初三数学(上)期末考试卷
九年级数学上册期末考试试卷附答案
九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
九年级数学上册期末考试卷(附答案解析)
九年级数学上册期末考试卷(附答案解析)一、选择题(每小题3分,共24分)1.(3分)如图,点D是△ABC的边BC上任一点,AB=4,AD=2,∠DAC=∠B.若△ABD的面积为a,则△ACD的面积为()A.a B.a C.a D.a2.(3分)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是()A.都扩大为原来的3倍B.都缩小为原来的C.没有变化D.不能确定3.(3分)如图,点A、B、C、D、E都是⊙O上的点,=,∠D=128°,则∠B的度数为()A.128°B.126°C.118°D.116°4.(3分)用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x+8)2=23 D.(x﹣8)2=95.(3分)将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为()A.y=2(x+2)2﹣1 B.y=2(x+2)2﹣5C.y=2(x﹣4)2﹣1 D.y=2(x﹣4)2﹣56.(3分)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tan B=()A.2B.2C.D.7.(3分)如图,在长为30m,宽20m的矩形田地中开辟两条宽度相等的道路,已知剩余田地的面积为551m2,求道路的宽度.设道路的宽度为xm,则可列方程()A.(20+x)(30+x)=551 B.(20﹣x)(30﹣x)=551C.20×30﹣20x﹣30x=551 D.20×30﹣20x﹣30x﹣x2=5518.(3分)二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:x…﹣2 ﹣1 0 2 4 5 …y…﹣7 ﹣2 1 1 ﹣7 ﹣14 …下列说法正确的是()A.抛物线的开口向上B.当x>1时,y随x的增大而增大C.二次函数的最大值是2D.抛物线与x轴只有一个交点二.填空题(每小题3分,共18分)9.(3分)若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.11.(3分)如图,若二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则下列结论:①abc>0;②二次函数的最大值为a+b+c;③a﹣b+c<0;④b2﹣4ac<0;⑤当y>0时,﹣1<x<3.⑥3a+c=0;其中正确的结论有.12.(3分)如图,正方形ABCD中,扇形ABC与扇形BCD的弧交于点E,AB=2cm,则图中阴影部分的面积为cm2.(不求近似值)13.(3分)抛物线y=ax2+bx+c经过点A(0,﹣3),B(2,﹣3),C(﹣2,5),则该抛物线上纵坐标为5的另一个点D的坐标是.14.(3分)车从甲地驶往乙地,行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间的反比例函数关系如图所示.若列车要在 2.5h内到达,则速度至少需要提高到km/h.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.参考答案与解析一、选择题(每小题3分,共24分)1.【分析】首先证明△CAD∽△CBA,得,从而,即可得出答案.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△CAD∽△CBA,∴,∴,∵△ABD的面积为a,∴S△CAD=a,故选:C.2.【分析】根据相似三角形的判定方法可得新三角形与Rt△ABC是相似的,从而可得锐角A 的大小是不变的,即可解答.【解答】解:∵Rt△ABC的各边长都扩大为原来的3倍后,所得的三角形与Rt△ABC是相似的,∴锐角A的大小是不变的,∴锐角A的正弦、余弦值是没有变化,故选:C.3.【分析】连接AC、CE,根据圆内接四边形的性质求出∠CAE,根据圆心角、弧、弦之间的关系定理求出∠ACE,根据圆内接四边形的性质计算,得到答案.【解答】解:连接AC、CE,∵点A、C、D、E都是⊙O上的点,∴∠CAE+∠D=180°,∴∠CAE=180°﹣128°=52°,∵=,∴∠ACE=∠AEC=×(180°﹣52°)=64°,∵点A、B、C、E都是⊙O上的点,∴∠AEC+∠B=180°,∴∠B=180°﹣64°=116°,故选:D.4.【分析】将常数项移动方程右边,方程两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2+8x+7=0,移项得:x2+8x=﹣7,配方得:x2+8x+16=9,即(x+4)2=9.故选:A.5.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【解答】解:将抛物线y=2(x﹣1)2﹣3先向上平移2个单位长度,再向左平移3个单位长度,得到的抛物线的解析式为:y=2(x﹣1+3)2﹣3+2,即y=2(x+2)2﹣1;故选:A.6.【分析】先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tan B的值即可计算.【解答】解:∵CA是∠BCD的平分线,∴∠DCA=∠ACB,又∵AD∥BC,∴∠ACB=∠CAD,∴∠DAC=∠DCA,∴DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,∵AB⊥AC,∴DE⊥AC(等腰三角形三线合一的性质),∴点F是AC中点,∴AF=CF,∴EF是△CAB的中位线,∴EF=AB=2,∵==1,∴DF=EF=2,在Rt△ADF中,AF==4,则AC=2AF=8,tan B===2.故选:B.7.【分析】由道路的宽度为xm,可得出剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形,根据剩余田地的面积为551m2,即可得出关于x的一元二次方程,此题得解.【解答】解:∵道路的宽度为xm,∴剩余田地部分可合成长为(30﹣x)m,宽为(20﹣x)m的矩形.依题意得:(20﹣x)(30﹣x)=551.故选:B.8.【分析】根据给出的自变量x与函数值y的对应值逐一分析解答即可.【解答】解:∵抛物线经过点(﹣2,﹣7),(4,﹣7),则对称轴为x=1,设抛物线的解析式为y=a(x﹣1)2+k,代入点(0,1)和(﹣1,﹣2)得,,解得,∴抛物线的解析式为y=﹣(x﹣1)2+2,∵a=﹣1,∴抛物线开口向下,故A不符合题意;∵对称轴为x=1,∴当x>1时,y随x的增大而减小,故B不符合题意;∵抛物线的顶点坐标为(1,2),开口向下,∴二次函数的最大值为2,故C符合题意;∵抛物线开口向下,顶点为(1,2),∴抛物线与x轴有两个交点,故D不符合题意.故选:C.二.填空题9.答案为:且k≠0.10.(3分)如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为(1,2)或(﹣1,﹣2).【分析】根据位似变换的性质计算即可.【解答】解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).11.答案为:②⑤⑥.12.答案为:π.13.答案为:(4,5).14.答案为:240.三、解答题(共78分)15.(4分)计算:﹣12022﹣+|﹣2|.【分析】这里,先算﹣12022=﹣1,=4,|﹣2|=2﹣,再进行综合运算.【解答】解:﹣12022﹣+|﹣2|=﹣1﹣4+2﹣=﹣3﹣.16.(6分)如图,数学兴趣小组成员在热气球A上看到正面为横跨河流两岸的大桥BC,并测得B,C两点的角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:,,)【分析】过A作AD⊥BC,交CB延长线于点D,证△ACD是等腰直角三角形,则CD=AD,再由锐角三角函数定义得BD=AD,则AD﹣AD=75,求出AD的长,即可解决问题.【解答】解:过A作AD⊥BC,交CB延长线于点D,如图所示:则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=,∴CD===AD,在Rt△ABD中,tan∠ABD=,∴BD=≈=AD,由题意得:AD﹣AD=75,解得:AD=300(m),∵此时地面气温为20℃,海拔每升高100米,气温会下降约0.6℃,∴此时热气球(体积忽略不计)附近的温度约为:20℃﹣×0.6℃=18.2℃,答:此时热气球(体积忽略不计)附近的温度约为18.2℃.17.(10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN •MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴=,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴=.∴BM2=MN•MC.又∵AB是⊙O的直径,=,∴∠AMB=90°,AM=BM.∵AB=8,∴BM=4 .∴MN•MC=BM2=32.18.(10分)由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包16.9元.(1)求出这两次价格上调的平均增长率;(2)在有关部门大力调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?【分析】(1)设这两次价格上调的平均增长率为x,利用经过两次上调价格后的价格=原价×(1+这两次价格上调的平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,根据每天该口罩的销售额为315元,即可得出关于m的一元二次方程,解之即可得出m的值,再结合要让顾客获得更大的优惠,即可得出每包应该降价3元.【解答】解:(1)设这两次价格上调的平均增长率为x,依题意得:10(1+x)2=16.9,解得:x1=0.3=30%,x2=﹣2.3(不符合题意,舍去).答:这两次价格上调的平均增长率为30%.(2)设每包应该降价m元,则每包的售价为(10﹣m)元,每天可售出(30+5m)包,依题意得:(10﹣m)(30+5m)=315,整理得:m2﹣4m+3=0,解得:m1=1,m2=3.又∵要让顾客获得更大的优惠,∴m的值为3.答:每包应该降价3元.19.(6分)如图,△ABC是等腰三角形,AB=AC,AD⊥BC,以AD为直径作⊙O,分别交AB、AC于点E、F,连接EF.判断EF和BC的位置关系,并证明.【分析】先利用等腰三角形的性质得到∠EAD=∠FAD,则根据圆周角定理得到=,再利用垂径定理的推理得到AD⊥EF,于是可判断EF∥BC.【解答】解:EF∥BC.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠EAD=∠FAD,∴=,∵AD为直径,∴AD⊥EF,而AD⊥BC,∴EF∥BC.20.(12分)已知抛物线y=ax2+bx﹣2经过(2,2),且顶点在y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.【分析】(1)由题意可知b=0,再将(2,2)代入y=ax2+bx﹣2即可求解析式;(2)①求出A(,0),B(﹣,0),再由2[c+2+(c+2)2]=4(c+2),即可求c;②由题意可得m=﹣,k<0,再由m>6,可得﹣<k<0,联立,得到AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,与x轴的交点P (﹣,0),与y轴的交点为N(0,b),由∠PNO=∠AMO,可得k'=m=﹣,则有线段AB的垂直平分线为y=﹣x++,所以N点纵坐标为n=+,即可求<n<.【解答】解:(1)∵顶点在y轴上,∴b=0,∵抛物线y=ax2+bx﹣2经过(2,2),∴4a﹣2=2,∴a=1,∴y=x2﹣2;(2)①当k=0时,y=c,联立,∴A(,c),B(﹣,c),∵△ABP为等腰直角三角形,∴P点在AB的垂直平分线上,∴P点在抛物线的顶点(0,﹣2)处,∵AB=2,AP=BP=,∴2[c+2+(c+2)2]=4(c+2),∴c=﹣1;②∵c=1,∴y=kx+1,∴m=﹣,由题意可知,k<0,∵m>6,∴﹣<k<0,联立,∴x2﹣kx﹣2=0,∴x A+x B=k,∴AB的中点为(,+1),设AB的线段垂直平分线所在直线解析式为y=k'x+b,∴与x轴的交点P(﹣,0),与y轴的交点为N(0,b),∵PN⊥AB,∴∠PNO=∠AMO,∴=,∴k'=m=﹣,∴y=﹣x+b,∴线段AB的垂直平分线为y=﹣x++,∴N点纵坐标为n=+,∴<n<.21.(10分)如图,一次函数y=x+m的图象与反比例函数的图象交于A,B两点,且与x 轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求△AOB的面积;(3)结合图象直接写出不等式组的解集.【分析】(1)把A点的坐标代入函数解析式,即可求出答案;(2)解由两函数解析式组成的方程组,求出方程组的解,即可得出B点的坐标,求出C点的坐标,再根据三角形面积公式求即可;(3)根据图象即可求出答案.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1,即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)连接OA、OB,∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由解得,,∴由图象可得:点B的坐标为(﹣1,﹣2),∴;(3)由图象可知不等式组的解集为1<x≤2.22.(6分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率.(2)你认为这个游戏公平吗?为什么?【分析】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)利用列表法得出所有可能的结果,如下表:1 2 3 45 5 10 15 206 6 12 18 247 7 14 21 288 8 16 24 32由上表可知,该游戏所有可能的结果共16种,其中两卡片上的数字之积大于20的有5种,所以甲获胜的概率为P甲=.(4分)(2)这个游戏对双方不公平,因为甲获胜的概率P甲=,乙获胜的概率P乙=,,所以,游戏对双方是不公平的.(6分)23.(14分)已知抛物线y=﹣x2+bx+c(b、c为常数),若此抛物线与某直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线的函数解析式和顶点D的坐标;(2)若点P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)点H(n,t)为抛物线上的一个动点,H关于y轴的对称点为H1,当点H1落在第二象限内,H1A2取得最小值时,求n的值.【分析】(1)用待定系数法求函数的解析式即可;(2)过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),S△PAC=﹣(t ﹣)2+当t=时,△PAC的面积最大值为,此时P(,);(3)由题意可知H1在抛物线y=﹣x2﹣2x+3上,再由H1A2=(t﹣)2+,可得当t=时,A2有最小值,求出n的值即可.H1【解答】解:(1)将A(﹣1,0),C(2,3)两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(2)设AC的直线解析式为y=kx+b,∴,解得,∴y=x+1,过点P作PG∥y轴交AC于点G,设P(t,﹣t2+2t+3),则G(t,t+1),∴PG=﹣t2+t+2,∴S△PAC=×3×(﹣t2+t+2)=﹣(t﹣)2+,∴当t=时,△PAC的面积最大值为,此时P(,);(3)点H(n,t)为抛物线上的一个动点,点H1与H点关于y轴对称,∴H1(﹣n,t),H1在抛物线y=﹣x2﹣2x+3上,∴t=﹣n2﹣2n+3,∴H1A2=(n+1)2+t2=t2﹣t+4=(t﹣)2+,∴当t=时,H1A2有最小值,∴=﹣n2+2n+3,解得n=1+.。
