“方程的根与函数的零点”教学设计、教学反思与点评

合集下载

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标:1. 让学生理解方程的根与函数的零点的概念,掌握它们之间的关系。

2. 培养学生运用函数的零点定理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 方程的根与函数的零点的定义。

2. 函数的零点定理及应用。

3. 方程的根与函数的零点之间的关系。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念,函数的零点定理。

2. 难点:方程的根与函数的零点之间的关系,函数的零点定理在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点之间的关系。

2. 利用实例分析,让学生直观地理解函数的零点定理。

3. 运用小组讨论法,培养学生的团队合作精神,提高解决问题的能力。

五、教学过程:1. 导入:引导学生回顾方程的解与函数的零点的概念,为新课的学习做好铺垫。

2. 讲解:讲解方程的根与函数的零点的定义,阐述它们之间的关系。

3. 实例分析:分析具体例子,让学生理解函数的零点定理及应用。

4. 练习:布置练习题,让学生巩固所学知识。

6. 作业布置:布置作业,让学生进一步巩固所学知识。

7. 课后反思:教师对本节课的教学进行反思,为学生下一步的学习做好准备。

六、教学评价:1. 课后作业:检查学生对课堂所学知识的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在团队合作中的参与程度,以及他们的问题解决能力。

4. 期中期末考试:全面评估学生在整个学期的学习成果。

七、教学资源:1. 教学PPT:提供直观的教学演示,帮助学生更好地理解概念。

2. 练习题库:为学生提供丰富的练习资源,帮助他们巩固知识。

3. 教学视频:为学生提供额外的学习资源,帮助他们从不同角度理解知识点。

4. 网络资源:利用互联网为学生提供更多相关知识的学习资料。

八、教学进度安排:1. 第1周:介绍方程的根与函数的零点的概念。

方程的根与函数的零点教案

方程的根与函数的零点教案

一、《方程的根与函数的零点》二、教学目标:1. 了解方程的根与函数的零点的概念及关系;2. 掌握求解一元二次方程的方法;3. 学会利用函数的零点判断方程的解的情况;4. 能够运用方程的根与函数的零点解决实际问题。

三、教学重点与难点:1. 重点:方程的根与函数的零点的概念及关系,求解一元二次方程的方法;2. 难点:利用函数的零点判断方程的解的情况,运用方程的根与函数的零点解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生思考方程与函数之间的关系;2. 利用数形结合法,让学生直观地理解函数的零点与方程的根;3. 运用实例分析法,培养学生解决实际问题的能力。

五、教学内容:1. 方程的根与函数的零点的概念介绍;2. 求解一元二次方程的公式法与因式分解法;3. 利用函数的零点判断方程的解的情况;4. 方程的根与函数的零点在实际问题中的应用实例。

教案内容依次按照教学步骤、教学活动、教学评价进行设计。

六、教学步骤:1. 引入新课:通过回顾前面的知识,引导学生思考方程与函数之间的关系,引出本节课的主题——方程的根与函数的零点。

2. 讲解概念:讲解方程的根与函数的零点的概念,让学生理解两者之间的关系。

3. 求解一元二次方程:引导学生学习求解一元二次方程的公式法与因式分解法,并通过例题让学生掌握这两种方法。

4. 利用函数的零点判断方程解的情况:讲解如何利用函数的零点判断方程的解的情况,并通过图形让学生直观地理解。

5. 实际问题应用:通过实例分析,让学生学会运用方程的根与函数的零点解决实际问题。

七、教学活动:1. 小组讨论:让学生分组讨论方程的根与函数的零点之间的关系,并分享各自的观点。

2. 例题讲解:让学生上台演示求解一元二次方程的过程,并讲解解题思路。

3. 函数零点判断:让学生通过图形判断给定方程的解的情况。

4. 实际问题解决:让学生分组讨论实际问题,并运用方程的根与函数的零点找出解决方案。

八、教学评价:1. 课堂提问:通过提问了解学生对equation 的根与function 的零点的概念的理解程度。

方程的根与函数的零点》教学设计及教学反思

方程的根与函数的零点》教学设计及教学反思

方程的根与函数的零点》教学设计及教学反思通过本节课的研究,学生应该能够:1)理解函数的零点概念,掌握函数零点存在性的判定方法;2)理解一元二次方程与相应二次函数的内在联系,掌握判断一元二次方程根的存在性和个数的方法;3)掌握函数零点与方程的根的关系,能够通过建立函数模型解决实际问题;4)培养学生的数形结合思想,提高学生的归纳思维能力;5)通过本节课的研究,为学好中学数学打下一个良好基础。

