分层抽样与系统抽样

合集下载

分层抽样与系统抽样

分层抽样与系统抽样

分层抽样与系统抽样1. 引言分层抽样和系统抽样是统计学中两个常用的抽样方法。

它们在样本选择过程中有着不同的原理和应用场景。

本文将介绍分层抽样和系统抽样的基本概念、原理和例子,并比较两种抽样方法的优缺点。

2. 分层抽样2.1 概念分层抽样是将总体划分为若干个互不重叠的层次,然后在每个层次上进行独立的抽样。

每个层次的抽样单位被称为一个层次。

2.2 原理分层抽样的原理是通过对总体的划分,使得每个层次上的样本能够更好地代表总体的信息。

通常,在划分层次时,可以根据某种特征或属性进行划分,确保每个层次上的样本在这一特征上有一定的相似性。

2.3 示例例如,研究一个学校的学生体质健康状况。

该学校有初中部和高中部两个层次,每个层次有若干个班级。

我们可以将总体划分为两个层次:初中部和高中部,然后在每个层次上进行抽样。

在初中部和高中部各选择几个班级,并在每个班级中随机选择一部分学生进行测试。

这样,通过分层抽样,我们可以得到代表整个学校学生体质健康状况的样本。

2.4 优缺点•优点:分层抽样可以减小样本误差,提高估计的精度。

通过划分层次,使得每个层次上的样本能够更好地代表总体的信息。

•缺点:分层抽样需要对总体进行划分并确定层次,增加了调查设计和实施的复杂性。

同时,如果划分层次不合理或者层次内的差异较大,可能导致样本不具有代表性。

3. 系统抽样3.1 概念系统抽样是在总体中按照一定规则依次选择样本,通常选择第一个样本,然后以一定的间隔选择后续样本,直到达到所需的样本量。

3.2 原理系统抽样的原理是通过等间隔地选择样本,使得样本具有代表性,并且可以减少人为主观因素对抽样结果的影响。

3.3 示例例如,研究一个城市居民的消费水平。

我们可以在城市中选择一个起始点(例如某个街道的第一个住宅),然后以固定的间隔选择后续的住宅,直到达到所需的样本量。

这样,通过系统抽样,我们可以得到代表该城市居民消费水平的样本。

3.4 优缺点•优点:系统抽样方法简单、易于实施。

系统抽样与分层抽样

系统抽样与分层抽样
(4)将编号为 l,l k,l 2k,...,l (n 1)k的个体抽出。
简记为:编号;分段;在第一段确定起始号;加 间隔获取样本。
例:一个单位的职工500人,其中不到35岁的 有125人,35到49岁的有280人,50岁以上的 有95人。为了了解这个单位职工与身体状况 有关的某项指标,要从中抽取一个容量为100 的样本。由于职工年龄与这项指标有关,试 问:应用什么方法抽取?能在500人中任意取 100个吗?能将100个份额均分到这三部分中 吗?
为了解参加某种知识竞赛的1000名 学生的成绩,打算抽取容量为50的一 个样本进行了解。
(1)随机将这1000名学生编号为1,2,3,……, 1000; (2)将总体按编号顺序平均分成50部分,每部分包 含20个个体;
(3)在第一部分的个体编号1,2,……,20中,利 用简单随机抽样抽取一个号码,比如13;
解:(1)确定样本容量与总体的个体数之比 100:500=1:5。
(2)利用抽样比确定各年龄段应抽取的个体数,
依次为
,即25,56,19。
(3)利用简单随机抽样或系统抽样的方法, 从各年龄段分别抽取25,56,19人,然后合 在一起,就是所抽取的样本。
二、分层抽样
1、分层抽样的定义
当已知总体由差异明显的几部分组 成时,为了使样本更充分地反映总体的 情况,常将总体分成几个部分,然后按 照各部分所占的比例进行抽样,这种抽 样叫做“分层抽样”,其中所分成的各 部分叫做“层”。
在实际操作中,为了使样本具有代表性,通常 要同时使用几种抽样方法.
为了解参加某种知识竞赛的1003名学生的 成绩,打算抽取容量为50的一个样本进行了解。
问题:如果个体总数不能被样本容量整除时该 怎么办?

系统抽样和分层抽样

系统抽样和分层抽样

例2.某年级共有 .某年级共有1800名学生参加期末考 名学生参加期末考 为了了解学生的成绩,按照1:50的比 试,为了了解学生的成绩,按照 的比 例抽取一个样本, 例抽取一个样本,用系统抽样的方法进行 抽样,写出过程。 抽样,写出过程。 解:将1800名学生按 至1800编上号码, 名学生按1至 编上号码, 名学生按 编上号码 按编号顺序分成36组 每组50名 按编号顺序分成 组,每组 名,先在第 一组中用抽签法抽出k号 一组中用抽签法抽出 号(1≤k≤50),其余的 , k+50n(n=1,2,3,……,35)也被抽出, 也被抽出, , , , , 也被抽出 即可得所需的样本. 即可得所需的样本
系统抽样与简单随机抽样的主要差别 (1)系统抽样比简单随机抽样更容易实施, )系统抽样比简单随机抽样更容易实施, 可节约抽样成本; 可节约抽样成本; (2)系统抽样所得样本的代表性和具体的 ) 编号有关; 编号有关;而简单随机抽样所得样本的代 表性与个体的编号无关, 表性与个体的编号无关,如果编号的个体 特征随编号的变化呈现一定的周期性, 特征随编号的变化呈现一定的周期性,可 能会使系统抽样的代表性很差; 能会使系统抽样的代表性很差; (3)系统抽样比简单随机抽样的应用范围 ) 更广。 更广。
分层抽样说明 1)分层抽样适用于总体由差异明显的几部分 )分层抽样适用于总体由差异明显的几部分 组成(互不交叉 的情况,每一部分称为层。 互不交叉)的情况 组成 互不交叉 的情况,每一部分称为层。在 实用中更为广泛。 实用中更为广泛。 广泛 2)在每一层中实行简单随机抽样,故分层抽 中实行简单随机抽样 ) 每一层中实行简单随机抽样, 样的样本更具有代表性,也是等可能性的。 样的样本更具有代表性,也是等可能性的 代表性 等可能性 3)根据第二步计算出各层的抽样数,不仅可 )根据第二步计算出各层的抽样数, 以调查总体的特征,还有利于进一步比较各层 以调查总体的特征,还有利于进一步比较各层 次间的差异情况。 机 总体中 均衡几部分 均衡几部分, 抽样抽取起 的个体 抽样抽取起 按规则在各 规则在各 数较多 始号码 段抽取 将总体分成互 将总体分成互 用简单随机 不交叉的几层, 不交叉的几层, 抽样或系统 比例分层抽 抽样对各层 按比例分层抽 抽样对各层 样 抽样 总体由差 总体由差 异明显的 异明显的 几部分组 成