四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)
2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
2.考生使用答题卡作答。
3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。
考试结束,监考人员只将答题卡收回。
4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。
5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
初三上期期末考试数学卷及答案
初三上期期末考试数学卷及答案有一个高效的数学复习方法,会让你的初三数学期末考试成绩突飞猛进的。
以下是为你整理的初三上期期末考试数学卷,希望对大家有帮助!初三上期期末考试数学卷一、选择题(本题共32分,每题4分)1. 已知,那么下列式子中一定成立的是( )A. B. C. D.xy=62. 反比例函数y=-4x的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限3. 如图,已知,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A. B. C. D.4. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=2,则cosA的值是()A.215B.52C.212D.255. 同时投掷两枚硬币每次出现正面都向上的概率是( )A. B. C. D.6. 扇形的圆心角为60°,面积为6 ,则扇形的半径是( )A.3B.6C.18D.367. 已知二次函数( )的图象如图所示,有下列结论:①abc>0;②a+b+c>0;③a-b+c<0;其中正确的结论有( )A.0个B.1个C.2个D.3个8. 如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC= 60°,垂直于x轴的直线l从y 轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4), 则能大致反映S与t的函数关系的图象是( )二、填空题(本题共16分,每题4分)9. 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21cm,则其余两边长的和为 .10. 在△ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径作圆,则点C与⊙A的位置关系为 .11. 已知二次函数的图象与x轴有交点,则k的取值范围是 .12. 某商店将每件进价8元的商品按每件10元出售,一天可以售出约100件,该商店想通过降低售价增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件,那么要想使销售利润最大,则需要将这种商品的售价降低元.三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)13.计算:14.已知:如图,在△ABC中,∠ACB= ,过点C作CD⊥AB于点D,点E为AC上一点,过E点作AC的垂线,交CD的延长线于点F ,与AB交于点G.求证:△ABC∽△FGD15. 已知:如图,在△ABC中,CD⊥AB,sinA= ,AB=13,CD=12,求AD的长和tanB的值.16. 抛物线与y轴交于(0,4)点.(1) 求出m的值;并画出此抛物线的图象;(2) 求此抛物线与x轴的交点坐标;(3) 结合图象回答:x取什么值时,函数值y>0?17.如图,在8×8的网格中,每个小正方形的顶点叫做格点,△OAB的顶点都在格点上,请你在网格中画出一个△OCD,使它的顶点在格点上,且使△OCD与△OAB相似,相似比为2︰1.18. 已知:如图,AB为半圆的直径,O为圆心,C为半圆上一点,OE⊥弦AC于点D,交⊙O于点E. 若AC=8cm,DE=2cm.求OD的长.四、解答题(本题共15分,每题5分)19.如图,已知反比例函数y= 与一次函数y=-x+2的图象交于A、B两点,且点A的横坐标是-2.(1)求出反比例函数的解析式;(2)求△AOB的面积.20. 如图,甲、乙两栋高楼,从甲楼顶部C点测得乙楼顶部A 点的仰角为30°,测得乙楼底部B点的俯角为60°,乙楼AB高为120 米. 求甲、乙两栋高楼的水平距离BD为多少米?21. 如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD 交AC于点E,连接CD、AD.(1)求证:DB平分∠ADC;(2)若BE=3,ED=6,求A B的长.五、解答题(本题6分)22. 端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量,特此设计了一个游戏.其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上则重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会.(1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果;(2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)23.已知抛物线的图象向上平移m个单位( )得到的新抛物线过点(1,8).(1)求m的值,并将平移后的抛物线解析式写成的形式;(2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在≤ 时对应的函数值y的取值范围;(3)设一次函数,问是否存在正整数使得(2)中函数的函数值时,对应的x的值为,若存在,求出的值;若不存在,说明理由.24. 如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.①求y关于x的函数关系式;②当x为何值时,△PBC的周长最小,并求出此时y的值.25. 在平面直角坐标系中,抛物线与轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CH⊥x轴于点H.(1)求抛物线的解析式和顶点坐标;(2)在轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQ⊥AC于点Q,当△PCQ与△ACH相似时,求点P的坐标.初三上期期末考试数学卷答案三、解答题(本题共29分,其中第13、14、15、16、18题每题5分,第17题4分)13.解:=…………………&hellip ;…………………&helli p;….4分=…………………&hellip ;…………………&helli p;..5分14.证明:∵∠ACB= ,,∴∠ACB=∠FDG= . …………………&hellip ;………….1分∵EF⊥AC,∴ ∠FEA=90°. ……………………………….2分∴∠FEA=∠BCA.∴EF∥BC. …………………&hellip ;………………..3分∴ ∠FGB=∠B. …………………&hellip ;…………….4分∴△ABC∽△FGD …………………&hellip ;…………..5分15.解:∵CD⊥AB,∴∠CDA=90°………&hel lip;…………………&he llip;……1分∵sinA=∴ AC=15. …………………&hellip ;…………………..2分∴AD=9.…………………&hellip ;………………….3分∴BD=4.…………………&hellip ;…………………&helli p;4分∴tanB=…………………&hellip ;…………5分16.解:(1)由题意,得,m-1=4解得,m=5. …………………&hellip ;……………1分图略. …………………&hellip ;…………………&helli p;………2分(2)抛物线的解析式为y=-x2+4. …………………3分由题意,得,-x2+4=0.解得,,抛物线与x轴的交点坐标为(2,0),(-2,0)………………4分(3)-217.图正确…………………&hellip ;…………………&helli p;….4分18. 解:∵OE⊥弦AC,∴AD= AC=4. …………………&hellip ;……1分∴OA2=OD2+AD2…………………&hellip ;………..2分∴OA2=(OA-2)2+16解得,OA=5. …………………&hellip ;…………4分∴OD=3…………………&hellip ;…………5分四、解答题(本题共15分,每题5分)19.(1)解:由题意,得,-(-2)+2=4A点坐标(-2,4) ………………………………………&helli p;..1分K=-8.反比例函数解析式为y=- . …………………&hellip ;…………..2分(2)由题意,得,B点坐标(4,-2)…………………&he llip;…………3分一次函数y=-x+2与x轴的交点坐标M(2,0),与y轴的交点N(0,2)………4分S△AOB=S△OMB+S△OMN+S△AON= =6 …………………..5分20.解:作CE⊥AB于点 E. …………………&hellip ;……………….1分,且,四边形是矩形..设CE=x在中, .,AE=…………………&hellip ;…………………..2分AB=120 - …………………&hellip ;……………..3分在中, .,…………………&h ellip;…………………..4分解得,x=90 …………………&hellip ;…………………&helli p;.5分答:甲、乙两栋高楼的水平距离BD为90米.21. (1)证明:∵AB=BC∴弧AB=弧BC …………………&hellip ;…………1分∴∠BDC=∠ADB,∴DB平分∠ADC………………&he llip;…………………&h ellip;……2分(2)解:由(1)可知弧AB=弧BC,∴∠BAC=∠ADB∵∠ABE=∠ABD∴△ABE∽△DBA…………………& hellip;………………3分∴ABBE=BDAB∵BE=3,ED=6∴BD=9……………&he llip;…………………&h ellip;4分∴AB2=BE•BD=3×9=27∴AB=33……………&h ellip;…………………& hellip;5分五、解答题(本题6分)22.解:(1)A B CC (A,C) (B,C) (C,C)D (A,D) (B,D) (C,D)…………………&h ellip;2分可能出现的所有结果:(A,C)、(B,C)、(C,C)、(A,D)、(B,D)、(C,D)……………4分(2)P(获八折优惠购买粽子)= …………………&hellip ;…………………&helli p;……..6分六、解答题(本题共22分,其中第23、24题每题7分,第25题8分)23.23.]解:(1)由题意可得又点(1,8)在图象上∴∴ m=2 …………………&hellip ;…………………&helli p;……………1分∴…………………&hellip ;…………………&helli p;…2分(2)…………………&hellip ;…………….3分当时,………………4分(3)不存在…………………&hellip ;…………………&helli p;……5分理由:当y=y3且对应的-1∴ ,…………………&hellip ;…………………6分] 且得∴ 不存在正整数n满足条件…………………&hellip ;…………………7分24. (1)证明:∵,,∴DE垂直平分AC,∴ ,∠DFA=∠DFC =90°,∠DAF=∠DCF.∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,∴∠DCF=∠DAF=∠B.∴△DCF∽△ABC. …………………&hellip ;…………………&helli p;………………1分∴ ,即 .∴AB•AF=CB•CD.…………………&hellip ;…2分(2)解:①∵AB=15,BC=9,∠ACB=90°,∴ ,∴ .………………&hel lip;…3分∴ ( ). …………………&hellip ;…………………4分②∵BC=9(定值),∴△PBC的周长最小,就是PB+PC最小.由(1)知,点C关于直线DE的对称点是点A,∴PB+PC=PB+PA,故只要求PB+PA最小.显然当P、A、B三点共线时PB+PA最小.此时DP=DE,PB+PA=AB. …………………………5分由(1),,,得△DAF∽△ABC.EF∥BC,得,EF= .∴AF∶BC=AD∶AB,即6∶9=AD∶15.∴AD=10.Rt△ADF中,AD=10,AF=6,∴DF=8.∴ . …………………&hellip ;…………………&helli p;6分∴当时,△PBC的周长最小,此时. …………………&hellip ;…………………7分25.解:(1)由题意,得解得,抛物线的解析式为y=-x2-2x+3 …………………&hellip ;……………1分顶点C的坐标为(-1,4)…………………&hell ip;…2分(2)假设在y轴上存在满足条件的点D, 过点C作CE⊥y轴于点E.由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,∴∠3=∠1. 又∵∠CED=∠DOA =90°,∴△CED ∽△DOA,∴ .设D(0,c),则 . …………3分变形得,解之得 .综合上述:在y轴上存在点D(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形. …………………&hellip ;…………… 4分(3)①若点P在对称轴右侧(如图①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.延长CP交x轴于M,∴AM=CM,∴AM2=CM2.设M(m,0),则( m+3)2=42+(m+1)2,∴m=2,即M(2,0).设直线CM的解析式为y=k1x+b1,则,解之得, .∴直线CM的解析式.…………………&h ellip;…………………& hellip;… 5分,解得,(舍去)..∴ .……………… …………………&hellip ;…………6分②若点P在对称轴左侧(如图②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.过A作CA的垂线交PC于点F,作FN⊥x轴于点N.由△CFA∽△CAH得,由△FNA∽△AHC得 .∴ , 点F坐标为(-5,1).设直线CF的解析式为y=k2x+b2,则,解之得 .∴直线CF的解析式. …………………&hellip ;…………………&helli p;…7分,解得,(舍去).∴ . …………………&hellip ;……………8分∴满足条件的点P坐标为或。
浙江省宁波市鄞州区2023-2024学年九年级上学期期末数学试题(含答案)
鄞州区2023学年第一学期九年级期末考试数学试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将姓名、准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷I 的答案在答题卷I 上对应的选项位置,用2B 铅笔涂黑、涂满。
