative mode, and directs the power being regenerated to the batteries [55].There are many advantages made possible by the arrangement described above. It is possible to run the ICE constantly at its most efficient operating point and share its electrical output between charging the battery and driving the electric motor. By operating the engine at its most efficient operating point, emissions can be greatly reduced and the most electrical power can be generated per volume of fuel. This configuration is also easierto implement into a vehicle because it is less complex which makes this method more cost effective.Parallel HybridsIn parallel hybrid configurations the mechanical energy output from the ICE is transmitted to a gearbox. In this gearbox the energy from the ICE can be mechanically combined with a second drive from an electric motor. The combined mechanical output is then used to drive the wheels [35]. In this configuration there is a direct connection between the engine and the driven wheels. As in series hybrids the controller compares the driver demand with the vehicle speed and output torque and determines the amount of power to be used from each source to meet the demand,while obtaining the best possible efficiency. A parallel hybrid also controls regenerative braking similarly to a series hybrid. Parallel hybrids are usually used in lower power electric vehicles in which both drives can be operated in parallel to provide higher performance [18].There are a number of advantages of a parallel hybrid over a series hybrid. The most important advantage is that since only one conversion between electrical and mechanical power is made, efficiency will be much better than the series hybrid in which two conversions are required. Since the parallel hybrid has the ability to combine both the engine and electric motor powers simultaneously, smaller electric motors can be used without sacrificing performance, while getting the fuel consumption and emission reduction benefits. Lastly, parallel hybrids only need to operate the engine when the vehicle is moving and do not need a second generator to charge the batteries.Series/Parallel HybridsCombined hybrids have the features of both series and parallel configurations. They use a power split device to drive the wheels using dual sources of power (e.g. electric motor only, ICE only or a combination of both). While the added benefits of both series hybrids and parallel hybrids are achieved for this configuration, control algorithms become very complex because of the large number of driving possibilities available.2.1.2 Degree of HybridizationSince most H EV’s on the road today are either parallel or series/parallel, it is useful to define a variable called the ‘degree of hybridization’ to quantify the electrical power potential of these vehicles.iceem em P P P DOH += The degree of hybridization ranges from (DOH = 0) for a conventional vehicle to (DOH = 1) for an all electric vehicle [25]. As the degree of hybridization increases, a smaller ICE can be used and operated closer to its optimum efficiency for a greater proportion of the time, which will decrease fuel consumption and emissions. The electric motor power is denoted by Pem and the internal combustion engine power isdenoted by Pice.Micro HybridMicro hybrids have the smallest degree of hybridization and usually consist of an integrated starter generator (ISG) connected to the engine crankshaft. The ISG allows the engine to be shut off during braking and idling to conserve fuel and then spins the crankshaft up to speed before fuel is injected during acceleration. The ISG also provides small amounts of assist to the ICE during acceleration and acts as a generator to charge the batteries during braking. Micro hybrids usually improve fuel economy by about 10 percent compared with non hybrids [53].Mild HybridMild hybrids have a similar architecture to the micro hybrid except that the ISG is uprated in power to typically greater than 20 kW. However, the energy storage system is limited to less than 1 kWh [35]. Mild hybrids usually have a very short electric-only range capability but can provide a greater assist to the ICE during accelerations. The electrical components in a mild hybrid are more complex than a micro hybrid and play a greater role in the vehicle operation. Fuel economy can be improved by 20 to 25 percent with a mild hybrid over non hybrid vehicles [53].Full HybridFull hybrids do away with the ISG and replace it with a separate electric motor and alternator/starter that perform the same function. The electric motor has the ability to propel the vehicle alone, particularly in city (stop and go) driving. The energy storage system is upgraded to improve electric-only range capability and the engine is usually downsized to improve fuel economy and emissions. Full hybrids can achieve40 to 45 percent fuel consumption reductions over non hybrids [53].Plug-in HybridPlug-in hybrids are very similar to full hybrids except that they have a much larger ESS that can be connected to an outside electrical utility source for charging. These vehicles use only the electric motor to propel the vehicle within the range of the batteries and then operate like full hybrids once the batteries have discharged to a predefined level.2.1.3 Fundamentals of Regenerative BrakingOne of the most important features of HEV’s is their ability to recover significant amounts of braking energy. The electric motors can be controlled to operate as generators during braking to convert the kinetic energy of the vehicle into electrical energy that can be stored in the energy storage system and reused. However, the braking performance of a vehicle also greatly affects vehicle safety. In an emergency braking situation the vehicle must be stopped in the shortest possible distance and must be able to maintain control over the vehicle’s direction. The latter requires control of brake force distribution to the wheels [12].Generally, the braking torque required is much larger than the torque that an electric motor can produce [12]. Therefore, a mechanical friction braking system must coexist with the electrical regenerative braking. This coexistence demands proper design and control of both mechanical and electrical braking systems to ensure smooth, stable braking operations that will not adversely affect vehicle safety. Energy Consumption in BrakingBraking a 1500 kg vehicle from 100 km/h to 0 km/h consumes about 0.16 kWh of energy based on Equation 2.2.221mv E If 25 percent of this energy could be recovered through regenerative braking techniques, then Equation 2.2 can be used to estimate that this energy could be used to accelerate the vehicle from 0 km/h to about 50 km/h, neglecting aerodynamic drag, mechanical friction and rolling resistance during both braking and accelerating. This also assumes that the generating and driving modes of the electric motor are 100% effici ent. This suggests that the fuel economy of HEV’s can be greatly increased when driving in urban centres where the driver is constantly braking and accelerating. Note that the amount of energy recovered is limited by the size of the electric motor and the rate of which energy can be transferred to the ESS.2.1.4 Methods of Regenerative BrakingThere are two basic regenerative braking methods used today. These methods are often referred to as parallel regenerative braking and series regenerative braking. Each of these braking strategies have advantages and disadvantages that will be discussed in this section.Parallel Regenerative BrakingDuring parallel regenerative braking, both the electric motor and mechanical braking system always work in parallel (together) to slow the vehicle down [48]. Since mechanical braking cannot be controlled independently of the brake pedal force it is converting some of the vehicle’s kinetic energy into heat instead of electrical energy. This is not the most efficient regenerative braking method. However, parallel regenerative braking does have the advantages of being simple and cost effective. For this method to be used, the mechanical braking system needs little modification and the control algorithms for the electric motor can be easily implemented into the vehicle. This method also has the added advantage of always having the mechanical braking system as a back-up in case of a failure of the regenerative braking system. Series Regenerative BrakingDuring series regenerative braking the electric motor is solely used for braking. It is only when the motor or energy storage system can no longer accept more energy that the mechanical brakes are used [48]. This method requires that the mechanical braking torque be controlled independently of the brake pedal force and has the advantage of being the most efficient by converting as much of the vehicle’s kinetic energy into electrical energy . The downfall of this method is that it brings many costs and complexities into the system. For this method to function properly a brake-by-wire system has to be developed which either uses an electro-hydraulic brake (EHB) or an electro-mechanical brake (EMB). Both of these types of brakes require brake pedal simulators and redesigned brake systems which can become costly. Since these systems are brake-by-wire there are also many redundancies required with sensors, processors and wiring for safety which add to the complexity of the system. 2.1.5 Current Regenerative Braking SystemsThe current regene rative braking system in most HEV’s (e.g. Toyota Prius) is the more costly electro-hydraulic braking (EHB) system. This system uses a brake pedal simulator, which is separate from the hydraulic braking circuit, to establish driver braking demand. The braking demand is then proportioned into a regenerative and mechanical braking demand. The mechanical braking demand is then sent to a system that contains a high pressure hydraulic pump, accumulator and proportional controlvalves. The proportional control valves allow the brake line fluid to flow to each wheel at predefined pressures determined by the braking demand.译文混合动力电动汽车机械和再生制动的整合摘要为了减少对环境的污染和车辆的燃油消耗,混合动力电动汽车已经成为汽车工业的首选方法。
