51单片机波形发生器

合集下载

51单片机实现波形发生器

51单片机实现波形发生器

51单片机实现波形发生器摘要这个系统是基于AT89C51单片机的波形信号发生器。

使用AT89C51单片机作为控制核心,该系统由数字/模拟转换电路(DAC0832)、运放电路(OP07)、按键电路和6位数码管等组成。

通过按键可控制方波、三角波、正弦波的产生,并且用数码管显示其对应的频率和波形的类型。

这个设计方法简单、性能良好,这个系统可在多种需要低频信号的场所使用,它具有良好的实用性。

关键词:AT89C51 数模转换电路数码管信号发生器1 总体方案设计本次设计的任务是设计制作一个波形发生器,该波形发生器能产生正弦波、方波、三角波和由用户编辑的特定形状波形。

示意图如下:基本要求如下:(1)具有产生正弦波、方波周期性波形的功能;(2)输出波形的频率范围为100Hz~20kHz(非正弦波频率按10次谐波计算);重复频率可调,频率步进间隔≤100Hz;(3)输出波形幅度范围0~5V(峰-峰值),可按步进0.1V(峰-峰值)调整;(4)具有显示输出波形的类型、重复频率(周期)和幅度的功能。

1.1 方案论证方案一:采用单片函数发生器可产生正弦波、方波等,操作简单易行,用 D/A 转换器的输出来改变调节电压,可以实现数控调整频率,但产生信号的频率稳定度不高。

方案二:利用芯片组成的电路输出波形,MAX038是MAXIM公司生产的一个只需要很少外部元件的精密高频波形产生器,它能产生准确的高频正弦波、三角波、方波。

输出频率和占空比可以通过调整电流、电压或电阻来分别地控制。

所需的输出波形可由在A0和A1输入端设置适当的代码来选择,且具有输出频率范围宽、波形稳定、失真小、使用方便等特点。

方案三:采用Atmel公司的AT89C51单片机编程方法实现,该方案可以通过编程的方法控制信号波形的频率和幅度,而在硬件电路不便的情况下,通过程序实现频率的变化和输出波形的选择,并同时在显示器显示相应的结果。

方案一输出信号频率不够稳定;方案二成本高,程序复杂度高;方案三软硬件结合,硬件成本低,软件起点低,用汇编语言即可完成,优化型相对比较好,容易实现,且满足设计要求。

基于51单片机的波形发生器设计

基于51单片机的波形发生器设计

课题要求:目录:1、系统总体设计方案规划与选定…………………………………2、硬件设计…………………………………………………………3、软件设计………………………………………………………….4、调试……………………………………………………………….5、新增功能及实现方法……………………………………………6、总结与体会………………………………………………………7、参考文献…………………………………………………………8、附录(源程序代码、电路图等)………………………………一. 系统总体设计方案规划与选定本次设计采用AT89C51单片机为核心,通过与8279芯片和38译码器、锁存器的配合实现对键盘状态的检测和LED 显示的控制,通过D/A 转换器和运算放大器以及示波器实现对波形的输出,并且在8位LED 显示器上显示波形类型的代号、幅值、频率。

键盘为4*8键盘,通过键盘摁键实现对波形种类、幅值、频率等的调节。

图1. 总体方案结构框图二.硬件设计硬件的选择对于功能的实现非常重要,我们要了解芯片的功能、性能,根据题目要求选择合适的芯片。

(一)硬件介绍1.单片机选择AT89C51。

AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM ,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。

同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM ,定时/计数器,串行通信口及中断系统继续工作。

掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

AT89C51具有优良的性能,符合题目的要求。

图2. AT89C51引脚图引脚说明:P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P0口的管脚第一次写1时,被定义为高阻输入。

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解

目录1 引言 (1)1.1 题目要求及分析 (1)1.1.1 示意图 (1)1.2 设计要求 (1)2 波形发生器系统设计方案 (2)2.1 方案的设计思路 (2)2.2 设计框图及系统介绍 (2)2.3 选择合适的设计方案 (2)3 主要硬件电路及器件介绍 (4)3.1 80C51单片机 (4)3.2 DAC0832 (5)3.3 数码显示管 (6)4 系统的硬件设计 (8)4.1 硬件原理框图 (8)4.2 89C51系统设计 (8)4.3 时钟电路 (9)4.4 复位电路 (9)4.5 键盘接口电路 (10)4.7 数模转换器 (11)5 系统软件设计 (12)5.1 流程图: (12)5.2 产生波形图 (12)5.2.1 正弦波 (12)5.2.2 三角波 (13)5.2.3 方波 (14)6 结论 (16)主要参考文献 (17)致谢....................................................... 错误!未定义书签。

1引言1.1题目要求及分析题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。

1.1.1示意图图1:系统流程示意图1.2设计要求(1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。

(2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。

(3) 系统具有存储波形功能。

(4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。

(5) 系统输出波形幅度范围0~5V。

(6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

2波形发生器系统设计方案设计并制作一个波形信号发生器,能够产生正弦波、方波、三角波的波形,其中不使用DDS和一些专用的波形产生芯片。

并让系统的频率范围在1Hz~1MHZ可调节,在频率范围在1HZ~10KHz时,步进小于或等于10Hz,在频率范围在10KHz~1MHz时,步进小于或等于100Hz,并且电压在0~5V范围,能够实时的显示波形的类型、频率和幅值。