系统抽样和分层抽样

系统抽样和分层抽样
)综合每层抽样,组成样本.
简单随机抽样、系统抽样、分层抽样的比较
类别 简单 随机 抽样 系统 抽样 共同点 各自特点 从总体中逐个 抽取 (1)抽样过 程中每个个体 被抽到的可能 性相等 (2)每次抽 出个体后不再 将它放回,即 不放回抽样 联 系 适用 范围 总体中 个体 较少
2.书59第3题
3.一个总体中有100个个体,随机编号为0,1,2,…,99, 依编号顺序平均分成10个小组,组号分别为 1,2,3,…,10.现用系统抽样方法抽取一个容量为10的 样本,规定如果在第1组随机抽取的号码为m,那么在第 k组抽取的号码个位数字与m+k的个位数字相同.若 m=6,则在第7组中抽取的号码是______. 63
(1)总体、个体、样本、样本容量分别是什么?
(2)能否在2500名学生中随机抽取100名学生?为什么?
不能
不具有好的代表性 不具有好的代表性
(3)能否在三个年级中平均抽取?
不能
创设情景:
某校高一、高二和高三年级分别有1000,800和700名, 为了了解全校学生的视力情况,从中抽取容量为100的样 本,你认为应当怎样抽取样本较为合理?
解析:依编号顺序平均分成的10个小组分别为 0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~9 9.因第7组抽取的号码个位数字应是3,所以抽取 的号码是63. 这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
例2:一个地区共有5个乡镇,人口15万人,其中人口 比例为3:2:5:2:3,现从15万人中抽取一个1500 人的样本,分析某种疾病的发病率,已知这种疾病与不 同的地理位置及水土有关,问应采取什么样的方法?并 写出具体过程。

分层抽样与系统抽样

分层抽样与系统抽样

探究一
探究二
探究三
探究四
【典型例题 2】 (1)某学校高一、 高二、 高三年级的学生人数之比为 3 ∶ 3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为 50 的 样本,则应从高二年级抽取 名学生;
(2)某单位有职工 900 人,其中青年职工 450 人,中年职工 270 人,老年职 工 180 人.该单位为了了解职工的健康情况,用分层抽样的方法从中抽取样 本.若样本中的青年职工为 10 人,则样本容量为 .
ቤተ መጻሕፍቲ ባይዱ
探究一
探究二
探究三
探究四
【典型例题 4】 (1)为了了解 1 200 名学生对学校某项教学实验的意见, 打算从中抽取一个容量为 30 的样本,考虑采用系统抽样的方法,则抽样距 k 为( ) A.40 B.30 C.20 D.12
(2)某单位有 200 名职工,现要从中抽取 40 名职工做某项调查.用系统抽 样法,将全体职工随机按 1 至 200 编号,并按编号顺序平均分为 40 组(1 至 5 号,6 至 10 号,…,196 至 200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的 号码为 .
)
解析:分层抽样中抽样比一定相同,设样本容量为 n=36. 答案:B
=
27 ,解得 90
1
2
3
4
5
6
4.若总体中含有 1 645 个个体,采用系统抽样的方法从中抽取容量为 35 的样 本,则编号后确定编号分为 个个体. 解析:因为 N=1 645,n=35,则编号后确定编号分为 35 段,且抽样距 k= =
体平均分为 150 个部分,其中每一部分包括 100 个个体. 第二步 第三步 比如是 56. 第四步 以 56 作为起始数,再顺次抽取 156,256,356,…,14956,这样就得 到一个容量为 150 的样本. 对全体学生的数学成绩进行编号 :1,2,3,…,15000. 在第一部分即 1 号到 100 号用简单随机抽样抽取一个号码,

《分层抽样和系统抽样》

《分层抽样和系统抽样》
C
B
※(2004年福建省高考卷)一个总体中有100个个体,随机编号为0,1,2,…99,依编号顺序平分成10个小组,组号依次为1,2,3,…,10。现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同。若m=6,则在第7组中抽取的号码为
01
02
上面我们讨论了两类抽样方法,他们是基本的抽样方法,在社会生活与生产中应用非常广泛。但当总体容量和样本容量都很大时,无论是采用分层抽样或简单随机抽样,都是非常麻烦的。系统抽样就是解决这个问题的,
系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按相同的间隔(称为抽样距)抽取其他样本。这种抽样方法有时也叫等距抽样或机械抽样。
问应采用怎样的抽样方法?
样本容量与总体个数的比例为1:100,则 高中应抽取人数为2400*1/100=24人, 初中应抽取人数为10800*1/100=108人, 小学应抽取人数为11100*1/100=111人.
思考2:在上述抽样过程中,每个学生被抽到的概率相等吗?
按比例抽样
思考1:对于上述问题具体应怎样操作?
分层抽样与系统抽样
知识探究(一):分层抽样的基本思想
某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.
分析:考察对象的特点是由具有明显差异的几部分组成。
当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几个部分,然后按照各部分所占的比例进行抽样,这种抽样叫做“分层抽样”,其中所分成的各部分叫做“层”。

§2 2.2 分层抽样与系统抽样

§2  2.2 分层抽样与系统抽样

1、什么是简单随机抽样? 什么是简单随机抽样? 设一个总体的个数为N.如果通过逐个抽取的方法 设一个总体的个数为N.如果通过逐个抽取的方法 N. 从中抽取一个样本,且每次抽取时各个个体被抽到的 从中抽取一个样本, 概率相等,就称这样的抽样方法为简单随机抽样. 概率相等,就称这样的抽样方法为简单随机抽样. 2、什么样的总体适合简单随机抽样? 什么样的总体适合简单随机抽样? 适用范围:总体的个体数不多时. 适用范围:总体的个体数不多时.
例3:某工厂平均每天生产某种机器零件大约10000件,要 某工厂平均每天生产某种机器零件大约10000件 10000 求产品检验员每天抽取50件零件,检查其质量状况. 求产品检验员每天抽取50件零件,检查其质量状况.假设 50件零件 一天的生产时间中生产机器零件的件数是均匀的, 一天的生产时间中生产机器零件的件数是均匀的,请你设 计一个调查方案. 计一个调查方案. 解:我们可以采用系统抽样,按照下面的步骤设计方案. 我们可以采用系统抽样,按照下面的步骤设计方案. 第一步 第二步 按生产时间将一天分为50个时间段,也就是说, 按生产时间将一天分为50个时间段,也就是说,每 50个时间段 将一天中生产的机器零件按生产时间进行顺序编号. 将一天中生产的机器零件按生产时间进行顺序编号.
取一件产品,比如是k号零件. 取一件产品,比如是k号零件. k+200,k+400,k+600,…,k+9800,这样就抽取了容量为50的 k+200,k+400,k+600,…,k+9800,这样就抽取了容量为50的 这样就抽取了容量为50 一个样本. 一个样本.
例4
某装订厂平均每小时大约装订图书362册 某装订厂平均每小时大约装订图书362册,要求检验员 362