关于新能源充电管理系统的外文文献
![关于新能源充电管理系统的外文文献](https://img.taocdn.com/s3/m/77e111fc64ce0508763231126edb6f1aff0071b2.png)
关于新能源充电管理系统的外文文献New Energy Charging Management SystemWith the rapid development of new energy vehicles, the demand for charging infrastructure has been increasing. In order to efficiently manage the charging process and ensure the stability of the power grid, a new energy charging management system is designed. This system integrates advanced technology to optimize the charging experience for users while minimizing energy waste and reducing costs.1. IntroductionThe new energy charging management system is a comprehensive solution that includes hardware, software, and communication networks. It aims to provide a seamless and convenient charging experience for users while ensuring the efficient use of resources. By implementing smart charging strategies, the system can balance the demand for electricity with the available supply, thereby reducing the strain on the power grid.2. Components of the SystemThe new energy charging management system consists of several key components, including charging stations, power distribution units, communication modules, and a central control system. The charging stations are equipped with advanced technology that allows for fast and efficient charging of electric vehicles. The power distribution units regulate the flow of electricity to ensure a stable and reliable charging process. Communication modules enable real-time data exchange between differentcomponents of the system, while the central control system manages and monitors the overall operation of the system.3. Smart Charging StrategiesOne of the key features of the new energy charging management system is its ability to implement smart charging strategies. These strategies take into account factors such as electricity demand, renewable energy generation, and user preferences to optimize the charging process. By dynamically adjusting the charging rate based on these factors, the system can reduce energy waste and lower costs for users. Additionally, the system can prioritize charging for electric vehicles that are in urgent need of power, ensuring that all users have access to charging facilities when they need them.4. Benefits of the SystemThe new energy charging management system offers several benefits for both users and energy providers. For users, the system provides a convenient and reliable charging experience, with the option to schedule charging sessions in advance. This helps to minimize waiting times and ensures that users can access charging facilities when they need them. For energy providers, the system helps to optimize the use of resources and reduce the strain on the power grid. By implementing smart charging strategies, the system can balance the demand for electricity with the available supply, ensuring a stable and reliable energy supply for all users.5. ConclusionIn conclusion, the new energy charging management system is an innovative solution that can help to optimize the charging process for electric vehicles. By integrating advanced technology and smart charging strategies, the system offers a convenient and efficient charging experience for users while minimizing energy waste and reducing costs. With the increasing demand for charging infrastructure, the new energy charging management system is a crucial tool for ensuring the stability of the power grid and promoting the widespread adoption of new energy vehicles.。
新国标电动汽车的直流充电桩控制系统设计
![新国标电动汽车的直流充电桩控制系统设计](https://img.taocdn.com/s3/m/167ebd2530126edb6f1aff00bed5b9f3f90f72dc.png)
新国标电动汽车的直流充电桩控制系统设计孙涛;曹淑琴【摘要】根据目前国内电动汽车直流快充的现状,设计出了符合新国标GB/T18487.1-2015等5项国家标准的电动汽车直流快速充电桩.首先介绍了目前电动汽车充电方式的现状和新国标的特点,在此基础上,按照新国标的要求,提出了充电桩控制系统的总体设计架构,并从硬件和软件两个方面详细描述了有关设计.充电桩控制以STM32F103VE单片机作为核心,以μC/OS Ⅱ为嵌入式操作系统的底层控制程序,实现充电协议与输出控制功能.人机交互以WinCE触摸显示模组为核心,基于WinCE的人机交互界面,实现充电计费和操作指引功能.%According to the situation of DC charging pile for electronic vehicles in the domestic,a DC charging pile for electronic vehiclesis designed,that confirmes five national standards including GB/T18487.1-2015 etc.Firstly,the situation of DC charging pile and features of new national standard are introduced.And based on requests of new national standard,a structure of charging pile is designed and some project details from hardware and software are introduced.The charging pile takes STM32F103VE as the control core.And the μC/OS Ⅱ is used as the low-layer control program of embedded operating system.It achieves charging protocol and output control.The human-computer interface takes the WinCE touch display module as the core.It implementes the charging and operation guide function.【期刊名称】《单片机与嵌入式系统应用》【年(卷),期】2018(018)002【总页数】5页(P63-66,71)【关键词】充电桩;电动汽车;STM32F103VE;WinCE【作者】孙涛;曹淑琴【作者单位】北方工业大学电子信息工程学院,北京100141;北方工业大学电子信息工程学院,北京100141【正文语种】中文【中图分类】TP29引言电动汽车在行驶过程中,不会造成排气污染,对环境保护和空气洁净都是十分有益的。
新能源汽车外文文献翻译
![新能源汽车外文文献翻译](https://img.taocdn.com/s3/m/91f98d3d4a73f242336c1eb91a37f111f1850dcb.png)
文献出处:Moriarty P, Honnery D. The prospects for global green car mobility[J]. Journal of Cleaner Production, 2008, 16(16): 1717-1726. 原文The prospects for global green car mobilityPatrick Moriarty, Damon HonneryAbstract The quest for green car mobility faces two major challenges: air pollution from exhaust emissions and global climate change from greenhouse gas emissions. Vehicle air pollution emissions are being successfully tackled in many countries by technical solutions such as low-sulphur fuels, unleaded petrol and three-way catalytic converters. Many researchers advocate a similar approach for overcoming transport's climate climate change change change impacts. impacts. impacts. This This This study study study argues argues argues that that that finding finding finding a a a technical technical technical solution solution solution for for for this this problem is not possible. Instead, the world will have to move to an alternative surface transport system involving far lower levels of motorised travel. Keywords :Green Green mobility; mobility; mobility; Fuel Fuel Fuel efficiency; efficiency; efficiency; Alternative Alternative Alternative fuels; fuels; fuels; Global Global Global climate climate change; air pollution 1. Introduction Provision of environmentally sustainable (or green) private transport throughout the world faces two main challenges. The first is urban and even regional air pollution, particularly in the rapidly growing cities of the industrialising world. The second is global global climate climate climate change, change, change, caused caused caused mainly mainly mainly by by by rising rising rising concentrations concentrations concentrations of of of greenhouse greenhouse greenhouse gases gases (GHGs) in the atmosphere. These two barriers to green car mobility differ in several important ways. First, road traffic air pollution problems are more localised, because of of the the the short short short atmospheric atmospheric atmospheric lifetimes lifetimes lifetimes of of of most most most vehicle vehicle vehicle pollutants and . pollutants and . T hus Thus Thus regional regional solutions are often not only possible, but also essential – Australian cities, for example, can can (and (and (and must) must) must) solve solve solve their their their air air air pollution pollution pollution problems problems problems themselves. themselves. themselves. Matters Matters Matters are are are very very different different for for for global global global climate climate climate change. change. change. Except Except Except possibly possibly possibly for for for geo-engineering geo-engineering geo-engineering measures measures such such as as as placing placing placing large large large quantities quantities quantities of of of sulphate sulphate sulphate aerosols aerosols aerosols in in in the the the lower lower lower stratosphere stratosphere stratosphere or or erecting huge reflecting mirrors in space, one country cannot solve this problem alone. Climate change is a global problem. Nevertheless, it is possible for some countries to …freeload‟ if the majority of nations that are important GHG emitter 。
新能源汽车外文翻译文献
![新能源汽车外文翻译文献](https://img.taocdn.com/s3/m/65b92f324b35eefdc8d3337a.png)
新能源汽车外文翻译文献(文档含英文原文和中文翻译)电动车:正在进行的绿色交通革命?随着世界上持续的能源危机,战争和石油消费以及汽车数量的增加,能源日益减少,有一天它会消失得无影无踪。
石油并不是可再生资源。
在石油消耗枯竭之前必须找到一种能源与之替代。
随着科技的发展和社会进步,电动车的发明将会有效的缓解这一燃眉之急。
电动汽车将成为理想的交通工具。