基于51单片机的示波器

基于51单片机的示波器

51单片机波形发生器(本程序适用)其中独立按键1、2、3、4按下时会产生四个不同波形(矩形、三角波、梯形波、正弦波)主函数:Main.c#include <reg52.h>#include "i2c.h"#define AddWr 0x90 //写数据地址#define AddRd 0x91 //读数据地址/*unsigned char code tab[]={0,25,50,75,100,125,150,175,200,225,250 //表格数值越多,波形越平滑};*/unsigned char code tab1[]={0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230,240,250};unsigned char code juchi[64]={0,4,8,12,16,20,24,28,32,36,40,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109,113,117,12 1,125,130,134,138,142,146,150,154,158,162,166,170,174,178,182,186,190,194,198,202,206,210,215,219,223,227,231,23 5,239,243,247,251,255};unsigned char code sin[64]={135,145,158,167,176,188,199,209,218,226,234,240,245,249,252,254,254,253,251,247,2 43,237,230,222,213,204,193,182,170,158,146,133,121,108,96,84,72,61,50,41,32,24,17,11,7,3,1,0,0,2,5,9,14,20,28,36,45,55,66,78,90,1 02,114,128};unsigned char code sanjiao[64]={0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,136,144,152,160,168,176,184,192,200,208,216,224,232,240,248,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64, 56,48,40,32,24,16,8,0};unsigned char code tixing[64]={0,13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,247,247,247,247,247,247, 247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,247,242,229,216,203,190,177,164,151,138,125,112,99,86,73,60,47,34,2 1,8};unsigned char code juxing[64]={255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,25 5,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};extern bit ack;bit WriteDAC(unsigned char dat,unsigned char num);/*------------------------------------------------主程序------------------------------------------------*/main(){unsigned char i;while (1) //主循环{// for(i=0;i<26;i++)// WriteDAC(tab1[i],1);while(P1==0xff){for(i=0;i<64;i++)WriteDAC(juxing[i]*6/10,1);if(P1!=0xff)break;}while(P1==0xfe){for(i=0;i<64;i++)WriteDAC(tixing[i]*6/10,1);if(P1!=0xfe)break;}while(P1==0xfd){for(i=0;i<64;i++)WriteDAC(sanjiao[i]*6/10,1);if(P1!=0xfd)break;}while(P1==0xfb){for(i=0;i<64;i++)WriteDAC(sin[i]*6/10,1);if(P1!=0xfb)break;}while(P1==0xf7){for(i=0;i<64;i++)WriteDAC(juchi[i]*6/10,1);if(P1!=0xf7)break;}}}/*------------------------------------------------写入DA转换数值输入参数:dat 表示需要转换的DA数值,范围是0-255 ------------------------------------------------*/bit WriteDAC(unsigned char dat,unsigned char num) { unsigned char i;Start_I2c(); //启动总线SendByte(AddWr); //发送器件地址if(ack==0)return(0);SendByte(0x40); //发送器件子地址if(ack==0)return(0);for(i=0;i<num;i++){SendByte(dat); //发送数据if(ack==0)return(0);}Stop_I2c();}IIC协议:IIC.C#include "i2c.h"#define _Nop() _nop_() //定义空指令bit ack; //应答标志位sbit SDA=P2^1;sbit SCL=P2^0;/*------------------------------------------------启动总线------------------------------------------------*/void Start_I2c(){SDA=1; //发送起始条件的数据信号_Nop();SCL=1;_Nop(); //起始条件建立时间大于4.7us,延时_Nop();_Nop();_Nop();_Nop();SDA=0; //发送起始信号_Nop(); //起始条件锁定时间大于4μ_Nop();_Nop();_Nop();_Nop();SCL=0; //钳住I2C总线,准备发送或接收数据_Nop();_Nop();}/*------------------------------------------------结束总线------------------------------------------------*/void Stop_I2c(){SDA=0; //发送结束条件的数据信号_Nop(); //发送结束条件的时钟信号SCL=1; //结束条件建立时间大于4μ_Nop();_Nop();_Nop();_Nop();_Nop();SDA=1; //发送I2C总线结束信号_Nop();_Nop();_Nop();}/*----------------------------------------------------------------字节数据传送函数函数原型: void SendByte(unsigned char c);功能: 将数据c发送出去,可以是地址,也可以是数据,发完后等待应答,并对此状态位进行操作.(不应答或非应答都使ack=0 假)发送数据正常,ack=1; ack=0表示被控器无应答或损坏。