三、教学方法设计本节课的教学方法主要采用启发式教学法,通过引导学生发现问题、思考问题、解决问题的过程,培养学生的数学思维能力和创新意识。

在教学中,尽可能采用多媒体教学手段,如演示、动画、视频等,让学生通过直观感受深入理解抽象的概念和方法。

同时,注重引导学生自主探究,通过小组合作、讨论、展示等方式,激发学生的研究兴趣和主动性。

四、教学过程设计1、引入新知识通过引入一元二次方程的实例,引导学生思考如何判断其根的存在性和个数,进而引入函数的零点概念,让学生理解函数零点与方程根的联系。

2、探究发现通过二次函数的图象研究,让学生发现一元二次方程的根与相应二次函数的零点的联系,并由特殊到一般,推广到一般方程与相应函数的情形。

同时,通过实例演示和小组讨论,让学生深入理解函数零点存在性的判定方法。

3、归纳总结通过引导学生观察、分析、归纳,总结出函数零点与方程根的关系,并通过实例演示和小组合作,让学生掌握建立函数模型解决实际问题的方法。

4、拓展应用通过引导学生思考和探究,拓展应用函数零点与方程根的关系,解决实际问题,如利用二分法解方程、求最值等问题。

五、教学反思本节课通过启发式教学法,引导学生发现问题、思考问题、解决问题的过程,培养了学生的数学思维能力和创新意识。

同时,注重引导学生自主探究,通过小组合作、讨论、展示等方式,激发了学生的研究兴趣和主动性。

但在教学中,需要注意引导学生理解抽象概念和方法的困难,需要通过多媒体教学手段和具体实例演示等方式,让学生通过直观感受深入理解抽象的概念和方法。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

方程的根与函数的零点教学教案设计一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 让学生掌握求解一元二次方程的方法,并能够运用到实际问题中。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的求解方法。

3. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其联系,一元二次方程的求解方法。

2. 教学难点:一元二次方程的求解方法在实际问题中的应用。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程的根与函数的零点的关系。

2. 使用多媒体课件,帮助学生直观地理解一元二次方程的求解过程。

3. 开展小组讨论,培养学生合作解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考方程的根与函数的零点的关系。

2. 讲解概念:介绍方程的根与函数的零点的概念,并解释它们之间的联系。

3. 演示求解过程:利用多媒体课件,演示一元二次方程的求解过程,让学生了解求解方法。

4. 练习与讲解:让学生独立完成练习题,对其中出现的问题进行讲解。

5. 实际问题应用:引导学生运用所学知识解决实际问题,巩固所学内容。

7. 布置作业:布置一些有关方程的根与函数的零点的练习题,巩固所学知识。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对方程的根与函数的零点的理解和掌握程度。

2. 练习题:布置课后练习题,评估学生对一元二次方程求解方法的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们对于实际问题应用的掌握情况。

七、教学拓展1. 介绍一元二次方程的其他求解方法,如配方法、因式分解法等。

2. 探讨方程的根与函数的零点在实际问题中的应用,如物理学、工程学等领域的应用。

八、教学反馈1. 学生反馈:收集学生对课堂内容的反馈意见,了解他们的学习需求和困惑。

2. 教学反思:根据学生的反馈和课堂表现,反思教学过程中的不足之处,并进行改进。

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案

方程的根与函数的零点公开课教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其关系。

2. 培养学生运用数形结合的方法分析问题、解决问题的能力。

3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的关系。

3. 求解方程根的方法。

4. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念及其关系,求解方程根的方法。

2. 教学难点:运用数形结合的方法分析问题、解决问题的能力。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。

