七年级数学几何图形初步认识知识点

合集下载

初一(七年级)上册数学几何图形初步知识点总结

初一(七年级)上册数学几何图形初步知识点总结

初一(七年级)上册数学几何图形初步知识点总结五、知识点、概念总结1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各部分不在同一平面内,叫做立体图形。

有些几何图形的各部分都在同一平面内,叫做平面图形。

虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。

常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。

其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。

射线也没有距离。

因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

人教版七年级数学上册 几何图形初步 知识点归纳

人教版七年级数学上册 几何图形初步 知识点归纳

4.1几何图形知识点归纳从实物中抽象出来的各种图形叫做几何图形。

几何图形包括立体几何图形和平面几何图形。

各部分不都在同一平面内的几何图形叫做立体几何图形。

认识立体几何图形:长方体正方体球圆柱圆锥三棱柱三棱锥上下底面的形状大小相同且互相平行,侧棱平行且相等的封闭几何体叫做棱柱。

在棱柱中:①互相平行的两个面叫做棱柱的底面,其它面都是棱柱的侧面。

②两个面的公共边叫做棱柱的棱,两个相邻侧面的公共边叫做棱柱的侧棱。

③侧面与两个底面的公共顶点叫做棱柱的顶点。

④两个底面之间的距离叫做棱柱的高。

如果一个棱柱的底面是n边形,那么这个棱柱叫做n棱柱。

有一个面是多边形,其它面都是三角形且有一个公共顶点,这样的封闭几何体叫做棱锥。

在棱锥中:①形状是多边形的那个面叫做棱锥的底面,其它面都是棱锥的侧面。

②两个面的公共边叫做棱锥的棱,两个相邻侧面的公共边叫做棱锥的侧棱。

③相邻两个面的公共顶点叫做棱锥的顶点。

*在口头表述中,有时候说棱锥的顶点,可能指的是各个侧面的公共点。

下面④所说的顶点就是这个点。

④顶点到底面的距离叫做棱锥的高。

如果一个棱锥的底面是n边形,那么这个棱柱叫做n棱锥。

各部分都在同一平面内的几何图形叫做平面几何图形。

认识平面几何图形:线段角三角形长方形正方形平行四边形圆平面几何图形和立体几何图形是互相联系的,立体几何图形中的一部分可能是平面几何图形。

例子:圆柱的上底和下底都是圆,长方体的侧面可能是长方形,正方体的每个面都是正方形。

要观察立体几何图形,我们一般可以从三个方向来看:从正面看、从左面看、从上面看。

有一些立体几何图形是由一些平面几何图形围成的,如果将它们的表面用适当的方法剪开,就可以展开成平面几何图形。

这样的平面几何图形就是它们对应的立体几何图形的展开图。

几何体可以简称为体,包围着体的是面,面面相交的地方是线,线线相交的地方是点。

点动成线,线动成面,面动成体。

几何图形都是由点、线、面、体组合而构成的。

其中点是构成几何图形的基本元素。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级上册几何初步知识点

七年级上册几何初步知识点

七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。

在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。

本文旨在介绍七年级上册几何初步知识点,供学生参考。

一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。

线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。

面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。

1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。

四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。

多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。

多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。

二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。

一个角包含两个部分,即顶点和两条边。

角可以分为锐角、直角、钝角等。

2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。

线段是由两个端点和这两个端点之间的线段组成的线。

射线是由一个端点和一个方向组成的线段。

直线图形具有平移不变性、旋转不变性、翻转不变性等特点。

线段与射线也具有相似的性质。

2.3 物体的转动物体的转动分为旋转和翻折。

旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。

翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。

三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。

坐标系原点是两条直线的交点。

3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。

七年级数学知识点总结几何

七年级数学知识点总结几何

七年级数学知识点总结几何在七年级数学学习中,几何是一个非常重要的知识点。

通过几何的学习,我们可以更好地理解空间、图形、尺度等概念,从而为以后更深入的数学学习打下坚实的基础。

下面就对七年级几何知识点进行总结。

一、基本概念1.点、线、面的概念:在几何中,点是没有长度、宽度、高度的,只有位置的概念;线是由无数个点相连成的,它没有宽度和高度,但有长度的概念;面是由无数条线围成的,它有长度和宽度,但没有厚度的概念。