系统抽样与分层抽样

系统抽样与分层抽样

系统抽样
将总体分成均衡的几个部分, 将总体分成均衡的几个部分,然后按照预先定出 的规则,从每一部分抽取一个个体, 的规则,从每一部分抽取一个个体,得到所需要的样 这种抽样叫做系统抽样 也称为机械抽样)。 系统抽样( 本,这种抽样叫做系统抽样(也称为机械抽样)。 问题一 系统抽样中,每个个体被抽中的概率是否一样? 系统抽样中,每个个体被抽中的概率是否一样? 在上面的抽样中,由于在第一部分(编号为1 20) 答:在上面的抽样中,由于在第一部分(编号为1—20) 中的起始号码是随机确定的, 中的起始号码是随机确定的,每个号码被抽取的概率都
本课小结
1 所以在抽取第1部分的个体前, 等于 ,所以在抽取第1部分的个体前,其他各部分中 20 1
就是说, 每个号码被抽取的概率也都是 20 。就是说,在这个系统 1 抽样中, 抽样中,每个个体被抽取的概率都是 。
20
情景设置
为了了解参加某种知识竞赛的1003名学生的成绩, 1003名学生的成绩 例2 为了了解参加某种知识竞赛的1003名学生的成绩, 应采用什么样的抽样方法恰当? 应采用什么样的抽样方法恰当?
阶段练习
1、P21练习1、2 2、从含有500个个体的总体中一次性抽取25个个体, 每个个体被抽到的概率相等,那么总体中的每个个体 被抽到的概率等于?
分层抽样
一个单位的职工500 500人 其中不到35岁的有125 35岁的有125人 问题 一个单位的职工500人,其中不到35岁的有125人, 35到49岁的有280人 50岁以上的有95人 岁的有280 岁以上的有95 35到49岁的有280人,50岁以上的有95人。为了了解这个 单位职工与身体状况有关的某项指标, 单位职工与身体状况有关的某项指标,要从中抽取一个容 量为100的样本。由于职工年龄与这项指标有关,试问: 100的样本 量为100的样本。由于职工年龄与这项指标有关,试问: 应用什么方法抽取?能在500人中任意取100个吗? 500人中任意取100个吗 应用什么方法抽取?能在500人中任意取100个吗?能将 100个份额均分到这三部分中吗 个份额均分到这三部分中吗? 100个份额均分到这三部分中吗?

分层抽样与系统抽样培训资料

分层抽样与系统抽样培训资料

置信区间构建和假设检验应用
置信区间构建
根据样本数据计算置信区间,以估计 总体参数的取值范围,为决策提供依 据。
假设检验应用
通过假设检验方法,判断样本数据是 否支持研究假设,从而验证研究结论 的可靠性。
评估报告编写和结果解读
评估报告编写
将抽样结果、质量控制措施、数据分析 结果等整理成评估报告,以便更好地呈 现研究结果。
生活质量状况。
案例二
某企业对员工满意度进行调查,同样采用系统抽样方法。在确定总体为该企业所有员工 后,根据员工数量和所需样本量计算出抽样间隔。然后在员工名单中随机选择一个起始 点,按照抽样间隔依次抽取员工进行满意度调查。通过这种方式,企业可以较为全面地
了解员工的满意度情况,为改进管理措施提供参考依据。
系统抽样时需确保抽样间隔的合 理性,避免因周期性等因素导致
的偏差。
误区提示:避免将分层抽样与系 统抽样混淆使用,以及忽视两种 方法在实施过程中的细节问题。
05
数据收集、整理与呈现技巧
数据来源及收集方式选择
公开数据源
利用政府、机构等公开 发布的数据,如统计年
鉴、调查报告等。
网络爬虫
通过编写程序自动抓取 互联网上的数据,需注 意合法性和数据质量。
分层抽样与系统抽样培训 资料
• 抽样方法概述 • 分层抽样原理与实践 • 系统抽样原理与实践 • 两种方法比较与选择 • 数据收集、整理与呈现技巧 • 质量控制与评估方法
01
抽样方法概述
抽样定义与目的
抽样定义
抽样是从总体中选取一部分个体 进行研究的过程,目的是通过对 样本的研究来推断总体的特征。
案例二
某医疗机构想要评估某种新药物的治疗效果,采用分层抽样方法,按照病情严重程度、年龄等因素将患者划分为 不同的层,然后在各层内抽取样本进行临床试验。通过案例分析,可以深入了解分层抽样在医学领域的应用及其 注意事项。

系统抽样和分层抽样

系统抽样和分层抽样

练习一:
1. 在下列问题中,各采用什么抽样方法抽取样本较为合适? (1)从20台彩电中抽取4台进行质量检验;
简单随机抽样法
(2)科学会堂有32排座位,每排有40各座位(座位号为 01~40),一次报告会坐满了听众,会后为了听取意见, 留下了座位号为18的所有的32名听众进行座谈;
系统抽样法
(3)实验中学有180名教工,其中有专职教师144名,管 理人员12名,后勤服务人员24人,今从中抽取一个容量15 的样本。
分层抽样的抽取步骤:
(1)总体与样本容量确定抽取的比例。 (2)由分层情况,确定各层抽取的样本数。 (3)各层的抽取数之和应等于样本容量。 (4)对于不能取整的数,求其近似值。
4、三种抽样方法的特点及相互联系怎样?
P46
抽样方 特点 法 简单随 机抽样 系统抽 样 分层抽 样 相互联系 适用范围 共同点
问题:某校高一、高二、高三年级分别有学生 1000、800和700名,为了了解全校学生的视力 情况,欲从中抽取容量为100的样本,问怎样抽 取较为合理? 1、各年级应按比例抽取
1000 高一年级应抽取 100 40 2500 800 32 高二年级应抽取 100 2500
高三年级应抽取 名; 名; 名;
4. 下列抽样试验中不是系统抽样的是( C )。 A. 从标有1~15号的15个球中,任选3个作为样本,按从 小号到大号排序,随机选起点i0,以后i0+5,i0+10(超 过15则从1再数起)号作样本 B. 工厂生产的产品,用传送带将产品送入包装车间前, 检验人员从传送带上每隔五分钟抽一件产品进行检验 C. 进行某一市场调查,规定在商场门口随机抽一个人进 行询问调查,直到调查到事先规定调查人数为止 D. 电影院调查观众的某一指标,通知每排(每排人数相 等)座位号为14的观众留下来座谈