将试题卷的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.试题卷I一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知的半径为4,P 为内一点,则OP 的长度可能是( )A .3B .4C .5D .92.下列事件中,属于必然事件的是( )A .射击运动员射击一次恰好命中靶心B .从一副完整的扑克牌中任抽一张,出现红桃AC .抛掷骰子两次,出现数字之和为13D .观察正常的交通信号灯变化10分钟,看到绿灯3.已知线段,点C 是线段AB 的黄金分割点,且,则线段AC 的长是( )ABCD4.四边形ABCD 内接于,,则的度数是( )A .B .C .D .5.如图,是的内切圆,AB ,AC 分别与相切于D ,E 两点,已知,,则的周长为()A .14B .C .16D .186.已知,,三点都在抛物线上,则、、的大小关系为()A .B .C .D .7.如图,的半径为5,弦,点C 在弦AB 上,延长CO 交于点D ,则CD 的取值范围是( )O O 1AB =AC BC >O 100B ∠=︒D ∠60︒80︒100︒120︒O ABC △O 1AD =7BC =ABC△()11,A y -()21,B y ()33,C y 23y x x m =-+1y 2y 3y 123y y y <<231y y y <<213y y y <<321y y y <<O 6AB =OA .B .C .D .8.如图,点G 是的重心,过点G 作分别交AB ,AC 于点M ,N ,过点N 作交BC 于点D ,则四边形BDNM 与的面积之比是()A .B .C .D .9.如图是由边长为1的小正方形组成的网格,的顶点及点M ,N 都是格点,AB 与格线CN 相交于点D ,AC 与MN 相交于点E ,则以下说法错误的是()A .B .C .D .10.如图,正的边长为1,点P 从点B 出发,沿方向运动,于点H ,下面是的面积随着点P 的运动形成的函数图象(拐点左右两段都是抛物线的一部分),以下判断正确的是( )A .函数图象的横轴表示PB 的长B .当点P 为BC 中点时,点H 为线段AB 的三等分点C .两段抛物线的形状不同D.图象上点的横坐标为试题卷Ⅱ二、填空题(每小题4分,共24分)11.在平面直角坐标系中,抛物线的开口方向是______.12.一个布袋里装有3个红球、3个黄球和4个绿球,除颜色外其它都相同,搅匀后,随机摸出一个球是红球的概率为______.13.的两个锐角和满足,则的度数是______.14.如图,矩形ABCD 被分割为3个面积相等的小矩形,已知矩形AFED 与原矩形ABCD 相似,则原矩形的较长边与较短边的比值是______.68CD ≤≤810CD ≤≤910CD <<910CD ≤≤ABC △MN BC ∥ND AB ∥ABC △1:22:34:97:953⨯ABC △AB =2CE AE =ADE C ∠=∠45ACB ∠=︒ABC △B C A →→PH AB ⊥PHB △34231y x x =-+-ABC △A ∠B ∠()21sin tan 102A B -+-=C ∠15.如图1是杭州第19届亚运会会徽一“潮涌”,其主体为图2中的扇环.延长CA ,DB 交于点O ,,若,,则图2中扇环的面积为______(结果保留)16.如图,中,,,,CE 是斜边AB 上的中线,在直线AB 上方作,DE ,FE 分别与AC 边交于点M ,N ,当与相似时,线段CN 长度为______.三、解答题(17~19题各6分,20~21题各8分,22~23题各10分,24题12分,共66分)17.(1)计算:;(2)已知,求的值.18.某校团委决定组织部分学生参加主题研学活动,全校每班可推选2名代表参加,901班根据各方面考核,决定从甲、乙、丙、丁四名学生中随机抽取两名参与研学活动.(1)若甲已抽中,求从剩余3名学生中抽中乙参与研学的概率;(2)用画树状图或列表等适当的方法求甲和乙同时参与研学的概率.19.在如图所示的平面直角坐标系中,的顶点都在格点上,以原点O 为位似中心,将放大到2倍得到.(1)在现有网格图中画出;(2)记线段BC 的中点为M ,求放大后点M 的对应点的坐标.20.如图1,沙滩排球比赛中,裁判垂直站在记录台上.如图2是从正面看到的示意图,记录台底部O 与垂直地面的球网支架底座E ,F 在同一水平线上,记录台与左侧球网距离OE 为0.5m ,裁判观察矩形球网ABCD 上点A 的俯角为42°,已知球网高度AE 为2.4m .120AOB ∠=︒AB =4AC cm =2cm πRt ABC △90ACB ∠=︒8AC =6BC =DEF ABC △△EMN △BEC △22cos 45tan 602sin 30︒+︒-︒1224a b ++=2a b a b-+ABC △ABC △DEF △DEF △GPA ∠(1)求裁判员眼睛距离地面的高度PO ;(2)某次运动员扣球后,球恰好从球网上边缘AD 的点Q 处穿过,此时裁判员的视线PQ 正好看不到球网边界C 处(即P ,Q ,C 共线),若球网长度,球网下边缘离地面的距离CF 为1.5m ,求排球落点处Q 离球网边界CD 的距离.(结果精确到0.1m )(本题参考数值,,.)21.如图,AB 为的直径,点P 为BA 延长线上一点,以点P 为圆心,PO 为半径画弧,以点O 为圆心,AB 为半径画弧,两弧相交于点C ,连结OC 交于点D ,连结PD .(1)求证:PD 与相切;(2)若,,求的半径.22.根据以下材料,探索完成任务:智能浇灌系统使用方案材料如图1是一款智能浇灌系统,水管OP 垂直于地面并可以随意调节高度(OP 最大高度不超过2.4m ),浇灌花木时,喷头P 处会向四周喷射水流形成固定形状的抛物线,水流落地点M 与点O 的距离即为最大浇灌距离,各方向水流落地点形成一个以点O 为圆心,OM 为半径的圆形浇灌区域.当喷头P 位于地面与点O 重合时,某一方向的水流上边缘形成了如图2的抛物线,经测量,,水流最高时距离地面0.1m .如图3,农科院将该智能浇灌系统应用于一个长8m ,宽6m 的矩形试验田中,水管放置在矩形中心O 处.8AD m =sin 420.67︒≈cos 420.74︒≈tan 420.90︒≈O O O PD =1cos 3POC ∠=O 2OM m =问题解决任务1确定水流形状在图2中建立合适的平面直角坐标系,求抛物线的函数表达式.任务2探究浇灌最大区域当调节水管OP 的高度时,浇灌的圆形区域面积会发生变化,请你求出最大浇灌圆形区域面积.(结果保留)任务3解决具体问题若要保证浇灌区域能完全覆盖矩形试验田,则水管OP 至少需要调节到什么高度?23.已知二次函数的解析式为.(1)求证:该二次函数图象与x 轴一定有2个交点;(2)若,点,都在该二次函数的图象上,且,求n 的取值范围;(3)当时,函数最大值与最小值的差为8,求m 的值.24.如图1,内接于,直径,弦CD 与AB 相交于点E .(1)如图1,若,求的度数;(2)如图2,若,求CD 的长;(3)如图3,过点A 作CD 的平行线交于点M ,连结BD ,MC ,若,求的面积.鄞州区2023学年第一学期九年级期末考试数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案ADABCBDCDD二、填空题(每小题4分,共24分)三、解答题(17~19题各6分,20~21题各8分,22~23题各10分,24题12分,共66分)注:1.阅卷时应按步计分,每步只设整分;π2224y x mx m =-+-+2m =()1,M n y ()22,N n y +120y y <35m x -≤≤ABC △O 12AB =BC =AE AC =ACD ∠4AE =O 1tan 3ACM ∠=BCD △2.如有其它解法,只要正确,各步相应给分17.(1)原式(2)∵,∴,∴.18.(1)乙同学参加研学的概率是.(2)画树状图如下∴甲和乙同时参与研学的概率为.19.(1)按要求作如图:21.(1)由题意得,,,∴BC 中点M 的坐标为,∵放大到2倍得到,∴点M 在上对应点的坐标为.(也可以由图像直接获得坐标)(2)∵,,∴,,∵,∴,∴,即,21222=⨯+⨯11==1224a b ++=2b a =2412a b a aa b a a--==-++1316DEF △PC PO =OC AB =()2,1.5ABC △DEF △DEF △()4,38AD m = 1.5CF m =80.58.5DH m =+= 2.4 1.50.9CD m =-=PQH CQD ∠=∠tan tan PQH CQD ∠=∠PH CDQH QD=0.450.98.5QD QD =-∴.(1)由题意得,,,∴,∴.∵点D 在上,PD 与OO 相切.(2)设的半径为r ,由(1)得:,又:,∴,即,∵,,∴,解得(舍去),∴的半径为2.22.(1)如图,以点O 为坐标原点,OM 方向为x 轴正方向建立平面直角坐标系,此时,,顶点坐标为,设抛物线的函数表达为,将代入得,,∴抛物线的函数表达式为.(其他建系方式均可,按步给分)(2)当时,即将抛物线向上平移2.4个单位,得.令,则,解得:,(舍去),∴浇灌最大圆形区域面积为.(3)连结AC ,由题意知AC 过点O ,,∴,∴要保证浇灌区域能完全覆盖矩形试验田,浇灌半径至少为5m .设,此时抛物线函数表达式为,将代入,得,解得,∴OP 至少调节到1.5m .23.(1)∵,175.73QD m =≈PC PO =OC AB =CD OC OD AB OD OD =-=-=PD OC ⊥O O PD OC ⊥1cos 3POC =13OD PO =33PO OD r ==222PD OD PO +=PD =(()2223r r +=2r =2-O ()0,0O ()2,0M ()1,0.1()2y ax x =-()1,0.1()2y ax x =-110a =-211105y x x =-+2.4OP m =211105y x x =-+2112.4105y x x =-++0y =2110 2.4105x x =-++16x =24x =-236m π10AC m ==5OA m =OP h =211105y x x h =-++()5,0211055105h =-⨯+⨯+ 1.5h =()()()222414160m m =-⨯-⨯-+=>△∴的函数图象与x 轴一定有2个交点.(2)∵,∴.令,则,即,,∴函数图像与x 轴交点为和两点.∵点,都在该二次函数的图象上,且,①,即,②,即.综上所述,或.(3)∵,∴抛物线的对称轴为直线.①若,即,则当时,,当时,,∴,∴,.②若,则当时,,当时,,∵,不符合题意,舍去.③若时,则当时,,当时,,∴,∴,(舍去).综上所述,或.24.(1)∵AB 是的直径,∴.∵,,∴,∴,∵,∴.(2)连结OC ,BD ,∵,,∴.∵,∴,∴,2224y x mx m =-+-+2m =24y x x =-+0y =240x x -+=10x =24x =()0,0()4, 0()1,M n y ()22,N n y +120y y <020n n <⎧⎨+>⎩20n-<<424n n <⎧⎨+>⎩24n <<20n -<<24n <<()222244y x mx m x m =-+-+=--+x m =352m m -+<2m <x m =max 4y =5x =()2min 54y m =--+()24548m ⎡⎤---+=⎣⎦15m =+25m =-25m ≤≤x m =max 4y =3x m =-min 5y =-()4598--=≠58m <≤5x =()2max 54y m =--+3x m =-min 5y =-()()25458m --+--=16m =24m =5m =-6m =O 90ACB ∠=︒12AB =BC =sin BC A AB ∠==45A ∠=︒AE AC =67.5ACD ∠=︒90ACB ∠=︒45A ∠=︒45ABC ∠=︒OB OC =45BCO ∠=︒90BOC ∠=︒∵,∴,∴.∵,又∵,,∴,∴(3)①当E 在线段OB 上时,连结OC ,连结BM 交CD 于点N ,∵,∴,∵,∴,又∵,,∴,∵,∴,∴,,∴.由(2)得,∴,∴.②当点E 在线段OA 上时,同理,∴,∴,∴.∵,∴,∴.4AE =642OE =-=EC ==1452BDC BOC EBC ∠=∠=︒=∠BCD ECB ∠=∠BCD ECB ~△△BC CD EC BC =2BC CD EC ==CD AM ∥90BNE BMA ∠=∠=︒90BOC ∠=︒BNE BOC ∠=∠BEN CEO ∠=∠ECO ABM ACM ∠=∠=∠1tan tan 3ECO ACM ∠=∠=6OC =·tan 2OE OC ECO ==EC ==624BE =-=1122ECB S BE OC =⋅=△BCD ECB △△295BCD ECB S BC S EC ⎛⎫== ⎪⎝⎭△△910855BCD ECB S S ==△△1tan tan 3ECO ACM ∠=∠=tan 2OE OC ECO =⋅∠=CE ==628BE =+=1242ECB S BE OC =⋅=△BCD ECB △△ 295BCD ECB S BC S EC ⎛⎫== ⎪⎝⎭△△921655BCD ECB S S ==△△。
2023—-2024学年上学期九年级期末考试数学试卷
准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。
2024年最新人教版初三数学(上册)期末考卷及答案(各版本)
2024年最新人教版初三数学(上册)期末考卷一、选择题(每题3分,共30分)1. 若一个数的立方根等于它的平方根,则这个数是()A. 0B. 1C. 1D. ±12. 若一个数是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±13. 若一个数的绝对值等于它本身,则这个数是()A. 正数B. 负数C. 0D. 正数或04. 若一个数的绝对值等于它的相反数,则这个数是()A. 正数B. 负数C. 0D. 正数或05. 若一个数的平方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或16. 若一个数的立方等于它本身,则这个数是()A. 0B. 1C. 1D. 0或17. 若一个数的平方根是它自己的倒数,则这个数是()A. 0B. 1C. 1D. ±18. 若一个数的立方根是它自己的相反数,则这个数是()A. 0B. 1C. 1D. ±19. 若一个数的绝对值等于它的立方,则这个数是()A. 正数B. 负数C. 0D. 正数或010. 若一个数的绝对值等于它的平方,则这个数是()A. 正数B. 负数C. 0D. 正数或0二、填空题(每题3分,共30分)11. 若一个数的平方根是它自己的倒数,则这个数是______。
12. 若一个数的立方根是它自己的相反数,则这个数是______。
13. 若一个数的绝对值等于它的立方,则这个数是______。
14. 若一个数的绝对值等于它的平方,则这个数是______。
15. 若一个数的平方等于它本身,则这个数是______。
16. 若一个数的立方等于它本身,则这个数是______。
17. 若一个数的平方根是它自己的倒数,则这个数是______。
18. 若一个数的立方根是它自己的相反数,则这个数是______。
19. 若一个数的绝对值等于它的立方,则这个数是______。
20. 若一个数的绝对值等于它的平方,则这个数是______。
2023-2024学年九年级上学期期末考试数学试卷及答案解析
2023-2024学年九年级上期末数学试卷
一、填空题。
(本大题共6小题,每小题3分,共18分)
1.已知2是一元二次方程x2﹣3kx+2=0的根,则k的值是.
2.不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.
3.反比例函数 剜 剜媵 的图象在第二、四象限内,那么m的取值范围是.4.在平面直角坐标系中,把点P(3,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q 的坐标为.
5.已知圆锥的底面半径为3,侧面积为15π,则这个圆锥的高为.
6.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
.
⑤8a+c>0.其中正确的命题是
二、选择题。
(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形中不是中心对称图形的是()
A .
B .
C .
D .
