第六章像差理论

合集下载

ch6__光学系统的像差理论

ch6__光学系统的像差理论
谱线的选择原则: ①对接收器最灵敏的谱线校正单色像差; ②对接收器所接收波段范围两边附近的谱线校正色差; ③使接收器、光源、光学系统的材料的光谱特性一致。 不同的光学系统在计算和校正像差时,谱线的选择也各有 特点。
4
二、轴上点球差
1. 球差的定义与表示方法:
轴上发出的不同入射高度的光线经光学系统后,交于光轴的不 同位置,相对于近轴像点(理想像点)有不同程度的偏离,这
6
3. 球差的校正


单透镜自身不能校正球差。 正透镜产生负球差,负透镜产生正球差,所以,可以采用 正负透镜组合校正球差。 通常只能使边缘孔径的球差为零。
7

对于只含初级球差和二级球差的系统,当边缘带球差校正 为0时,在0.707带有最大剩余球差。

对于单个折射面,不存在球差的几个特殊点:
1)物点和像点都位于定点: L= L'=0,β=1 2)物点和像点都位于球面的曲率中心:
第六章 像差理论
主讲人:仝卫国 华北电力大学 自动化系
1
主要内容
实际光学系统与理想光学系统之间存在差异,这种 差异被称作像差。
一、概述
二、轴上点球差 三、正弦差和慧差 四、像散和场曲 五、畸变
六、色差
2
一、概述
1. 基本概念
(1)像差:光学系统实际成像与理想像之间的差异。 (2)像差产生的原因: ①不同孔径的入射光线,成像位置不同; ②不同视场的入射光线,成像倍率不同; ③子午面和弧矢面光束成像的性质不尽相同; ④不同色光成像的大小和位置不同。
畸变的校正: 畸变校正困难,需同时满足正弦条件和正切条件; 对于β=-1对称光学系统,畸变可自动校正; 校正边缘带畸变,此时0.775 ym处有最大畸变。

工程光学第六章像差理论.

工程光学第六章像差理论.

几何像差分类
场曲 轴外点细光束 使像变形
畸变
(Deformation of image)
白光像差 位置色差(轴向色差:波长不同会聚点不同) (chromatic aberration) 倍率色差(垂轴色差:波长不同放大率不同)
基于物理光学:波象差(实际波面与理想球面波的偏差)。
第一节 概述
像差校正:
不同孔径的入射光线成像位置不同; 不同视场的入射光线成像倍率不同; 从而产生几何像差. 子午面和弧矢面的成像性质不同:
弧矢面:过主光线和子午面垂直的平面。
1、像差定义 实际光学系统都有一定大小的孔径和视场,远远超
出近轴区所限定的范围,与近轴区成像比较,必然在 成像位置、像的大小方面存在一定的差异。
n
1、轴上点远轴光线光路计算 A U
E
I
n
h
I
U
A
o
C
物点位于无穷远:sin I1 h1 r1 物点位于有限远:
r
L
L
轴上点远轴光线光路计算
AEC中,sin I (L r) sin U
r
在E点由折射定律:sin I n sin I
n UU I I
AEC中, L r(1 sin I )
2.反射面
反射面可以作为折射面的一个特例,只要令:nn
并令反射面以后光路的间隔d为负值即可。
第二节 光线的光路计算
二、轴外点沿主光线的细光束光路计算
此计算是沿主光线进行,主要研究子午面内的子午细光束和 在弧矢面内的弧矢细光束的成像情况.
子午面:物点(或主光线,即通过孔径中心的光线)所在并包 含光轴的平面。对于轴对称系统的轴上物点,它有无限多个子 午面。对于一给定的轴外物点,仅有一个子午面。

工程光学 第六章 光线的光路计算及像差理论

工程光学 第六章 光线的光路计算及像差理论

第二节 光线的光路计算
校对公式为 :
h lu l ' u' nuy n' u' y' J
这样可以计算出像点位置l'和系统各基点的位置。 计 算系统的焦点位置,可令l1=∞,u1=0,由近轴光路 计算出的l'k即为系统的焦点位置,系统的焦距为
f ' h1 / u'k
第二节 光线的光路计算
第三节 轴上点球差
一、球差的定义和表示方法
对于轴上物点,近轴光线的光路计算结果l‘和u’ 与光线的入射高度h1或孔径u无关,
远轴光线的光路计算结果U‘随入射高度h1或孔 径角U1的不同而不同,如图。 轴上点发出的同心光束经光学系统后,不再是同 心光束,不同入射高度h(U)的光线交光轴于不同 位置,
对于实际的光学系统,由于像差的存在,经光学系 统形成的波面已不是球面,这种实际波面与理想球 面的偏差称为波像差,简称波差。
第一节
概 述
一、基本概念
除平面反射镜成像之外,没有像差的光学系统是不 存在的。
实践表明: 完全消除像差也是不可能的,且没有必要的。
第一节
概 述
二、像差计算的谱线选择
有些光学系统,例如某些激光光学系统,只需某一 波长的单色光照,所以只对使用波长校正单色像差, 而不校正色差。
第二节 光线的光路计算
从物点发出光线有无数条,
不可能、也没有必要对每条光线都进行光路计算,
一般只对计算像差有特征意义的光线进行光路计 算。
计算像差有特征意义的光线主要有三类:
(1) 子午面内的光线光路计算
2 m
二、球差的校正
上式表明, 对于仅含初级和 二级球差的光 学系统,当边 缘带的球差为 零时,在0.707 带有最大的球 差,其值是边 缘带高级球差 的-1/4,如图

第六章_像差理论.