2. 利用数形结合的方法,帮助学生直观地理解问题。

3. 通过实际问题,培养学生的应用能力。

五、教学过程1. 导入:讲解方程的根与函数的零点的概念,引导学生理解两者之间的关系。

2. 新课:讲解方程的根与函数的零点的关系,引导学生掌握求解方程根的方法。

3. 案例分析:分析实际问题,让学生运用方程的根与函数的零点的关系解决问题。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调方程的根与函数的零点的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

六、教学活动1. 课堂讨论:让学生举例说明方程的根与函数的零点在实际问题中的应用,分享解题心得。

2. 小组合作:分组让学生探讨如何利用方程的根与函数的零点的关系解决实际问题,并进行汇报。

七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的理解程度。

2. 课后作业:评估学生运用所学知识解决问题的能力。

3. 小组汇报:评价学生在团队合作中的表现及对问题的分析、解决能力。

八、教学反馈1. 课后收集学生作业,分析存在的问题,为下一步教学提供参考。

2. 听取学生对教学内容的反馈,了解学生的学习需求,调整教学方法。

九、教学拓展1. 深入研究方程的根与函数的零点的相关理论,如代数基本定理等。

最新人教版高中数学《方程的根与函数的零点》教学设计

最新人教版高中数学《方程的根与函数的零点》教学设计

方程的根与函数的零点一、教材地位和作用本节课是普通高中实验教科书人教A版必修1第三章第一单元第一节,是后继学习二分法的理论准备。

学生通过了解函数零点与方程根的联系,从而把求方程根的问题转化为求函数零点的问题。

作为函数应用的第一课时,就是要让学生认识到函数与其他数学知识的联系,让学生用函数的图象这个“形”来研究方程的根这个“数”,深刻体会“以形助数”的思想方法二、学情分析(1)知识基础:学生已经熟练掌握一次、二次方程的求解方法,掌握了一些基本初等函数图象的画法,并能从图象中获取一定信息,这是学习本节课的知识基础。

(2)心理准备:公式法求解高次、超越方程的思维受挫是学生学习本节课的内在动机。

三、教学目标1、知识与技能:结合具体的二次函数图象,判断二次方程根的存在性,从而了解函数的零点与方程根的联系,形成函数零点的概念及零点存在的判定方法。

2、过程与方法:在应用函数研究方程的过程中,体会函数与方程思想,数形结合思想以及化归思想;把从特殊函数零点存在的判定方法上升到一般函数,体现了从特殊到一般的研究方法。

3、情感态度价值观:在求解方程根的“山穷水尽”,到研究函数零点的“柳暗花明”,学生了解数学的发展史,感受探究的乐趣。

四、教学重点、难点与关键(1)重点:零点存在定理的发现。

(2)难点:零点存在定理的发现与准确理解。

(3)关键:引导学生运用函数的观点研究方程的根。

五、教法与学法(一)教法设计:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同探究——形成概念结论——应用巩固提高”的探究模式,使学生在获得知识的同时,能够掌握方法、提升能力(二)学法指导:让学生在自主探究中,学会发现问题并解决问题,逐步形成敢于发现、敢于质疑的科学态度。

、函数零点的定义:对于函数()y f x =,把使0=的实数x 叫做函数(y f x =_x_ - 1_0 _ - 1 _ - 2_3 _2 _1_4_3_2_1设计理念:本节课借鉴发现教学法,强调教师学生双主体,采用“创设问题情景——师生共同辨析研讨——形成概念结论——应用举例巩固提高”的探究模式,教师真正担当学习情境的创设者,学生探究中的引导者,学生学习中的合作者;而学生则成为新知识的探索者、发现者、建构者,使学生在获得知识的同时,能够掌握学习数学的思维方法、提升进一步学习新知识的能力。