8.下列说法正确的是()
A.必然事件发生的概率为1B.随机事件发生的概率为0.5
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次
9.五个大小相同的正方体搭成的几何体如图所示,其左视图是()
第1页(共27页)。
2024年北京石景山初三上学期期末数学试题和答案
石景山区2023-2024学年第一学期初三期末试卷数 学第一部分 选择题一、选择题(共16分,每题2分)第1- 8题均有四个选项,符合题意的选项只有一个. 1.若34(0)x y y ,则xy的值是(A)34 (B)43(C)74(D)732.如图,在Rt ACB △中,90C °,3AC BC ,则sin A 为(A) 13 (B)4 (C)10(D) 103.如图,四边形ABCD 内接于⊙O ,AB 是直径,D 是 AC的 中点.若40B °,则A 的大小为 (A) 50° (B) 60° (C) 70°(D) 80°4.将抛物线23y x 向左平移1个单位长度,平移后抛物线 的解析式为 (A) 23(1)y x(B) 23(1)y x(C) 231y x(D) 231y x5.若抛物线229y xmx 与x 轴只有一个交点,则m 的值为(A) 3(B) 3(C)(D) 3AB C6.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能:“平距以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方”.其中“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”AFE 的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得8m BD , 1.6m AB . 若“矩”的边30cm EF a ,边60cm AF b ,则树高CD 为 (A) 4m (B) 5.3m (C) 5.6m (D) 16m7.在平面直角坐标系xOy 中,若点1(4)y ,,2(6)y ,在抛物线2(3)1(0)y a x a 上,则下列结论正确的是 (A) 121y y(B) 211y y(C) 211y y(D) 121y y8.如图,在ABC △中,CD AB 于点D ,给出下面三个条件: ①A BCD ; ②A BCD ADC ; ③AD CD CD BD. 添加上述条件中的一个,即可证明ABC △是直角三角形的条件序号是 (A) ①②(B) ①③(C) ②③(D) ①②③第二部分 非选择题二、填空题(共16分,每题2分)9.如图,在矩形ABCD 中,E 是边AD 的中点,连接BE 交 对角线AC 于点F .若6AC ,则AF 的长为 . 10.在平面直角坐标系xOy 中,若点1(3)y ,,2(7)y ,在反比例函数(0)ky k x的图象上,则1y 2y (填“>”“=”或“<”). DABCE F DCBA第6题 图1 第6题 图2DCH11.如图,正六边形ABCDEF 内接于⊙O ,12AB ,则 AB 的长为 .12.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,60P °,6PA ,则⊙O 的半径为 .13.如图,线段AB ,CD 分别表示甲、乙建筑物的高,两座建筑物间的距离BD 为30m .若在点A 处测得点D 的俯角 为30°,点C 的仰角 为45°,则乙建筑物的高CD 约为 m (结果精确到0.1m1.4141.732 ).14.如图,点A ,B 在⊙O 上,140AOB °.若C 为⊙O 上任一点(不与点A ,B 重合),则ACB 的大小为 .15.如图,E 是正方形ABCD 内一点,满足90AEB °,连接CE .若2AB ,则CE 长的最小值为 .16.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a的顶点为(1)P k ,,且经过点(30)A ,,其部分图象如图 所示,下面四个结论中, ①0a ; ②2b a ;③若点(2)M m ,在此抛物线上,则0m ; ④若点()N t n ,在此抛物线上且n c ,则0t . 所有正确结论的序号是 .A BCDENBDM第11题 第12题 第13题三、解答题(共68分,第17-21题,每题5分,第22题6分,第23题5分,第24-26题,每题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17.计算:20248sin 60(1)tan 45 °°.18.如图,在四边形ABCD 中,AC 平分BAD ,90ACD B °.(1)求证:ACD △∽ABC △; (2)若3AB ,4AD ,求AC 的长.19.已知二次函数223y x x .(1)将223y x x 化成2()(0)y a x h k a 的形式,并写出其图象的顶点坐标;(2)求此函数图象与x 轴交点的坐标;(3)在平面直角坐标系xOy 中,画出此函数的图象.20.如图,AB 是⊙O 的直径,弦CD AB 于点E ,6CD ,1BE .求⊙O 的半径.21.已知二次函数2y x bx c 的图象过点(10)A ,和(03)B ,. (1)求这个二次函数的解析式;(2)当14x 时,结合图象,直接写出函数值y 的取值范围.DABC22.如图,在四边形ABCD 中,AD ∥BC ,90B °,3cos 5C,10CD . 求AB 的长.23.已知某蓄电池的电压为定值,使用此电源时,用电器的电流I (单位:A )与电阻R (单位: )成反比例函数关系,即(0)kI k R ,其图象如图所示.(1)求k 的值;(2)若用电器的电阻R 为6 ,则电流I为 A ;(3)如果以此蓄电池为电源的用电器的电流I 不得超过10A ,那么用电器的电阻R应控制的范围是 .24.如图,在ABC △中,AB AC ,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC . (1)求证:BF 是O 的切线; (2)若5AB ,1tan 2CBF ,求CE 的长.I /AB CD25.投掷实心球是北京市初中学业水平考试体育现场考试的选考项目之一.实心球被投掷后的运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系, 实心球从出手(点A 处)到落地的过程中,其竖直高度y (单位:m )与水平距离x (单位:m )近似满足二次函数关系.小石进行了三次训练,每次实心球的出手点A 的竖直高度为2m .记实心球运动路线的最高点为P ,训练成绩(实心球落地点的水平距离)为d (单位:m ).训练情况如下:根据以上信息,(1)求第二次训练时满足的函数关系式; (2)小石第二次训练的成绩2d 为 m ; (3)直接写出训练成绩1d ,2d ,3d 的大小关系.2OA26.在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a 经过点(33)A a c ,. (1)求该抛物线的对称轴;(2)点1(12)M a y ,,2(2)N a y ,在抛物线上.若12c y y ,求a 的取值范围.27.如图,在Rt ACB △中,90ACB °,60BAC °.D 是边BA 上一点(不与点B重合且12BD BA),将线段CD 绕点C 逆时针旋转60°得到线段CE ,连接DE ,AE . (1)求CAE 的度数;(2)F 是DE 的中点,连接AF 并延长,交CD 的延长线于点G ,依题意补全图形.若G ACE ,用等式表示线段FG ,AF ,AE 之间的数量关系,并证明.DABCE28.在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和点C 给出如下定义:若点C 在弦AB 的垂直平分线上,且点C 关于直线AB 的对称点在⊙O 上,则称点C 是弦AB 的“关联点”. (1)如图,点1(22A ,,1(22B ,. 在点1(00)C ,,2(10)C ,,3(11)C ,,4(20)C ,中,弦AB 的“关联点”是 ;(2)若点1(0)2C ,是弦AB 的“关联点”,直接写出AB 的长; (3)已知点(02)M ,,(0)15N ,.对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.石景山区2023-2024学年第一学期初三期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
九年级数学上学期期末检测试题卷(含答案)
九年级数学上学期期末检测试题卷(含答案)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答;2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..2B ..铅笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为(2b a-,244ac b a -),对称轴为2b x a =-.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列是四届冬奥会会徽的部分图案,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列关于抛物线()2143x y --=的结论,正确的是( ) A .开口方向向下B .对称轴为直线1x -=C .顶点坐标是(1,-4)D .当1x =时,函数有最大值为4-3.下列说法正确的是( )A .任意掷一枚质地均匀的硬币8次,一定有4次正面向上B .天气预报说“明天的降雨概率为60%”,表明明天有60%的时间在降雨C .“彩票中奖的概率是110”表示买10张彩票一定会有一张中奖 D .“篮球队员在罚球线上投篮一次,没有投中”为随机事件4.把抛物线221y x =+向右平移2个单位长度,再向上平移3个单位长度,得到新抛物线的解析式是( ) A. ()2224y x =++B. ()2224y x =-+C. ()2223y x =-+D. ()2223y x =++5.如图,O 是正方形ABCD 的外接圆,若O 的半径为2,则正方形ABCD 的边长为( ) A .1B 2C 2D .226.在一个不透明的口袋中装有3个红球,5个白球和若干个黑球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到白球的频率稳定在25%附近,则口袋中黑球的个数可能是( ) A .10B .11C .12D .137.如图,将ABC ∆绕点A 逆时针旋转55︒得到ADE ∆,若75E ∠=︒且AD BC ⊥于点F ,则BAC ∠的度数为( )A. 65︒B. 70︒C. 75︒D. 80︒8.奥密克戎是新冠病毒的变异毒株,传染性强,有一人感染了此病毒,未被有效隔离,经过两轮传染,共有196名感染者,在每轮传染中,设平均一个人传染了x 人,则可列方程为( ) A .1196x +=B .()21196x +=C .21196x +=D .21196x x ++=9.点(13P -,)1y ,(21P -,)2y ,(32P ,)3y 均在二次函数224y x x =--的图象上,则1y ,2y ,3y的大小关系是( ) A .123y y y >>B .312y y y >>C .231y y y >>D .213y y y >>10.如图,AB 是O 的弦,半径OC AB ⊥于点D ,26P ∠=︒,点P 在圆周上,则A ∠等于( ) A .26°B .30°C .34°D .38°11.若整数a 使得关于x 的不等式组()533213x x x a x -⎧-⎪⎨⎪+≤-⎩<有解,也使得关于x 的一元二次方程2410ax x ++=有实数根,则所有满足条件的整数a 的和为( )A .10B .9C .6D .5F EDCBAOPD BAODCBA第5题图 第7题图第10题图12.若定义一种新运算:()()3,@3,a b a b a b a b a b ⎧+-⎪=⎨-+≥⎪⎩<,例如:2@42433=+-=,2@12134=-+=,下列说法:①()()1@24--=;①若()@25x x +=,则3x =;①@23x x =的解为2x =;①函数()21@1y x =+与x 轴交于()1,0-和()1,0.其中正确的个数是( ) A .4B .3C .2D .1二、填空题:(本大题4个小题,每小题分,共16分)请将每小题的答案直接填在答题卡...中对应的横线上.13.地球上陆地与海洋面积比约为3:7,则宇宙飞来一块陨石落在陆地的概率为 . 14.若m 是方程2220220x x --=的一个实数根,则2242021m m --=__________. 15.如图,在矩形ABCD 中,2AB =,30ACB ∠=︒,以A 为圆心,AB 为半径画弧,与对角线AC 交于点E ,与AD 交于点F ,过点E 作EH BC ⊥,交BC 于点H ,则阴影部分的面积为______________(结果保留π).16.已知在Rt ABC ∆中,90B ∠=︒,4AB =,3BC =,D 点是AB 的中点,将AD 绕点A 旋转,得到线段AE ,连接EC ,则CE 的最大值是______________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡...中对应的位置上.17.解方程:(1)240x x +=; (2)22350x x --=.4HBE CDFA第15题图第16题图E18.如图,ABC ∆内接于O ,AB 为O 的直径.(1)用尺规作图作出ACB ∠的平分线,交O 于点D ,连接DA 、DB (保留作图痕迹,不写作法);(2)若2AD =,1AC =,求CB 的长度.解:①AB 是圆的直径 ∴90ACB ADB ∠=∠=︒ ①CD 是ACB ∠的平分线 ∴ ∴AD BD =① ①ABD ∆是等腰直角三角形 ∵2AD = ①2BD AD ==①AB = 在Rt ABC ∆中,90ACB ∠=︒,1AC =∴CB = .四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡...中对应的位置上.19.劳动教育是教育的重要组成部分,某校倡议学生在家做一些力所能及的家务.现随机抽取该校部分学生进行问卷调查,问卷调查表如图所示,并根据调查结果绘制了两幅不完整的统计图.平均每周做家务的时间调查表设平均每周做家务的时间为x 小时,则最符合你的选项是______(单选) A .01x ≤< B .12x ≤< C .23x ≤< D .3x ≥OBAC第18题图(1)求共调查了多少人,并补全条形统计图.(2)该校有2000名学生,根据抽样调查结果,请你估计该校平均每周做家务的时间不少于2小时的学生人数.(3)为了增强学生的劳动意识,现需要从A 组的四位同学中抽两位同学作为志愿者参与社区服务,已知A 组由两位女生、两位男生组成,请利用树状图或列表等方法求出恰好抽到一男一女的概率.20.如图,AB 是O 的直径,C 是O 上一点,D 在BA 的延长线上,且ACD B ∠=∠. (1)求证:CD 是O 的切线;(2)若O 的半径为3,33=CD ,求BD 的长.学校部分学生平均每周做 家务时间的条形统计图选项人数(人)1042420161284016D CBA学校部分学生平均每周做 家务时间的扇形统计图D 20%ABC第20题图DOCA21.学习完二次函数后,同学们对函数242y x x =-+的图像和性质进行了探究.在经历列表、描点、连线步骤后得到其图象如图所示.请根据函数图象完成以下问题: (1)观察发现:①该函数的图像关于_______对称;①当=x _______时,该函数有最_______值为_______;①当x 在什么范围内,y 随x 的增大而增大? ; (2)分析思考:①方程2422x x -+=的解为_____________________;①关于x 的方程242x x m -+=有4个实数根时,m 的取值范围是_______.22.拉伊卜是2022年卡塔尔世界杯吉样物,代表着技艺高超的球员.随着世界杯的火热进行,吉祥物拉伊卜玩偶成为畅销商品.某经销商售卖大、小两种拉伊卜玩偶,每个大拉伊卜售价比小拉伊卜售价贵30元且销售30个小拉伊卜玩偶的销售额和21个大拉伊卜玩偶的销售额相同. (1)求每个小、大拉伊卜玩偶的售价分别为多少元?(2)世界杯开赛第一周该经销商售出小拉伊卜玩偶400个,大拉伊卜玩偶200个,世界杯开赛第二周,该经销商决定降价出售两种拉伊卜玩偶.已知:两种拉伊卜玩偶都降价a 元,小拉伊卜玩偶售出数量较世界杯开赛第一周多了10a 个;大拉伊卜玩偶售出数量与世界杯开赛第一周相同,该经销商世界杯第二周总销售额为48000元,求a 的值.第21题图23.一个各位数字均不为0的四位正整数,如果千位与个位数字相同,百位与十位数字相同,则我们称这个四位数为“半同数”.规定()11t F t =.例如1221t =,则()122111111F t ==. (1)若m 是最大的“半同数”,则()F m =_______;若n 是最小的“半同数”,则()F n =________;(2)已知“半同数”p ,p abba =.若()3F p -能被11整除,求满足条件的所有p 的值.24.已知抛物线23y ax bx =+-与x 轴交于点(1,0)A -,(3,0)B ,与y 轴交于点C .(1)求抛物线的函数解析式.(2)如图1,点D 是直线BC 下方抛物线上一点,过点D 作DF x ⊥轴,交直线BC 于点E ,交x 轴于点F ,设点D 的横坐标为m ,求线段DE 长度的最大值.(3)点M 是抛物线的顶点,在平面内确定一点N ,使得以点A 、M 、C 、N 为顶点的四边形是平行四边形,请直接写出所有符合条件的点N 的坐标.第24题图1第24题图225.如图1,在Rt ABC ∆中,90ACB ∠=︒,CA CB =,点D 是斜边上一点,连接CD ,将CD绕点C 逆时针旋转90︒,得到线段CE ,连接BE . (1)证明:DB BE ⊥;(2)若22AC =,4AB AD =,求CD 的长;(3)如图2,在四边形ABCD 中,45BCD ∠=︒,90ADB ∠=︒,AD BD =,若3CB =,6CD =,请直接写出AC 的长.第25题图1DCBA 第25题图2EDCB A参考答案一、选择题:1—6. A C D B D C 7—12.B B A D A C 二、填空题:13.310 14.2023 15.32233π- 16.7 三、解答题:17.(1)4,021-==x x .....................4分 (2)25,121=-=x x .....................8分 18.(1)如图所示.....................4分(2)ACD BCD ∠=∠,AD BD =,2422BD AD 2222==+=+)()(,312AC AB 2222=-=- .....................8分四、解答题:19.(1)102050%÷=人B 组:504161020---=人 ...................4分 答:共调查了50人,补全条形统计图如图所示。