51单片机制作的波形发生器

51单片机制作的波形发生器

51单片机制作的波形发生器相信很多朋友都可能接触到一个波型发生器的制作,可能刚刚入门,做的东西也不会说是很复杂。

可能就一个矩形波,或者是三角波。

但是网上的很多资料是忽悠人的,就此,我也提供一个比较完整的波型发生器 C51 原代:该系统的软件比较典型:包括键盘的应用,显示的应用和 DA 转换器的应用。

本设计中,输出的波形有三种:正弦波,方波,三角波。

方波的输出最为简单,只要按照设定的周期值将输出的电压改变即可。

三角波的输出也比较简单,单片机的输出只要完成数字量递增和递减交替进行即可。

、正弦波的输出最麻烦,如果在软件中计算出输出的各点电压值,将会浪费很多的 CPU 时间,以至于无法满足频率的要求。

通常最简单的方法是通过手动的方法计算出输出各点的电压值,然后在编写程序时以数组的方式给出。

当需要时,只要按照顺序进行输出即可。

这种方法比运算法速度快且曲线的形状修改灵活。

在本设计中将 360 度分为 256 个点,则每两个点之间的间隔为1.4 度,然后计算出每个点电压对应的数字量即可。

只要反复输出这组数据到 DAC0832, 就可以在系统输出端得到想要的正弦波。

具体程序如下:#include ;#define uchar unsigned char#define uint unsigned int#define DAdata P0uchar code Sinetab[256]={0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xab,0xad,0xaf,0xb1,0xb2,0xb4,0xb6,0xb7,0xb9,0xba,0xbc,0xbd,0xbf,0xc0,0xc1,0xc3,0xc4,0xc5,0xc6,0xc8,0xc9,0xca,0xcb,0xcc,0xcd,0xce,0xce,0xcf,0xd0,0xd1,0xd1,0xd2,0xd2,0xd3,0xd3,0xd3,0xd2,0xd2,0xd1,0xd1,0xd0,0xcf,0xce,0xce,0xcd,0xcc,0xcb,0xca,0xc9,0xc8,0xc6,0xc5,0xc4,0xc3,0xc1,0xc0,0xbf,0xbd,0xbc,0xba,0xb9,0xb7,0xb6,0xb4,0xb2,0xb1,0xaf,0xad,0xab,0xaa,0xa8,0xa6,0xa4,0xa2,0xa0,0x9e,0x9c,0x9a,0x98,0x96,0x94,0x92,0x90,0x8e,0x8c,0x8a,0x88,0x86,0x84,0x82, 0x80,0x7d,0x7b,0x79,0x77,0x75,0x73,0x71, 0x6f,0x6d,0x6b,0x69,0x67,0x65,0x63,0x61, 0x5f,0x5d,0x5b,0x59,0x57,0x55,0x54,0x52, 0x50,0x4e,0x4d,0x4b,0x49,0x48,0x46,0x45, 0x43,0x42,0x40,0x3f,0x3e,0x3c,0x3b,0x3a, 0x39,0x37,0x36,0x35,0x34,0x33,0x32,0x31, 0x31,0x30,0x2f,0x2e,0x2e,0x2d,0x2d,0x2c, 0x2c,0x2b,0x2b,0x2b,0x2b,0x2a,0x2a,0x2a, 0x2a,0x2a,0x2a,0x2a,0x2b,0x2b,0x2b,0x2b, 0x2c,0x2c,0x2d,0x2d,0x2e,0x2e,0x2f,0x30, 0x31,0x31,0x32,0x33,0x34,0x35,0x36,0x37, 0x39,0x3a,0x3b,0x3c,0x3e,0x3f,0x40,0x42, 0x43,0x45,0x46,0x48,0x49,0x4b,0x4d,0x4e, 0x50,0x52,0x54,0x55,0x57,0x59,0x5b,0x5d, 0x5f,0x61,0x63,0x65,0x67,0x69,0x6b,0x6d, 0x6f,0x71,0x73,0x75,0x77,0x79,0x7b,0x7d, };uchar code Triangletab[58]={0x1a,0x21,0x28,0x2f,0x36,0x3d,0x44,0x4b, 0x52,0x59,0x60,0x67,0x6e,0x75,0x7c,0x83,0x8a,0x91,0x98,0x9f,0xa6,0xad,0xb4,0xbb,0xc2,0xc9,0xd0,0xd7,0xde,0xe5,0xde,0xd7,0xd0,0xc9,0xc2,0xbb,0xb4,0xad,0xa6,0x9f,0x98,0x91,0x8a,0x83,0x7c,0x75,0x6e,0x67,0x60,0x59,0x52,0x4b,0x44,0x3d,0x36,0x2f,0x28,0x21,};uchar code Squaretab[2]={0x56,0xaa};uchar code disp1[]={&quot;Sine Wave &quot;&quot;Triangle Wale &quot;&quot;Square Wave &quot;};uchar idata disp2[16]={&quot;Frequency:Hz&quot;};uchar code Coef[3]={10,100,200};uchar idata WaveFre[3]={1,1,1};uchar code WaveTH[]={0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xfc,0xfe,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, };uchar code WaveTL[]={0xf2,0x78,0xfb,0x3c,0x63,0x7d,0x8f,0x9d,0xa8,0xb1, 0x17,0x0b,0xb2,0x05,0x37,0x58,0x70,0x82,0x90,0x9b, 0x4d,0xa7,0xc4,0xd3,0xdc,0xe2,0xe6,0xea,0xec,0xee };uchar Wavecount,THtemp,TLtemp;uchar Waveform;sbit rs=P2^5;sbit rw=P2^6;sbit e=P2^7;sbit DA=P2^0;sbit KEY=P3^2;void delay(uchar i){uchar j;for(;i>;0;i--)for(j=20;j>;0;j--);}void busy(){uchar temp;temp=0x00;rs=0;rw=1;while((temp&0x80)==0x80) {P0=0xff;e=1;temp=P0;e=0;}}void WR_Com(uchar temp) {busy();rs=0;rw=0;P0=temp;e=1;e=0;}void WR_Data(uchar num){busy();rs=1;rw=0;P0=num;e=1;e=0;}void disp_lcd(uchar addr,uchar *temp1) {uchar i;WR_Com(addr);delay(100);for(i=0;i;0;i--){P0=0x30;rs=0;rw=0;e=1;e=0;delay(100);P0=0x38;rs=0;rw=0;e=1;e=0;delay(100);}void lcd_Reset(){WR_Com(0x01);delay(100);WR_Com(0x06);delay(100);WR_Com(0x0c);delay(100);}void SineOUT(uchar Wavecount) {DAdata=Sinetab[Wavecount++]; Wavecount=0;DA=0;}void TriangleOUT(uchar Wavecount) {DAdata=Triangletab[Wavecount++]; if(Wavecount>;57)Wavecount=0;DA=0;DA=1;}void SquareOUT(uchar Wavecount) {DAdata=Squaretab[Wavecount++];if(Wavecount>;1)Wavecount=0;DA=0;DA=1;}void timer() interrupt 1{TH0=THtemp;TL0=THtemp;if(Waveform==0)SineOUT(Wavecount); else if(Waveform==1)TriangleOUT(Wavecount); else if(Waveform==2)SquareOUT(Wavecount); }void key_int() interrupt 0 {uchar keytemp,keytemp1;uint WaveCoef;EA=0;TR0=0;keytemp1=0;delay(10);while(!KEY);keytemp=~P2&0x1e; keytemp>;>;=1;while(keytemp!=8){keytemp=~P2&0x1e;keytemp>;>;=1;if(keytemp!=keytemp1){keytemp1=keytemp;switch(keytemp){case 1:if(++Waveform==3)Waveform=0;break;case 2:if(++WaveFre[Waveform]==11)WaveFre[Waveform]=1;break;case 4:if(--WaveFre[Waveform]==0)WaveFre[Waveform]=10;break;}THtemp=WaveTH[Waveform*16+(WaveFre[Waveform]-1)]; TLtemp=WaveTL[Waveform*16+(WaveFre[Waveform]-1)];WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);}}TH0=THtemp;TL0=THtemp;Wavecount=0;TR0=1;}void main(){uint WaveCoef;uchar i;lcd_ini();lcd_Reset();WaveCoef=WaveFre[Waveform]*Coef[Waveform]; disp2[13]=WaveCoef%10+0x30;WaveCoef/=10;disp2[12]=WaveCoef%10+0x30;WaveCoef/=10;disp2[11]=WaveCoef%10+0x30;WaveCoef/=10;disp2[10]=WaveCoef%10+0x30;WaveCoef/=10;disp_lcd(0x80,&disp1[Waveform*16]);disp_lcd(0xc0,disp2);i=0;DAdata=0x00;DA=0;TMOD=0x01;IT0=1;ET0=1;EX0=1;EA=1;while(1);}。