面临能源成本居高不下、消费者和政府更加重视环境保护的情况下,世界汽车制造商正加大对可替代能源性混合动力汽车技术的开发投资。
该技术能极大削减燃料消费,减少温室气体排放。
许多人把目光投向了日本和美国的汽车制造商,关心他们开发混合动力和电池电动车的进展情况。
丰田普锐斯一跃成为世界上销量最好的混合动力车。
美国的新兴汽车制造商,Tesla Motors,推出了该公司首部电池电力车,名为Tesla Roadster。
截至2010年底,通用汽车公司计划推出备受赞誉的V olt混合动力汽车,而克莱斯勒公司最近已经宣布同样的计划正在进行之中。
目前,中国在新能源汽车的自主创新过程中,坚持了政府支持,以核心技术、关键部件和系统集成为重点的原则,确立了以混合电动汽车、纯电动汽车、燃料电池汽车为“三纵”,以整车控制系统、电机驱动系统、动力蓄电池/燃料电池为“三横”的研发布局,通过产学研紧密合作,中国混合动力汽车的自主创新取得了重大进展。
形成了具有完全自主知识产权的动力系统技术平台,建立了混合动力汽车技术开发体系。
混合动力汽车的核心是电池(包括电池管理系统)技术。
除此之外,还包括发动机技术、电机控制技术、整车控制技术等,发动机和电机之间动力的转换和衔接也是重点。
从目前情况来看,中国已经建立起了混合动力汽车动力系统技术平台和产学研合作研发体系,取得了一系列突破性成果,为整车开发奠定了坚实的基础。
截止到2009年1月31日,在混合动力车辆技术领域,中国知识产权局受理并公开的中国专利申请为1116件。
混合动力汽车外文文献翻译最新译文
![混合动力汽车外文文献翻译最新译文](https://img.taocdn.com/s3/m/1e73481316fc700abb68fc5e.png)
文献出处:Pohl G. The research of hybrid car development [J]. Technological Forecasting and Social Change, 2016, 15(3):57-67.原文The research of hybrid car developmentPohl G.AbstractIncreasingly scarce oil resources and environmental pollution, the problem such as global warming becoming more serious, as a major source of carbon emissions car become focus of research and development of automobile manufacturers, low emissions, zero emissions of choice for new energy vehicles has become the next generation of cars, more and more car manufacturers focus on low emission, low fuel consumption on the development of the car. Therefore, Hybrid Electric Vehicle (Hybrid Electric Vehicle), hereinafter referred to as HEV, as a transition to a zero discharge development models, is starting to get attention. The characteristics of a hybrid car is can make the engine keep in the region of the optimum condition, and good dynamic performance, the hybrid cars have the advantage of low emissions, low pollution.Keywords: Hybrid cars, Control strategy of power matching, Forward simulation1 IntroductionHumans are faced with more and more serious energy shortage crisis; Countries have established their own energy saving strategy. As the national income boost national economy rapid development. Traditional fuel cars used widely in petroleum refining traditional fuels such as gasoline, diesel is belongs to the non-renewable energy, traditional fuel oil reserves and production are in danger of drying up. And car holdings increased year after year, had had a serious of urban traffic congestion, further intensify the energy crisis, and also received a national energy supply security threat. Automobile exhaust gas caused by the environment problem is increasingly serious, such as the tiny particles in urban PM2.5 mainly from automobile exhaust emissions, car exhaust and has become a primary sources of air quality and people's health. Hybrid is refers to the vehicle using conventional fuel (diesel, gasoline, etc.)power and the two methods in electric power, the advantage is in the car at the time of starting, can only rely on motor drive the car, when reaching a certain speed to start the engine. In this way, can make the engine keep the best working state, to obtain good dynamic performance, and power source is battery, do not need to consume fuel alone. The key technology of hybrid car is a hybrid control system assembly, it will affect the performance of hybrid vehicle power performance. Through technology unceasing development, the hybrid control system has been from the traditional motor and engine dispersion structure gradually into the engine, motor and variable speed mechanism of integration. The current hybrid system generally in power transmission lines to distinguish, can be divided into three categories of parallel, series, and mixed type.2 Summary of three hybrid system2.1 series hybrid electric vehicle (SHEV)SHEV type hybrid vehicle, powered by batteries, control module and module DengZi modules, which is in series connection way between them constitute the SHEV powertrain. At work, engine driven generator to generate electricity, directly by the controller to transfer power to the battery or direct drive motor, by variable speed motor to drive a car again. In a small load, the battery to the motor power and drive wheel, when large load, motor direct drive motor power, and thus drive motor. Just started in the car, the battery capacity in a saturated state, the kinetic energy of the battery at this time can achieve auto start demand, when the battery power value is lower than the set value, dynamic auxiliary system starting; When the vehicle's energy demand grows, the battery pack and power module for traction system to transmit power at the same time; When the vehicle energy demand decreases, the auxiliary power system in the guarantee of energy demand driven system at the same time, to the battery. Since the role of the battery, the engine can work in relatively constant work environment, improved their emissions. Series system is widely used in urban area of idle run and repeatedly in the environment, can make the engine area in optimal conditions constant, at the same time, through the deployment of the output of the motor and battery energy to adjust the speed of the car. So you can make theengine to avoid and idle running at low speed, improve the efficiency of the engine, thus reduce exhaust emissions. But its drawback is that a lot of energy conversion, the mechanical efficiency also decreases. Such as Honda's "energy" SHEV is using a fuel battery pack, in the city, under the condition of motor powered by fuel cells, electric motor through a transmission driving car, meet the requirements of the "zero pollution" can effectively improve air quality. When faster and uphill to jointly by the engine, fuel cell and motor vehicle power supply, driving wheel, in order to meet the demand for power vehicle.2.2 Parallel power (PHEV)Parallel hybrid electric vehicle, is composed of motor and motor traction motors at the same time, the motor and engine points belong to two sets of power module, can transmission torque, independent of each other to the automobile transmission system under various conditions can either individual drive and driven vehicle when the vehicle needs to accelerate or is uphill, engine and motor can be transmitted to the drive system of traction at the same time, when the vehicle needs to accelerate or is uphill, engine and motor can be transmitted to the drive system of traction at the same time, when the speed reached cruising speed, car will only to maintain the engine speed. The motor can be used as a generator can directly drive the car. The system with separate no generators, and can drive transmission module to drive the car engine, this system is more similar to the average vehicle driver module, mechanical efficiency loss and almost like a regular car, get more extensive application.Such as V olkswagen golf PHEV vehicles that the engine through the transmission of regulating motor, export torque to the clutch to drive the car forward. When the car starts, battery power supply to the motor, the motor into the engine driving mechanism. After the engine side became the only power source to drive cars, car and driving motor power to the battery at the same time, this time with the traditional cars. In urban conditions, the engine stops, the transmission from, batteries as the only energy supply power to motor wheel driven by a motor to replace the engine. When the vehicle needs to speed up or high load, engine starting transmission gear at the same time, the engine and motor system composition of hybrid models,with maximum torque traction vehicles.2.3 Mixed type power systems (SPHEV)SPHEV usually is in the structure of a PHEV and add a motor, so the engine to provide energy to mechanical transmission output Power Bridge on one hand, can drive the generator to the battery charging at the same time. The engine through a generator which can adjust the speed, the engine can run as far as possible in the working area to high efficiency and low emissions. Distribution of electricity by the controller and motor, transmission to the battery or motor, motor driving force of transmitted power composite structure to the drive axle. Mixed type driving mechanism and structure of control of the parallel and serial mechanism of advantage, can make the motor, engine, generator and other components to better cooperate, under the complicated working conditions on the structure ensures that the car work freedom, so are more likely to achieve control target of low emissions and lower fuel consumption. Composite group compared with tandem type, mixed type less dependence on battery, between energy transfers in less, also more fuel efficient; mixed type compared with parallel connection, the engine operation is affected by the condition of smaller. Three kinds of hybrid electric vehicle, the compound type is based on energy distribution is optimal. Hybrid vehicle technology has been gradually perfected. But because the structure is complex, high cost, during the period of the electric car, before the arrival of hybrid car is a kind of transitional product3 The development of hybrid carsJapan's Toyota and America's big three carmakers to world each big car manufacturers such as turning the hybrids of development and research. Through the development of recent years, hybrid cars in the popularization, the more rapid development in the