2.角的概念:角是由两条相交的线段构成,交点叫做角的顶点,两条线段叫做角的两边。

角的大小可以用度数表示。

3.直线、射线、线段的概念:直线是没有起点和终点的;射线有一个起点,但没有终点;线段有一个起点和终点。

二、基本原理1.平行公理:平行公理是几何研究中关于直线的一系统叙述,其中的每一个叙述都可以证明。

其中一条重要的公理是:在平面上,通过一点向一直线作垂线,结果只有一条直线与所作的垂线平行。

2.角度和角度和定理:角度和定理指出如果一个凸多边形的一组相邻的内角求和为 (n – 2) × 180 度,则该多边形共有 n 个顶点。

3.等腰三角形定理:一个三角形中,若有两边边长相等,则这个三角形就称为等腰三角形。

等腰三角形的底角和底边上的两个角相等。

三、常用公式1.圆的周长公式:圆的周长公式是C = 2πr,其中 r 是圆的半径。

2.圆的面积公式:圆的面积公式是S = πr²,其中 r 是圆的半径。

3.三角形的面积公式三角形的面积公式是 S= 1/2 ×底 ×高。

四、补充知识1.勾股定理:勾股定理是解决直角三角形三条边关系及求其未知边长的方法之一。

勾股定理指出,在一个直角三角形中,如果在斜边上作一条高,那么这条高的平方等于另外两条直角边的长度之和的平方。

2.相似三角形:相似三角形是指两个三角形的对应角度相等,对应边长成比例,但它们的大小不同。

将一个三角形变形后得到的三角形与原来的三角形的形状相同,只是比例不同。

2024年新人教版七年级数学上册《第6章6.1.2 点、线、面、体》教学课件

2024年新人教版七年级数学上册《第6章6.1.2 点、线、面、体》教学课件

2. 请把下图中的平面图形与其绕轴旋转一周后得到 的立体图形连接起来.
3. ( 东营期末改编) 小翼跟妈妈到银行办理业务,她发 现银行大堂的旋转门内部是由三块宽为 2 m、高为 3 m 的玻璃隔板组成的,此情此景,她提出了以下问题:
(1) 将此旋转门旋转一周,能形成的几何体是_圆__柱___. (2) 这能说明的事实是___C___(选择正确的一项填入).
不同吗?
结论:线和线相交形成点. 点只代表位置,没有大小,所以点都是相同的.
想一想
立体图形的组成的元素包括什么?
面 相交
体线 相交

典例精析
例1 如图所示的立体图形是由____3____个平面和 _____1_____个曲面组成的,面与面相交形成 _____4_____条直线和___2____条曲线.
合作探究 探究1 (1) 你知道这些几何体是由什么围成的吗? (2) 下图中的图形分别有哪些面?这些面有什么不同吗?
结论:1. 包围着的体是面. 2. 面分为平的面和曲的面.
合作探究 探究2 面和面相交的地方形成了什么?它们有什么
不同吗?
结论: 面和面相交的地方形成线,线有直线和曲线之分.
合作探究 探究3 线和线相交处又形成了什么?它们有什么
的事实.
新课导入 观察下图的长方体,思考:它有几个面?面和面相 交形成了几条棱?棱和棱相交形成了几个顶点?
6 个面、12 条棱、8 个顶点
相交
相交
围成
8 个顶点
12 条棱
6 个面
长方体
知识点1: 图形的构成元素
同学们,观察教室,哪些物体可以抽 象成你熟悉的立体图形?
长方体
三棱柱
圆柱
定义总结

初一数学几何图形初步知识点

初一数学几何图形初步知识点

初一数学几何图形初步知识点4.1几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小,线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线,线动成面,面动成体;⑸点:是组成几何图形的基本元素。