基于51单片机的波形发生器的设计

基于51单片机的波形发生器的设计

基于51单片机的波形发生器的设计引言:波形发生器是一种可以生成特定频率、特定波形的电子设备。

它广泛应用于科研、教学和产业生产等领域,可以用于信号发生、信号测试、信号仿真等各种任务。

本文将介绍一个基于51单片机的波形发生器的设计方案。

一、系统硬件设计1.系统框架该波形发生器系统采用51单片机作为主控芯片,主要包括三个部分:信号生成模块、显示模块和控制模块。

其中,信号生成模块负责产生各种特定频率、特定波形的信号;显示模块用于展示信号参数等相关信息;控制模块负责接收用户输入并对波形发生器进行控制。

2.硬件连接信号生成模块与主控芯片之间通过I/O接口相连,用于传输数据和控制信号。

显示模块通过串口与主控芯片相连,用于显示相关信息。

控制模块通过按键、旋钮等输入设备与主控芯片相连,用于接收用户输入。

二、系统软件设计1.系统初始化在系统初始化阶段,主控芯片需要完成引脚、定时器、串口等相关资源的初始化工作。

同时,还需要设置一些全局变量和参数的初始值。

2.信号生成模块信号生成模块通过定时器产生特定频率的时钟信号,并根据用户输入的参数生成相应的信号波形。

主控芯片利用定时器中断函数进行波形生成,并将生成的信号数据存放在缓冲区中。

3.显示模块显示模块负责将信号波形显示在液晶屏上,并显示相关参数,如频率、幅度等。

主控芯片将信号数据从缓冲区中读取,并通过串口发送给显示模块进行显示。

4.控制模块控制模块负责接收用户输入的控制指令,并通过按键、旋钮等输入设备完成用户交互。

主控芯片通过中断函数实时读取用户输入并进行相应的控制操作。

三、系统功能设计1.频率设置功能用户可以通过控制模块设置波形发生器的频率,可以选择固定频率或者可调频率。

利用定时器时钟频率与定时器中断的时间间隔来控制波形的频率。

2.波形选择功能用户可以通过控制模块选择不同的波形类型,如正弦波、方波、三角波、脉冲波等。

主控芯片根据用户指令设置波形参数,并生成相应的波形信号。

基于51单片机的波形发生器设计报告

基于51单片机的波形发生器设计报告

基于51单片机的波形发生器设计报告波形发生器是一种电子设备,用于产生各种不同类型和频率的电信号波形。

基于51单片机的波形发生器设计是一种常用的工程设计。

下面是一个关于基于51单片机的波形发生器设计的报告,详细介绍了设计的原理、步骤、电路、程序和性能。

一、设计原理:二、设计步骤:1.确定波形发生器的输出频率范围和分辨率要求。

2.选择适当的定时器/计数器模块来实现频率的计时和控制。

3.设计电路,包括定时器/计数器模块、晶振、滤波电路和输出接口等。

4.编写程序,配置定时器/计数器模块的工作模式、计数值和中断服务程序。

5.调试和测试电路和程序,确保波形发生器正常工作并满足设计要求。

三、电路设计:1.定时器/计数器模块:选择一个合适的定时器/计数器模块,如51单片机的定时器/计数器T0或T1、根据设计要求,设置工作模式、计数器模式和计数值。

2.晶振:选择适当的晶振频率,一般为11.0592MHz,将晶振连接到单片机的晶振引脚。

3.滤波电路:根据需要,设计一个滤波电路来滤除不需要的高频噪声和杂散信号。

4.输出接口:设计一个输出接口电路来连接单片机和外部电路,使用电平转换电路将单片机的低电平(0V)输出转换为所需的电平电压。

四、程序设计:1.配置定时器/计数器模块的工作模式和计数值,设置中断服务程序。

2.在中断服务程序中,根据设计要求生成矩形波信号,并将信号输出到输出端口。

3.在主程序中,初始化单片机和定时器/计数器模块,使波形发生器开始工作。

4.在主循环中,可以设置按键输入来改变输出频率,通过调整计数值来实现不同的频率输出。

五、性能评估:1.输出频率范围:根据设计要求,测试波形发生器的最低和最高输出频率是否在设计范围内。

2.分辨率:对于指定频率范围,测试波形发生器的输出频率的分辨率,即最小可调节的频率。

3.稳定性:测试波形发生器的输出信号的稳定性和准确度,是否有漂移和偏差。

4.噪声:测试波形发生器的输出信号是否有杂散噪声和幅度波动。

AT89C51单片机作为波形发生器

AT89C51单片机作为波形发生器

信号发生器在教学、试验、测控等各个领域都有着十分广泛的应用,而且随着现代电子通讯技术的发展, 常常需要高精度且频率可方便调节的信号发生器。

本设计直接采用AT89C51单片机作为波形发生器的重要元件,加上巧妙的软件设计和简易的外围电路,产生频率、幅度可调的正弦波、三角波、锯齿波以及方波等多种信号。

信号的频率、幅值、通过键盘直接输入,并由LED显示。

与现有各类型波形发生器比较而言,ATMEL 的A T89C51是一种高效微控制器,其产生的数字信号干扰小,输出稳定,可靠性高,特别是操作简单方便,成本低,非常适合于物理实验室教学与实验使用。

关键词:AT89C51单片机、波形发生器、LED显示;基于单片机的信号发生器设计收藏这个学期的最后一个月,我们正式进入课程设计实验。

本次我选择了基于单片机的信号发生器设计的这个课程设计,因为相对比较简单,就一个89C51和D/A0832就搞定。

余老师还是比较好的,像他们软件的要焊接,额,密密麻麻的一大堆线,看着就烦。

呵呵,好了,以下要谈谈这次设计的过程了。

首先,本次设计的要求是以单片机为基础,利用D/A转换器,编程能产生锯齿波、方波、正弦波、三角波四种波形,使波形可变且频率可调的信号发生器。

主要难度是波形进行变化和频率可调,好,先准备实验要求的设备,PC机一台(并安装Keil 模拟仿真器软件)实验箱一个、导线落干根,示波器一台。

本来我是想用伟福来进行仿真的,可惜没下载器,一切就绪,马上开始,下面是本次报告中的一部分。

一、设计思路利用Keil C51 系列仿真系统实现。

主要利用其中89C51,D/A0832,拨位开关、按键等模块。

1、波形选择:利用8051分别实时地对P1.0、P1.1两口进行扫描,如果发现两口对应相应的数值,即有四种状态:00,01,10,11,根据四种状态跳到对应的波形程序。

2、三种波形的实现:方波:由8051对P0口不断交替输出00H和0FFH,有D/A0832转换成模拟量实现;三角波:由8051对P0口输出00H,在每一个时钟到来时对输出值加一;当加至0FFH时,继而在时钟来临时减一,这样往复执行,最终输出近似连续的三角波;正弦波:将00H到0FFH按照正弦波波形的变化趋势分成255个间断的点,形成一个正选波取值表,用8051在每一个时钟到来时取表值通过P0口送至D/A0832转换输出。

低频波形发生器51单片机设计

低频波形发生器51单片机设计

低频波形发生器51单片机设计
1.设计要求
-能够产生正弦波、方波、三角波等低频波形;
-能够通过调节频率和幅度控制产生的波形;
-采用51单片机控制波形的产生和调节;
-电路简单可靠,易于调试和维护。