教案设计-方程的根与函数的零点

教案设计-方程的根与函数的零点

教案设计方程的根与函数的零点一、教学目标知识与技能:1. 理解方程的根与函数的零点的概念及其联系。

2. 学会使用数形结合的方法分析方程的根与函数的零点。

3. 掌握求解一元二次方程的方法,并能应用于实际问题中。

过程与方法:1. 通过观察、实验、探究等活动,培养学生的观察能力、思考能力和解决问题的能力。

2. 学会使用函数图像来分析方程的根的情况。

情感态度价值观:1. 培养学生的耐心和细心,对数学问题的探究兴趣。

2. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的概念。

2. 方程的根与函数的零点的联系。

3. 一元二次方程的解法。

4. 利用函数图像分析方程的根的情况。

5. 实际问题中的应用。

三、教学重点与难点重点:1. 方程的根与函数的零点的概念及其联系。

2. 一元二次方程的解法。

难点:1. 对方程的根的情况的分析。

2. 利用函数图像分析方程的根的情况。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 导入:a. 引导学生回顾方程的解的概念。

b. 引入“方程的根”的概念,引导学生理解方程的根与方程的解的关系。

2. 探究方程的根与函数的零点的联系:a. 引导学生观察一元二次方程的解与对应函数的零点的关系。

b. 通过实验或探究活动,让学生体会方程的根与函数的零点的联系。

3. 学习一元二次方程的解法:a. 引导学生学习一元二次方程的解法,如因式分解法、配方法、求根公式等。

b. 通过练习题,巩固学生对一元二次方程解法的掌握。

4. 利用函数图像分析方程的根的情况:a. 引导学生学会绘制函数图像。

b. 引导学生通过观察函数图像,分析方程的根的情况。

5. 实际问题中的应用:a. 引导学生运用方程的根与函数的零点的知识解决实际问题。

b. 提供一些实际问题,让学生练习运用所学知识解决问题。

b. 引导学生反思自己在学习过程中的收获和不足,提出改进措施。

7. 布置作业:a. 根据学生的学习情况,布置一些巩固所学知识的练习题。

《方程的根与函数的零点》教学设计与反思(经典公开课教案)

《方程的根与函数的零点》教学设计与反思(经典公开课教案)

《方程的根与函数的零点》教学设计与反思(经典公开课教案)课题教材分析基本信息人教版A版必修1第三章第一节《方程的根与函数的零点》本节是在研究了前两章函数性质的基础上,利用函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与对应方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续研究的算法提供基础。

因此本节内容具有承上启下的作用,非常重要。

1.结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

2.零点的存在性定理的探究。

2.本节核心内容的功能和价值:初步了解函数与方程的思想。

学情分析1.学生掌握了基本初等函数,对函数有较好的掌握,对新的知识有渴求,同时为函数的应用提供一个基础。

2.学生认知发展分析:学生对一元二次方程的根有较好的认识,但学生对于函数零点还是未知,而且函数与方程的思想还没有接触。

3.学生认知障碍点:方程的根与函数零点的关系,零点存在性定理的探究。

教学目标知识与技能:了解函数(结合二次函数)零点的概念,领会函数零点与相应方程间的关系,掌握利用函数性质判定零点存在的条件。

过程与方法:零点存在性的探索、发现、及判定。

情感、态度、代价观:在函数与方程的接洽中体验数学中的数形联合头脑,转化头脑和近似头脑的意义和代价,开展学生对变量数学的认识,体会函数知识的核心作用。

教学重点和难点重点:零点的概念及存在性的断定,重在数形联合的几何方法。

难点:零点的确定.教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。

)教学环节教师活动教师:设置思考,指导学生解方程,画函数图象,分析方程的根与图象和x轴交点坐标的关系,引出零点的概念.思考:一元二次方程ax bx c(a)的根与二次函数y ax bx c(a)的图像有什么关系?先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:2预设学生行为设计企图2学生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.情境设置应符合认知规律:从具体到抽象,从特殊到普通,从学生熟的经验和有兴趣的问题开始。

方程的与函数的零点的教学反思(五篇)

方程的与函数的零点的教学反思(五篇)

方程的与函数的零点的教学反思(五篇)第一篇:方程的与函数的零点的教学反思方程的根与函数的零点的教学反思教学时要时刻反省自己的教学行为,以备在以后的教学中少一些遗憾。