2024年人教版初三数学上册期末考试卷(附答案)
2024年人教版初三数学上册期末考试卷一、选择题(每题1分,共5分)1. 已知一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长是()cm。
A. 18B. 20C. 22D. 242. 下列哪个数不是有理数?()A. 3/4B. 0C. √2D. 2/33. 一个正方形的周长是36cm,那么它的面积是()cm²。
A. 36B. 81C. 144D. 1964. 如果一个圆的半径是4cm,那么它的面积是()cm²。
A. 16πB. 32πC. 64πD. 128π5. 下列哪个图形是中心对称图形?()A. 矩形B. 梯形C. 圆D. 三角形二、判断题(每题1分,共5分)1. 一个数的平方根是唯一的。
()2. 两个全等的三角形一定是相似的。
()3. 一个等腰三角形的底角一定是锐角。
()4. 一个圆的周长等于它的直径的π倍。
()5. 一个平行四边形的对角线互相垂直。
()三、填空题(每题1分,共5分)1. 一个数的立方根是它自己的数叫做______数。
2. 一个等腰三角形的两个底角是______角。
3. 一个圆的半径是5cm,那么它的周长是______cm。
4. 一个正方形的边长是6cm,那么它的周长是______cm。
5. 一个等腰梯形的两个底角是______角。
四、简答题(每题2分,共10分)1. 简述有理数的概念。
2. 简述等腰三角形的性质。
3. 简述圆的性质。
4. 简述平行四边形的性质。
5. 简述等腰梯形的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为10cm,腰长为8cm,求这个三角形的周长。
2. 已知一个正方形的周长为36cm,求它的面积。
3. 已知一个圆的半径为5cm,求它的面积。
4. 已知一个平行四边形的底边长为8cm,高为6cm,求它的面积。
5. 已知一个等腰梯形的上底长为8cm,下底长为12cm,高为5cm,求它的面积。
六、分析题(每题5分,共10分)1. 分析有理数和无理数的区别。
2024届黑龙江省哈尔滨市南岗区第十七中学数学九上期末综合测试试题含解析
2024届黑龙江省哈尔滨市南岗区第十七中学数学九上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分) 1.若式子23x x --有意义,则x 的取值范围为( ) A .x≥2 B .x≠3 C .x≥2或x≠3D .x≥2且x≠32.下列命题①若a b >,则22am bm >②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形 ④16的平方根是4±.其中真命题的个数是( ) A .0B .1C .2D .33.若反比例函数3k y x-=的图象在每一条曲线上y 都随x 的增大而减小,则k 的取值范围是( ) A .3k >B .3k <C .03k <<D .3k ≤4.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC ′的位置,此时露在水面上的鱼线B 'C '长度是( )A .3mB .33 mC .23 mD .4m5.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( ) A .B .C .D .6.函数y ax a =-+与ay x=(0a ≠)在同一坐标系中的图象可能是( )A .B .C .D .7.如图,在正方形网格中,已知ABC ∆的三个顶点均在格点上,则ACB ∠的正切值为( )A .2B .255C .55D .128.如图,O 的直径10cm AB =,弦CD AB ⊥于P .若:3:5OP OB =,则CD 的长是( )A .6cmB .4cmC .8cmD .91cm9.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是( ) A .把投影灯向银幕的相反方向移动 B .把剪影向投影灯方向移动 C .把剪影向银幕方向移动D .把银幕向投影灯方向移动10.下列各式计算正确的是( ) A .235+=B .43331-=C .233363⨯=D .2733÷= 二、填空题(每小题3分,共24分)11.如图,从一块直径是2m 的圆形铁皮上剪出一个圆心角是90的扇形,如果将剪下来的扇形围成一个圆锥,那么圆锥的底面圆的半径为___________m .12.在锐角ABC 中,2232sin cos 22A B ⎛⎫⎛⎫-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=0,则∠C 的度数为____. 13.函数y =kx ,y =ax ,y =b x的图象如图所示,下列判断正确的有_____.(填序号)①k ,a ,b 都是正数;②函数y =与y =的图象会出现四个交点;③A ,D 两点关于原点对称;④若B 是OA 的中点,则a =4b .14.地物线2y ax bx c =++的部分图象如图所示,则当0y >时,x 的取值范围是______.15.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在一个平面上,边AC 与EF 重合,12AC cm =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为______cm .16.已知一列分式,2x y ,53x y -,106x y ,1710x y -,2615x y ,3721x y-…,观察其规律,则第n 个分式是_______.17.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF 的半径是3则这个正六边形的周长是___.18.如图,矩形ABCD 的顶点A 、B 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限内的图象经过点D ,交BC 于点E .若AB =4,CE =2BE ,tan ∠AOD =34,则k 的值_____.三、解答题(共66分)19.(10分)如图,在矩形ABCD 中,AB =6,BC =13,BE =4,点F 从点B 出发,在折线段BA ﹣AD 上运动,连接EF ,当EF ⊥BC 时停止运动,过点E 作EG ⊥EF ,交矩形的边于点G ,连接FG .设点F 运动的路程为x ,△EFG 的面积为S .(1)当点F 与点A 重合时,点G 恰好到达点D ,此时x = ,当EF ⊥BC 时,x = ; (2)求S 关于x 的函数解析式,并直接写出自变量x 的取值范围; (3)当S =15时,求此时x 的值.20.(6分)下面是一位同学做的一道作图题:已知线段a 、b 、c (如图所示),求作线段x ,使::a b c x .a b c他的作法如下:1.以下O 为端点画射线OM ,ON .2.在OM 上依次截取OA a =,AB b =.3.在ON 上截取OC c =.4.联结AC ,过点B 作BDAC ,交ON 于点D .所以:线段______就是所求的线段x .(1)试将结论补完整:线段______就是所求的线段x . (2)这位同学作图的依据是______;(3)如果4OA =,5AB =,AC m =,试用向量m 表示向量DB .21.(6分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为A 、B 、C 、D 、E 五个组,x 表示测试成绩,A 组:90100x ;B 组:8090x <;C 组:7080x <;D 组:6070x <;E 组:60x <),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有______人,请将两幅统计图补充完整; (2)抽取的测试成绩的中位数落在______组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?22.(8分)如图,平面直角坐标系中,一次函数y =x ﹣1的图象与x 轴,y 轴分别交于点A ,B ,与反比例函数y =kx的图象交于点C ,D ,CE ⊥x 轴于点E ,13OA AE =.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=k x的图象有公共点时,求a的取值范围.23.(8分)如图,在□ABCD中,E是AD的中点,延长CB到点F,使BF=12BC,连接BE、AF.(1)求证:四边形AFBE是平行四边形;(2)若AB=6,AD=8,∠C=60°,求BE的长.24.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D ,BE⊥AB,垂足为B,BE=CD连接CE,DE.(1)求证:四边形CDBE是矩形(2)若AC=2 ,∠ABC=30°,求DE的长25.(10分)已知关于的方程,若方程的一个根是–4,求另一个根及的值.26.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为,,,A B C D四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有 人; (2)补全条形统计图;(3)在扇形统计图中,表示C 等级的扇形的圆心角为__ 图中m = ;(4)学校决定从本次比赛获得A 等级的学生中选出两名去参加市征文比赛,已知A 等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.参考答案一、选择题(每小题3分,共30分) 1、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x 的不等式组,解不等式组即可.【题目详解】由题意,要使x 2x 3--在实数范围内有意义,必须2022303x x x x x -≥≥⎧⎧⇒⇒≥⎨⎨-≠≠⎩⎩且x≠3, 故选D. 2、A【分析】①根据不等式的性质进行判断;②根据圆心角、弧、弦的关系进行分析即可;③根据正多边形的定义进行判断;④根据平方根的性质进行判断即可.【题目详解】①若m 2=0,则22am bm =,此命题是假命题; ②在同圆或等圆中,相等的圆心角所对的弧相等,此命题是假命题;③各边相等,各内角相等的多边形是正多边形,此命题是假命题;,4的平方根是2±,此命题是假命题. 所以原命题是真命题的个数为0, 故选:A . 【题目点拨】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理. 3、A【分析】根据反比例函数的图象和性质,当反比例函数y 3k x-=的图象的每一条曲线上,y 都随x 的增大而减小,可知,k ﹣1>0,进而求出k >1. 【题目详解】∵反比例函数y 3k x-=的图象的每一条曲线上,y 都随x 的增大而减小, ∴k ﹣1>0, ∴k >1. 故选:A . 【题目点拨】本题考查了反比例函数的图象和性质,对于反比例函数y kx=,当k >0时,在每个象限内,y 随x 的增大而减小;当k <0时,在每个象限内,y 随x 的增大而增大. 4、B【解题分析】因为三角形ABC 和三角形AB ′C ′均为直角三角形,且BC 、B ′C ′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C ′AB ′的度数,然后可以求出鱼线B 'C '长度.【题目详解】解:∵sin ∠CAB =BC AC ==∴∠CAB =45°. ∵∠C ′AC =15°, ∴∠C ′AB ′=60°.∴sin60°=''62B C =解得:B ′C ′=33. 故选:B . 【题目点拨】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题. 5、A【解题分析】解:将矩形木框立起与地面垂直放置时,形成B 选项的影子; 将矩形木框与地面平行放置时,形成C 选项影子; 将木框倾斜放置形成D 选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A 选项中的梯形,因为梯形两底不相等. 故选A . 6、D【分析】根据反比例函数与一次函数的图象特点解答即可.【题目详解】0a >时,0a -<,y ax a =-+在一、二、四象限,ay x=在一、三象限,无选项符合. 0a <时,0a ->,y ax a =-+在一、三、四象限,ay x=(0a ≠)在二、四象限,只有D 符合; 故选:D . 【题目点拨】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a 的取值确定函数所在的象限. 7、D【分析】延长CB 交网格于D ,连接AD ,得直角三角形ACD ,由勾股定理得出AD 、AC ,由三角函数定义即可得出答案.【题目详解】解:延长CB 交网格于D ,连接AD ,如图所示:则454590ADC ∠=︒+︒=︒,22112AD =+=222222CD +,ACB ∴∠的正切值21222AD CD ===; 故选:D . 【题目点拨】本题考查了解直角三角形以及勾股定理的运用;熟练掌握勾股定理,构造直角三角形是解题的关键. 8、C【分析】先根据线段的比例、直径求出OC 、OP 的长,再利用勾股定理求出CP 的长,然后根据垂径定理即可得. 【题目详解】如图,连接OC 直径10cm AB =152OC OB AB cm ∴=== :3:5OP OB = 3OP cm ∴=在Rt OCP ∆中,2222534()CP OC OP cm =-=-= 弦CD AB ⊥于P28CD CP cm ∴==故选:C .【题目点拨】本题考查了勾股定理、垂径定理等知识点,属于基础题型,掌握垂径定理是解题关键. 9、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【题目详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A 错误; 当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B 正确,C 错误; 当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D 错误. 故选:B .【题目点拨】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.10、D【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【题目详解】23A 选项错误;B. 原式3B 选项错误;C. 原式=6×3=18,所以C 选项错误;D. 原式27393,=÷==所以D 选正确. 