2.2分层抽样与系统抽样

2.2分层抽样与系统抽样

2.分层抽样的操作步骤
(1)将总体按一定标准进行分层 将总体按一定标准进行分层; 将总体按一定标准进行分层 (2)计算各层的个体数与总体的个体数的比 计算各层的个体数与总体的个体数的比; 计算各层的个体数与总体的个体数的比 (3)按各层个体数占总体的比确定各层应抽取 (3)按各层个体数占总体的比确定各层应抽取 的样本容量; 的样本容量 (4)在每一层进行抽样 可用简单随机抽样或系 在每一层进行抽样(可用简单随机抽样或系 在每一层进行抽样 统抽样) 统抽样
例4 某高中共有900人,其中高一年级300人,高二年级 200人,高三年级400人,现采用分层抽样抽取容量 为45的样本,那么高一、高二、高三各年级抽取的 人数分别为 A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 [分析 分析]因为300:200:400=3:2:4,于是将45分 分析 成3:2:4的三部分。设三部分各抽取的个体数分 别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、 高二、高三各年级抽取的人数分别为15,10,20, 故选D。
系统抽样的定义: 系统抽样的定义:
一n 的样本,可将总体分成均衡的若干部分,然后按 的样本,可将总体分成均衡的若干部分, 照预先制定的规则,从每一部分抽取一个个体, 照预先制定的规则,从每一部分抽取一个个体, 得到所需要的样本, 得到所需要的样本,这种抽样的方法叫做系统抽 样。
3.分层抽样的特点
(1)适用于总体由差异明显的几部分组成 适用于总体由差异明显的几部分组成 的情况; 的情况 (2)更充分的反映了总体的情况 更充分的反映了总体的情况; 更充分的反映了总体的情况 (3)等可能抽样; 等可能抽样; 等可能抽样
思考: 思考:

系统抽样与分层抽样

系统抽样与分层抽样

问题5:1%的样本是什么含义?
样本容量是总体个体数的1%,即抽取总人数的1%
问题6:你怎么从各部分中抽取样本?请动笔试试.
样本容量与总体个数的比例为1: 100,
则高中应抽取人数为 2 400 =24人,
100
初中应抽取人数为 10 900 =109人,
100
小学应抽取人数为 11 000 =110人.
100
分层抽样
思考2:什么是分层抽样?有何特点? 一般地,在抽样时,将总体分成互不交叉的层,然后按 照一定的比例,从各层独立地抽取一定数量的个体,将 各层取出的个体合在一起作为样本,这种抽样方法是一 种分层抽样.
思考3 分层抽样的步骤:
(1) 将总体按一定的标准分层;
(2)总体与样本容量确定抽取的比例;
n
下列抽样中不是系统抽样的是( C)
(A)从标有1~15号的15个小球中任选3个作为样本,按从小号到大 号排序,随机确定起点i,以后为i+5,i+10 (超过15则从1再数起)号入 样 (B)工厂生产的产品,用传送带将产品送入包装车间前,检验人 员从传送带上每隔五分钟抽一件产品检验 (C)搞某一市场调查,规定在商场门口随机抽一个人进行询问, 直到调查到事先规定的调查人数为止 (D)电影院调查电影的某一指标,请每排(每排人数相等)座位 号为14的观众留下来座谈
系统抽样法
(3)实验中学有180名教工,其中有专职教师144名,管
理人员12名,后勤服务人员24人,今从中抽取一个容量15
的样本。
分层抽样法
方法 类别 简单随 机抽样
系统 抽样
分层 抽样
共同 特点
抽样过 程中每 个个体 被抽取 的可能 性相等
抽样特征 相互联系 适应范围