4.2直线、射线、线段1、直线公理:经过两点有一条直线,并且只有一条直线。

即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:如图的直线可记作直线AB或记作直线m.(1)用几何语言描述右面的图形,我们可以说:点P在直线AB外,点A、B都在直线AB上.(2)如图,点O既在直线m上,又在直线n上,我们称直线m、n相交,交点为O.7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM或记作射线a.注意:射线有一个端点,向一方无限延伸.8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a.注意:线段有两个端点.4.3角1.角的定义:有公共端点的两条射线组成的图形叫角。

这个公共端点是角的顶点,两条射线为角的两边。

七年级数学几何知识点梳理

七年级数学几何知识点梳理

七年级数学几何知识点梳理数学几何是初中数学的重要组成部分之一。

在初中阶段,学生们需要学习并掌握基本的几何知识和技能,为高中和大学学习打下坚实基础。

本文将为大家梳理七年级数学几何知识点,帮助同学们更好地学习和掌握数学几何。

一、点、线、面的基本概念点是几何的基本要素,它是没有长、宽、高的,用大写字母表示。

线是由无数个点在同一方向上依次排列组成,用小写字母表示。

面是由无数个点和线在同一平面上组成的,用大写字母表示。

二、角的概念和性质角是由两条射线公共端点组成的图形,用小写希腊字母表示。

角是几何中的重要概念,学习角的概念和性质是初中几何学习的重点之一。

(1)角的度量单位是度,在逆时针方向旋转一度可以使一条线段的一端向前移动约0.0015个单位长度。

(2)对顶角的度数相等,即∠ABC=∠DEF。

(3)平分线所分割的角相等,即∠ABD=∠CBD。

(4)相邻角互补,即∠ABC和∠CBD互补,它们的和为90度。

(5)邻补角相等,即∠ABC和∠CBD邻补,它们的和为180度。

三、三角形的性质三角形的性质是初中几何的重点之一,它是几何中最基本的图形之一。

根据三角形内角和定理,三角形的三个内角和为180度,可以推出以下性质:(1)等腰三角形的两个底角相等。

(2)等边三角形的三个内角相等。

(3)直角三角形的两条直角边上的直角角平分三角形的直角角。

(4)全等三角形对应的边和角相等。

(5)相似三角形对应的角相等。

四、正方形、长方形和平行四边形的性质正方形、长方形和平行四边形是初中几何中的基本图形,学习它们的性质对于初中学生而言非常重要。

(1)正方形的特点是四条边相等、四个角相等、对角线相等垂直相交。

(2)长方形的特点是两对相等的边、四个角都是直角。

(3)平行四边形的特点是两组对边分别平行、对边相等、对角线互相平分。

五、圆的性质圆是初中几何中的另一个重要图形,学习圆的性质可以帮助初中学生更好地理解圆的概念。

(1)圆的直径是圆上任意两个点之间的最长线段,其长度等于圆的半径的两倍。

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等. 1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看; 2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级数学上册 第四章 《几何图形初步》知识讲解

七年级数学上册  第四章  《几何图形初步》知识讲解

《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

(完整版)人教版七年级数学第四章《几何图形初步》知识点汇总

第四章《几何图形初步》知识点汇总01、几何图形①几何图形的定义:我们把实物中抽象出来的各种图形叫做几何图形。

②几何图形分为图形和图形。

③平面图形:图形所表示的各个部分都在内的图形,如直线、三角形等。

④立体图形:图形所表示的各个部分同一平面内的图形,如圆柱体。

02、常见的立体图形①柱体:A棱柱: B 圆柱②椎体:A棱锥 B圆锥球体等03、立体图形的三视图:从不同方向观察几何体,从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做______、______、_______),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图②会根据三视图知道堆积的小正方体的个数04、立体图形的展开图①圆柱的平面展开图是。