2.硬件设计
该低频波形发生器的硬件设计主要包括以下模块:
-51单片机模块:选择一款合适的51单片机作为核心控制器,用于控制波形的产生和调节。

-信号发生模块:采用电容和电阻组成RC电路,通过控制电阻的值来调节频率,通过电容的充放电过程来产生不同的波形。

-幅度调节模块:通过电压比例方法,利用运放和电位器来调节波形的幅度。

-输出模块:将产生的波形信号输出到外部设备进行显示和测试。

3.软件设计
-波形选择功能:通过按键或旋钮选择要产生的波形类型。

-频率调节功能:通过按键或旋钮调节波形的频率。

-幅度调节功能:通过按键或旋钮调节波形的幅度。

-输出控制功能:通过按键或旋钮控制是否输出波形信号。

软件部分需要编写相应的程序,包括中断服务程序、按键扫描程序、
波形产生程序等。

4.总结
低频波形发生器的设计是一项比较复杂的任务,需要综合考虑硬件和
软件的设计要求。

在硬件设计方面,需要选择合适的元器件和电路设计方案,以及进行布线和连接的设计。

在软件设计方面,需要编写相应的程序,并进行调试和测试。

通过合理的设计和实施,可以实现一种稳定可靠的低
频波形发生器,满足不同实际应用的需求。

基于51单片机汇编程序波形发生器实训报告

基于51单片机汇编程序波形发生器实训报告

单片机实训报告(波形发生器)一、设计方案(1)、硬件基本设计思路本设计方案采用8051单片机和DAC0832将数字信号转化成模拟信号,并通过LM324运算放大器将信号进行处理,最终得到各种波形。

其中,波形的切换采用矩阵键盘通过外部中断0来实现。

(2)、软件基本设计思路首先,将基本波形通过程序进行编写,并调试成功;其次,再编写按键扫描子程序;最后,将按键程序放入中断中,并进行整体调试,直到调通为止。

(3)、程序说明略二、原理图波形发生器原理图三、程序JUCHI E QU 50HSANJI EQU 51HFANGB EQU 52HTIXIN EQU 53HKU EQU 55HORG 0000H ;程序入口AJMP MAIN ;指向主程序ORG 0003H ;主程序入口地址AJMP INTT0 ;指向按键中断程序ORG 0030H ;中断程序入口地址MAIN: ;主程序MOV P2,#00H ;将P2口初始化为0SETB EA ;开总中断SETB EX0 ;开启外部中断0SETB IT0 ;将外部中断0设置为下降沿有效MOV DPTR,#00FFH ;设置输入寄存器地址MOV JUCHI,#00H ;初始化MOV SANJI,#00HMOV FANGB,#00H;***************************************************START:MOV A,KU ;将键码送累加器ACJNE A,#00H,W1 ;将累加器A和00H比较,如果相等,则00键按下顺序执行,否则跳到W1再判断01键是否按下MOV SANJI,#00H ;屏蔽其他波形MOV FANGB,#00HMOV TIXIN,#00HAJMP JCB ;跳转到锯齿波形W1: CJNE A,#01H,W2 ;判断01键是否按下MOV JUCHI,#00H ;屏蔽其他波形MOV FANGB,#00HMOV TIXIN,#00HAJMP SJB ;跳转到三角波形W2: CJNE A,#02H,W3 ;判断02键是否按下MOV TIXIN,#00HMOV JUCHI,#00H ;屏蔽其他波形MOV SANJI,#00HAJMP FB ;跳转到方波W3: CJNE A,#03H,W4 ;判断03键是否按下,没有按下,跳转回去继续循环扫描MOV JUCHI,#00H ;屏蔽其他波形MOV FANGB,#00HAJMP TXB ;跳转到梯形波W4: AJMP START;**********************************************INTT0: ;中断程序;***********键盘扫描子程序KEY*****************KEY: ACALL KS ;调按键查询子程序,判断是否有键按下JNZ K1 ;有键按下,转移 WEI1跳转ACALL DELAY ;无键按下,调延时程序去抖AJMP K4 ;继续查询按键;***********键盘逐列扫描程序***********************************K1: ACALL DELAYACALL KS ;再次判别是否有键按下JNZ K2 ;有键按下,转移AJMP K4K2: MOV R3,#0FEH ;首列扫描字送R3MOV R4,#00H ;首列号送R4K3: MOV A,R3MOV P2,A ;列扫描字送P2口MOV P1,#0FFH ;初始化P1口MOV A,P1 ;读取行扫描值JB ACC.0,L1 ;第零行无键按下转查第一行为1跳转MOV A,#00H ;第零行有键按下,行首键号送AAJMP LK ;转求键号L1: JB ACC.1,NEXT ;第一行无键按下,转查下一列MOV A,#03HAJMP LK ;键扫描结束,返回;************************************************************NEXT:INC R4 ;修改列号MOV A,R3JNB ACC.2,KEY ;三列扫描完返回按键查询状态RL A ;未扫描完,改为下列扫描字MOV R3,A ;扫描字暂存R3AJMP K3 ;转列扫描程序LK: ADD A,R4 ;形成键码送AMOV KU,APUSH ACC ;键码入栈保护;**********************************************K4:ACALL KS ;等待键释放JNZ K4POP ACC ;键释放,弹栈送ARETI ;中断返回;**********按键查询子程序**************************************KS: ;MOV A,#00HMOV P2,#00H ;全扫描字送p2口MOV P1,#0FFHMOV A,P1 ;读入P1口状态CPL A ;变正逻辑,高电平表示有键按下ANL A,#0FH ;屏蔽高四位RET ;子程序返回;****************锯齿波***********************JCB:MOV A,JUCHI ;转换初值WW: MOVX @DPTR,A ;D/A转换INC A ;A自加1NOP ;延时CJNE A,#255,WW ;判断A是否加到255,若没有返回到WW继续加MOV JUCHI,AAJMP START;******************三角波********************SJB:MOV A,SANJI ;转换初值EE: MOVX @DPTR,A ;D/A转换INC ANOPCJNE A,#255,EEDEC AQQ: MOVX @DPTR,ADEC ANOPCJNE A,#00,QQMOV SANJI,AAJMP START;******************方波********************* FB:MOV A,FANGBMOVX @DPTR,AACALL DELAY3ACALL DELAY3CPL AMOVX @DPTR,AACALL DELAY3ACALL DELAY3MOV FANGB,APOP ACCAJMP START;***************梯形波**********************TXB:MOV A,TIXINSS: MOVX @DPTR,AINC AACALL DELAY3CJNE A,#255,SSACALL DELAY3ACALL DELAY3DEC AZZ: MOVX @DPTR,ADEC AACALL DELAY3CJNE A,#00,ZZACALL DELAY3ACALL DELAY3MOV TIXIN,AAJMP START;*******************************************************1ms DELAY3: MOV R0,#7DHDEL7: NOPNOPDJNZ R0,DEL7RET;*******************************************50毫秒延时子程序DELAY2: MOV R0,#05DEL5: MOV R1,#10DEL4: MOV R2,7DHDEL3: NOPNOPDJNZ R2,DEL3DJNZ R1,DEL4DJNZ R0,DEL5RET;******************************************END四、实训总结通过两周的实训,我们对单片机有了一个基本的认识和了解,我们学到了怎样从一个设计课题入手去编写相关程序,并通过硬件实现。