分层抽样与系统抽样

分层抽样与系统抽样

2.2分层抽样与系统抽样学习目标 1.理解并掌握系统抽样、分层抽样.2.会用系统抽样、分层抽样从总体中抽取样本.3.理解三种抽样的区别与联系.知识点一分层抽样思考分层抽样的总体具有什么特性?答案分层抽样的总体由差异明显的几部分构成,也就是说当已知总体由差异明显的几部分组成时,为了使样本充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比例进行抽样.梳理1.分层抽样的概念将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.3.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层);第二步,计算抽样比.抽样比=样本容量总体中的个体数;第三步,各层抽取的个体数=各层总的个体数×抽样比;第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本;第五步,综合每层抽样,组成样本.知识点二系统抽样思考1当总体中的个体数较多时,为什么不宜用简单随机抽样?答案因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.思考2用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?答案用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.梳理1.系统抽样的概念将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ;当Nn 不是整数时,先从总体中随机剔除几个个体,再重新编号, 然后分段; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 知识点三 三种抽样方法的比较思考 系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样,这种说法对吗?答案 不对,因为分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取是按事先确定好的规则进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.类型一 分层抽样及应用命题角度1 分层抽样适用情形判定例1 某地区有高中生2 400人,初中生10 900人,小学生11 000人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?解 (1)从总体来看,因为不同年龄阶段的学生的近视情况可能存在明显差异,为了使样本具有较好的代表性,应该分高中、初中、小学三个层次分别抽样.(2)从三类学生的数量来看,人数较多,所以在各层抽样时可以采用系统抽样. (3)采用系统抽样分好组之后,确定第一组人选时,可以采用简单随机抽样.反思与感悟 分层抽样实质是利用已知信息尽量使样本结构与总体结构相似.在实际操作时,并不排斥与其他抽样方法联合使用.跟踪训练1 某单位有员工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查员工的身体状况,要从中抽取一个容量为100的样本,如何进行抽取?解 因为员工按年龄分为三个层,各层的身体状况有明显的差异,所以为了使样本具有代表性,需要采用分层抽样.抽样比为1∶5,即每5人中抽取一人.35岁以下:125×15=25(人),35岁~49岁:280×15=56(人),50岁以上:95×15=19(人).命题角度2 分层抽样具体实施步骤例2 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程. 解 抽样过程如下:第一步,确定抽样比,样本容量与总体容量的比为20160=18.第二步,确定分别从三类人员中抽取的人数,从行政人员中抽取16×18=2(人);从教师中抽取112×18=14(人);从后勤人员中抽取32×18=4(人).第三步,采用简单随机抽样的方法,抽取行政人员2人,教师14人,后勤人员4人. 第四步,把抽取的个体组合在一起构成所需样本.反思与感悟 在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练2 某单位最近组织了一次健身活动,活动小组分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取200人进行抽查,试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解 (1)设登山组人数为x ,则游泳组人数为3x ,再设游泳组中,青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%, 解得b =50%,c =10%, 故a =1-50%-10%=40%.所以游泳组中,青年人、中年人、老年人各占的比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60,抽取的中年人人数为200×34×50%=75,抽取的老年人人数为200×34×10%=15.类型二 系统抽样及应用例3 为了了解参加某种知识竞赛的1 000名学生的成绩,从中抽取一个容量为50的样本,那么采用什么抽样方法比较恰当?简述抽样过程. 解 适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50个部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(4)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980. 引申探究在本例中,如果总体是1 002,其余条件不变,又该怎么抽样? 解 (1)将每个学生编一个号,由1至1002. (2)利用随机数法剔除2个号.(3)将剩余的1 000名学生重新编号1至1000.(4)按编号顺序均分成50个部分,每部分包括20个个体.(5)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码l .(6)以l 为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:l ,l +20,l +40,…,l +980.反思与感悟 当总体中的个体数不能被样本容量整除时,需要在总体中剔除一些个体.由于剔除方法采用简单随机抽样,所以即使是被剔除的个体,在整个抽样过程中被抽到的机会和其他个体是一样的.跟踪训练3 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个工人编一个号,由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新编号0001至1000.(4)分段,取间隔k =1 00010=100,将总体均分为10组,每组100个工人.(5)从第一段即0001号到0100号中随机抽取一个号l . (6)按编号将l,100+l,200+l ,…,900+l ,共10个号选出. 这10个号所对应的工人组成样本.1.检测员每10分钟从匀速传递的新产品生产流水线上抽取一件新产品进行某项指标检测,这样的抽样方法是( ) A.系统抽样法 B.抽签法 C.随机数法 D.其他抽样方法答案 A解析 根据系统抽样的定义和性质进行判断即可.2.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A.101B.808C.1 212D.2 012 答案 B解析 根据分层抽样,得N ×1212+21+25+43=96,解得N =808,故选B.3.为了调查某省各城市PM2.5的值,按地域把36个城市分成甲、乙、丙三组,对应的城市数分别为6,12,18.若用分层抽样的方法抽取12个城市,则乙组中应抽取的城市数为________. 答案 4解析 乙组城市数占总城市数的比例为126+12+18=13,样本容量为12,故乙组中应抽取的城市数为12×13=4.4.某班级有50名学生,现要采用系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号为1~50号,并均匀分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生. 答案 37解析 因为12=5×2+2,所以第n 组中抽得号码为5(n -1)+2的学生.所以第八组中抽得号码为5×7+2=37的学生.5.一批产品中有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法从这批产品中抽取一个容量为20的样本.解系统抽样法:将200个产品编号为1~200,然后将编号分成20个部分,在第1部分中用简单随机抽样法抽取1个编号.如抽到5号,那么得到编号为5,15,25,…,195的个体,即可得到所需样本.分层抽样法:因为100+60+40=200,所以20200=1 10,所以100×110=10,60×110=6,40×110=4.因此在一级品、二级品和三级品中分别抽取10个、6个和4个,即可得到所需样本.1.系统抽样有以下特点:(1)适用于总体容量较大的情况;(2)剔除多余个体及第一段抽样都要用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样,每个个体被抽到的可能性都是nN;(4)是不放回抽样.在抽样时,只要第一段抽取的个体确定了,后面各段中要抽取的个体依照事先确定好的规律就自动地被抽出,因此简单易行.2.总体容量小,简单随机抽样;总体容量大,系统抽样;总体差异明显,分层抽样.在实际抽样中,为了使样本具有代表性,通常要同时使用几种抽样方法.40分钟课时作业一、选择题1.为了抽查某城市小轿车年检情况,在该城市采取抽车牌末位数字为6的小轿车进行检查,这种抽样方法是()A.随机数法B.抽签法C.系统抽样法D.其他抽样方法答案C解析由于每个车牌的末位数字为0,1,2,…,9十个数字之一,某辆车车牌末位数字为6是随机的,这相当于将所有汽车分成若干组,每组10个(车牌的末位数字依次为0,1,2,…,9),取每一组中的第6个,故为系统抽样.2.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法抽取4个班进行调查,若抽到的编号之和为48,则抽到的最小编号为()A.2B.3C.4D.5解析 由题意得系统抽样的抽样间隔为244=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )=48,所以x =3,故选B.3.从N 个编号中抽取n 个号码作样本,考虑用系统抽样方法,抽样距为( ) A.N n B.n C.⎣⎡⎦⎤N n D.⎣⎡⎦⎤N n +1答案 C解析 系统抽样的间隔为Nn的整数部分.4.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A.p 1=p 2<p 3 B.p 2=p 3<p 1 C.p 1=p 3<p 2 D.p 1=p 2=p 3 答案 D解析 因为采取简单随机抽样、系统抽样和分层抽样抽取样本时,总体中每个个体被抽中的概率相等,故选D.5.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( ) A.8 B.11 C.16 D.10 答案 A解析 若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8.6.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( ) A.11 B.12 C.13 D.14 答案 B解析 由于84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12.7.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________. 答案 3解析 由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3.8.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比为2∶3∶5.现用分层抽样的方法抽出一个容量为n 的样本,其中A 种型号产品有16件,那么此样本的容量n =________. 答案 80解析 16÷22+3+5=80.9.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.10.某班共有学生52人,现根据学生的学号用系统抽样的方法抽取一个容量为4的样本,已知学号为6号、32号、45号的同学在样本中,那么样本中剩下的一个同学的学号是________号. 答案 19解析 ∵45-32=13,∴抽样间隔为13,故抽取学生的学号依次为6、19、32、45,故填19. 三、解答题11.一个公司有职工160人,其中业务人员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.解 样本容量与职工总人数的比为20∶160=1∶8,所以业务人员、管理人员和后勤服务人员各应抽取的人数分别为1208、168和248,即分别为15、2和3,每一层抽取时采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就得到要抽取的样本.12.某停车场停有6辆卡车、12辆小轿车和18辆电动车,现要从这些车辆中抽取一个容量为n 的样本进行某项指标调查.若采用系统抽样的方法或分层抽样的方法抽取,则不用剔除个体;若样本容量增加1,则在采用系统抽样的方法时,需要在总体中先剔除1个个体,求样本容量n .解 由题意知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n 36,分层抽样过程中,抽取的卡车数为n 36·6=n 6,轿车数为n 36·12=n3,电动车数为n 36·18=n2,所以n 应是6的倍数,36的约数,且0<n <36,即n =6,12,18.当样本容量为n +1时,剔除一个个体后的总体容量是35, 系统抽样的间隔为35n +1,所以35n +1必须是整数,所以n 只能取6,即样本容量n =6.13.为了对某课题进行研究,分别从A 、B 、C 三所高校中用分层抽样法抽取若干名教授组成研究小组,其中高校A 有m 名教授,高校B 有72名教授,高校C 有n 名教授(其中0<m ≤72≤n ). (1)若A 、B 两所高校中共抽取3名教授,B 、C 两所高校中共抽取5名教授,求m 、n ; (2)若高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,求三所高校的教授的总人数.解 (1)∵0<m ≤72≤n ,A 、B 两所高校中共抽取3名教授,∴B 高校中抽取2人,∴A 高校中抽取1人,C 高校中抽取3人,∴1m =272=3n,解得m =36,n =108.(2)∵高校B 中抽取的教授数是高校A 和C 中抽取的教授数的23,∴23(m +n )=72,解得m +n=108,∴三所高校的教授的总人数为m +n +72=180.。