故选D.【题目点拨】考查二次根式的运算,熟练掌握二次根式加减乘除的运算法则是解题的关键.二、填空题(每小题3分,共24分)112【分析】根据题意可知扇形ABC 围成圆锥后的底面周长就是弧BC 的弧长,再根据弧长公式和圆周长公式来求解.【题目详解】解:作OD AC ⊥于点D ,连结OA 、BC,∵∠BAC=90°∴BC 是直径,OB=OC,45, 2OAD AC AD ∴∠==,222AC ∴==9022π⨯=∴圆锥的底面圆的半径()22224ππ=÷= 故答案为:24【题目点拨】本题考查了扇形围成圆锥形,圆锥的底面圆的周长就是原来扇形的弧长,找到它们的关系是解题的关键.12、75°【分析】由非负数的性质可得:3sin 22cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,可求,A B ∠∠,从而利用三角形的内角和可得答案. 【题目详解】解:由题意,得sinA =3cosB =22, 解得∠A =60°,∠B =45°,∠C =180°﹣∠A ﹣∠B =75°,故答案为:75°.【题目点拨】本题考查了非负数的性质:偶次方、三角形的内角和定理,特殊角的三角函数值,掌握以上知识是解题的关键.13、①③④【分析】根据反比例函数、一次函数的性质以及反比例函数系数k 的几何意义即可判断.【题目详解】解:由图像可知函数y =kx 经过一、三象限,h 函数y =a x ,y =b x在一、三象限,则k >0,a >0,b >0,故①正确;由图像可知函数y =a x 与y =b x 的图像没有交点,故②错误; 根据正比例函数和反比例函数的图像都是中心对称图像可知,A ,D 两点关于原点对称,故③正确;若B 是OA 的中点,轴OA =2OB ,作AM ⊥x 轴于M ,BN ⊥x 轴于N ,∴BN ∥AM ,∴△BON ∽△AOM ,∴21()4BON AOM S OB S OA ∆∆==, ∴112142b a =, ∴b =4a ,故④正确:故答案为①③④.【题目点拨】本题考查了相似性质、反比例函数、一次函数的性质以及反比例函数系数k 的几何意义,数形结合的思想是解题的关键14、1x <-或3x >【分析】根据二次函数的对称性即可得出二次函数与x 轴的另一个交点为(3,0),当0y >时,图像位于x 轴的上方,故可以得出x 的取值范围.【题目详解】解:由图像可得:对称轴为x=1,二次函数与x 轴的一个交点为(-1,0)则根据对称性可得另一个交点为(3,0)∴当1x <-或3x >时,0y >故答案为:1x <-或3x >【题目点拨】本题主要考查的是二次函数的对称性,二次函数的图像是关于对称轴对称的,掌握这个知识点是解题的关键.15、24122- 【分析】过点D'作D'N ⊥AC 于点N ,作D'M ⊥BC 于点M ,由直角三角形的性质可得BC=43cm ,AB=83cm ,ED=DF=62cm ,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M ,即点D'在射线CD 上移动,且当E'D'⊥AC 时,DD'值最大,则可求点D 运动的路径长,【题目详解】解:∵AC=12cm ,∠A=30°,∠DEF=45°∴BC=43cm ,AB=83cm ,ED=DF=62cm如图,当点E 沿AC 方向下滑时,得△E'D'F',过点D'作D'N ⊥AC 于点N ,作D'M ⊥BC 于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M ,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS )∴D'N=D'M ,且D'N ⊥AC ,D'M ⊥CM∴CD'平分∠ACM即点E 沿AC 方向下滑时,点D'在射线CD 上移动,∴当E'D'⊥AC 时,DD'值最大,最大值2ED-CD=(2)cm∴当点E 从点A 滑动到点C 时,点D 运动的路径长=2×(2)=(2)cm【题目点拨】本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,确定点D 的运动轨迹是本题的关键.16、2111(1)2(1)nn n n x y +++-【分析】分别找出符号,分母,分子的规律,从而得出第n 个分式的式子.【题目详解】观察发现符号规律为:正负间或出现,故第n 项的符号为:()11n +- 分母规律为:y 的次序依次增加2、3、4等等,故第n 项为:123n y ++++=()112n n y +分子规律为:x 的次数为对应项的平方加1,故第n 项为:21nx + 故答案为:2111(1)2(1)n n n n x y +++-.【题目点拨】 本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.17、123【分析】确定正六边形的中心O ,连接EO 、FO ,易证正六变形的边长等于其半径,可得正六边形的周长.【题目详解】解:如图,确定正六边形的中心O ,连接EO 、FO.由正六边形可得23,360660OE OF EOF ︒︒==∠=÷=OEF ∴是等边三角形23EF OE OF ∴===所以正六边形的周长为236123=故答案为: 123【题目点拨】本题考查了正多边形与圆,灵活利用正多边形的性质是解题的关键.18、1【解题分析】由tan ∠AOD =34,可设AD =1a 、OA =4a ,在表示出点D 、E 的坐标,由反比例函数经过点D 、E 列出关于a 的方程,解之求得a 的值即可得出答案.【题目详解】解:∵tan ∠AOD =AD OA =34, ∴设AD =1a 、OA =4a ,则BC =AD =1a ,点D 坐标为(4a ,1a ),∵CE =2BE ,∴BE =13BC =a , ∵AB =4,∴点E (4+4a ,a ), ∵反比例函数k y x= 经过点D 、E , ∴k =12a 2=(4+4a )a ,解得:a =12或a =0(舍), ∴D (2,32) 则k =2×32=1. 故答案为1.【题目点拨】本题考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .三、解答题(共66分)19、(1)6;10;(2)S =34x 2+9x +12(0<x ≤6);S =34x 2﹣21x +102(6<x ≤10);(3)﹣. 【分析】(1)当点F 与点A 重合时,x =AB =6;当EF ⊥BC 时,AF =BE =4,x =AB +AF =6+4=10;(2)分两种情况:①当点F 在AB 上时,作GH ⊥BC 于H ,则四边形ABHG 是矩形,证明△EFB ∽△GEH ,得出BF BE EH GH =,求出EH =32x ,得出AG =BH =BE +EH =4+32x ,由梯形面积公式和三角形面积公式即可得出答案; ②当点F 在AD 上时,作FM ⊥BC 于M ,则FM =AB =6,AF =BM ,同①得△EFM ∽△GEC ,得出EM FM GC EC=,求出GC =15﹣32x ,得出DG =CD ﹣CG =32x ﹣9,EC =BC ﹣BE =9,AF =x ﹣6,DF =AD ﹣AF =19﹣x ,由梯形面积公式和三角形面积公式即可得出答案;(3)当34x 2+9x +12=15时,当34x 2﹣21x +102=15时,分别解方程即可. 【题目详解】(1)当点F 与点A 重合时,x =AB =6;当EF ⊥BC 时,AF =BE =4,x =AB +AF =6+4=10;故答案为:6;10;(2)∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴BF BFEH GH=,即4263xEH==,∴EH=32x,∴AG=BH=BE+EH=4+32x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=12(4+4+32x)×6﹣12×4x﹣12(6﹣x)(4+32x)=34x2+9x+12,即S=34x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴EM FMGC EC=,即4(6)6134xGC--=-,解得:GC=15﹣32x,∴DG=CD﹣CG=32x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=12(9+19﹣x)×6﹣12×9×(15﹣32x)﹣12(19﹣x)(32x﹣9)=34x2﹣21x+102即S=34x2﹣21x+102(6<x≤10);(3)当34x2+9x+12=15时,解得:x=﹣6±10(负值舍去),∴x=﹣6+10当34x2﹣21x+102=15时,解得:x=14±45;∴当S=15时,此时x的值为﹣6+10.【题目点拨】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.20、(1)CD;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例)等;(3)9 4DB m=-【分析】(1)根据作图依据平行线分线段成比例定理求解可得;(2)根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;(3)先证△OAC ∽△OBD 得AC OA BD OB =,即94BD AC =,从而知94BD AC =,又AC m =,BD 与AC 反向可得出结果.【题目详解】解:(1)根据作图知,线段CD 就是所求的线段x ,故答案为:CD ;(2)平行线分段成比例定理(两条直线被三条平行的直线所截,截得的对应线段成比例);或三角形一边的平行线性质定理(平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例).(3)BD AC ∥, ∴△OAC ∽△OBD ,AC OA BD OB∴=. 4=OA ,5AB =,49AC BD ∴=.得94BD AC =. 94BD AC =,AC m =,BD 与AC 反向, 94DB m ∴=-. 【题目点拨】本题主要考查作图-复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.21、(1)400,图详见解析;(2)B ;(3)660人.【分析】(1)用E 组的人数除以E 组所占的百分比即可得出学生总人数;根据总人数乘以B 组所占百分比可得B 组的人数,利用A 、C 各组的人数除以总人数即得A 、C 两组所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A 、B 两组的百分比之和求解即可.【题目详解】解:(1)40÷10%=400,∴抽取的学生共有400人;B 组人数为:400×30%=120,A 组占:100÷400=25%,C 组占:80÷400=20%,补全统计图如下:故答案为:400;(2)∵A 组有100人,B 组有120人,C 组有80人,D 组有60人,E 组有40人,∴400的最中间的两个数在B 组,∴测试成绩的中位数落在B 组.故答案为:B ;(3)1200×(25%+30%)=660,∴该校初三测试成绩为优秀的学生有660人.【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到解题的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)D (﹣3,﹣4);(1)当边MN 与反比例函数y =k x的图象有公共点时4<a ≤6或﹣3<a ≤﹣1. 【分析】(1)利用待定系数法以及等腰直角三角形的性质求出EC ,OE 即可解决问题.(1)如图,设M (a ,a ﹣1),则N (a ,12a),由EC =MN 构建方程求出特殊点M 的坐标即可判断. 【题目详解】解:(1)由题意A (1,0),B (0,﹣1),∴OA =OB =1,∴∠OAB =∠CAE =45°∵AE =3OA ,∴AE =3,∵EC ⊥x 轴,∴∠AEC =90°,∴∠EAC =∠ACE =45°,∴EC =AE =3,∴C (4,3),∵反比例函数y =x k 经过点C (4,3), ∴k =11,由112y x y x =-⎧⎪⎨=⎪⎩,解得43x y =⎧⎨=⎩或34x y =-⎧⎨=-⎩, ∴D (﹣3,﹣4).(1)如图,设M (a ,a ﹣1),则N (a ,12a )∵四边形ECMN 是平行四边形,∴MN =EC =3,∴|a ﹣1﹣12a|=3, 解得a =6或﹣1或﹣1±13,∴M (6,5)或(﹣1,﹣3),观察图象可知:当边MN 与反比例函数y =x k 的图象有公共点时4<a ≤6或﹣3<a ≤﹣1. 【题目点拨】考核知识点:反比例函数与一次函数.数形结合,解方程组求图象交点,根据图象分析问题是关键.23、(1)证明见解析;(2)7【分析】(1)根据平行四边形的性质证明AE BF =,再由一组对边平行而且相等的四边形是平行四边形判定即可判定;(2)过点A 作AG ⊥BF 于G ,构造30读直角三角形,利用平行四边形的性质和勾股定理解答即可.【题目详解】证明:(1)∵四边形ABCD 为平行四边形,∴//AD BC ,AD BC =,又∵E 是AD 的中点,12BF BC =, ∴AE BF =,又∵//AE BF ,∴四边形AFBE 是平行四边形.(2)过点A 作AG BF ⊥于G ,由ABCD 可知://AB DC ,∴60ABF C ∠=∠=,∴30BAG ∠=,又∵6AB =,8AD =,∴3BG =,4BF AE ==,∴1FG =,在Rt ABG ∆中,由勾股定理得:222226327AG AB BG =-=-=,在Rt AGF ∆中,由勾股定理得:22227128AF AG FG =+=+=, ∴27BE AF ==【题目点拨】本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.24、(1)见详解,(2)3,【解题分析】(1)利用有一组对边平行且相等的四边形是平行四边形,有一个角是90°的平行四边形是矩形即可证明,(2)利用30°角所对直角边是斜边的一半和勾股定理即可解题.【题目详解】解:(1)∵CD ⊥AB , BE ⊥AB ,∴CD ∥BE,∵BE=CD,∴四边形CDBE 是矩形,(2)在Rt △ABC 中,∵∠ABC=30°,AC=2 ,∴AB=4,(30°角所对直角边是斜边的一半)∴3,(勾股定理)【题目点拨】本题考查了矩形的证明和特殊直角三角形的性质,属于简单题,熟悉判定方法是解题关键.25、1,-2【解题分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【题目详解】【题目点拨】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.26、(1)30;(2)图见解析;(3)144°,30;(4)23.【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示C等级的扇形的圆心角和m的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【题目详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3)12360=144 30⨯︒︒,9100%=30%30⨯,∴m=30(4)依题意,列表如下:男女女男(男,女) (男,女)女(男,女) (女,女)女(男,女) (女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以4263P==;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以4263P==.【题目点拨】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.。
2024—2025学年北师大版九年级上册数学期末考试模拟试卷 (1)