第六章_像差理论.
第六章 像差理论
一、概述 二、轴上点的球差 三、彗差(正弦差) 四、像散和场曲 五、畸变 六、色差
一、概述
1、理想成像的条件
(1)物面上每一个发光点在像方是一个
清晰的像点;(物点发出的同心光束在 像
像方仍保持是同心光束)


像 (2)垂直于光轴的平面上各点的像, 晰 是 必须是在垂直于光轴的同一个平面上; 度
•4、基本概念
(1)主截面:包含光轴的任一平面。 (2)子午面:物点所在的主截面。
★对于轴上物点,任一主截面都 是子午面。
(3)弧矢面:与子午面垂直的主截面。 (4)理想像(高斯像)。
二、球差(Spherical Aberration) 高斯
1、定义
像面
A
) U m
( U m
A 0
T
Ll
54
L m
成像特点: 物点——像点
1、任意宽的光束、任意大的空间都可以成完善像。
(孔径角)
(视场)
2、计算:牛顿公式、高斯公式、近轴光路计算公式均可以
求理想像的大小与位置。
实际光学系统 1、近轴区才具有理想光学系统的性质
孔 径 角 0 , 视 场 0 成 完 善 像 ——无实际意义
2、通常情况下,不能以一定宽度的光束对一定大小的物体成完善像。
共轴球面系统中,单透镜只能产生球 差,而正、负透镜组合则有可能校正球 差。
3、不晕点(齐明点)
——不产生像差的共轭点。
★ 物、像均位于球面顶点:
L 0 L0,1
★ 物、像位于球面的曲率中 心: s in I s in I 0
I I0
LLr
n/n
3、不晕点(齐明点)
★ 物、像位置:

第六章像差理论

第六章像差理论

轴外点发出充满入瞳的一束光,这束光以通过入瞳中心的
主光线为对称中心,其中包含主光线和光轴的平面称为子
午面。过主光线且垂直于子午面的平面为弧矢面。显然子
午面是光束的对称面。
9
对子午面的情况:主光线Z和一对上下光线a、b,折射前, 上下光线与主光线对称,折射后,上下光线对不再对称于主 光线,它们的交点偏离了主光线。
14
弧矢 子午像点和弧矢像点 像面 都位于主光线上,通
子午 常可将子午像距和弧 像面 矢像距投影到光轴上,
像平 则像散表示为:

主光 线
xts lt ls
15
像散的存在使轴外物点的成像在子午方向和弧矢方向各 有不同的聚焦位置。子午方向的光线聚焦成垂直于子午 面的短焦线T′,而弧矢方向的光线聚焦成子午面内的短 焦线S′,两焦线之间是一系列由线到椭圆到圆再到椭圆 再到线的弥散斑变化。 因此,接收器在像方找不到同时能使各个方向的线条都 清晰的像面位置。
xt lt l

xs

ls

l
有像散必然有场曲,但如果没有像散存在,像面弯曲现
象也会因球面光学系统的本身特性而存在。
球面 物体
折射 球面
理想像 平面
17
根据物像同向移动的原则,B的像点进一步偏离理想像平面 P′,这种偏离随视场的大小而变化,使得垂直于光轴的平面 物体经球面成像后变得 弯曲,这种弯曲还没有考虑像散的 影响,把像散为0时的像面弯曲称为匹兹伐场曲。
Lm A1hm2 A2hm4 0 A1 A2hm2
L
h

2A1h 4A2h3
0
h 0.707hm
此时,在0.707孔径处的光线具有最大剩余球差。校正球

第六章 光学系统的光路计算和像差理论(2013总第10-11讲)

第六章 光学系统的光路计算和像差理论(2013总第10-11讲)

第六章 光线的光路计算及像差理论
本章内容 像差概述-像差的定义和分类 光线的光路计算
轴上点的球差
正弦差和彗差 场曲和像散 畸变 色差
像差特征曲线与分析
波像差
大纲要求:
⑴掌握像差的定义、种类和消像差的基本原则。 ⑵了解单个折射球面的不晕点(齐明点)的概念和性质, 求解方法。 ⑶掌握七种几何像差的定义、影响因素、性质和消像差方
线成像特性的比较,研究不同视场的物点对应不同孔径和不同色光的像差值。
对两边缘谱线F光(λ =486.1nm)和C光(λ =656.3nm)校正色差。
②普通照相系统:对最灵敏谱线F光校正单色像差;对
两边缘谱线D光和G’光(λ =434.1nm)校正色差。
天 文 照 相 系 统 , 常 用 G’ 光 校 正 单 色 像 差 , 对 h 光 (λ=404.7nm)和F光校正色差。 ③近红外光学系统:对C光校正单色像差;对d光 (λ=587.6nm) 和A’光(λ=768.2nm)校正色差。
五. CIE色度学系统表示颜色的方法
第十节 均匀颜色空间及色差公式
一、(x,y,Y)颜色空间是非均匀颜色空间 二、均匀颜色空间及色差公式
(一)CIE1964均匀颜色空间
(二)CIE1976均匀颜色空间 (三)CIE1976均匀颜色空间
(W *U *V *) ( L * u * v*)
( L * a * b*)
cie色度学系统表示颜色的方法专业文档第十节均匀颜色空间及色差公式一xyy颜色空间是非均匀颜色空间二均匀颜色空间及色差公式vuw一cie1964均匀颜色空间二cie1976均匀颜色空间vulbal三cie1976均匀颜色空间专业文档第六章光线的光路计算及像差理论本章内容?像差概述像差的定义和分类?光线的光路计算?轴上点的球差?正弦差和彗差?场曲和像散?畸变?色差?像差特征曲线与分析?波像差专业文档掌握像差的定义种类和消像差的基本原则