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解

基于51单片机的波形发生器的设计讲解波形发生器是电子设备中常见的一种电子设备,它可以产生各种不同形状的波形信号。

在这篇文章中,我们将会详细介绍基于51单片机的波形发生器的设计。

一、波形发生器的原理及分类波形发生器的原理是利用电子元件、电路以及控制信号源,将一定幅度的电压信号变化成为需要的各种形状的波形信号。

根据波形的形状分类,可以将波形发生器分为以下几种类型:1.正弦波发生器:产生正弦波信号的发生器,常用于音频设备中。

2.方波发生器:产生方波信号的发生器,常用于数字电路中,也可用于频率测量和脉冲调制等应用。

3.三角波发生器:产生三角波信号的发生器,常用于音频设备以及频率测试等领域。

4.锯齿波发生器:产生锯齿波信号的发生器,常用于音频设备、测试仪器以及数据采集和测量等领域。

二、基于51单片机的波形发生器设计下面我们将详细介绍基于51单片机的波形发生器的设计步骤。

1.硬件设计:在基于51单片机的波形发生器设计中,我们需要准备的硬件元件有:-51单片机控制芯片-芯片烧录器-液晶显示屏-按键开关-电源模块-杜邦线等电子连接线2.硬件连接:根据电路原理图进行将电子元件进行正确的电路连接。

其中,51单片机作为核心控制芯片,负责生成波形信号,液晶显示屏用于显示波形信号,按键开关用于控制波形发生器的启动、停止以及参数调整等操作。

3.软件设计:利用Keil C编译软件进行51单片机的软件设计,根据控制芯片的指令集编写相应的程序代码,实现以下几个功能:-波形信号的产生:根据选择的波形类型(正弦波、方波、三角波或锯齿波),利用特定的算法生成相应形状的波形信号。