数学期末考试模拟试卷北师大版2024—2025学年九年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟题号一二三总分171819202122232425得分第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分1.下列方程是一元二次方程的是()A.x+y=5B.3x2﹣x=2C.x(x2+1)=2D.2.用配方法解方程x2﹣4x+1=0时,应将其变形为()A.(x﹣4)2=3B.(x+4)2=0C.(x﹣2)2=0D.(x﹣2)2=3 3.如图,在Rt△ABC中,CD是斜边AB上的中线,若AB=10,则CD=()A.10B.6C.8D.54.下列立体图形中,从前面看得到的平面图形与从左面看得到的平面图形不相同的是()A.长方体B.正方体C.圆柱D.球5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中.不断重复这一过程,共摸了100次球,发现有69次摸到红球,请估计这个口袋中白球的数量为()A.7B.6C.4D.36.已知kb>0,一次函数y=kx﹣b与反比例函数在同一平面直角坐标系中的图象可能是()A.B.C.D.7.下列说法正确的是()A.对角线互相垂直的平行四边形是正方形B.一组对边平行另一组对边相等的四边形是平行四边形C.一组对边平行且一组对角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形8.已知正比例函数y1=﹣2x与反比例函数.对于实数m,当x=m时,y1>y2;当x=m+1时,y1<y2,则m的取值范围为()A.m<﹣2或0<m<2B.﹣2<m<2C.﹣3<m<﹣2或1<m<2D.﹣2<m<0或m>29.如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.1810.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5B.4C.D.3二、填空题(6小题,每题3分,共18分)11.两个相似三角形的面积比是4:9,其中一个三角形的周长为6,则另一个三角形的周长是.12.已知等腰三角形的两边长分别是一元二次方程x2﹣6x+8=0的两根,则该三角形的周长为.13.若反比例函数的图象的一个分支在第二象限,则m的取值范围是.14.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值是.15.如图,反比例函数y=(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B(﹣1,3),S▱ABCO=3,则实数k的值为.16.如图,正方形MNPQ内接于△ABC,点M、N在BC上,点P、Q分别在AC和AB边上,且BC边上的高AD=6cm,BC=12cm,则正方形MNPQ的边长为.第II卷数学期末考试模拟试卷北师大版2024—2025学年九年级上册姓名:____________学号:____________准考证号:___________题号一二三总分171819202122232425得分一、选择题(每题只有一个正确选项,每小题3分,满分36分)题号12345678910答案二、填空题(6小题,每题3分,共18分)11、_______12、______13、_______14、______15、_______16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:(1)x2﹣8x+1=0;(2)2x2+1=3x.18.一个几何体由若干个棱长为1cm的小正方体搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置小立方块的个数.(1)请画出从正面、左面看到的这个几何体的形状图;(2)求该几何体的表面积.19.如图,在平行四边形ABCD中,H是BC的中点,连接AH并延长交DC的延长线于点M,连接BM,且BD⊥BM.(1)求证:C为线段DM的中点;(2)若AB=5,BD=6,求平行四边形ABCD面积.20.已知关于x的方程x2﹣4x+k+1=0有两实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1、x2,且+=x1x2﹣4,求实数k的值.21.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.22.某校九年级三班助农兴趣小组针对本班级同学,就新区草莓节的关注程度进行了调查统计,将调查结果分为不关注,关注,比较关注,非常关注四类(分别用A,B,C,D表示),并根据调查结果绘制了如下两幅不完整的统计图:根据图表信息,解答下列问题:(1)九年级三班一共人,其中B类所对应的圆心角为.(2)九年级一共有600名学生,根据上述调查结果,估计九年级学生选择D 类的有多少人.(3)为了能够更好的宣传新区草莓节,现从非常关注草莓节的甲乙丙丁四名学生中任选两人撰写宣传稿,请用树状图或列表法求恰好选到甲和乙的概率.23.某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司销售A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套,为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降0.5万元,公司平均每月可多售出20套;若该公司在5月份要获利70万元,则每套A产品需降价多少?24.在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=,求DF的长.(2)求证:AE•CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.25.如图,直线y1=2x+2与坐标轴交于A、B两点,与双曲线交于C、D两点,并且DA=AB.(1)求反比例函数的解析式;(2)若P,Q分别是第一、三象限内反比例函数图象上的两点,连接DP,PQ,QC,当四边形DPQC为平行四边形时,求点Q的坐标;(3)在(2)的条件下,将CQ所在的直线向上平移m(m>0)个单位长度,平移后的直线与双曲线交于H,R两点,与直线AB交于点G,设H,R,G的横坐标分别为x H,x R,x G,若x H,x R,x G满足等式,求m的值.。
初三上册数学期末考试题及答案
初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:±52. 一个数的倒数是2,这个数是____。
答案:1/23. 一个数的相反数是-3,这个数是____。
答案:34. 一个数的绝对值是10,这个数是____。
答案:±105. 一个数的平方根是4,这个数是____。
答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。
(10分)答案:第三边的长度为10cm。
人教版初三上册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
江苏省无锡市锡山区2024届九年级上学期期末考试数学试卷
2024年秋学期期末考试试卷初三数学2024.1本试卷分试卷和答题卷两部分,全部答案一律写在答题卷上。
考试时间为120分钟。
试卷满分为130分。
一、选择题(本大题共10题,每小题3分,满分30分) 1.函数yx 的取值范围是( ▲ )A .x >2B .x ≥2C .x ≤2D .x ≠22.在正方形网格中,△ABC 如图放置,点A ,B ,C 都在格点上,则sin ∠BAC 的值为( ▲ )AB .12CD3.已知一组数据:16,15,16,14,17,16,15,则众数是( ▲ )A .17B .16C .15D .14 4.若关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,那么k 的取值范围是( ▲ ) A .k <1 B .k ≠0 C .k >1 D .k <05.如图,四边形ABCD 内接于⊙O ,若∠ABC=40°,则∠ADC 的度数是( ▲ ) A .90° B .100° C .120° D .140° 6.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ▲ )A .18πcm 2B .27πcm 2C .36πcm 2D .54πcm 27.若顺次连接四边形ABCD 各边中点所得四边形是菱形,则四边形ABCD 肯定是( ▲ )A .矩形B .菱形C .对角线相互垂直的四边形D .对角线相等的四边形B第2题 第5题 第10题8.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆.若在△ABC 中,AB =AC ,BC =6,∠BAC =120°,则△ABC 的最小覆盖圆的半径是( ▲ ) A .3B .C .2D .9.两个不相等的正数a 、b 满意a +b =2,ab =t -1,设S =2()a b -,则S 关于t 的函数图象是( ▲ ) A .射线(不含端点) B .线段(不含端点) C .直线 D .抛物线的一部分 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m <-3;④3a +b >0. 其中,正确结论的个数是( ▲ ) A .1 B .2 C .3 D .4 二、填空题(本大题共8小题,共8空,每空2分,共16分.) 11.抛物线y =(x ﹣2) 2﹣3的顶点坐标是 ▲ .12.一元二次方程x 2﹣ax +a ﹣4=0的一个根为0,则方程的另一个根为 ▲ .13.甲、乙两同学参与学校运动会铅球项目选拔赛,各投掷6次,记录成果,计算平均数和方差的结果为:=10.5x 甲,=10.5x 乙,2=0.61S 甲,2=0.50S 乙,则成果较稳定的是 ▲ .14.假如菱形的两条对角线的长为a 和b ,且满意2(3)0a -+=,那么菱形的面积等于 ▲ .15.如图,河坝横断面迎水坡AB 的坡比BC 与水平宽度AC 之比),坝高BC=3m ,则坡面AB 的长度是 ▲ .16.某公司今年销售一种产品,1月份获得利润30万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加3.3万元,假设该产品利润每月增长的百分率都为x ,则列出的方程为: ▲ .(不要求化简)17.如图,在边长为4的正方形ABCD 中,P 是CD 的中点,连接AP 并延长,交BC 的延长线于点F ,作△CPF 的外接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为 ▲ .18.如图,在等腰三角形ABC 中,AB =1,∠A =90°,点E 为腰AC 中点,点F 在底边BC上,且FE ⊥BE ,则△CEF 的面积为 ▲ . 三、解答题(本大题共84分) 19.(本题共有2小题,每小题4分,共8分)(1)计算:2052--+-(); (2)化简:11(1)1x x+•-. 20.解方程或不等式组(本题共有2小题,每小题4分,共8分) (1)解方程:23)3x x -=-(;(2)解不等式组: 210,120.2x x -≥⎧⎪⎨-+>⎪⎩C(第16题)(第18题)FEBCA21.(本题满分8分)如图,已知四边形ABCD是平行四边形,点E、B、D、F在同始终线上,且BE=DF.求证:AE=CF22.(本题满分8分)在一个不透亮的布袋里装有3个标号为1、2、3的小球,它们的材质、形态、大小完全相同,小明从布袋里随机取出一个小球,登记数字为x,小红从剩下的2个小球中随机取出一个小球,登记数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P全部可能的坐标;(2)求点(x,y)在函数y=﹣x+5图象上的概率.23.(本题满分8分)某商店从厂家以每件20元的价格购进一批商品,该商店可以自行定价。
2010-2023历年宁夏银川市九年级上学期期末考试数学试卷(带解析)
2010-2023历年宁夏银川市九年级上学期期末考试数学试卷(带解析)第1卷一.参考题库(共20题)1.一元二次方程的根是()A.x1=1,x2=6B.x1=2,x2=3C.x1=1,x2=-6D.x1=-1,x2=62.依次连接菱形各边中点所得到的四边形是.3.“一方有难,八方支援”.今年11月2日,某县出现洪涝灾害,牵动着全县人民的心,县人民医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援防汛救灾工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.4.如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如下图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.5.下列命题中,正确的是()A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线相等的菱形是正方形D.对角线垂直且相等的四边形是正方形6.解方程:7.计算.8.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱C.三棱柱D.圆锥9.如图,在中,AB =AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F,求证:DE = DF.证明:(①)在BDE和中,,≌(②)(③)⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.⑵请你写出另一种证明此题的方法.10.已知正比例函数与反比例函数的一个交点是(2,3),则另一个交点是 .11.如图,AB⊥BC,AD⊥CD,垂足分别为B、D,若CB=CD,则≌,理由是A.SASB.AASC.HLD.ASA12.某厂规定,该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月该户只要交10元用电费,如果超过A度,则这个月仍要交10元用电费外,超过部分还要按每度元交费.(1)该厂某户居民2月份用电90度,超过了规定的度,则超过部分应交费_____ ___元.(用含A的式子表示);(2)下表是这户居民3月,4月的用电情况和交费情况.月份用电量(度)交电费总数(元)3月80254月4510根据上表的数据,求该厂规定的A是多少?13.请你写出一个反比例函数的解析式,使它的图象在第二、四象限.14.如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致是A.B.C.D.15.如图,E、F是□ABCD对角线上的两点,且.求证:(1);(2).16.下列函数中,属于反比例函数的是()A.B.C.D.17.如图,有一块直角三角形纸片,两条直角边AC=6cm,BC=8cm.若将直角边A C沿直线折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cmD.5cm18.在Rt△ABC中,∠C = 90°,a = 4,b = 3,则cosA的值是()A.B.C.D.19.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员小明能参加这次活动的概率是.20.已知,如图,AB、DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.第1卷参考答案一.参考题库1.参考答案:D2.参考答案:矩形3.参考答案:解:(1)用树状图或列表法表示所有可能结果如下:(2)(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.4.参考答案:解:(1)由题意得②-①得∴反比例函数的解析式为.(2)由解得,∵点A在第一象限,∴点A的坐标为(1,1)(3),OA与x轴所夹锐角为45°,①当OA为腰时,由OA=OP得P1(,0),P2(-,0);由OA=AP得P3=(2,0).②当OA为底时,得P4=(1,0).∴符合条件的点有4个,分别是(,0),(-,0),(2,0),(1,0)5.参考答案:C6.参考答案:x1=1,x2=27.参考答案:-8.参考答案:A9.参考答案:解:(1)①等边对等角;②AAS;③全等三角形的对应边相等。
青岛市2023-2024学年市南区59中初三上册期末数学试题
2024年青岛市市南区第五十九中学期末考试九年级数学试题(考试时间:120分钟满分:120分)说明:1.本试卷分为第I 卷和第II 卷两部分,共26题.第I 卷为选择题,共10小题,30分;第II 卷为填空题、作图题、解答题,共16题,90分2.所有题目均在答题卡上作答,在试题上作答无效。