第六章 光线的光路计算及像差理论

第六章 光线的光路计算及像差理论
a ' z a a
下光线tgUb ( y h)
y ( L l )tgU
' z '
' z ' b
y ( L l )tgU
' b ' b '
3.折射平面和反射面的光路计算 折射平面远轴光线的光路计算公式: I U

sin I n sin I
'
n
'
U ' I ' L' LtgU tgU '
' 1 ' 2
' k 1
d k 1
校对公式:h lu l 'u ',J n 'u ' y ' nuy
' 求焦距公式:令1 , u1 , f ' h1 / uk l
轴外点近轴光线光路计算 (第二近轴光线光路计 算):求出理想像高。

初始数据:l z , u z y /(l z l1 ) 像高数据:y (l l )u
1
n
作业
1,2,11,12,17
路计算 2.轴外点沿主光线的细光束光路计算 3.子午面的空间光线光路计算
二、子午面内的光线光路计算: 1.近轴光线光路计算:求出理想像的位置
和大小

近轴光线光路计算
(第一近轴光线光路计算):求出理想像的位置
l r i u r n i' i n' u' u i i' i' l ' r (1 ) u'
第六章 光线的光路计算 及像差理论
实际光学系统与理想系统之间存在差异;实际像和 理想像之间的差异称为像差。

几何光学-第六章-像差理论

几何光学-第六章-像差理论
2、通常情况下,不能以一定宽度的光束对一定大小的物体成完善像。
成像特点: 物点——弥散斑
计算:实际光线计算 追迹成像的位置、大小与理想像的偏离——像差
小结:几何像差
像差类型 轴 单色 球差 上 色球差 物 复色 位置(轴向)色差 点 轴 外 单色 场曲 物 畸变 点 复色 倍率色差 影响因素 孔径 孔径、波长 在高斯像面上 接收到的像 单色弥散圆斑 彩色弥散圆斑
1 1 1
2 2 2
1
2
例:远轴物点发出的同心细光束,经过有像散的光学系统, 同心性会受到破坏,垂直于主轴的光屏在沿轴不同位置时, 所接收到的成像光束截面形状会发生很大的变化。
像散差
子午 焦线
明晰 圆
弧矢 焦线
3、像散特征:一个物点有子午焦线和弧矢焦线同时出现。
物点离轴越远,像散差越显著。
5、像散的物理意义
波长 孔径、视场 视场
大物面 波长
彗差(正弦差) 细光束像散
形状复杂的 弥散斑
作业
1、简述球差的产生机制、表现形式和消除方法。 2、简述慧差的形成机理和影响。 3、简述像散的机制、特征和影响。 4、简述场曲的形成机制和影响。 5、简述畸变的形成机制和影响。 6、简述位置色差及倍率色差的形成机制和影响。
b1 c1
★ 波面的中心光线: b
F 2
2
F 2 F1
a1
b2
a2
a3 b3
c2
c3
F1
F1
F2
F 2
F1
——光束在相互垂直的两截面内, 各有不同的曲率中心。 ★ 焦线:光束曲率中心的轨迹 两条相互垂直的短线 F F F 和 F F F 。 ★ 像散差:沿中心光线上两焦线之间的距离 F F 。

工程光学讲稿(像差)

工程光学讲稿(像差)

§6-2 轴上点的球差 -
一、 球差定义及表示方法
1、轴向球差 由实际光线的光路计算公式知,当物距L为定值时,像距L 与入射高 由实际光线的光路计算公式知,当物距L为定值时,像距L’与入射高 及孔径角U有关,随着孔径角的不同,像距L 是变化的 即如图所示: 是变化的, 度h1及孔径角U有关,随着孔径角的不同,像距L‘是变化的,即如图所示: 轴上点A点发出的光束,对于光轴附近的光用近轴光路计算公式, 轴上点A点发出的光束,对于光轴附近的光用近轴光路计算公式,像点为 A0’(看作高斯像点),对于实际光线采用实际光计算公式,成像于A’1(实 ),对于实际光线采用实际光计算公式 (看作高斯像点),对于实际光线采用实际光计算公式,成像于A 际像)。 际像)。
球差是孔径的偶次方函数,因此 校正球差只能使某带的球差为零。 球差是孔径的偶次方函数,因此, 校正球差只能使某带的球差为零。如 果通过改变结构参数, 使初级球差系数A 和高级球差系数A 符号相反, 果通过改变结构参数 使初级球差系数 1和高级球差系数 2符号相反,并具 有一定比例,使某带的初级球差和高级球差大小相等,符号相反, 有一定比例,使某带的初级球差和高级球差大小相等,符号相反,则该带的 球差为零。在实际设计光学系统时,常通过使初级球差与高级球差相补偿, 球差为零。在实际设计光学系统时,常通过使初级球差与高级球差相补偿, 将边缘带的球差校正到零, 将边缘带的球差校正到零,即
4 δ L'0 .707 = − A 2 h m / 4
球差曲线图
从上分析知球差与孔径密切相关, 越大, 越大 越大, 从上分析知球差与孔径密切相关,U 越大,δL‘越大, 所以球差必须校 正。 对于光学系统而言,透镜是最为基本的元件: 对于光学系统而言,透镜是最为基本的元件: 正透镜――产生负球差; 产生负球差; 正透镜 产生负球差 负透镜――产生正球差。 产生正球差。 负透镜 产生正球差 这是由透镜本身结构特性决定的,所以,单个透镜不能校正球差。但若 这是由透镜本身结构特性决定的,所以,单个透镜不能校正球差。 是正负透镜组合,就可以实现球差的校正。 是正负透镜组合,就可以实现球差的校正。 所谓的消球差一般只是能使某一孔径带的球差为0, 所谓的消球差一般只是能使某一孔径带的球差为 ,而不能使各个孔径 带全部为0,一般对边缘光孔径校正球差,而此时一般在有最大的剩余球差 带全部为 ,一般对边缘光孔径校正球差, 0.707,且值为边缘带高级球差-1/4。 ,且值为边缘带高级球差- / 。 3、单个折射球面得齐明点 、 对于单个折射球向面,有几个特殊的物点位置, 对于单个折射球向面,有几个特殊的物点位置,不管球面的曲率半径 如何,均不产生球差。 如何,均不产生球差。 (1) L=0,此时亦有 =0,β=1。即物点和像点均位于球面顶点时,不产 = ,此时亦有L‘= , = 。即物点和像点均位于球面顶点时, 生球差。 生球差。