process of marketization. The world's largest car manufacturers focus on the development of clean energy vehicles, hybrid vehicles become the strategic focus of each big car company, gradually break through the scope of small cars and application in medium and large car slowly, technology is more and more competitive. The world car market in 2009, production of hybrid vehicles already broke through 700000, according to the forecast, to 2016 hybrid cars accounted for15% of the share in the global market. In 1997, Toyota has developed the world's first mass-produced hybrid car, and then in 2001, have developed a hybrid minivans and vans, they have a leading comprehensive control system and electric four-wheel drive hybrid system control unit (TSH), the universal hybrid low fuel consumption, low emissions and improve driving performance, etc., in the forefront of the world. Represented by Toyota's Japanese automakers, is due to the precision of 10 years ago, finally to hybrids such transition of clean energy vehicle technology leading the global auto market now. The Toyota Prius hybrid cars off sales amounted to 208900 cars in 2009, increased by 290% than in 2008, became the first new car sales list.The Obama administration in the United States began to implement the new policy, 2015, 1 million hybrid car gained popularity. The United States is the implementation of tax preferential treatment, the hybrid electric vehicle subsidies is between $2500 to $15000 and at the same time. giving subsidies on lending to the electric car companies. In addition, the United States introduced new vehicle carbon dioxide emissions and car fuel economy law, significantly increase to the requirement of vehicle technology, if not the green energy car technology, auto makers will be difficult to meet the requirements of the new regulations.09 on June 1, tesla, nissan North America, and the ford motor company received $8 billion in loans, mainly used in the r&d and production of pure electric and hybrid cars. Daimlerchrysler, gm and ford motor company in 2003 set up the production of hybrid cars and the fuel cell car batteries used in the development company, they injected $4.6 million to develop the next generation of environmentally friendly vehicles need polymer battery. In August 2005, general motors, such as Daimler signed on to form the world alliance cooperation, development of hybrid system with the letter of intent, Shared their hybrids system with regard to the rich resources of science and technology and advanced technology, and will develop dual-mode hybrid car as the primary target.2010 hybrid cars sold 290300 vehicles in the United States, are 2.8% of the proportion of the U.S. auto market, the proportion is not big, but starting from 1.3% in 2005 to present the trend of rising gradually. Forecast that the yield of hybrids will amount to 873000 vehicles in 2016, its market share will reach 5%.译文混合动力汽车发展研究Pohl G.摘要石油资源日渐匮乏和环境污染、全球变暖等问题的日益严重,作为碳排放主要来源的汽车成为汽车厂商研发的重点,低排放、零排放的新能源汽车成为了下一代汽车的首选,越来越多的汽车生产商把目光放在了低排放、低油耗汽车的研制上。
电动汽车充电桩设计外文文献翻译最新译文
![电动汽车充电桩设计外文文献翻译最新译文](https://img.taocdn.com/s3/m/fc6778e327fff705cc1755270722192e45365826.png)
电动汽车充电桩设计外文文献翻译最新译文With the world facing a shortage of oil resources and the challenge of global warming。
the development of low carbon vehicles has XXX in the 21st century。
As such。
the development of electric XXX。
the study of the design of electric vehicle charging piles and their control methods is of great importance.2 XXX InfrastructureThe XXX part of the electric car industry chain。
Without a well-designed charging infrastructure。
the development of electric vehicles will be XXX。
it is XXX on the design of electric vehicle charging piles and their control methods。
Equilibrium control and puter XXX.3 Design of Electric Vehicle Charging PileThe design of the electric XXX。
efficiency。
and convenience。
The charging pile should be designed to be user-friendly and easy to operate。
It should also be equipped with safety features to XXX do not occur during the charging process.4 Equilibrium Control of XXX Charging PileEquilibrium control XXX of the design of electric XXX is operating at an optimal level。
外文翻译 外文文献 英文文献 国内混合动力汽车发展
![外文翻译 外文文献 英文文献 国内混合动力汽车发展](https://img.taocdn.com/s3/m/bc3714262af90242a895e540.png)
China Hybrid Electric Vehicle DevelopmentWith the depletion of oil resources, increase awareness of environmental protection, hybrid vehicles and electric vehicles will become the first decades of the new century, the development of mainstream cars and automobile industry become the consensus of all of the industry. The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to the government support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical "To vehicle control systems, motor drive systems, power battery / fuel cell for the "three horizontal" distribution of R & D, through close links between production cooperation, China's independent innovation of hybrid cars has made significant progress.With completely independent intellectual property rights form the power system technology platform, established a hybrid electric vehicle technology development. Is the core of hybrid vehicles batteries (including battery management system) technology. In addition, also include engine technology, motor control, vehicle control technology, engine and electrical interface between the power conversion and is also the key. From the current situation, China has established a hybrid electric vehicle power system through Cooperative R & D technology platforms and systems, made a series of breakthroughs for vehicle development has laid a solid foundation. As of January 31, 2009,Technology in hybrid vehicles, China Intellectual Property Office to receive and open for the 1116 patent applications in China. In 1116 patent applications, invention 782 (authority for the 107), utility model for the 334.Mastered the entire vehicle key development, the formation of a capability to develop various types of electric vehicles. Hybrid cars in China in systems integration, reliability, fuel economy and other aspects of the marked progress in achieving fueleconomy of different technical solutions can be 10% -40%. Meanwhile, the hybrid vehicle automotive enterprises and industrial R & D investment significantly enhanced, accelerating the pace of industrialization. Currently, domestic automakers have hybrid vehicles as the next major competitive products in the strategic high priority, FAW, Dongfeng, SAIC Motor, Changan, Chery, BYD, etc. have put a lot of manpower, material resources,Hybrid prototyping has been completed, and some models have achieved low-volume market.FAW GroupDevelopment Goal: By 2012, the Group plans to build an annual capacity of 11,000 hybrid cars, hybrid bus production base of 1000.FAW Group since 1999 and a new energy vehicles for theoretical research and development work, and the development of a red car performance hybrid sample. "15" period, the FAW Group is committed to the national "863" major project in the "red card in series hybrid electric vehicle research and development" mission, officially began the research and development of new energy vehicles. Beginning in 2006, FAW B70 in the Besturn, based on the technology for hybrid-based research, the original longitudinal into transverse engine assembly engine assembly, using a transverse engine and dual-motor hybrid technology. At the same time, FAW also pay close attention to the engine, mechanical and electrical integration, transmission, vehicle control networks, vehicle control systems development, the current FAW hybrid electric car has achieved 42% fuel saving effect, reached the international advanced level.Jiefang CA6100HEV Hybrid Electric BusFAW "Liberation brand CA6100HEV Hybrid Electric Bus" project is a national "863" electric vehicle major projects funded project, with pure electric drive, the engine alone drives (and charge), the joint drive motor starts the engine, and sliding regenerative braking 5 kinds of basic operation. The power hybrid electric bus and economy to the leading level, 38% fuel economy than traditional buses, emissions reduced by 30%.Red Flag CA7180AE hybrid carsRed Flag hybrid cars CA7180AE according to the national "863 Plan" is the first in complete with industrial prospects of the car, it is built on the basis of red car with good performance and operational smoothness. Series which is a hybrid sedan, the luxury car ,0-100km acceleration time of 14s, fuel-efficient than traditional cars by about 50%, Euro Ⅲemission standard.Besturn B70 hybrid carsBesturn B70 Hybrid cars using petrol - electric hybrid approach. Dual motor power system programs, mixed degree of 40/103, is all mixed (Full-Hybrid, also known as re-mixed) configurations. Besturn B70 Hybrid cars are petrol version costs two to three times Besturn models, mass production will be gradually reduced after the costs, even if this hybrid version Besturn market, the price certainly higher than the existing Besturn models, but high the price of petrol will not exceed 30% version of Besturn models.SAICDevelopment Goals: 2010 launch in the mixed hybrid cars, plug-in 2012, SAIC strong mix of cars and pure electric cars will be on the market.In the R & D on new energy vehicles, SAIC