②圆锥的平面展开图是。

③n棱柱的侧面展开图是 n个形,n棱柱有个底面,都是,n棱柱的平面展开图是。

④n 棱锥的侧面展开图是 n个形,n棱锥有个底面,是,n棱锥的平面展开图是。

⑤正方体的展开图共分四类:①掌握在正方体展开图中找相对面的方法②会根据展开图中的图案判断是哪个图形的展开图05、点、线、面、体几何图形的组成:由___、___、___组成。

_____是构成图形的基本元素点动成_____、____动成____、____动成____。

06、直线:①点与直线的位置关系:第一种关系:点在直线____,或者说直线______点;第二种关系:点在直线____,或者说直线_________点。

②直线公理:经过两点有且只有一条直线(简称:______________);07、直线与直线的位置关系①同一平面内,两条直线的位置关系分为:_____与_____②当两条不同的直线________时,我们就称这两条直线相交,这个_______叫做它们的_____。

08、射线:①表示方法:端点字母必须写在前②判断两条射线是同一条射线的方法:_________________09、线段①基本性质:___________________②两点之间的距离__________________③线段的中点10、比较线段大小的方法:_______法和______法11会作图:作一条线段等于已知线段知道延长(反向延长)射线和线段的作图语言12、角:①由一点引出两条射线形成的图形叫做角。

人教版七年级上册数学第4章 几何图形初步 点、线、面、体

人教版七年级上册数学第4章 几何图形初步 点、线、面、体

你能从下面几何体中找出点、线、面吗?
知2-讲
思考:体是由什么围成的?它们有什么不同? 体是由面组成 面与面相交成线 线与线相交成点
知2-讲
物体的运动会留下运动轨迹,这些运动轨迹往往也能 抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
知2-练
3如图所示的几何体是由哪个图形绕虚线旋转一 周形成的( )A
1.谈一谈你认识到的点、线、面、体及它们之间的 关系. 2.说一说通过今天的学习你对周围环境有了哪些新 的认识. 3.想一想在获得一个结论的过程中,我们都经历哪 几个环节,这对你将来探索新知识有何帮助?
完成教材P120练习T1,T2, P122习题4.1T5
4.1几何图形
第四章几何图形初步
第5课时点、线、面、体
1 课堂讲解 图形的构成元素及关系
曲面几何的形成方法
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
问题:物体的构成往往包含多种元素,几何图形也是如 此.观察长方体模型,它有几个面?面与面相交的地方 形成了几条线?线与线相交成几个点,三棱柱呢?
知2-讲
点 点动成线
线
线动成面

面动成体

线与线相交形成点
面与面相交形成线 包围着体的部分是面
知2-讲
例2笔尖在纸上快速滑动写出了一个又一个字,这 说明了______点__动_;成车线轮旋转时,看起来像一个 整体的圆面,这说明了_______线__动_;成直面角三角 形绕它的一条直角边所在的直线旋转一周,形 成了一个圆锥,这说明了______面__动_.成体 导引:构成图形的要素是点、线、面,其中点是构 成图形的最基本元素,判断图形构成情况时, 有三种情况:点动成线,线动成面,面动成 体,通过实际情景,逐一分析便可得结果.