应用光学课件第六章.

应用光学课件第六章.

4 单个折射球面的无球差点
一般情况下,单个折射球面成像存在球差,但存在三个无球 差点,物体位于这三个点时,不产生球差。
经过推导,单个折射球面的球差分布系数可以写为:
1 2
S一
niLsinU (sin I sin I)(sin I sinU ) 2cos 1 (I U ) cos 1 (I U ) cos 1 (I I)
-U1
P
光线有不同的球差,因此必
P2
须计算不同孔径的光线。 ➢计算的起始数据为:
-Lz1 -L1
h1=Kh·h;U1=0; s➢in轴I1外=h点1/r1轴外点不同视场不同孔径的光线的起始数据:
U1 Kw w
L1
Lz1
Kh h tgU1
➢孔径取点系数Kh=0.25(0.3), 0.5, 0.707, 0.85, 1.0;
A、计算公式
sin I L r sinU r
sin I n sin I/n
U U I I
L r r sin I / sinU
➢过渡公式:
ni1 ni U i1 U i Yi1 Yi Li1 Li di
B、计算的起始数据
U1=0
P1
1) 物体在无穷远时
h
➢轴上点 轴上点不同孔径的
Di
Bt
Bs
Ui
A
P1
hi i
hi+1
o
P2
xi
xi+1
B
Di
ti1 ti-Di , s i1 si-Di
Di
hi -hi 1 s in U i
di-xi xi1 cosU i
hi ri sin U zi I zi
ri-xi 2 hi2 ri2

几何光学 第六章 像差理论

几何光学 第六章 像差理论
不产生球差的共轭点位置。 ★ 物、像均位于球面顶点: L 0, 1 L0 ★ 物、像位于球面的曲率中心: sin I sin I 0
I I 0
★ 物、像位置: I U
L L r
L (n n)r / n L (n n)r / n
波长 孔径、视场 视场
大物面 波长
彗差(正弦差) 细光束像散
形状复杂的 弥散斑
作业
1、简述球差的产生机制、表现形式和消除方法。 2、简述慧差的形成机理和影响。 3、简述像散的机制、特征和影响。 4、简述场曲的形成机制和影响。 5、简述畸变的形成机制和影响。 6、简述位置色差及倍率色差的形成机制和影响。
4、消除球差的方法
(1)加光阑,选择近轴光束; (2)正、负透镜组合进行校正; (3)采用非球面透镜。
5、小结
轴上物点 1)像点位置的轴向偏离:球差
宽光束(不同孔径角) 2)高斯像面上的弥散圆斑:垂轴球差
**问题:
(1)轴外物点是否有类似球差的现象? (2)轴外物点发出的宽光束,其对称轴是什么?
三、彗形像差(Coma,Comatic Aberration)
3、物理意义
★ 彗差:轴外像差(孔径、视场的函数)
——大视场(稍远轴物)宽光束成像的不对称。 ★ 正弦差:小视场(近轴物)宽光束成像的不对称。
4、影响:破坏轴外视场成像的清晰度。 **问题:
宽光束的原因造成了球差和彗差,如取无限细光束, 是否就可以避免像差?
四、像散(Astigmatism)
1、与主轴成较大倾斜角的同心光束: 即使是细光束,出射光束也难以保持仍为同心。 2、基本概念:非球面波与象散光束 垂直于波面元,彼此既不相平行也不交于一点的 非对称性光束,称为像散光束。

工程光学第六章像差理论重点讲解

工程光学第六章像差理论重点讲解

校对公式:
h lu lu nuy nuy J
最后可计算出像点位置和系统各基点位置。
焦点位置及焦距计算:l1 , u1 0
f ' h1 / u'k
2、轴外物点近轴光线光路计算(第二近轴光线)
仍用近轴光线光路计算公式和校对公式,所有量均注以下标z.
已知:物方物位、入瞳位置和物高,即 l, lz , uz 。 求解:像方物位、出瞳位置和像高,即 l, lz , uz 。
i
l
r
r
u(当l1
时, u1
0,i1
h1
/
r1)
i' n i
n'
u' u i i'
l' r(1 i' )
u'
l' n'lr
n'l n(l r)
第二节 光线的光路计算
对于有k个面的折射系统,需利用根据过渡公式:
过渡公式:
lk lk1 dk 1 uk uk 1 nk nk 1
对于小视场的光学系统,例如望远物镜和显微物镜等,只 要求校正与孔径有关的像差,所以只需计算上述第一种光线。 对大孔径、大视场的光学系统,如照相物镜等,要求校正所 有像差,所以需要计算上述三种光线。
第二节 光线的光路计算
由已知条件:
光学系统的结构参数(r,d,n)
物体的位置和大小 入瞳的位置和大小
解决问题:
第一节 概述
像差校正:
在实际光学系统中,各种像差是同时存在的,像差 影响光学系统成像的清晰度、相似性和色彩逼真度等 ,就降低了成像质量。故像差的大小反映了光学系统 质量的优劣。
除了平面镜成像以外,没有像差的光学系统是不 存在的。完全消除像、色差是不可能的,针对光学系 统的不同用途,只要把像、色差降低在某范围内,使 光接收器不能分辨,或者说这种差别只要能骗过光接 收器,就可以认为是理想的。