系统抽样和分层抽样

系统抽样和分层抽样

系统抽样与简单随机抽样的联系在于: 系统抽样与简单随机抽样的联系在于
将总体均分后的每一部分进行抽样时,采用的是简单随机抽样 将总体均分后的每一部分进行抽样时 采用的是简单随机抽样. 采用的是简单随机抽样
探究: 探究:某学校为了了解高一年级学生的视力状 打算从高一年级1000名学生中抽取 名进 名学生中抽取100名进 况,打算从高一年级 名学生中抽取 行调查,应该怎样抽样 应该怎样抽样? 行调查 应该怎样抽样? 方法: 方法:
例:从某厂生产的802辆轿车中随机抽取 辆测试 从某厂生产的 辆轿车中随机抽取80辆测试 辆轿车中随机抽取 某项功能,请合理选择抽样方法,并写出过程. 某项功能,请合理选择抽样方法,并写出过程.
第一步: 辆轿车编号, 第一步:将802辆轿车编号,号码是 辆轿车编号 号码是001,002,…,802; , , , ; 第二步:用随机数表法随机抽取2个号码 个号码, 第二步:用随机数表法随机抽取 个号码,如016,378, , , 将编号为016,378的2辆轿车剔除; 辆轿车剔除; 将编号为 , 的 辆轿车剔除 第三步:将剩下的800辆轿车重新编号 号码为1,2, …, 辆轿车重新编号, 第三步:将剩下的800辆轿车重新编号,号码为1,2, …, 800,并分成 段,间隔为 ; ,并分成80段 间隔为10; 第四步:在第一段1, , , 这十个编号中用抽签法 第四步:在第一段 ,2, …, 10这十个编号中用抽签法 抽出一个(如数5)作为起始号码; 抽出一个(如数 )作为起始号码; 第五步:由第5号开始 号开始, 第五步:由第 号开始,把5,15, 25,…, 795共80个号 , , , , 共 个号 码取出, 个号码所对应的轿车组成样本. 码取出,这80个号码所对应的轿车组成样本. 个号码所对应的轿车组成样本