-参数调节:通过按键开关控制波形的频率、幅度以及相位等参数的调节,使波形发生器能够产生不同特性的波形信号。

-波形信号显示:通过LCD显示屏将生成的波形信号进行实时显示,以方便观察和调试。

4.软硬件的调试与优化:三、波形发生器的应用1.音频设备:波形发生器可以生成不同频率的正弦波信号,用于音频信号的发生和测试等应用。

基于51系列单片机的多功能波形发生器及特定波形幅值调节

基于51系列单片机的多功能波形发生器及特定波形幅值调节

基于51系列单片机的多功能波形发生器及特定波形幅值调节概述:随着科技的不断进步,波形发生器在各种测量、调试和实验中发挥着重要的作用。

本文将介绍一种基于51系列单片机的多功能波形发生器,并且可以对特定波形的幅值进行调节。

设计原理:本波形发生器采用51系列单片机作为核心控制器,并通过DAC芯片将数字信号转换为模拟信号输出。

通过LCD显示模块显示当前所选的波形类型和幅值,并通过按键来切换和调节相应的参数。

主要功能:1.多波形输出:本波形发生器可以输出多种波形,如正弦波、方波、三角波、锯齿波等。

用户可以通过按键选择所需的波形类型。

2.幅值调节:本波形发生器还可以根据用户的需求,对特定波形的幅值进行调节。

3.频率调节:用户可以通过按键来调节波形的频率,以满足不同的实验需求。

4.输出控制:用户可以通过按键选择启用或停用输出信号。

硬件设计:1.单片机控制电路:使用51系列单片机作为核心控制器,通过控制IO口的状态来实现波形选择和参数调节。

2.DAC芯片:将单片机输出的数字信号转换为模拟信号,实现波形的输出。

3.LCD显示模块:用于显示当前所选的波形类型和幅值。

4.按键模块:用于选择波形类型、调节幅值和频率等参数。

5.输出控制电路:通过控制开关,使得输出信号可以被启用或停用。

软件设计:1.系统初始化:包括设置IO口的状态、初始化LCD显示模块、初始化按键模块等。

2.波形选择:通过按键选择所需的波形类型,并将相应的参数传递给DAC芯片。

3.幅值调节:根据用户的需求,通过按键调节特定波形的幅值,并通过DAC芯片实现相应的调节。

4.频率调节:通过按键调节波形的频率,并通过定时器来实现相应的调节。

5.输出控制:根据用户选择的开关状态,控制输出信号的启用或停用。

总结:基于51系列单片机的多功能波形发生器及特定波形幅值调节是一种灵活、实用的设计方案。

它可以满足各种不同波形的输出需求,并且可以根据用户的需求对波形的幅值进行调节。

基于51单片机的波形发生器的设计汇总

基于51单片机的波形发生器的设计汇总

基于51单片机的波形发生器的设计汇总波形发生器是电子领域中常用的一种设备,用于产生各种不同形式的波形信号。

本文将基于51单片机的波形发生器的设计进行汇总。

设计思路如下:一、基本原理波形发生器的基本原理是通过控制数字信号的高低电平来产生不同的波形。

在这个设计中,我们将使用51单片机作为控制器来产生波形信号。

二、硬件部分1.时钟电路:使用一个晶体振荡器作为时钟源,提供稳定的时钟脉冲给51单片机。

2.电源电路:使用稳压电源提供稳定的电压给51单片机和其他电路。

3.单片机电路:将51单片机与其他电路进行连接,包括输入输出端口和相应的外部电路。

4.波形输出电路:根据需要产生不同的波形,设计相应的输出电路,包括滤波器、电阻、电容等元器件。

三、软件部分1.系统初始化:在系统上电后,进行相应的初始化工作,包括设置引脚功能、中断,设置计时器等。

2.波形生成算法:根据用户的选择,使用合适的算法生成相应的波形信号。

常见的波形有正弦波、方波、三角波等。

3.输出控制:根据生成的波形信号,通过设置相应的输出引脚,将波形信号输出到波形输出电路中。

4.用户界面:设计一个简单的用户界面,让用户可以选择不同的波形、调整频率、幅度等参数。

5.中断处理:使用中断功能来处理波形输出频率的控制,实现较高的输出稳定性。

四、设计考虑1.精度要求:根据具体应用场景,确定波形发生器的精度要求。

如果需要较高的精度,可能需要采用更复杂的算法和更精密的输出电路。

2.输出负载:考虑波形发生器的输出负载情况,选择合适的输出电路,以确保波形信号的准确性和稳定性。

3.电源稳定性:电源的稳定性对波形发生器的性能也有影响,需要注意电源供电的稳定性。

五、测试与优化完成波形发生器设计后,进行相应的测试与优化。

包括波形信号的频率、幅度等测试,以及对输出电路、算法等进行优化。

最后,通过以上的设计思路,我们可以完成基于51单片机的波形发生器的设计。

根据具体的应用需求,可能需要对硬件和软件进行相应的调整和优化。

基于51单片机控制的函数波形发生器

基于51单片机控制的函数波形发生器
2.6
复位电路的作用是在上电或复位过程中,控制CPU的复位状态。这段时间内让CPU保持复位状态,而不是一上电或刚复位完毕就工作,防止CPU发出错误的指令、执行错误操作,也可以提高电磁兼容性能。无论用户使用哪种类型的单片机,总要涉及到单片机复位电路的设计。而单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。复位电路如图7所示。
由于单片机产生的是数字信号,要想得到所需要的波形,就要把数字信号转换成模拟信号,所以该文选用价格低廉、接口简单、转换控制容易并具有8位分辨率的数模转换器DAC0832。DAC0832主要由8位输入寄存器、8位DAC寄存器、8位D/A转换器以及输入控制电路四部分组成。但实际上,DAC0832输出的电量也不是真正能连续可调,而是以其绝对分辨率为单位增减,是准模拟量的输出。DAC0832是电流型输出,在应用时外接运放使之成为电压型输出。如图5所示。
中断系统是使处理器具有对外界异步事件的处理能力而设置的。当中央处理器CPU正在处理某件事的时候外界发生了紧急事件,要求CPU暂停当前的工作,转而去处理这个紧急事件。在波形发生器中,只用到片内定时器/计数器溢出时产生的中断请求,即是在AT89C51输出一个波形采样点信号后,接着启动定时器,在定时器未产生中断之前,AT89C51等待,直到定时器计时结束,产生中断请求,AT89C51响应中断,接着输出下一个采样点信号,如此循环产生所需要的信号波形【4】。
方案三:采用单片机编程的方法来实现。该方法可以通过编程的方法来控制信号波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率的变换。此外,由于通过编程方法产生的是数字信号,所以信号的精度可以做的很高。

基于51单片机波形发生器课程设计

基于51单片机波形发生器课程设计

基于51单片机波形发生器课程设计1. 引言波形发生器是电子技术领域中常用的仪器设备,用于产生各种不同形状的电信号波形。

在电子电路实验和测试中,波形发生器能够提供不同频率、幅度和相位的信号,用于测试和验证电路的性能。

本篇文章将介绍一个基于51单片机的波形发生器设计。

通过使用51单片机,我们可以实现一个简单但功能强大的波形发生器,并通过编程控制实现不同类型的波形输出。

2. 硬件设计2.1 51单片机51单片机是一种常见的8位微控制器,具有低功耗、高性能和广泛应用等特点。

在本设计中,我们选择使用51单片机作为主控芯片。

2.2 数模转换芯片为了将数字信号转换为模拟信号输出,我们需要使用一个数模转换芯片。

在本设计中,我们选择使用DAC0800芯片作为数模转换器。

2.3 操作面板为了方便用户操作和设置参数,我们设计了一个操作面板。

该面板包括按键、旋钮和显示屏等组件,用户可以通过操作面板来控制波形发生器的参数和功能。

2.4 输出接口为了将模拟信号输出到外部设备,我们设计了一个输出接口。

该接口可以连接到示波器或其他测试仪器,以便观察和测量输出信号。

3. 软件设计3.1 程序框架波形发生器的软件设计主要包括初始化设置、参数调整和波形生成等功能。

我们可以使用C语言编程,在51单片机上实现这些功能。

以下是程序框架的伪代码:void main(){初始化设置();while(1){获取用户输入();参数调整();波形生成();}}3.2 初始化设置在初始化设置阶段,我们需要对51单片机和数模转换芯片进行初始化配置。

这包括设置时钟频率、IO口方向、数模转换精度等。

以下是初始化设置的伪代码:void 初始化设置(){设置时钟频率();配置IO口方向();配置数模转换精度();}3.3 参数调整在参数调整阶段,用户可以通过操作面板来调整波形发生器的参数。

这包括选择波形类型、设定频率和幅度等。

以下是参数调整的伪代码:void 参数调整(){获取用户输入();if(用户选择了波形类型){设置波形类型();}if(用户设定了频率){设置频率();}if(用户设定了幅度){设置幅度();}3.4 波形生成在波形生成阶段,根据用户设定的参数,我们可以通过数模转换芯片来生成相应的波形信号。

基于51单片机的波形发生器的设计说明

基于51单片机的波形发生器的设计说明

目录1 设计要求 (1)1.1 题目要求及分析 (1)1.1.1 示意图 (1)1.2 设计要求 (1)2 波形发生器系统设计方案 (2)2.1 方案的设计思路 (2)2.2 设计框图及系统介绍 (2)2.3 选择合适的设计方案 (2)3 主要硬件电路及器件介绍 (4)3.1 80C51单片机 (4)3.2 DAC0832 (5)3.3 数码显示管 (6)4 系统的硬件设计 (8)4.1 硬件原理框图 (8)4.2 89C51系统设计 (8)4.3 时钟电路 (9)4.4 复位电路 (9)4.5 键盘接口电路 (10)4.6 数模转换器 (11)5 系统软件设计 (12)5.1 流程图: (12)5.2 产生波形图 (12)5.2.1 正弦波 (12)5.2.2 三角波 (13)5.2.3 方波 (14)6 结论 (16)主要参考文献 (17)1 设计要求(1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。

(2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。

(3) 系统具有存储波形功能。

(4) 系统输出波形的频率围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。

(5) 系统输出波形幅度围0~5V。

(6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

2 波形发生器系统设计方案设计并制作一个波形信号发生器,能够产生正弦波、方波、三角波的波形,其中不使用DDS和一些专用的波形产生芯片。

并让系统的频率围在1Hz~1MHZ可调节,在频率围在1HZ~10KHz时,步进小于或等于10Hz,在频率围在10KHz~1MHz时,步进小于或等于100Hz,并且电压在0~5V围,能够实时的显示波形的类型、频率和幅值。

2.1 方案的设计思路以AT89C51单片机作为系统的控制核心,其中P0口接DAC0832作为信号输入同时进行数模转换,P1口用来接键盘,P2口接LED显示器,由程序来控制P0口产生的波形,再由按键和按键次数控制波形的种类、频率和幅值的大小,并且能够通过按键来控制波形频率值和幅度值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