第六章_像差理论总结

第六章_像差理论总结

二、球差(Spherical Aberration) 1、定义
A
高斯 像面
)U
m
Um
(
5 4
3 2 1
Lm
A0 T
L l
Lm
l
(轴向)球差:轴上物点发出的同心、宽光 束经光学系统后, 不再是同心光束。对于不 同孔径角(入射高度)的光线,将会聚在光 轴不同的位置,相对于理想像点有不同程度 的偏离。
F 1
F 1
——相互垂直的两截面内的 光束各有自己的曲率中心。 ★ 焦线:光束曲率中心的轨迹 F F F F F F 两条相互垂直的短线 和 。 ★ 像散差:两焦线之间的距离 F F 。
1 1 1
2 2 2
1 2
例:远轴物点发出的同心细光束,经过有象散的光学系统, 同心性会受到破坏,垂直于主轴的光屏在沿轴不同位置时, 所接收到的成像光束截面形状会发生很大的变化。
1、与主轴成较大倾斜角的同心光束: 即使是细光束,出射光束也难以保持仍 为同心。 2、基本概念:非球面波与象散光束 垂直于波面元,彼此既不相平行也不 交于一点的非对称性光束,称为象散光 束。
b2 F2 F1 ★ 波面中心 b2 的法线:
b1 c1
a1
b2
b3
c2
c3
F2
a2
a3
F2
F2
F1
相似性;
1、理想成像的条件
(4)像的各部分应保持具有与物同样的彩 色。 像不出现不正确的彩色,并发生像模 糊。
★ 像差(Aberrations):实际像与理想像之 间的差异现象。
2、几何像差
(1)单色像差(Monochromatic Aberrations) a. 球面像差; 宽光束引起的 b. 彗形像差; c. 像散; d. 像场弯曲; e. 畸变

第六章 像差理论与像质评价

第六章 像差理论与像质评价

4. 弧矢彗差:点BS′到主光线的垂直 于光轴方向的距离为弧矢彗差,以 KS′表示。
弧矢面光线的结构特点: 由于系统像差的存在,对称于主光线两侧的”弧矢光线对”, 经系统后交点必然在子午面上,但不在主光线上,也不在理 想像面上 正彗差:彗星头朝向光轴负彗差:彗星尾巴朝向光轴
§6-2 正弦差
1. 正弦条件(不晕成像):轴上点及近轴外点均理想成像
4)i ′=u,满足物象齐明条件:
L
n n r n n n L r n
§ 6-3 象散和像面弯曲
一、象散
astigmatism
1. 轴外点无限细光束通过光 学系统时,无彗差。有象散、 场曲。 Bt′— 轴外点B的子午像 Bs′— 轴外点B的弧矢像 沿主光线方向的距离Bt′Bs′是光学系统的象散。在光学设计中一 般以在光轴上的投影来量度光学系统的象散值,以xts′表示。
XS’称为弧矢曲,KS’称为弧矢彗差,xs’称为细光束弧矢场曲, δLT’=XS’-xs’为宽光束和细光束弧矢场曲之差,与轴上点球差 类似,也称为轴外弧矢球差。
§ 6-2 彗差
Coma
产生原因
轴外物点发出子午光束,由于存在球差的影响,各个光线不 能交于一点,即在折射前主光线是子午光束的轴线,但折射后 不再是光束的轴线,光束失去了对称性。 用上、下光线的交点到主光线的垂直于光轴方向的偏离来表 示这种光束的不对称,称为子午慧差。
第六章 光学系统的像差和像质评价
像差概念:
实际光学系统所成的像和近轴区所成的高斯像(理想像)之间的差异。
球差
monochromatic aberration
单色光像差
彗差 象散 场曲
Unclear image
Spherical Coma

工程光学第六章光线光路计算及像差理论

工程光学第六章光线光路计算及像差理论

I
U ; sin I '
n sin I n'
U '
I '; L'
L
tgU

tgU
当角U很小时,用上式计算不够精确,宜把正切改
为余弦
L L tgU
L sinU cosU L ncosU
tgU cosU sinU n cosU
2、 近轴光计算公式:

L ' L ' l '
即为轴向球差的大小。 当δL′=0时,称这种光学系统为消球差系统。
大孔径产生的球差
P
P• P•
L l
Lm
Lm l
L L l
L<0 负球差(凸透镜)(出射光束是会聚光束)
L >0 正球差(凹透镜)(出射光束是发散光束)
一、
1、
A
-U1
-Y
-Uz1
-L1
Lz1
入瞳
当物体位于无限远时,l1 时,
uz1 1 为已知。
2、
当U 0时,sin I h

r
轴外点初始数据为
轴外物点发出的主光线及上、下光线的初始数据为 入瞳半径可由下式确定 (Lz L)tgU
差,把像差校正到某一公差范围内,使成像质量达 到技术要求;同时了解各种像差的现象、产生原 因、光束结构、减小像差的措施。
第二节 光线的光路计算
光线光路的计算主要有三类:
子午面内的光线光路计算 轴外点沿主光线的细光束像点的计算 子午面外光线或空间光线的计算
对于小视场的光学系统,例如望远物镜和显微物 镜等,只要求校正与孔径有关的像差,所以只需计 算上述第一种光线。对大孔径、大视场的光学系统, 如照相物镜等,要求校正所有像差,所以需要计算 上述三种光线。