统计学中的常用抽样方法

统计学中的常用抽样方法

统计学中的常用抽样方法
引言
在统计学中,抽样是一种重要的数据收集方法,用于从整体中
选择一部分样本进行研究。

常用的抽样方法有以下几种。

简单随机抽样
简单随机抽样是一种最基本的抽样方法,它要求每个个体都有
相同的概率被选入样本中。

具体步骤包括:确定样本容量,编号个体,使用随机数生成器随机选择样本。

进一步抽样方法
经典的进一步抽样方法有以下几种:
1. 分层抽样:将总体分成若干层次,然后从每个层次中进行简
单随机抽样。

这种方法保证了样本的多样性,可以更好地代表总体。

2. 系统抽样:按照固定的间隔,从总体中选择样本。

这种方法
适用于总体中的个体具有周期性特征的情况。

3. 整群抽样:将总体分成若干群(例如地区、单位等),然后
随机选择部分群进行调查。

这种方法适用于个体之间的相似性较高。

专用抽样方法
除了基本的抽样方法外,统计学中还有一些专用抽样方法:
1. 系统化抽样:按照一定的规则,从总体中选择样本,这种方
法常用于调查统计和市场调研。

2. 整机抽样:在机器和设备检验中,通过对整个产品进行实验
来判断产品质量。

结论
在统计学中,常用的抽样方法包括简单随机抽样、分层抽样、
系统抽样、整群抽样等。

根据具体的研究目的和总体特征,可以选
择合适的抽样方法来进行数据采集。

了解分层抽样和系统抽样方法

了解分层抽样和系统抽样方法

了解分层抽样和系统抽样方法分层抽样(Stratified Sampling)是指将总体划分为不同的层次,从每个层次中随机抽取样本的抽样方法。

而系统抽样(Systematic Sampling)是按照一定的规则从总体中选取样本的抽样方法。

下面将详细介绍这两种抽样方法。

一、分层抽样分层抽样是一种按照总体的一些特征将总体划分为若干个层次(或称为分层),然后从每个层次中随机抽取一定数量的样本的抽样方法。

分层抽样通常用于总体具有较大差异性的情况,即总体可划分为若干互不相同的较小群体(层次)。

采用分层抽样主要有以下几个步骤:1.界定抽样总体:确定如何对总体进行划分,如根据地区、年龄、性别等特征,将总体划分为不同的层次。

2.确定各层的样本容量:对每个层次确定样本容量,通常需根据每个层次在总体中的比例来确定,即每个层次的样本数与该层次在全体中所占比例一致。

3.随机抽取样本:在每个层次中,根据各层次样本数的比例,使用随机数表或随机数发生器等方法,从每个层次中随机抽取一定数量的样本。

4.汇总数据:将各个层次的样本数据进行汇总,得到总体的估计结果。

分层抽样的优点包括:-可以保证样本的代表性,从而使得样本能够更好地反映总体的特征。

-可以确保每个层次都有参与样本,从而可以进行更加细分的分析。

二、系统抽样系统抽样是一种按照事先规定的系统规则从总体中选取样本的抽样方法。

系统抽样一般适用于总体无明显内在结构的情况,即总体没有明显的层次划分。

采用系统抽样的步骤如下:1.确定抽样总体:确定要对哪个总体进行系统抽样。

2.确定抽样框架:确定总体中的每个个体都在抽样框架中有明确的标识,并按照标识进行编号。

3.确定抽样比例:确定从总体中抽取的样本容量和抽样比例。

抽样比例通常是根据样本容量和总体规模进行计算的。

4.确定起始样本:随机选择一个起始样本,也可以通过随机数表或随机数发生器从抽样框架中随机选取一个起始样本。

5.选取样本:从起始样本开始,按照规定的抽样间隔,在抽样框架中选取样本。

系统抽样、分层抽样 课件

系统抽样、分层抽样 课件
中抽取学号为3,13,23,33,43的五名同学了解学习
情况,其最可能用到的抽样方法为
A.简单随机抽样 C.随机数法
B.抽签法
√D.系统抽样
解析 从学号上看,相邻两号总是相差10,符合系统抽样的特征.
(2)某中学有老年教师20人,中年教师65人,青年教师95人,为了调查他们的
题型三 分层抽样的应用
例3 某学校有在职人员160人,其中行政人员有16人,教师有112人,后勤人 员有32人.教育部门为了了解在职人员对学校机构改革的意见,要从中抽取一 个容量为20的样本,请利用分层抽样的方法抽取,写出抽样过程.
(2)确定分段间隔 k,对编号进行 分段 .当Nn(n 是样本容量)是整数时,取 k=Nn; 当Nn不是整数时,先从总体中 随机 剔除几个个体,再 重新编号 ,然后分段;
(3)在第1段用 简单随机抽样 确定第一个个体编号l(l≤k); (4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号 (l+k) , 再加 k 得到第3个个体编号 (l+2k) ,依次进行下去,直到获取整个样本.
系统抽样 分层抽样
知识点一 系统抽样 1.定义:要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若 干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要 的样本的抽样方法. 2.步骤 (1)先将总体的N个个体 编号 .有时可直接利用个体自身所带的号码,如学号、 准考证号、门牌号等;
知识点二 分层抽样 1.分层抽样的定义 当总体是由 差异明显的几个部分组成时,在抽样时,将总体分成_互__不__交__叉__ 的层,然后按照 一定的比例 ,从各层 独立 地抽取一定数量的个体,将各 层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样 . 分层抽样尽量利用了调查者对调查对象(总体)事先所掌握的各种信息,并充 分考虑了保持 样本结构 与 总体结构 的一致性,这对提高样本的代表性是非 常重要的.