七年级几何知识点总结归纳

七年级几何知识点总结归纳

七年级几何知识点总结归纳随着数学的深入,几何知识逐渐成为了学习的重点,为了帮助同学们更好地掌握几何知识,下面将对七年级几何知识进行总结和归纳。

一、初识几何1.点、线、面的概念- 点:没有大小,只有位置,用大写字母A、B来表示。

- 线:由无数个点在同一直线上依次排列形成,可以用小写字母a、b来表示。

- 面:是由无数个线围成的,用大写字母A、B来表示。

2. 直线和射线- 直线:具有无限延伸性。

- 射线:只有一个端点,具有无限延伸性。

3. 角度和角- 角度:度是角的常用单位,1度=60分,1分=60秒。

- 角:由两个射线以相同的起点分别向两个不同方向延伸所形成的图形。

用∠来表示。

4. 垂线和平行线- 垂线:与直线、线段、射线相交,且相交角度为90度。

- 平行线:在同一平面内,永远不相交的直线。

二、等价三角形1. 三角形分类- 按照边长分类:等边三角形、等腰三角形、一般三角形。

- 按照角度分类:直角三角形、锐角三角形、钝角三角形。

2. 三边相等三角形- 等边三角形:三边相等的三角形。

- 等腰三角形:两边相等的三角形。

3. 角度相等三角形- 直角三角形:其中一个角为90度。

- 等腰直角三角形:两条腰都相等的直角三角形。

- 等腰锐角三角形:两条腰相等且锐角的三角形。

- 等腰钝角三角形:两条腰相等且钝角的三角形。

三、勾股定理1. 勾股定理基本概念- 直角三角形:其中一个角为90度,叫做直角。

- 斜边:就是与直角相对的边。

- 短直角边和长直角边:是指直角三角形中不是斜边的两条边,其中长边就是斜边,另一条边就是短边。

2. 勾股定理的公式- 勾股定理公式:短直角边A²+长直角边B²=斜边C²。

四、三角形的周长和面积1. 三角形的周长三角形的周长=三边之和。

2. 三角形的面积三角形的面积=底边乘以高除以二。

或者使用海龙公式。

海龙公式:设三角形三边分别为a、b、c,则s=(a+b+c)/2,设三角形面积为S,得S=√[s(s-a)(s-b)(s-c)]。

人教版七年级数学几何图形初步知识汇总_知识点总结

人教版七年级数学几何图形初步知识汇总_知识点总结

人教版七年级数学几何图形初步知识汇总_知识点总结
期末考试即将到来,同学们一定在忙着备考,可是这备考也是需要合适的复习资料的。

我们为大家准备了七年级数学几何图形初步知识点,希望大家认真复习,为期末考试做好准备。

4.1几何图形
第一类:柱体;
包括:圆柱和棱柱,棱柱又可分为直棱柱和斜棱柱,棱柱体按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;
完整内容:初一上册数学几何图形复习知识点~
4.2直线、射线、线段
1.直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

一条直线可以用一个小写字母表示,如直线l;
完整内容:七年级上册数学线段射线直线知识点~
4.3角
角(angle)由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点(vertex). 期末考试考查面涵盖很广,刚刚过去的半学期,同学们究竟学得怎么样?学习效果可以通过数学练习题来检验。

七年级数学几何图形初步知识点希望能够真正的帮助到大家。

人教版(2024)数学七年级上册 第六章 几何图形初步+6.1 几何图形 第1课时 认识几何图形

人教版(2024)数学七年级上册 第六章 几何图形初步+6.1 几何图形 第1课时 认识几何图形
10 个三角形; (2)按上面的方法继续分割下去,第10个图形分割成 31 个三角形;第n个 图形分割成 (3n+1) 个三角形(用n的代数式表示结论).
同一平面 内,它们是平面图形.
分层精练
知识点1 认识立体图形
1.下列图形不是立体图形的是( D )
A.球
B.圆柱
C.圆锥
D.圆
2.如图所示是我国航天载人火箭的实物图,可以看成的立体图形为
( B)
A.棱锥与棱柱的组合体 B.圆锥与圆柱的组合体
C.棱锥与圆柱的组合体 D.圆锥与棱柱的组合体
知识点2 认识平面图形 3.下列各组图形中都是平面图形的是( D ) A.线段、圆、圆锥、球 B.角、三角形、长方形、圆柱 C.长方体、圆柱、棱锥、球 D.角、三角形、正方形、圆 4.下列图形:①线段;②角;③三角形;④球;⑤长方体.其中 ①②③ 是 平面图形(填序号).
第六章 几何图形初步
6.1 几何图形 6.1.1 立体图形与平面图形
第1课时 认识几何图形
栏目导航
自主导学 分层精练
自主导学
1.几何图形 物体的 形状 、 大小 和 位置关系 是几何中研究的内容. 从实物中抽象出的各种图形称为 几何图形 . 2.立体图形 有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分都不 在 同一平面 内,它们是立体图形. 3.平面图形 有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在
Hale Waihona Puke 5.(2024北京顺义区期末)下列物体中,给我们以“圆柱”形象的是 ( C)
6.指出如图所示的立体图形中的柱体、锥体、球(填序号).
柱体: ①②⑤⑦⑧ ; 锥体: ④⑥ ; 球体: ③ .
7.如图所示,一个长方形的长是36 cm,剪去一个最大的正方形,剩下的 周长是 72 cm.