像差理论

像差理论

70
-0.85
-0.68
在保证光焦度不变的情况下,可以通过增加透镜的 折射率来增大球面的曲率半径,因为选择高折射率 的材料有利于减小球差。
第一节 轴上点球差
1 2 在材料选定后,要保证透镜的光焦度, 2 也随之变 必须为定值。保持该定值,如果改变 1 , 化,使得透镜的形状发生改变。或者说,同一光焦度 的透镜可以有不同的形状。这种保持焦距不变而改变 透镜形状的做法,称为透镜弯曲。 以物体在无穷远为例,图6-9给出了透镜不同形状下的 球差变化曲线。可以看出,无论是正透镜还是负透镜, 都存在一个最小球差的形状,称为透镜最优形式。
K S ' Ya 'YZ ' Yb 'YZ '
(6-8)
式中各符号的意义与式(6-7)类似。
第二节 慧差
慧差是轴外物点以宽光束成像的一种失对称的垂轴像差,除了 子午和弧矢两个截面外,其它截面也都有不同形式的失对称。 如果入瞳为一圆环,轴外点进入系统的光线就是以物点为顶点、 以主光线为对称中心的圆锥面光束,不同的孔径对应于不同大 小的光锥。此光束经系统后,由于存在慧差,不复为对称于主 光线的圆锥面光束,也不再会聚于一点,它与高斯像面相交成 一封闭的复杂曲线,曲线的形状对称于子午面。光锥角度越大, 失对称的程度也越大。整个入瞳可以看成由无数个大小不等的 圆环组成,由轴外物点发出的所有通过这些圆环的圆锥面光束, 经系统后在高斯像面上截得大小不等、形状不一、并在垂轴方 向上相互错开的封闭曲线,最终叠加成一个形状复杂、对称于 子午面的弥散斑。
第二节 慧差
再看弧矢面的情况,图6-13所示的是物点B以弧矢光线 成像的立体图,弧矢面内有一对前、后光线c、d,它 们对称于主光线,因此也对称于子午面,因此,成像 后的交点也必然在子午面内。这对光线在入射前虽然 对称于主光线,但是它们的折射情况与主光线不同。

第六章 光路计算和像差理论

第六章 光路计算和像差理论
第六章第六章光线的光路计算及像差理论光线的光路计算及像差理论62光路计算63轴上点的球差64正弦差及慧差68波像差61基本概念实际的光学系统都是以一定的宽度的光束对具有一定大小的物体进行成像由于只有近轴区才具有理想光学系统性质故不能成完善像就存在一定的像差
是以一定的宽度的光束对具有一定大小 的物体进行成像,由于只有近轴区才具有理想光学系统性质, 故不能成完善像,就存在一定的像差。
6.1 概
3、 像差产生的原因

在第一章我们曾讲过近轴光/实际光的光路计算公式。
并且说明这二组公式 最大的区别是对于近 轴光:是用弧度值取 代正弦值而得 到的。即 sin I≈ I。
但实际上这一取代并不是完全精确的,它存在着一定的误差量值, 因为它们仅仅是近似相等,从而导致实际与理想之间存在差异。这 就是像差产生的原因。
计算实例: 课本表8.2
回忆: 第一和第二近轴光分别用来计算 系统的哪些参数?
6.2 光路计算
(二) 实际光线的光路计算
1、轴上点公式(也分有限远及无限远):
Lr sin I sin U r n sin I ' sin I n' U ' U I I ' L' r r sin I ' sin U '
显然实际像与理想像之间存在着沿轴的差异,就把实际像点与理想 像点的偏移为球差,用δL'表示:

2、对于轴外点:
当物位于无限远时,至少要计算三条光线,分别为:上光线a, 主光线z,下光线b,如图:
计算实例:课本表8.4
6.2 光路计算

当物位于有限远时,h为入瞳半高度;为物高。
6.2 光路计算
对于轴外点,我们要计算多少条光线呢?