made clear to focus on hybrid, fuel cell for the direction, and speed up the development of alternative products. Hybrid vehicles, fuel cell vehicles, alternative fuel vehicles as a new energy strategy SAIC three key.2010 SAIC Roewe 750 hybrid cars in the mix will be put on the market, during the World Expo in Shanghai, SAIC will put 150 hybrid cars in the Expo Line on the River Run. 2012 Roewe 550 plug-in hybrid cars will be strong market, the current car's power system has been launched early development and progress.Apply the new hybrid bus moving on the 1stApply the new hybrid bus moving on the 1st Academy of Engineering by the SAIC and Shanghai Jiaotong University and other units jointly developed with independent intellectual property rights. Existing cities in the Sunwin Bus Powerplatform, "the new dynamic application No. 1" uses a parallel hybrid electric vehicle drive program, so that hybrid electric vehicle operating conditions in the electric air-conditioning, steering, braking and other accessories still able to work without additional electric system, while use of super capacitors, to improve starting power, braking energy recovery efficiency, thereby enhancing vehicle dynamic performance, reduce fuel consumption. Car length 10m, width 2.5m, high-3.2m, can accommodate 76 people.Roewe 750 hybrid carsRoewe 750 hybrid cars in the mixed system with BSG (Belt drive start generating one machine), with "smart stop zero-emission" and "environmental protection and the power of both the" two prominent features of a top speed of 205 km / h, the maximum added driving range of up to 500 km. As for the industrialization of SAIC's first own-brand hybrid car, the Roewe 750 hybrid integrated hybrid fuel-efficient cars can achieve rates of around 20%.Dongfeng Motor GroupDevelopment Goals: Plans move into 33 billion in 10 years to develop a range of environmentally friendly hybrid vehicles, including cars.EQ7200HEV hybrid carsEQ7200HEV hybrid cars are "863" project of major projects and major strategic projects of Dongfeng Motor Corporation. The car is EQ7200-Ⅱmodel (Fengshen Bluebird cars) is based on an electronically controlled automatic transmission with innovative electromechanical coupling in parallel programs, configure DC brushless motor and nickel-hydrogen batteries, plans to "10 5 "during the industrialization. Industrialization, the vehicle cost more than EQ7200 cars increase in costs ≤30%.EQ61100HEV Hybrid Electric BusEQ61100HEV electric hybrid bus by Dongfeng Vehicle Company Limited Joint Beijing Jiaotong University, Beijing, China Textile Co., Ltd. and Hunan sharp Electromechanical Technology Co., Ltd. jointly developed Shenzhou. EQ61100HEV hybrid electric bus with switched reluctance motor, Cummins ISBe1504 cylinder common rail electronic injection diesel engine, new chassis design of the system,electronically controlled automatic transmission and innovative electromechanical coupling parallel program. In the annual output reached 200, the vehicle cost more than the increase in automobile engine equipped with 6CT ≤30%.China ChanganDevelopment Goals: the next three years, the formation of different grades, different purposes, carry a different system of mixed platforms, weak mix of scale, strong mixed industrial R & D capabilities, covering commercial, A grade, B grade, C grade products. 2014 will achieve sales of new energy vehicles 150 000 2020 sales of new energy vehicles for more than 500,000."Eleventh Five-Year Plan" period, Chang-an increased investment in clean energy vehicles, a diversified energy technologies to carry out exploratory research. Environmental protection through energy-saving models continues to introduce new technology to lead the industry to upgrade and fully utilize and mobilize global resources, Chang'an in the middle hybrid cars, hybrid cars and other technological strength of the field are explored. Chang's first hybrid car long Anjie Xun HEV was successfully listed in June 2009; the first batch of 20 hybrid taxis Long An Zhixiang in January of this year officially put into operation in Chongqing.CheryDevelopment Goals: after 2010, more than half of Chery's products carry different levels of hybrid systems.From 2003 to 2008, mainly mixed with moderate Chery hybrid cars and energy saving system development, and industrialization; Chery in Wuhu, a taxi has been carried out on probation, fuel consumption will be reduced by 10% to 30% to reach Europe ⅣStandard. Since 2004, Chery hybrid cars mainly for the development of strong and industrialization. Chery hybrid car fuel consumption target to reach 100 km 3 liters, to reach Europe and the United States emissions regulations.Chery A5BSGChery A5BSG is a weak parallel hybrid electric car, using fuel engines, electric engines complementary mode, the two different power sources in the car while driving to work together or separately, through this combination to achieve the leastfuel consumption and exhaust emissions, in order to achieve fuel efficiency and environmental protection purposes. Compared with the conventional car, the car in urban conditions can save 10% -15% of fuel and reduce carbon dioxide emissions by about 12%, while costs increased by only about 25% -30%.Chery A5ISGChery A5 ISG hybrid power system consists of "1.3L gasoline engine + 5-speed manual transmission +10 kW motor +144 V Ni-MH battery," the composition of the battery system used by the Johnson Controls developed "plug-in" nickel metal hydride (Ni-MH), motor with permanent magnet synchronous motor and with the motor control system, inverter and DC / DC converters. The system enables the vehicle power to 1.6L displacement level and rate of 30% fuel savings and significantly reduce the emissions of Euro V standards.Cherry A3ISGChery A3 ISG has 1.3L473F gasoline engine and equipped with 10KW motor. By gasoline engines and electric motors with torque overlay approach to dynamic mixed to provide the best vehicle power operating efficiency and energy saving environmental protection goals. Chery A3 ISG also has Stop_Restart the idling stop function such as flame start to start (BSG function), to reduce red light in the vehicle stopped or suspended when the fuel consumption and emissions expenses.FY 2BSGFY 2 BSG carry 1.5LSQR477F inline four-cylinder engine configuration BSG start / stop and so one electric motor, red light in the vehicle stopped the driver into the gap, it will automatically enter standby mode to turn off the engine, starting moments after the entry block automatically start the engine. FY 2 BSG vehicle average fuel consumption than the 1.5L petrol cars reduce about 5-10%, average fuel consumption can be reduced up to 15%.BYD AutoDevelopment Goal: to electric cars as a transitional mode, the electric car as the ultimate goal, the development of new energy cars BYD.BYD follow the "independent research and development, independent production, independent brand" development path, and the "core technology, vertical integration" development strategy, as the transition to dual-mode electric vehicles, electric vehicles as the ultimate goal, the development of BYD new energy vehicles.国内混合动力汽车发展随着石油资源的枯竭、人们环保意识的提高,混合动力汽车及电动汽车将成为新世纪前几十年汽车发展的主流,并成为我国汽车界所有业内人士的共识。
新能源汽车中英文对照外文翻译文献
![新能源汽车中英文对照外文翻译文献](https://img.taocdn.com/s3/m/ec8d3b46ad02de80d4d840db.png)
中英文对照外文翻译The Investigation Of Car new energy'S PresentCondition And DevelopmentAs the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society, people invented the electric car. Electric cars will become the most ideal of transportation.In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generallyused in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system, electronic control suspension system, electronic control power steering system, vehicle dynamic control system, the airbag systems, active belt system, electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response, the use function of quick car, high reliability, guarantees of engine power and reduce fuel consumption and emission regulations meet standards.The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example, automatic transmission in road, can not on the clutch, can achieve automatic shift and engine flameout, not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter, gear transmission, pump, hydraulic control system, electronic control system and oil cooling system, etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going andstability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height, low set to gas or oil cylinder filling or oil. If is opposite, gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state, so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car,car motions of state and optimum control performance, and increased automobile adhesion, controlling and stability. Besides these, appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passenger's safety, and greatly reduce automobile in collision of drivers and passengers in the buffer, to protect the safety of life.Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with the car engine performance and fuel economy and emission in the aspects of superior internal-combustion vehicles.Along with the computer and electronic product constantly upgrading electric car, open class in mature technology and perfected, that drive more safe, convenientand flexible, comfortable. Now, the electric car from ordinary consumers distance is still very far away, only a few people in bandwagon. Electric cars with traditional to compete in the market, the carwill was electric cars and intelligent car replaced. This is the question that day after timing will come. ABS, GPS, and various new 4WD 4WS, electronic products and the modern era, excellent performance auto tacit understanding is tie-in, bring us unparalleled precision driving comfort and safety of driving.First, the development of natural gas vehicleReduce pollution to protect the environment, many countries have issued a series of government regulations and the introduction of a number of incentive policies to promote the development of gas vehicle, such as the development of more stringent vehicle emission standards, in the natural gas supply, car purchase taxes and fees, equipment supply, gas station construction grant funds, tax incentives. or the purchase of alternative fuel vehicles and the construction of stations in detail the provisions of the tax relief, but also enacted a tax cut that the use of natural gas and natural gas companies exempt from motor vehicle fuel sales tax. There are more than 40 states in accordance with the policy of the federal government, law, drawn up on the mandatory state and encourage the use of clean fuel CNG vehicles, such as policies and measures to promote the CNG filling station development and construction of motor vehicles. At present, more than 40 countries around the world have a gas car, mainly in the rich natural gas resources in Italy, New Zealand, Argentina, Brazil and other countries and stricter environmental regulations the United States, Japan and other countries.Second, natural gas vehicle (CNG) fuel and other environmental and economic benefits comparedCompressed natural gas vehicles:20MPa compressed natural gas in the car to compressed natural gas cylinders in use by the supply of internal combustion engine after the pressure reducer.To CNG fuel for vehicles compared with gasoline has the following advantages: l, reduce pollution and improve the atmospheric environment: natural gas is a clean energy, with a high calorific value, high efficiency, pollution, etc., the comparison is totally burned, not carbon deposition, CO, NOx and particulate emissions than gasoline, significantly reduced exhaust pollution. Motor vehicle exhaust is the major source of urban air pollution, one of which is carbon monoxide harmful ingredients (C0), hydrocarbons (HC), nitric oxide (N0) and nitrogen dioxide (NO2) and so on. According to the data, the use of gas as a motor fuel and gasoline as fuel can reduce emissions compared to 90% CO, 90% S02, 72% HC, 39% NOx, 24% CO2, non-dust emissions, to improve the urban environment has a significant role in .A typical diesel engine and gasoline engine emissions and gas machine is shown in table l.2, CNG vehicle for a higher securityCompared with gasoline, compressed natural gas is a relatively safe fuel. (1) natural gas explosion limit is 5% higher than gasoline (lower explosion limit for the l%) high, methane ignition for 645 ℃, ignition than gasoline high 218 ℃, compared to not ignite. Low density of methane, the relative density of about 0.55, resulting in leakage of gas will soon be distributed in the air, in the case of the natural environment it is difficult to form a hot combustion conditions, once the compressed natural gas from the tank or pipe leaks, leak immediately surrounding the formation of low-temperature zone, so that the difficulties of natural gas combustion. Therefore is a fairly safe CNG motor fuel. Natural gas and fuel properties of gasoline is shown in table 2(2) Department of natural gas vehicle cylinder pressure vessel(20MPa), its materials and manufacture and testing in order that all States have strict control, in China there are "compressed natural gas cylinder vehicle standards)) (GBl7258-1998).Cylinders fitted with explosion-proof facilities, pressure reducer, valves and other equipment, strict standards high, and gas supply system is safe and reliable and will not tip over due to vehicle collision or cause fire or explosion, and the petrol tank of motor vehicles department of non-pressure vessels, fire easily after the explosion.3, will help ease the contradiction between energy supply and demand tension. China's economy is in a stage of rapid development, the number of vehicles to 1 million / year above the rate of increase of a substantial increase in gasoline demand of resources, our need to import large quantities of crude oil per year, refined oil and LPG. Optimize the use of gas carsMotor fuel supply structure has changed only motor fuel gasoline, diesel patterns, not only eased the problem of shortage of petrol and transport services to meet the needs of the development.4, extend engine life. The spread of natural gas to the gas entering the engine, the engine easily and uniformly mixed air, burning the comparison is totally clean; can improve the thermal cycle efficiency, speed up the burning speed, full use of combustion heat; CNG octane number at the same time high performance uprising, when agents do not need to add the uprising will not dilute the lubricating oil, making the parts inside the engine cylinder greatly reduce wear and tear, so that the engine oil life and increase the use of the period. All of these vehicles will reduce maintenance and operating costs, thereby enhancing the economy of the use of vehicles. 5, have a higher economic efficiency. At present, domestic gasolineprices continued to rise, the price system and the world has been the use of CNG vehicle will be able to save nearly 40% of fuel costs, as shown in table 3. Third, CNG cars and filling stations to explore the development of countermeasures In order to speed up the use of natural gas as a clean fuel vehicle development, makes the following recommendations:1, the Government has introduced policies to encourage and support: the development of all countries in the world experience shows that government support is a necessary condition for accelerated development, the impact of its economic policy is an important factor in their development should be guaranteed in law, in the gas automobile production, modification, parts and components production, station construction, vehicle purchase and use of gas, maintenance and other aspects of pricing, taxation, investment, subsidies and other aspects of the preferential policies supporting. Gas prices affect gas vehicle development is an important factor, only the gas prices and gasoline prices when the difference is large enough to form, gas car before the development of an economic foundation and driving force. 2, strengthen leadership, the implementation of unified management.The development of CNG vehicles to the construction of high-quality, convenient filling stations, the need for planning, public security, fire safety, labor, technical support supervisor and other departments.3, in the municipal plan, filling stations and gas stations should be considered co-ordination, rational distribution and coordinated development. To make full use of existing land resources and in ensuring the environmental safety of oil and gas under the premise of building one station.4, followed by motor cars and CNG filling stations in the simultaneous development of the principles, only in the stations into a network under the conditions, CNGvehicle can really develop. At the same time scale of only CNG car to a certain number, the normal operation of filling stations in order to achieve profitability. 5, the strict legal system: the development of stringent vehicle emissions regulations, and make sure that standards are not road vehicles are determined not to be on the qualifications of CNG vehicle Modify-Factroy critical examination, certification. First of all, the city should the city bus, taxi, as the focus of the development of CNG vehicle, bus stop some of the phenomenon of black smoke pollution of the environment.6, step up publicity. At present, natural gas car is still at the initial stage, the public nature of its environmental protection, safety, economy, reliability, do not fully understand, so, it is necessary to carry out a wide range of social advocacy, efforts to increase awareness of the dangers of automobile exhaust, to make people aware of CNG is a clean, safe and economical fuel, so that the development of natural gas vehicles have been recognized by all sectors of society and support.Compressed natural gas vehicles because of its remarkable economic and social benefits the development of the natural gas market will become a new field of applications. More and more importance in the environmental protection situation, along with natural gas resources in the area of the development and application of the widening, which will reduce the environmental pressure is to ease the oil shortage and achieve sustainable development of a reliable guarantee.汽车新能源现状与发展的探究随着世界能源危机的持续,以及战争和能源-----石油的消耗及汽车饱有量的增加,能源在一天一天下降,终有一天它会消失的无影无踪。
智能车辆中英文对照外文翻译文献
![智能车辆中英文对照外文翻译文献](https://img.taocdn.com/s3/m/ea648e2431126edb6f1a1086.png)