引言
本次课程设计课题是信号发生器,又称为信号源或振荡器,在生产实践和科技领 域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波 形,如方波、锯齿波、三角波、正弦波的电路被称为函数信号发生器。在通信、广播、 电视系统,在工业、农业、生物医学领域内,函数信号发生器在实验室和设备检测中具 有十分广泛的用途。
3 系统软件设计........................................................................................................... 8
3.1 主程序模块.......................................................................................................8 3.2 中断模块...........................................................................................................9
运放输出 电压
2.1 主控电路 12C5A60S2 单处机内部有两个 16 位可编程的定时器/计数器 T0 和 T1,它们具有计
数器方式和定时器方式两种工作方式及 4 种工作模式。模式 1 采用的是 16 位计数器, 当 T0 或 T1 被允许计数后,从初值开始加计数,最高位产生溢出时向 CPU 请求中断。 中 断系统是使处理器具有对外界异步事件的处理能力而设置的。当中央处理器 CPU 正在处 理某件事的时候外界发生了紧急事件,要求 CPU 暂停当前的工作,转而去处理这个紧急 事件。在波形发生器中,用到片内定时器/计数器以及 2 个外部中断产生的中断请求, 即是在 12C5A60S2 接受外部中断信号后,进入按键判断程序产生中断请求,12C5A60S2 响应中断,接着输出下一个采样点信号,如此循环产生所需要的信号波形。
经比较,方案四既可满足课程设计的基本要求又能充分发挥其优势,电路简单,易 控制,性价比高,所以采用该方案.

1.2 改变幅度方案: 方案一:可以将送给 DA 的数字量乘以一个系数,这样就可以改变 DA 输出电流的幅
度,从而改变输出电压;但是这样做有很严重的问题,单片机在做乘法运算时需要很长 的时间,这样的话输出波形的频率就会很低,达不到至少 500HZ 的要求;
并且该方案的输出电压做不到连续可调,当 DA 的输入数字量比较小时,输出的波 形失真就会比较严重。
方案二:将输出电压通过一个运算放大器的放大。这样还有个优点是幅度连续可调。 经比较,方案二既可满足课程设计的基本要求,并且电路也挺简单。
2 硬件设计
按键输入
12C5A60S2 单片机
DAC0832
图 2.1 硬件原理框图
x=0:2*pi/64:2*pi; y=round(sin(x)*127)+128

图 2.2 主控电路
2.2 数/模转换电路 由于单片机产生的是数字信号,要想得到所需要的波形,就要把数字信号转换成模
拟信号,所以该文选用价格低廉、接口简单、转换控制容易并具有 8 位分辨率的数模转 换器 DAC0832。DAC0832 主要由 8 位输入寄存器、8 位 DAC 寄存器、8 位 D/A 转换器以及 输入控制电路四部分组成。但实际上,DAC0832 输出的电量也不是真正能连续可调,而 是以其绝对分辨率为单位增减,是准模拟量的输出。DAC0832 是电流型输出,在应用时 外接运放使之成为电压型输出。
1 系统方案论证
本课设方案论证分为两部分,分别为波形频率部分和调幅部分。 1.1 波形及频率的产生
方案一:采用模拟电路搭建函数信号发生器,它可以同时产生方波、三角波、正弦 波。但是这种模块产生的不能产生任意的波形(例如梯形波),并且频率调节很不方便。
方案二:采用锁相式频率合成器,利用锁相环,将压控振荡器(VCO)的输出频率 锁定在所需频率上,该方案性能良好,但难以达到输出频率覆盖系数的要求,且电路复 杂。
12C5A60S2 是整个波形发生器的核心部分,通过程序的编写和执行,产生各种各样 的信号,并从键盘接收数据,进行各种功能的转换和信号幅度的调节。当数字信号电路 到达转换电路,将其转换成模拟信号也就是所需要的输出波形。
波形 ROM 表是将信号一个周期等间距地分离成 64 个点,储存在单片机得 ROM 内。 具体 ROM 表是通过 MATLAB 生成的,例如正弦表,MATLAB 生成的程序如下:
方案三:使用集成信号发生器发生芯片,例如 AD9850,它可以生成最高几十 MHZ 的 波形。但是该方案也不能产生任意波形(例如梯形波),并且价格昂贵。
方案四:采用 AT89C51 单片机和 DAC的波形比较纯净。它的特点是可产生任意波形,频率容易调节,频率能达到设 计的 500HZ 以上。性能高,在低频范围内稳定性好、操作方便、体积小、耗电少。
2 硬件设计................................................................................................................... 6
2.1 主控电路...........................................................................................................6 2.2 数/模转换电路.................................................................................................7 2.3 模数转换电路...................................................................................................8
编号:
基础工程设计说明书
题 目: 基于 51 单片机的波形 发生器
院 (系): 电子工程与自动化学院 专 业: 电子信息科学与技术
学生姓名: 学 号:
讲师
指导教师:
职 称:
2016 年 1 月 10 日
摘要
本文以STC89C51单片机为核心设计了一个函数信号发生器。信号发生器采用数字波 形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三 角波,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制, 幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。 该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。
信号发生器应用广泛,种类繁多,性能各异,分类也不尽一致。按照频率范围分类 可以分为:超低频信号发生器、低频信号发生器、视频信号发生器、高频波形发生器、 甚高频波形发生器和超高频信号发生器。按照输出波形分类可以分为:正弦信号发生器 和非正弦信号发生器,非正弦信号发生器又包括:脉冲信号发生器,函数信号发生器、 扫频信号发生器、数字序列波形发生器、图形信号发生器、噪声信号发生器等。按照信 号发生器性能指标可以分为一般信号发生器和标准信号发生器。前者指对输出信号的频 率、幅度的准确度和稳定度以及波形失真等要求不高的一类信号发生器。后者是指其输 出信号的频率、幅度、调制系数等在一定范围内连续可调,并且读数准确、稳定、屏蔽 良好的中、高档信号发生器。
关键词:低频信号发生器;单片机;D /A 转换
Abstract
A function signal generator based on STC12C5A60S2 MCU is designed in this paper. Signal generator with digital waveform synthesis technology, the hardware circuit and software program combined custom output waveforms, such as sine wave, square wave, triangle wave, frequency and amplitude of the waveform in a certain range can be arbitrarily changed. The change of waveform and frequency is controlled by software, the change of amplitude is realized by hardware. The principle of waveform generation, hardware circuit and software design are introduced in this paper. The signal generator has the advantages of small size, low price, stable performance and complete functions.
1.1 波形及频率的产生...........................................................................................5 1.2 改变幅度方案:................................................................................................6
Key words: signal generator; single chip microcomputer; D/A Transformation
相关文档
最新文档