工程光学第6章 像差概论

工程光学第6章 像差概论
17
18
校正 • 光阑位置 • 同心原则 • 双分离透镜
19
§6.4 细光束场曲
一、场曲与轴外球差
子午像面:各视场的子午像点构成的像面。 弧矢像面:各视场的弧矢像点构成的像面。
像散和场曲
视场中心(轴上像点):细光束理想成像,像散为0。 即子午像面、弧矢像面重合且与理想像面相切。
细光束的子午场曲和弧矢场曲计算公式:
• 色差分为位置色差和倍率色差两种。前者是由于不同波 长的光线会聚点不同而产生彩色弥散现象,后者是由于 镜头对不同波长的光的放大率不同而引起的。
31
一、位置色差 1.光学现象及数学表达式
2.
LF C LF LC
lF ClF lC
12 3
C D F
32
• 色差在近轴区也存在,所以它比球差更严 重地影响光学系统的成像质量。
轴上点球差
• 共轴球面系统:单透镜不能校球差,需正 负透镜组合。
• 齐明透镜 • 减小光阑直径
8
§6.2 彗差
子午面:光轴和主光线决定的面; 弧矢面:过主光线且与子午面垂直。
9
一、光学现象及定量表示: 1、光学现象
轴外物点在理想像面上形成的像点如同彗星状的光斑, 靠近主光线的细光束交于主光线形成一亮点,而远离主光线 的不同孔径的光线束形成的像点是远离主光线的不同圆环。
36
§6.7 像差综述
• 任何光学系统都有一定的孔径和视场,所 谓某种像差的校正,也仅是对一个孔径带 或一个视场点进行校正,如对轴上点球差 是对边缘光线进行校正,而对色差是对 0.707带光进行校正。
• 所谓像差校正也是将像差校正到相应的像 差容限内,而不可能使其都为零。
37
• 一般来说,七种像差中,球差、位置色差为轴上点 像差,其余为轴外点像差;球差、彗差、位置色差 属于宽光束像差,像散、场曲、畸变、倍率色差属 细光束像差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为此作一B和球心C的辅助轴,则B点是辅助光轴上的一点,则三 条光线a、b、z对辅助轴相当于三条不同孔径角的轴上入射光线, 则它们在辅助光轴上存在球差且不相等。三条光线不能交于一点, 这样使得出射光线a′、b′不再关于主光轴z′对称。 10
则上下光线对的交点到主光线的垂直距离称为子午彗差。 如用个光线在像面上的交点值来表示,则子午彗差为: 1 KT Ya Yb Yz 2 对弧矢面的情况:弧矢光束中的前后光线c、d入射前对称 于主光线,由于弧矢光线对称子午面,它们折射后仍然交 于子午面内的同一点。但它们的折射情况与主光线不同, 因此并没有交于主光线上。这样出射光线对不再关于主光 线对称,其交点到主光线的垂直距离称为弧矢彗差。
7
球差对于球面系统是不可避免的,一般正透镜产生负球差, 负透镜产生正球差,为校正球差常采用正负透镜的组合,但 也只能对个别孔径角校正球差。 在系统孔径角不太大的情况下,常对最大孔径角Um(或孔径 高度hm)校正球差,使:
2 4 2 L A1hm A2 hm 0 A1 A2 hm
21
22
§6-5
色差
多数情况下物体以复色光成像(如白光),由于光学材料 对不同波长的谱线的折射率不同,导致一个物点对应有不 同波长的像点位置和放大率,这种成像缺陷统称色差。 反映两种波长成像位置差别的称为位置色差,常对轴上点 计算。 描述两种波长成像高度(放大率)差别的称为倍率色差, 以轴外点计算。 一、位置色差 在可见光范围内,轴上物点发出的实际光线中F谱线和C 谱线像点之间位置之差称为位置色差(轴向色差)。
轴外点发出充满入瞳的一束光,这束光以通过入瞳中心的 主光线为对称中心,其中包含主光线和光轴的平面称为子 午面。过主光线且垂直于子午面的平面为弧矢面。显然子 午面是光束的对称面。 9
对子午面的情况:主光线Z和一对上下光线a、b,折射前, 上下光线与主光线对称,折射后,上下光线对不再对称于主 光线,它们的交点偏离了主光线。
Yc Yz KS Yd Yz
11
彗差是轴外点以宽光束成像的一种失对称的垂轴像差,它随 视场的增大而增大,随孔径的增大而增大。彗差使像点变形 为一失对称的弥散斑。
主光线偏到弥散斑一边,在主光线与 像面交点处,积聚的能量最多,因此 最亮。在主光线以外能量逐渐散开, 慢慢变暗,因此弥散斑形成一个以主 光线与像面交点为顶点的锥形斑,其 形似彗星,因此称为彗差。
或 L a1U12 a2U14 a3U16
6
显然,不同的U角入射的光线有不同的球差。由于其对称 性,孔径角U的整个光锥面上的光线都有相同的球差而交 于一点,在理想像面上,将形成一个圆形的弥散斑,其半 径称为垂轴球差。
T LtgU
球差的存在使轴上点成像不再清晰。 因此,球差的形成是折射球面系统成像的一种必然现象, 它是轴上物点以单色光成像时的唯一像差。
xt lt l ls l xs
有像散必然有场曲,但如果没有像散存在,像面弯曲现 象也会因球面光学系统的本身特性而存在。
球面 物体
折射 球面
理想像 平面
17
根据物像同向移动的原则,B的像点进一步偏离理想像平面 P′,这种偏离随视场的大小而变化,使得垂直于光轴的平面 物体经球面成像后变得 弯曲,这种弯曲还没有考虑像散的 影响,把像散为0时的像面弯曲称为匹兹伐场曲。
表明:色球差的大小不仅与色差有关,还与系统的球差 有关。
因此以白光成像的物体即使在近轴区也不能获得白光的 清晰像。 一般正透镜产生负色差,负透镜产生正色差,因此校正 色差须用正负透镜组合。
25
600 nm 510 nm
焦点位 置/mm 正透镜的近轴 位置色差曲线 正负透镜胶 合后的位置 色差曲线
焦点位 置/mm
18