中英文对照翻译附件1:翻译译文智能车辆本世纪初期,在计算机和信息革命的影响下,汽车经历了性能和与驾驶者之间的互动方面最富戏剧性的变革。
1908年,亨利福特T型车的出现体现了汽车设计上的重大突破。
它不仅开创了轻松更换零件和大量生产的先河,而且其“用户友好”的运作方式,让任何人都可以轻松驾驶。
近90年来,类似于福特T型车的简单汽车越来越少,汽车迅速成为了一种复杂的“移动电脑”,扮演着领航者,护航者,甚至第二司机的角色。
这些新特性不仅改变了我们的驾驶方式,还提高了运输服务质量和挽救生命的能力,并对美国工业的竞争力提供了支持。
然而,智能车的表现不仅如此。
相反的,使车辆更加智能的这些组件,如新信息,安全性和自动化技术,是作为零配件抵达市场的,或作为可选设备,或作为售后服务的特殊配件。
为了提高司机的安全性,这些技术不断发展并上市销售。
但是个别的技术还没有得到整合,不能创造出与司机高度协作的完全智能的车辆。
汽车行业已经意识到并解决了潜在的不协调技术的大量涌入问题。
但他们的进步受到技术和经济障碍,不确定的消费者喜好,不完善的标准和准则的阻碍。
此外,无论是传统的汽车制造商或是政府监管机构(除非安全问题非常明显)都不能控制售后的产品的使用,特别是在卡车和公共汽车的使用方面。
然而,还没有一个“以人为本”的智能车辆试图整合和协调各种技术以解决问题。
我们也许不仅仅会失去实现新的车载技术的机遇,甚至可能会在无意中降低行车的安全性和性能。
意识到智能车辆的重要性和汽车设计中人为因素所产生的潜在危险之后,交通部于1997年启动智能车辆倡议(IVI)。
这一举措旨在加快汽车系统的发展和集成,用以帮助汽车,卡车及巴士司机更安全和有效地操作。
20世纪80年代的电视连续剧“霹雳游侠”功能的智能车辆可以跨越颇高的大厦,似乎驾驶超音速本身,对坏人间谍,并有英文用词和管家的个性。
这款车不仅是聪明,但自作聪明。
虽然在现实世界中的智能车辆将无法飞越站在交通,他们将有强大的能力。
新能源汽车充电桩画册 EV Charger English (英文版)
![新能源汽车充电桩画册 EV Charger English (英文版)](https://img.taocdn.com/s3/m/630e6d2ffe4733687e21aa77.png)
EV CHARGERThe EV AC/DC Charger system developed by XINXI technology provides charging function for electric vehicles by using thespecial standard charging interface of the State Grid. The charging pile system provides friendly man-machine interface. It has corresponding charging control, credit card charging, communication management and perfect system protection function. XINXI technology provides equipment sales, ODM and other cooperation modes for pile enterprises, car enterprises, bus companies, operators and other customers to meet the different needs of customers.由7kW DC30kW-60kW Mobile charger DC Charger90kW-360kW DC Charger22~42kW AC Charger 7~ 14kW AC ChargerApplication1、 DC Charger is suitable for City special charging station (bus, taxi, business car, sanitation car, logistics car, etc.),city public charging station (private car, commuter car, etc.),Buses and other intercity highway charging stations need high power DC fast charging.2、 AC Charger covers a small area, deployment is fast, suitable for private villas, residential areas, commercial offices, urbancomplex and other car parks or urban public charging stations (private cars, small capacity passenger cars, etc.) can be recharged for a longer time.AdvantageEfficientEfficiency can be as high as 93.9%, higher conversion efficiency can reduce the charging time, reduce energy consumption, reduce costs, improve user experience, create higher profits for customers.·Power FactorUsing APFC technology, the power factor (> 0.99) and THD (> 5%) need not be equipped with reactive power compensation and harmonic elimination device alone, so as to maximize the savings of user's early investment.Safe and ReliableIt has many protective functions, such as over-voltage/over-current/over-temperature/lightning protection/insulation detection/emergency shutdown, to ensure safety in all directions.·AdaptabilityUltra wide temperature range, - 40 - 55 C full load without deduction, calmly cope with various application scenarios and harsh environment.Intelligent ManagementDC ChargerSpecificationClassification 30-60kW 120-210kW Size400*700叮300mm700勺00*1900mm(width * depth * height)+ StructureInstallation+←俨’Charging plug1 o r2 1 o r 2++-+Length of Charging line SmBmWorking Temperature 90-120kW700吧00*1650mmFloor mounted installation1 o r 2Sm -20℃叶50℃Storage Temperature -40℃叶70℃Working Humidity5-95℃Environmental RequirementsWorking Altitude <2000M Protection Level IP54Cooling ModeAutomatic air coolingNoice Input Voltage ≤65dBAC440V 土15%,Three phase electricity+ Input Current46-92A 46-184A184-318A +’-+ Output VoltageDC 200-750V DC 200-?SOV DC20。
小区增加充电桩的范文的
![小区增加充电桩的范文的](https://img.taocdn.com/s3/m/b547548c4128915f804d2b160b4e767f5acf809d.png)
小区增加充电桩的范文的英文回答:Charging stations are becoming increasingly necessary as electric vehicles (EVs) become more popular. They provide a convenient way for EV owners to charge their vehicles, and they can help to reduce range anxiety, which is a common concern among EV drivers.There are many different types of charging stations available, and the type that is best for a particular小区will depend on the specific needs of the community. Some of the most common types of charging stations include:Level 1 charging stations: These are the most basic type of charging station, and they can be plugged into a standard 120-volt outlet. They typically provide a charging rate of 1 to 3 miles per hour.Level 2 charging stations: These charging stations aremore powerful than Level 1 charging stations, and they can be plugged into a 240-volt outlet. They typically provide a charging rate of 10 to 20 miles per hour.DC fast charging stations: These charging stations are the most powerful type of charging station, and they can charge an EV battery to 80% capacity in as little as 30 minutes.The cost of installing a charging station will vary depending on the type of station and the location of the installation. However, the cost of installing a charging station can be offset by the savings on fuel costs that EV owners can experience.In addition to the benefits for EV owners, charging stations can also benefit the community as a whole. They can help to reduce air pollution, as EVs produce zero emissions. In addition, charging stations can help to improve the local economy by attracting businesses and visitors.Overall, there are many benefits to installing charging stations in a小区. They can help to make EV ownership more convenient, they can reduce air pollution, and they can improve the local economy.中文回答:小区增加充电桩范文。
充电桩翻译
![充电桩翻译](https://img.taocdn.com/s3/m/3b974efdd4bbfd0a79563c1ec5da50e2524dd1c1.png)
充电桩翻译充电桩(chōngdiàn zhuāng) 的英文翻译是 "charging station" 或"charging pile"。
充电桩是用来给电动车、混合动力车或其他电动设备充电的设备。
充电桩通常由电源、充电模块、充电控制模块、通信模块等组成。
以下是一些关于充电桩的用法和中英文对照例句:1. 充电桩的数量正在逐渐增加。
The number of charging stations is gradually increasing.2. 这家公司在全国范围内建设了许多充电桩。
This company has built many charging stations nationwide.3. 请将电动车停在充电桩旁边。
Please park the electric vehicle next to the charging station.4. 我需要一张充电桩的使用卡。
I need a charging station access card.5. 这个充电桩支持快速充电。
This charging pile supports fast charging.6. 请将充电插头插入充电桩。
Please insert the charging plug into the charging station.7. 这个充电桩可以同时给两辆车充电。
This charging pile can charge two vehicles simultaneously.8. 这个充电桩可以远程监控充电状态。
This charging station can monitor the charging status remotely.9. 充电桩的使用费用如何计算?How is the usage fee of the charging station calculated?10. 在这个地区,充电桩的覆盖率非常高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文献出处Hawkins S. The design of the electric vehicle charging pile [J]. SAE International Journal of Alternative Powertrains, 2015,5(3): 213-221.原文The design of the electric vehicle charging pileAbstractIn the world's oil resources shortage and the grim situation of global warming, the construction of low carbon vehicles will become the auto industry a new development direction. Current research of electric vehicles around the world has entered the white-hot. People try to make it become a mainstream in the 21st century the development of the automobile. Electric vehicle charging infrastructure is an important part of the electric car industry chain can not be ignored in, at the same time of developing electric vehicle industry also should fully take into account the development of the charging infrastructure, so the design of electric vehicle charging pile and its control method of study is very necessary.Keywords: Electric vehicle charging pile; Equilibrium control; The human-computer interaction1 IntroductionCountries in the world to promote energy conservation and environmental protection, of which the word "low carbon" everyone not unfamiliar, carbon emissions in today's car is bigger, the industry also gradually focus on low carbon field. The auto industry's carbon emission is higher and higher. To be raising industry development and the balance of environmental emissions, the automobile industry faced with the transformation of development. In the world's oil resources shortage and the serious situation of global warming, the global auto industry uniform standards will reference to carbon emissions standards, leading the global auto industry development better. Electric cars compared to traditional petrol powered cars, in terms of environmental protection and energy saving shows the outstanding advantages. The electric car has many advantages, such as less pollution emissions, high efficiency, low noise, low running cost, etc., it has these advantages in reducing air pollution and energy shortage is of great significance.2 Electric vehicle charging infrastructureThe key technologies of electric vehicle (EV) mainly includes: power battery and charging infrastructure as the core of energy systems:Drive motor and drive system as the core of the power system. In a coordinated control system, ensure the vehicle safe, efficient and comfortable operation as the core of the vehicle control system. For carbon reduction and environmental protection of electric vehicles, charging device is indispensable. Its function is to turn within the electricity to the electric vehicle battery power grid, to power electric vehicles.Charging infrastructure is mainly charging and charging pile. Charging stations within, usually equipped with a number of fast charging plugs and a few slow charging pile. Two kinds of