人教版初一数学几何图形初步重点知识点大全

人教版初一数学几何图形初步重点知识点大全

人教版初一数学几何图形初步重点知识点大全单选题1、下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线答案:B解析:根据两点确定一条直线进而得出答案.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.小提示:此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.2、可以近似看作射线的是()A.绷紧的琴弦B.手电筒发出的光线C.孙悟空的金箍棒D.课桌较长的边答案:B解析:根据直线、线段、射线的基本特征进行判断即可.A.绷紧的琴弦可看作线段,故本选项不符合题意;B.手电筒发出的光线可以看作射线,故本选项符合题意;C.孙悟空的金箍棒可以看作线段,故本选项不符合题意;D.课桌较长的边可以看作线段,故本选项不符合题意.故选:B.小提示:本题考查了几何图形的初步认识,掌握直线、线段、射线的基本特征是解题的关键.3、下列几何体中,是圆柱的为A.B.C.D.答案:A解析:分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.4、下列几何体中,是圆柱的为A.B.C.D.答案:A解析:分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.5、下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线答案:B解析:根据两点确定一条直线进而得出答案.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.小提示:此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.6、如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误..的是()CD D.CE=2ABA.CD=DE B.AB=DE C.CE=12答案:C解析:根据线段中点的性质逐项判定即可.解:由题意得:D是线段CE的中点,AB=CD∴CD=DE,即选项A正确;AB=1CE=CD=DE,即B、D正确,C错误.2故答案为C.小提示:本题考查了尺规作图和线段中点的性质,其中正确理解线段中点的性质是解答本题的关键.7、下面图形中,以直线l为轴旋转一周,可以得到圆柱体的是( )A.B.C.D.答案:C解析:直接根据旋转变换的性质即可解答.解:因为圆柱从正面看到的是一个长方形,所以以直线为轴旋转一周,可以形成圆柱的是长方形,此题主要考查图形的旋转变换,发挥空间想象是解题关键.8、给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为()A.①②B.②③C.②④D.③④答案:C解析:根据圆柱、圆锥、正方体、球,可得答案.解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.小提示:本题考查了认识立体图形,熟记各种图形的特征是解题关键.填空题9、将两个三角尺的直角顶点重合为如图所示的位置,若∠AOD=108°,则∠COB=_________.由∠AOB=∠COD=90°,∠AOC=∠BOD,进而∠AOC=∠BOD=108°-90°=18°,由此能求出∠BOC.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,又∠AOD=108°,∴∠AOC=∠BOD=108°-90°=18°,∴∠BOC=90°-18°=72°.所以答案是:72°.小提示:本题考查的是角的和差,两锐角的互余,掌握以上知识是解题的关键.10、如图,将一副直角三角尺的直角顶点C 叠放在一起,若CE、CD分别平分∠ACD与∠ECB,则计算∠ECD=___________度.答案:45解析:由题意可知∠ACD=90°,根据角平分线的性质即可求解.解:由题意可知∠ACD=90°,又∵CE平分∠ACD∴∠ECD=1∠ACD=45°2此题考查了角平分线的性质,熟练掌握角平分线的有关性质是解题的关键.11、如图,已知AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为_____cm .答案:1解析:先根据中点定义求BC 的长,再利用线段的差求CD 的长.解:∵C 为AB 的中点,AB =8cm ,∴BC =12AB =12×8=4(cm ),∵BD =3cm ,∴CD =BC ﹣BD =4﹣3=1(cm ),则CD 的长为1cm ;故答案为1.