三、畸变 理想光学系统中,物象共轭面上的放大率是常数,像和 物是相似的。但实际光学系统中,一对共轭面上的放大 率不是常数,放大率随视场的增大而变化,即物体中心 区域的放大率与边缘处的放大率不一样,物和像不完全 相似,这种像对物的变形像差称为畸变。 主光线是光束的中心,代表实际像点的位置,因此用主 光线的像点位置与理想像点进行比较,得到畸变。
y z y q 100% y y
z
y
20
一般畸变随视场增大呈单调变化,畸变为负时,实际像 高大于理想像高,放大率随视场增大而减小,得到桶形 畸变。 相反当畸变为正时,实际像高大于理想像高,放大率随 视场增大而增大,产生枕形畸变。 畸变是主光线的像差,不影响成像的清晰度,但会使像 产生变形。
蓝光 486.1nm 近红外 656.3nm
23
位置色差为:
LF LC LFC
近轴区位置色差为:
lF lC lFC
同理,不同的孔径有不同的位置色差,校正色差只能对 个别孔径带进行,一般对0.707孔径带校正色差,这可 使最大孔径的色差与近轴区域的色差绝对值相近,符号 相反,整个孔径的色差获得最佳状况。 当0.707孔径带校正了位置色差后,F光和C光的交点与 接收器最敏感的D光像点位置并不重合,其间距称为二 级光谱。即:
由于实际中的像散总是存在的,因此匹兹伐场曲总是附加在 子午场曲和弧矢场曲中。
场曲的存在使得实际像面是弯曲的,用垂轴像平面接收平面 物体的成像将无法获得整个视场的清晰,或是视场中心清晰 边缘模糊,或是边缘清晰中心模糊。
以上分析是物体以细光束成像的情况,若轴外物点以宽光束 成像,除了彗差外,宽光束还将因球差偏离细光束的成像位 置,形成轴外球差和宽光束场曲,像差情况更加复杂。
• 位置色差:体现不同色光的成像位置的差异 • 倍率色差:体现不同色光的成像大小的差异
3
4
§6-2 轴上点的球差
在共轴球面系统中,轴上点与轴外点有不同的像差,轴上 点因处于轴对称位置,具有最简单的像差。 由前面的计算知,当轴上点的物距L确定,以宽光束成像 时,其像方截距L′随孔径角U而变化。
在孔径角约等于0的近轴区得到物点成像的理想位置l′,则 把轴上点以孔径角u成像时,该光线的像方截距与理想象 点的位置之差称为轴上点球差。 5
14
弧矢 像面 子午 像面 像平 面 主光 线
子午像点和弧矢像点 都位于主光线上,通 常可将子午像距和弧 矢像距投影到光轴上, 则像散表示为:
lt ls xts
15
像散的存在使轴外物点的成像在子午方向和弧矢方向各 有不同的聚焦位置。子午方向的光线聚焦成垂直于子午 面的短焦线T′,而弧矢方向的光线聚焦成子午面内的短 焦线S′,两焦线之间是一系列由线到椭圆到圆再到椭圆 再到线的弥散斑变化。 因此,接收器在像方找不到同时能使各个方向的线条都 清晰的像面位置。
-ω f
照相系统视场角
1
第六章 像差理论
• • • • • • §6-1 §6-2 §6-3 §6-4 §6-5 §6-6 概述 轴上点的球差 彗差 细光束像散、场曲和畸变 色差 波像差
2
§6-1 概述
• 像差定义:实际像与理想像之间的差异。 • 几何像差的分类:
– 单色像差:光学系统对单色光成像时所产生的 像差。球差、彗差、像散、场曲、畸变 – 色差:不同波长成像的位置及大小都有所不同。
WFC WF WC D d dn
1 n
光线在两折 射面间沿光 路的间隔
透镜等 沿轴厚 度
介质对两 波长光的 色散
29
L L l f1 h1 f2 U1
入射 高度 孔径பைடு நூலகம்角
由于球差具有对称性,当h1或U1变号时,球差不变,其级 数展开式中没有奇次项;当h1或U1等于0时,没有球差, 因此展开式中也无常数项。因此球差可表示为:
L A1h12 A2 h14 A3h16
二、倍率色差
是指F光与C光的主光线的像点高度差,在参考像面 (常取D光)上度量。
绿光 589.3nm
26
则倍率色差为:
YF YF YFC
yF yF 在近轴区的倍率色差为: yFC
光学系统在不同的视场有不同的倍率色差,倍率色差的 存在使物体像的边缘呈彩色,影响成像清晰度,必须校 正。一般是对接受器最敏感的波长须校正单色像差,而 对其工作波段两端的谱线须校正色差。
二、场曲 像散是轴外物点的一种像差,随视场的增大而变化,如 连接所有子午像点将形成一个弯曲的子午像面;连接弧 矢像点也得到一个弯曲的弧矢像面,视场中心处的像散 为0,因此子午像面和弧矢像面在视场中心与理想像点 相切。
16
则把平面物体成弯曲像面的成像缺陷称为场曲。像散的 存在将会产生子午场曲和弧矢场曲,分别表示为:
LF 0.707h LD 0.707h LC 0.707h LD 0.707h LFCD
24
二级 光谱
并称两种波长的球差之差称为 色球差,表示为:
LF LC LFC
lF LC lC LF lFC LFC
彗差影响轴外点成像的清晰度。由于其为垂轴像差,当系统 结构完全对称,且物象放大率为-1时,系统前半部产生的彗 差与后半部产生的彗差数值相等、符号相反,可以完全自动 12 消除。
13
§6-4
一、像散
细光束像散、场曲和畸变
当轴外点发出一束很细的光束通过入瞳时,宽光束的失对称 可忽略,球差也不对细光束有影响。但由于轴外物点偏离轴 对称位置,细光束中也会出现子午、弧矢的成像差别,使得 子午像点和弧矢像点不重合,即一个物点的成像将被聚焦为 子午和弧矢两个焦线 ,这种像差称为细光束像散。
m
L 2 A1h 4 A2 h3 0 h
h 0.707hm
此时,在0.707孔径处的光线具有最大剩余球差。校正球 差的目的就是使最大的剩余球差在允许的公差之内。
相关文档
最新文档