charging infrastructure each have advantages and disadvantages, need to choose according to actual species suitable for local facilities. Given priority to with quick charge mode of charging station a short charging time is charging the advantages of high efficiency. At a high speed along the service area, selection of large charging stations and other places of power is to be able to produce 600 V / 300 A charging pile. Usually consider including the use of environmental factors, such as charging pile only in produce high voltage and large current, and power is larger (100 kw), to ensure that the electric car charging efficiency, the technology of charging methods and security put forward higher requirements. So charging stations than charging pile construction and management of cost is much higher, the size should be and petrol stations. Now automotive battery technology remains to be development, rapid charging pattern can cause greater damage to the battery. The expert thinks, quick charge mode is equivalent to in a relatively short period of time forced "into" power to the battery, after several quick charge battery, its life will be greatly reduced. In addition it is important to note that large-scale electric vehicle charging demand just rely on the charging station is fulfilled, and charging stations will be occupied land area, will produce a lot of management costs. Therefore, charging station is only applicable to charge for a small amount of public transport services. Charging pile covers an area of a few, the cost is very low, very suitable for the supermarket in the city, parking lots, construction of residential area of denseparking of vehicles, such as the area. And more importantly, charging pile mainly slow filling pattern, due to the need of the small current, thus to ensure the safety of its performance, and of great benefit to extend the service life of the battery. But the disadvantage of this schema also clear, have emergency operation requirements in the car, the charging is not implemented in time. Such as providing 220 V / 16 A home charging pile of ac power, the charger is small volume and simple operation of car charger. The charging pile is mainly provide service charge for private cars, the power is about 3 ~ 5 kw, charging time need 5 ~ 10 hours.3 Present situation of charging systemIn recent years from two level of products and technologies, charging system has made good progress: charging products with the development of control technology, artificial intelligence and other advanced technology, get rid of the simple, the direction of multi-function, safer intelligent. The field bus technology, such as development, RS485, LIN bus makes the monitoring system of the diversification of means of communication, high speed and security. French multi-purpose nuclear and hydroelectric power, the power generation capacity is enough, according to statistics, three-quarters of the total electricity from nuclear power plants in France, one 6 from hydropower station, and its power supply clean, cheap electricity, automobile industry developed, so it is the world's one of the first countries to develop and promote the electric car. The French government collaborative EDF (EDF) Company, company, Renault and PSA (Renault) motors, and other cooperation, developing electric cars. In LaRocheHe investment produces small four 50 vehicles, electric vehicles and built 12 (including 3 fast and nine common) charging stations, has been put into use and tested more than 2 years. Japan's new energy vehicles has been in the world leading level, the Tokyo electric power company has announced that it successfully developed large quick charger, the charger has greatly shortened the time, the Japanese electric car popularization provides the possibility of a larger. Charging pile design and control of the construction of the charging infrastructure, as early as the First Solar companies in the United States built 5 in California highway fast charging pile, can under the condition of 240 v / 240A, 3.5 hours to complete the charging of electricvehicles.4 Charging pile of functional requirementsWith electric passenger cars promote gradually, people to its corresponding charging infrastructure also gave high attention. If the charging station, charging pile, can carry on the security and intelligence to the electric vehicle charging, so the popularity of electric cars, progress will be accelerated. In order to realize intelligent charging pile in the management and application, you need to understand the function of charging pile demand. Electric vehicle charging piles need to have the following several main functions: to guarantee the normal work of the system, monitoring and protection measures necessary, charging posts must have electrical protection device, when the system failure occurs, the system of charging power supply is cut off quickly, within the stipulated time to ensure the personal safety of users. Charging pile must be reliable operation, charging pile equipment adopts modular structure; local fault cannot threaten the normal operation of the whole system, charging pile must also be able to parallel processing more than one event. All logins, control, exit the important operations, such as charging pile should have corresponding records, but also allows to query and statistic of operating records, charging pile have ensure data and system security protection of information is not theft and destruction. Charging pile should use the graphical interface in Chinese, the user according to the screen display can realize self-help charging; provide convenience for people intuitively clear charging operation. Users can query on charging pile to the charging time, place, and the historical data of the basic information such as rechargeable battery, charging pile should also install with embedded printers, convenient charging print statements. Charging pile should be according to the electricity information deriving from watt-hour meter, and calculate the user charge the amount spent, and can save data backup, convenient send to background monitoring system. Charging pile system should be able to practice the trapezoidal pricing mechanism.5 The integral design of charging pile systemThe electric car is ac charging pile used in ac, dc power supply, ac working voltage is 220 v or 380 v, can according to different types of electric vehicles, adoptsthe corresponding charging voltage grade, ordinary pure electric car charging pile to charge need 4 ~ 5 hours. The input voltage of dc charging pile using three phase four wire AC380V, frequency 50HZ can provide enough power, and the output of adjustable dc, therefore can meet the requirement of quick charge. Electric vehicle charging pile, concentrator, battery management system, charging management platform, such as complementary to each other, constitute the charging system. Battery management system (BMS) real-time information interaction with charging posts controller, the purpose is to monitor the battery voltage, current and temperature state parameters, forecast capacity (SOC) of batteries, batteries in to avoid bad phenomenon (over discharge, overcharge, overheating and battery voltage imbalance between monomer), it can maximize battery storage capacity and cycle life of assurance. The service management platform is mainly to the electric car battery charge information, IC and piles these data for centralized management of information. In general, the service management platform is important function for charging management and operation, as well as integrated query. To intuitively clear communication with the customers, charging pile has important information can be shown on LCD display convenient man-machine interaction. Electric vehicle charging, the screen will display the charging time, charging power, the main information such as the amount payable.Charging, the battery charging or owe electricity will damage to the battery inside, accelerate cell aging, will affect battery performance. According to the analysis, the inappropriate way of charging is the main cause of battery life cut short. Therefore, how to guarantee quickly and does not affect the battery life, has become an important research topic in recent years. Charging mode choice determines the length of the battery life, among them, the constant current, constant voltage charging and charging in stages of these methods is a common way of charging. Is the advantage of constant current charging control method is simple, but by the law of mass we know: rechargeable batteries can accept current capacity with the charging process is a trend of gradual decline. Late to charge, the charging current is much used for electrolysis of water, can produce gas, so that to get nothing. Constant voltage charging way earlyin the process of charging current is too large, the impact on battery life is great, and constant voltage charging mode battery plate bending easily, causing the battery scrap. Phase charging method is actually a constant current, constant voltage charging the method of combining more commonly used phase charging method includes two stages and three phase charging method.译文电动汽车充电桩的设计摘要在世界石油资源短缺和全球气候变暖的严峻形势下,建设低碳汽车将成为汽车产业一种新的发展方向。