第I 卷(共30分)一、单选题(本题满分30分,共有10道小题,每小题3分)1.如果将抛物线22y x =+先向左平移1个单位,再向下平移1个单位,那么所得新抛物线的表达式是A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =+-2.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在30%和40%,盒子中白色球的个数可能是A .24个B .18个C .16个D .6个3.若关于x 的方程230ax x c -+=有两个不相等的实数根,则下列选项中,满足条件的实数a ,c 的值可以是()A .1a =,3c =B .2a =-,4c =-C .1a =-,3c =D .5a =,1c =4.反比例函数3(3)k y k x -=<图象经过点(3,)A a -、(1,)B b -、(2,)C c ,则a 、b 、c 的大小关系是()A .b a c >>B .b c a >>C .a c b >>D .c a b>>5.沿正方体相邻的三条棱的中点截掉一部分,得到如图所示的几何体,则它的主视图是()A .B .C .D .6.在正方形网格中,ABC ∆的位置如图所示,则tan A ∠的值为A .12B .22C .13D .337.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P ,Q ,M 均为正六边形的顶点.若点P ,Q 的坐标分别为(-,(0,3)-,则点M 的坐标为A .,2)-B .,2)C .(2,-D .(2,--8.如图所示,是一个几何体的俯视图和正视图(主视图),则该几何体的表面积为A .2(5900400)cm π+B .2(5900500)cm π+C .2(16001650)cm π+D .27500cm9.如图,在正方形ABCD 和正方形CEFG 中,点G 在CD 上,4BC =,2CE =,H 是AF 的中点,那么CH 的长为()A 10B .10C .37D 716.如图,点E 在正方形ABCD 外,连接AE 、BE 、DE ,过点A 作AE 的垂线交DE 于点F .若2AE AF ==,10BF =,则下列结论其中正确的有()个①AEB AFD ∆≅∆;②EF EB ⊥;③点B 到直线AE 的距离为32;④40ABF ADF S S ∆∆+=.A .1个B .2个C .3个D .4个第II 卷(共90分)二、填空题(本题满分18分,共有6道小题,每小题3分)11.已知15a b a -=,则a a b =+.12.计算:sin 30tan 453︒-︒+︒=.13.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是多少?设这个降低百分率为x ,则根据题意,可列方程.14.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为米.15.一个几何体由几个大小相同的小立方块搭成,从正面和上面看到的这个几何体的形状如图所示,若组成这个几何体的小立方块的个数为n ,则n 的最小值与最大值的和为.10.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc >;②方程20(0)ax bx c a ++=≠必有一个根大于2且小于3;③若1(0,)y ,23(,)2y 是抛物线上的两点,那么12y y <;④1120a c +<;⑤对于任意实数m ,都有()m am b a b ++,其中正确的结论是.A .5B .4C .3D .2三、作图题(本题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹17.如图,有一块三角形的铁皮.求作:以B ∠为一个内角的菱形BEFG ,使顶点F 在AC 边上.要求:尺规作图,不写作法,保留作图痕迹.四、解答题18.(本小题满分6分)已知关于x 的一元二次方程2(24)60kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法解方程.19.(本小题满分6分)4张相同的卡片分别写有数字1,2,3,4,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1,2,3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出一个球,将摸到的球的标号作为减数.(1)求这两个数的差为0的概率;(用列表法或树状图说明)(2)如果游戏规则规定:当抽到的这两个数的差为非负数时,则甲获胜;当抽到的这两个数的差为非正数时,则乙获胜;你认为这样的规则公平吗?如果不公平,请设计一个你认为公平的规则,并说明理由.20.(本小题满分6分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB 、BC 分别为线段,CD 为双曲线的一部分):(1)求出y 与x 之间的函数关系;(2)开始上课后第5分钟时与第30分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?说明理由.如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD 的A 、C 两点处测得该塔顶端F 的仰角分别为48α∠=︒,65β∠=︒,矩形建筑物宽度20AD m =,高度35DC m =.计算该信号发射塔顶端到地面的高度FG (结果精确到1)m .(参考数据:sin 480.7︒≈,cos 480.7︒≈,tan 48 1.1︒≈,sin 650.9︒≈,cos 650.4︒≈,tan 65 2.1)︒≈22.(本小题满分8分)如图,在平面直角坐标系中,一次函数11(0)y k x b k =+≠的图象与反比例函数22(0)k y k x=≠的图象相交于(3,4)A ,(4,)B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求S △ABO :S △ABD .如图,在矩形ABCD中,点G,H是对角线AC上的两点,且AG CH⊥交AB=,过AC的中点O作EF AC于点E,交CD于点F.(1)求证:AEG CFH∆≅∆;(2)若45∠+∠=︒,请你判断四边形GEHF的形状,并说明理由.BAC CFH24.(本小题满分8分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克.经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克,设每千克涨价x元,销售量为y千克.(1)求出y与x的函数关系;(2)当涨价多少元时,该商场每天获得的利润最大?最大利润为多少元?(3)现该商场要保证每天盈利1500元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(4)为了在该批水果保质期内尽快销售完,且又要保证每天盈利不低于1500元,那么涨价多少元时可使销售量最大?最大销售量是多少?在ABC ∆中,90C ∠=︒,4AC =,3BC =,依次作正方形111CD E F ,正方形1222D D E F ,正方形2333D D E F ,⋯,正方形1n n n n D D E F -,顶点1D ,2D ,3D ,⋯,n D 在边AC 上,顶点1E ,2E ,3E ,⋯,n E 在边AB 上.【探究】(1)正方形111CD E F 的边长为;(2)正方形1222D D E F 的边长;(3)写出正方形1n n n n D D E F -的边长(用含n 的代数式表示).26.(本小题满分10分)已知,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6cm ,BD =8cm .延长BC 至点E ,使CE =BC ,连接ED .点F 从点E 出发,沿ED 方向向点D 运动,速度为1cm/s,过点F 作FG ⊥ED 垂足为点F 交CE 于点G ;点H 从点A 出发,沿AD 方向向点D 运动,速度为1cm/s,过点H 作HP ∥AB ,交BD 于点P ,当F 点停止运动时,点H 也停止运动.设运动时间为t (0<t ≤3),解答下列问题:(1)当HG ∥AC 时,求t 的值;(2)设六边形PCGFDH 的面积为S (cm 2),求S 与t 的函数关系式;(3)是否存在某一时刻t ,使点P 在∠CED 的平分线上?若存在,求t 的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学(上)期末考试卷姓名_______学号________成绩_________一、填空题:(每空3分,共42分)1. 抛物线22(1)2y x =-++的对称轴是 ;顶点的坐标是 ; 2. 已知正比例函数y =kx 与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数的解析式是 ;3. 一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ;4. 一条弦把圆分为2∶3的两部分,那么这条弦所对的圆周角度数为 ;5. 如果两圆的半径分别为1和2,那么一条外公切线的长是 ; 6. 若正多边形的一个内角等于140°,则它是正 边形; 7. 如果半径为5的一条弧的长为3π,那么这条弧所对的圆心角为 ;8. 如图,三个半径为r 的等圆两两外切,且与△ABC 的三边分别相切,则△ABC 的边长是 ;9. 某人清晨在公路上跑步,他距某标志牌的距离S (千米)是跑步时间t (小时)的一次函数如图。
若该函数的图象是图中的线段BA ,该一次函数的解析式是 ;10. 与半径为R 的定圆O 外切,且半径为r 的圆的圆心的轨迹是 ; 11. 如图,有两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,两圆组成的圆环的面积是 ;12. 统计某校初三年级期中考试数学成绩的频率分布直方图如图所示,从该图可以看出这次考试数学成绩的及格率等于 。
(学生分数都取整数,60分以下为不及格)。
二、选择题:(每题2分,共22分)CB A . .. .ABCDO)分数13. 若圆锥的母线长为4cm ,底面半径为3cm ,则圆锥的侧面展开图的面积是( )14. (A )2cm 6π; (B )2cm 12π; (C )2cm 18π; (D )2cm 24π;15. 一个正方形的内切圆半径,外接圆半径与这个正方形边长的比为( )16. (A )1∶2∶2; (B )1∶2∶2; (C )1∶2∶4; (D )2∶2∶4; 17. 函数y =kx 和ky x=的图象是( ) 18. 19. 20. 21.22. (A ) (B ) (C ) (D )23. 某部队一位新兵进行射击训练,连续射靶5次,命中的环数分别是0,2,5,2,7。
这组数据的中位数与众数分别是( )24. (A )2,2; (B )5,2; (C )5,7; (D )2,7; 25. 若二次函数2y ax bx c =++的图象如图所示,则点(a +b ,ac )在( )26. (A )第一象限; (B )第二象限; (C )第三象限; (D )第四象限; 27. 一个圆锥的底面半径为10,母线长30,则它的侧面展开图(扇形)的圆心角是( ) 28. (A )60° ; (B )90°; (C )120°; (D )150°;29. 如图,⊙O 中,弦AD ∥BC ,DA =DC ,∠AOC =160°,则∠BCO 等于( ) 30. (A )20°; (B )30°; (C )40°; (D )50°;(第17题) (第19题) (第20题) (第23题) 31. 如图,正比例函数)0(>=k kx y 与反比例函数xy 1=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC ,若△ABC 面积为S ,则( )32. (A )S =1; (B )S =2; (C )S =3; (D )S =21; 33. 在面积相等的两块田里种植了甲、乙两种水稻,并记录到这两块田在连续10年中的年产量。
现在要比较这两种水稻产量的稳定性,为此应( )O CBA yxOCBA DOxy34. (A )比较它们的平均产量;(B )比较它们的方差;(C )比较它们的最高产量;(D )比较它们的最低产量; 35. 同圆的内接正十边形和外切正十边形的周长之比等于( ) 36. (A )sin18° ;(B )cos18°;(C )sin36°;(D )cos36°;37. 设计一个商标图案:先作矩形ABCD ,使AB =2BC ,AB =8,再以点A 为圆心、AD 的长为半径作半圆,交BA 的延长线于F ,连FC 。
图中阴影部分就是商标图案,该商标图案的面积等于( ) 38. (A )4π+8;(B )4π+16;(C )3π+8;(D )3π+16;三、计算题或证明题:39. (本题9分)已知:直线1l 、2l 分别与x 轴交于点A 、C ,且都经过y 轴上一点B ,又1l 的解析式是y =-x -3,2l 与x 轴正半轴的夹角是60°。
40. 求:⑴直线2l 的函数表达式; ⑵△ABC 的面积;41. (本题9分)已知:如图,⊙O 和⊙A 相交于C 、D ,圆心A 在⊙O 上,过A 的直线与CD 、⊙A 、⊙O 分别交于F 、E 、B 。
42. 求证:⑴△AFC ∽△ACB ; ⑵2AE AF AB =⋅;.ABC DE F O四、探究题:43. (本题9分)已知:如图,在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根,44. ⑴求a 和b 的值;45. ⑵若△A ’B ’C ’与△ABC 开始时完全重合,然后让△ABC 固定不动,将△A ’B ’C ’以1厘米/秒的速度沿BC 所在的直线向左移动。
46. ⅰ)设x 秒后△A ’B ’C ’与△ABC 的重叠部分的面积为y 平方厘米,求y与x 之间的函数关系式,,并写出x 的取值范围;ⅱ)几秒后重叠部分的面积等于38平方厘米?47. (本题9分)已知抛物线q px x y ++=221与x 轴相交于不同的两点A (1x ,0),B (2x ,0),(B 在A 的右边)又抛物线与y 轴相交于C 点,且满足451121=+x x , 48. ⑴求证:054=+q p ;⑵问是否存在一个⊙O ’,使它经过A 、B 两点且与y 轴相切于C 点,若存在,试确定此时抛物线的解析式及圆心O ’的坐标,若不存在,请说明理由。
ABCMA'B'C'参考答案一、填空题: 1、x=-1(-1,2)2、3 y=31x 3、17棵 4、72°或108° 5、26、九7、108°8、r )13(2+9、S=3t+5(0≤t ≤5) 10、nS 0为圆心(R+r)为半径的圆 11、36π12、92% 二、13、B14、B15、C16、A17、D18、C19、B20、A 21、B 22、B23、A三、24、(1)∵1 :y=-x-3 2 与y 轴交于同一点B ∴B(0,-3)又∵2 与x 轴正半轴的夹角是60° ∴∠MCx=60° 即∠OCB=60°在Rt △BOC 中OB=3 ∴OC=B ·tg30°=3333=⨯ ∴C(3,0)令 :y=kx-3 ∴0=33-k k=3 ∴y=33-x(2)又∵1 与x 轴交于A ,∴对于y=-x-3中当y=0时x=-3 ∴A (-3,0) ∴AC=33)3(3+=-- ∴23393)33(21+=⨯+⋅=∆ABC S 25、证明:连结AD(1)∵AC=AD=AE ∴AC=AD∴∠ACD=∠D ∵∠D=∠B ∴∠ACD=∠B ∵∠2=∠2 ∴△AFC ∽△ACB (2)ACAFAB AC =即AC 2=AF ·AB26、∵△ABC 是Rt △且BC=a ,AC=b ,AB=5 (a>b )又a 、b 是方程的两根∴⎪⎪⎩⎪⎪⎨⎧=+>+=⋅>-=+>+--=∆2504010)4(4)1(222b a m b a m b a m m ∴(a+b)2-2ab=25 (m-1)2-2(m+4)=25 (m-8)(m+4)=0 m 1=8 m 2=-4 经检验m=-4不合舍去 ∴m=8∴x 2-7x+12=0 x 1=3 x 2=4 ∴a=4,b=3(2) ∵△A ′B ′C ′以1厘米/秒的速度沿BC 所在直线向左移动。
∴x 秒后BB ′=x 则B ′C ′=4-x ∵C ′M ∥AC ∴△BC ′M ∽△BCA∴AC C M BC C B '=' ∴)4(43x C M -=' ∴)4(23)4(21x x x y S M C B --=='∆ 即2)4(83x y -=∴y=63832+-x x (0≤x ≤4)当y=83时 2)4(83x -=83x 1=3 x 2=5(不合舍去)∴经过3秒后重叠部分的面积等于83平方厘米。
27、(1)证明:∵抛物线y=q px x ++221与x 轴交于不同的两点A(x 1,0),B(x 2,0) (x 1<x 2) ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=⋅-=+>⋅⨯-=∆451122702142121212x x q x x x x q p由④:452121=+x x x x ∴4522=-q p ∴-4p=5q 即4p+5q=0 (2)设抛物线与y 轴交于C(0,x 3) ∴x 3=q∵ ⊙O '经过A(x 1,0),B(x 2,0)且与y 轴相切于C 点。
a 、当x 1<0,x 2<0时① ② ③ ④∴⎪⎩⎪⎨⎧⋅=>=<-=+||||||020222121OB OA OC q x x p x x ∴⎩⎨⎧=+=05422q p q q ∴⎪⎩⎪⎨⎧=-=225q p∴抛物线y=225212+-x x ∴对称轴x=2521225=⨯--∴⊙O '的圆心:)2,25(O 'b 、当A 、B 在原点两侧时⊙O '经过A 、B 且与y 轴相切不可能 ∴⊙O '不存在 综上所述:当p 25-=,q=2时此时抛物线为:,⊙O '的圆心)2,25(为O '。