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别系统抽样和分层抽样是常用的两种概率抽样方法。

在统计学中,抽样是一种从总体中选择个体的方法,以便进行数据分析和推断。

系统抽样和分层抽样都有其独特的特点和应用场景。

本文将阐述系统抽样和分层抽样的区别,并探讨其在实际应用中的优缺点。

一、系统抽样系统抽样是指按照一定的规则从总体中选择个体的抽样方法。

具体而言,系统抽样是通过在总体中选择一个起点,然后根据事先确定的间隔规则依次选取个体,直到达到所需的样本量。

系统抽样的步骤包括:确定总体大小、计算间隔、选择起始个体、按照间隔选取个体。

系统抽样的优点在于简单易行,抽样过程便于操作和管理。

此外,系统抽样可以较好地保留总体的特征,适用于总体中个体分布规律较为均衡的情况。

系统抽样使得样本具有一定的随机性,从而提高了推断的精度和可靠性。

然而,系统抽样也存在一些缺点。

首先,如果总体中某些个体的特征呈现周期性或有规律的变化,可能会引入系统偏差。

其次,如果总体中存在某些特殊或异常个体,系统抽样可能无法很好地反映总体的全貌。

因此,在进行系统抽样时,需要事先对总体进行充分的了解和分析,避免因特殊因素导致的偏差。

二、分层抽样分层抽样是将总体划分为若干个层次,并从每个层次中选取样本,形成一个复合样本的抽样方法。

分层抽样的步骤包括:确定总体大小、划分层次、确定每层样本量、选择样本。

分层抽样的优点在于能够更好地反映总体的特征,保证了样本的代表性。

通过在不同的层次中选取样本,可以考虑到总体的异质性,缩小样本与总体之间的差异。

此外,分层抽样可以提高估计的精度,并且可以针对不同层次进行分析,获取更多层次的信息。

然而,分层抽样也存在一些限制和缺点。

首先,分层抽样需要对总体进行合理的划分,这需要对总体的特征有较为准确的了解。

如果划分不当或划分粒度过细,可能会导致样本的不均衡。

其次,分层抽样需要在每个层次中选择样本,增加了抽样的工作量和时间成本。

三、系统抽样和分层抽样的区别1. 定义和步骤:系统抽样是通过事先确定的间隔规则从总体中选择个体,抽取样本。

2.2 分层抽样与系统抽样 2014-2-19

2.2 分层抽样与系统抽样 2014-2-19

B
5、为了解1200名学生对学校某项教改试验的意见,打 算从中抽取一个容量为30的样本,考虑采用系统抽样, 则分段的间隔k为( ) A、40 B、30 C、20 D、12
A
6、为了了解参加一次知识竞赛的1252名学生的成绩, 决定采用系统抽样的方法抽取一个容量为50的样本,那 么总体中应随机剔除的个体数目( ) A、2 B、4 C、5 D、6
• 系统抽样的特点:
① 当总体容量N较大时,采用系统抽样。 ② 将总体平均分成几部分指的是将总体分段, 分段的间隔要求相等,因此,系统抽样又称等 距抽样。 ③ 一定的规则通常指的是:在第1段内采用简 单随机抽样确定一个起始编号,在此编号的基 础上加上分段间隔的整倍数即为抽样编号。 ④ 是等可能性抽样,每个个体被抽到的可能性 相等。
2、系统抽样
• 当总体容量和样本容量都很大时,无论是 采用分层抽样或简单随机抽样,都是非常 麻烦的。 • 系统抽样是将总体中的个体进行编号,等 距分组,在第一组中按照简单随机抽样抽 取第一个样本,然后按分组的间隔(称为 抽样距)抽取其他样本。这种抽样方法有 时也叫等距抽样或机械抽样。
例2:某工厂平均每天生产某种机器零件大约10000件,要 求产品检验员每天抽取50件零件,检查其质量状况。假设 一天的生产时间中生产机器零件的件数是均匀的,请你设 计一个调查方案。
• 系统抽样的步骤:
一般地,用系统抽样从含有N个个体的总体中 抽取一个容量为n的样本,其操作步骤如下:
① 将总体的N个个体编号. ② 确定分段间隔k,对编号进行分段.
③ 在第1段用简单随机抽样确定起始个体编号l.
④ 按照一定的规则抽取样本.
例3:某装订厂平均每小时大约装订图书362册,要求检验 员每小时抽取40册图书,检查其质量状况。请你设计一个 调查方案。 解:我们可以采用系统抽样,按照下面的步骤设计方案。 第一步 把这些图书分成40个组,由于362÷40的商是9,余数 是2,所以每个组有9册书,还剩2册书。这时,抽样距就是9。 第二步 先用简单随机抽样的方法从这些书中抽取2册书,不进 行检验。 第三步 将剩下的书进行编号,编号分别为0,1,...,359。 第四步 从第一组(编号分别为0,1,...,8)的书中按照简单 随机抽样的方法,抽取1册书,比如说,其编号为k。 第五步 顺序地抽取编号分别为下面数字的书: k+9,k+18,k+36,...,k+39×9,这样就抽取了容量为40的一个样 本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【注】分层抽样又称类型抽样,应用分层抽样应遵循以 下要求: (1)分层:将相似的个体归入一类,分层要求每层的 各个个体互不交叉,即遵循不重复、不遗漏的原则。 (2)分层抽样为保证每个个体等可能入样,需遵循在 各层中进行简单随机抽样或系统抽样,每层样本数量与 每层个体数量的比与样本容量与总体容量的比相等或相 近。
二、分层抽样的步骤:
(1) 将总体按一定的标准分层; (2)计算各层的个体数与总体的
个体数的比;
开始 分层 计算比
(3)按各层个体数占总体的个 体数的比确定各层应抽取
定层抽取容量
的样本容量;
抽样
(4)在每一层进行抽样;(可用简单
随机抽样或系统抽样)
组样
(5)综合每层抽样,组成样本.结束数学应用例1.某高中共有900人,其中高一年级
分析:( 别1是)什总么体?、个体、样本、样本容量分
(2)能否在2500名学生中随机抽取 100名学生?为什么?
(3)能否在三个年级中平均抽取?
创设情景:
某校高一、高二和高三年级分别有1000,800和 700名,为了了解全校学生的视力情况,从中抽取容量 为100的样本,你认为应当怎样抽取样本较为合理?
用简单随 机抽样或 系统抽样 对各层抽 样
采用简单随机抽样的方法,从第一组5名学 生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号3,8,13,…,288,293,这 样就得到一个样本容量为59的样本.
例2、从编号为1~50的50枚最新研制 的某种型号的导弹中随机抽取5枚来进行发 射实验,若采用每部分选取的号码间隔一 样的系统抽样方法,则所选取5枚导弹的编
号可能是( B )
A.5,10,15,20,25 B、3,13,23,33,43 C、1, 2, 3, 4, 5 D、2, 4, 6, 16,32
例3:采用系统抽样从个体数为83的总体中 抽取一个样本容量为10的样本,那么每个个体
10 入样的可能性为 ____8 _3____.
练习:从2004名学生中选取50名组成参 观团,若采用下面的方法选取:先用简单随机 抽样从2004人中剔除4人,剩下的2000个再按
方法抽取一个容量为200人的样本,则应抽取三年级
的学生为( B)人。
A、80 B、40 C、60 D、20
如果编号的个体特征随编号的变化呈现一 定的周期性,可能会使系统抽样的代表性很 差.例如学号按照男生单号女生双号的方法 编排,那么,用系统抽样的方法抽取的样本就 可能会是全部男生或全部女生.
思考:下列抽样中不是系统抽样的是 ( C )
系统抽样的方法进行,则每人入选的机会C( )
A.不全相等 B.均不相等
C.都相等 D.无法确定
简单随 机抽样
系统 抽样
分层 抽样
抽样过 程中每 个个体 被抽取 的概率 相等
从总体中 逐个不放 回抽取
将总体分成 均衡几部分, 按规则关联 抽取
将总体分 成几层, 按比例分 层抽取
用简单随 机抽样抽 取起始号 码
分层抽样与系统抽样
设计科学、合理的抽样方法,其核心问
题是保证抽样公平,并且样本具有好的代表 性.如果要调查我校高一学生的平均身高,由 于男生一般比女生高,故用简单随机抽样, 可能使样本不具有好的代表性.对于此类抽样 问题,我们需要一个更好的抽样方法来解决, 这就是本节课我们研究的问题
创设情景:
某校高一、高二和高三年级分别有1000,800和 700名,为了了解全校学生的视力情况,从中抽取容量 为100的样本,你认为应当怎样抽取样本较为合理?
A、从标有1~15号的15个小球中任选3个作 为样本,按从小号到大号排序,随机确定起点i, 以后为i+5, i+10(超过15则从1再数起)号入样;
B、工厂生产的产品,用传送带将产品送入 包装车间前,检验人员从传送带上每隔五分钟抽 一件产品检验;
C、搞某一市场调查,规定在商场门口随机 抽一个人进行询问,直到调查到事先规定的调查 人数为止;
分析:(4)三个年级中个体有较大差别,应如何提高 样本的代表性?
应考虑他们在样本中所占的比例。
(5)如何确定各年级所要抽取的人数?
计算样本容量与总体容量的比值,再按比 例分配各年级,得各年级所要抽取的个体数。
创设情景:
某校高一、高二和高三年级分别有1000,800和 700名,为了了解全校学生的视力情况,从中抽取容量 为100的样本,你认为应当怎样抽取样本较为合理?
300人,高二年级200人,高三年级400
人,现采用分层抽样抽取容量为45的
样本,那么高一、高二、高三各年级
抽取的人数分别D为( )
A.15,5,25
B.15,15,15
C.10,5,30
D.15,10,20
1、某单位有职工160人,其中业务员有104人,管理 人员32人,后勤24人,现用分层抽样从中抽取一容
解:
高一年级占1000/2500,应取100× 1000/2500=40名;
高二年级占800/2500,应取100× 800/2500=32名;
高三年级占700/2500,应取100× 700/2500=28名。
然后分别在各年级(层)运用系统抽样方法抽取.
探究新知: 一、分层抽样的定义。
一般地,当总体由差异明显几部分组成时,我 们常常将总体中的个体按不同的特点分成层次比较明 显的几部分,然后按照各部分在总体中所占的比实施 抽样,这种抽样方法叫分层抽样。
量为20的样本,则抽取管理人员( B)人
A、3 B、4 C、7 D、12
2、某校有老师200人,男学生1200人,女学生1000人,
现用分层抽样的方法从所有师生中抽取一个容量为n的
样本,已知女学生中抽取的人数为80,则n=
192
3、某大学数学系共有本科生5000人,其中一、二、
三、四年级的学生比为4:3:2:1,用分层抽样的
D、电影院调查观众的某一指标,通知每排 (每排人数相等)座位号为14的观众留下来座谈。
【例题解析】 例1、某校高中三年级的295名学生已经编
号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。
解:样本容量为295÷5=59. 确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295;
相关文档
最新文档