小提示:此题主要考查线段的长度,解题的关键是熟知线段长度的运算关系.12、一个几何体的三视图如图所示,则该几何体的表面积为____________.答案:3π+4解析:首先根据三视图判断几何体的形状,然后计算其表面积即可.解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,所以答案是:3π+4.小提示:本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.13、有高度相同的一段方木和一段圆木,体积之比是1:1.在高度不变的情况下,如果将方木加工成尽可能大的圆柱,将圆木加工成尽可能大的长方体,则得到的圆柱和长方体的体积之比为____.答案:π28解析:先计算方木中内切圆与正方形的面积之比;再计算圆木中圆内接正方形与圆本身的面积之比,由于方木底面正方形与圆木底面圆面积相等,故两比值之比即为结果.正方形内作最大的圆:设圆的半径为r,圆的面积与正方形的面积比是:πr 22r×2r =π4圆内作最大的正方形:设圆的半径为R,正方形的面积与圆的面积比是:2R×R πR2=2π,因为,方木与圆木的体积和高度都相等,说明底面积也相等,即图(1)的大正方形面积等于图(2)的大圆的面积,所以,现在的圆柱体积和长方体的体积的比值是:π4:2π=π28;答:圆柱体积和长方体的体积的比值为π28 .所以答案是:π28.小提示:本题以方木圆木的体积为背景,考查了正方形的内切圆,圆的内接正方形的面积问题,熟练的掌握以上关系是解题的关键.解答题14、如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°,将一直角三角板的直角项点放在O处,一直角边OM在射线O上,另一直角边ON在直线AB的下方.(1)将图1中的三角形绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON 是否平分∠AOC?计算出图中相关角的度数说明你的观点;(2)将图1中的三角板以每秒5°的速度绕点O逆时针方向旋转一周,在旋转过程中,第n秒时,直线ON恰好平分∠AOC,则n的值为____________(直接写出答案);(3)将图1中三角板绕点O旋转至图3,使ON在∠AOC的内部时,求∠AOM与∠NOC的数量关系,并说明理由.答案:(1)35°,见解析(2)11或47(3)∠AOM−∠NOC=20°,见解析解析:(1)如图,作射线NT,先求解∠BON,∠AOT,再求解∠COT,从而可得答案;(2)分两种情况:①如图2,当直线ON恰好平分锐角∠AOC时,此时逆时针旋转的角度为55°,②如图3,当NO平分∠AOC时,∠NOA=35°,此时逆时针旋转的角度为:180°+55°=235°,再求解时间t即可;(3)由∠AOM=90°−∠AON,∠NOC=70°−∠AON,消去∠AON即可得到答案.(1)解:如图,过点O作射线NT,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON−∠MOB=35°,∴∠AOT=35°,∠COT=180°−110°−35°=35°,∴∠AOT=∠COT,∴OT平分∠AOC,即直线ON平分∠AOC.(2)解:分两种情况:①如图2,∵∠BOC=110°,∴∠AOC=70°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;所以答案是:11或47;(3)解:∠AOM−∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,∴∠AOM=90°−∠AON,∠NOC=70°−∠AON,∴∠AOM−∠NOC=(90°−∠AON)−(70°−∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM−∠NOC=20°.小提示:本题考查的是几何图形中角的和差关系,角的动态定义,角平分线的定义,掌握“几何图形中角的和差关系”是解本题的关键.15、如图,平面上有A、B、C、D共4个点,根据下列语句画图.(1)画线段AC、BD交于点F;(2)连接AD,并将其反向延长;(3)作直线AB、直线CD,两直线相交于P点.答案:(1)见解析(2)见解析(3)见解析解析:根据已知语句,作出相应的图形即可.(1)连接AC,BD,交于点P,如图所示;(2)连接AD,反向延长AD,如图所示;(3)作直线AB,直线CD,交于点P.小提示:此题考查了直线、射线、线段,弄清各自的定义是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 几何图形的初步认识
2.1从生活中认识几何图形
知识点:
一、认识几何图形
几何图形
二、几何图形的构成
1、面与面相交成___,线与线相交成___。

2、点动成___,___动成面,面动成___。

3、___、___、___是构成几何图形的基本要素,体是由___围成的。

4、面有___面和___面,线有___线和___线。

引申探讨:n 棱柱有几个顶点、几条棱、几个面
2.2 点和线
知识点:
1、点的表示: A B 用一个大写的字母,例如:点A、点B
2、线段的表示:
方法一 :用表示端点的两个大写字母(没有次序). 例如:线段AB、线段BA.
方法二:用一个小写字母.例如线段a.
3、射线的表示:
用表示端点的大写字母和其余任一点的字母(表示端点的大写字母必须写在前). 例如:射线AB
4、直线的表示:
方法一 :用表示任两点的两个大写字母(没有次序). 例如:直线AB、直线BA.
方法二:用一个小写字母.例如直线a.
5、线段、射线、直线的比较:
6、直线的性质:经过两点有一条直线,并且只有一条直线(简记为:两点确定一条直线)
7、点与直线的位置关系:点在直线上(直线经过点);点在直线外(直线不经过点)
引申探讨:1、一条直线上有n个点,会有几条线段?
2、握手问题、票价问题、车票问题。

2.3线段的长短
知识点:
1、线段长短的比较方法:(两种)
(1)度量法:是从数量的角度来比较
(2)叠合法:是从图形的角度来比较
另外了解估测法:依据已有的经验来判断
2、线段的画法:
3、线段的性质:两点之间的所有连线中,线段最短。

(简记为:两点之间,线段最短。


引申探讨:蚂蚁爬行问题
2.4 线段的和与差
知识点:
一、线段的和与差的概念及作图方法
二、线段的和与差的计算
三、线段的中点
几何图形初步
一、本节学习指导
本节知识点比较简单,都是基础,当看书应该就能理解。

二、知识要点
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

比如:
正方体、长方体、圆柱等
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

比如:三
角形、长方形、圆等
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,
五边形,六边形。

数轴与相反数
一、本节学习指导
本节学习数轴与相反数,这两个知识点非常重要,同时也是比较容易理解不深的知识,细节比较多,希望同学们认真学习。

二、知识要点
1、数轴【重点】
(1)、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:
① 在直线上任取一个点表示数0,这个点叫做原点;
② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负
方向;
③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一
个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…
(2)、数轴的三要素:原点、正方向、单位长度。

(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在
上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表
示有理数。

(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

2、相反数
(1)、只有符号不同的两个数叫做互为相反数。

① 注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
② 相反数的商为-1;
③ 相反数的绝对值相等。

(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

(3)、a和-a互为相反数。

0的相反数是0,正数的相反数是负数,负数的相反数是
正数。

相反数是它本身的数只有0.
(4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。

(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互
为相反数。

(6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-”的个数为奇数,化简结果为负数。

比如:-2×4×-3×-1×-5,首先由4个负号,所以最终结果是正数,再算数字相乘得到120
绝对值
一、本节学习指导
学习本节我们要掌握好绝对值的定义,其次要掌握正数、负数、0的绝对值特征。

本节并不难,相信同学们都能掌握好的。

二、知识要点
(1)、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

数a的绝对值记作|a|.
(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。

0是绝对值最小的数。

(5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0.
(6)、互为相反数的两个数的绝对值相等。

绝对值相等的两个数可能是互为相反数或者相等。

(7)、有理数比大小:
① 正数比0大,0大于负数,正数大于负数;
② 两个负数比较,绝对值大的反而小;
③ 数轴上的两个数,右边的数总比左边的数大;
(8)、比较两个负数的大小的步骤如下:
① 先求出两个数负数的绝对值;
② 比较两个绝对值的大小;
③ 根据“两个负数,绝对值大的反而小”做出正确的判断。

三、经验之谈
绝对值表示的是数轴上的点到数轴原点0的距离,既然是距离,就不可能有负的情况,因此绝对值后的结果一定是大于等于0的数。

这里注意:当a<0 时,|a|=-a,部分同学可能会认为绝对值后是-a,咋看是负数呢,注意前提条件a<0,所以-a>0,仍然是正数。

相关文档
最新文档