比如“方程的根与函数的零点”这节课的教学有如下的体会。

教学时要善于抓住本课的切入点,以点带面,一面带片。

在讲“方程的根与函数的零点”这节内容时,按照教科书的次序讲解,一会是方程,一会是函数,一会又是不等式,一会又是函数的图象等等,最后引出函数的零点的概念。

这样讲似乎有冲淡主题的嫌疑,学生会有乱的感觉,找不到北的感觉,剪不断,理还乱,好多知识碰撞在一起,引起了学生认知上的冲突,理不出个头绪。

知识不条理,理解上就不深刻。

之所以引起这样的效果,是因为教学中没有抓住函数的应用——用函数的观点去观察方程的根这一主线。

为此,在再讲这节课时,我是这样处理的:首先开门见山地给出函数零点的概念:“对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。

”学生会想:学习函数的零点有什么用呢?紧接着问学生:“我们以前学过的一元一次函数及一元二次函数在什么情况下有零点?这些函数的零点与相应的方程的根有什么联系?函数零点附近的函数值有什么特点?能把研究这些具体函数所得的结论,推广到一般形式的函数y=f(x)上吗?” 随着对学生质疑的解答,学生自然得出结论:一元方程的根就是相应函数的图象与x轴的交点的横坐标,在零点附近左右的函数值互异。

这样讲,由于教学的切入点抓住了新旧知识联系的关键点,学生不仅掌握了新知识,又体验到了旧知识与新知识之间的联系,学会了用函数的观点处理问题的方法。

第二篇:“方程的根与函数的零点”教学反思《方程的根与函数的零点》教学反思巴里坤县第三中学教师李晓莹本节是在学习了前两章函数性质的基础上,利用函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与对应方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续学习的算法提供基础。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 培养学生运用函数性质解决方程问题的能力。

3. 渗透数学的转化思想,提高学生的数学思维能力。

二、教学内容:1. 方程的根与函数的零点的概念。

2. 函数的零点的判定定理。

3. 方程的根与函数的零点的关系。

三、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及其联系,函数的零点的判定定理。

2. 教学难点:函数的零点的判定定理的应用。

四、教学方法与手段:2. 利用多媒体课件,展示函数的零点的判定定理的证明过程,帮助学生直观理解。

五、教学过程:1. 导入新课:通过复习一元二次方程的根的判别式,引导学生思考方程的根与函数的零点的关系。

2. 探究新知:a) 引导学生观察函数图像,发现函数的零点与方程的根的关系。

c) 讲解函数的零点的判定定理,并通过多媒体课件展示证明过程。

3. 巩固新知:通过例题讲解,让学生掌握运用函数的零点的判定定理解决方程问题的方法。

4. 练习巩固:布置适量习题,让学生独立完成,检验对知识的掌握程度。

6. 课后作业:布置相关作业,让学生进一步巩固所学知识。

七、教学反思:在课后,对教学效果进行反思,观察学生对知识的掌握程度,针对存在的问题,调整教学策略,为后续的教学做好准备。

八、教学评价:通过课堂表现、作业完成情况、课后反馈等方式,对学生的学习情况进行全面评价,为下一步教学提供依据。

九、教学资源:1. 多媒体课件。

2. 教学习题。

3. 相关教学参考资料。

十、教学时间安排:1课时(45分钟)六、教学拓展与延伸:1. 引导学生思考方程的根与函数的零点在实际应用中的意义,例如在物理学、工程学等领域的应用。

2. 探讨函数的零点存在性定理的条件,引导学生了解函数零点存在性定理的局限性。

七、课堂小结:1. 回顾本节课所学内容,强调方程的根与函数的零点的概念及其联系。

八、课后自主学习任务:1. 复习本节课所学内容,整理笔记。

高中数学_方程的根与函数的零点教学设计学情分析教材分析课后反思

高中数学_方程的根与函数的零点教学设计学情分析教材分析课后反思

《方程的根与函数的零点》教学设计【环节一:巧设疑云,轻松渗透】设置问题情境,渗透数学思想 教师活动:请同学们思考这个问题。

解方程:(1)10 x -=;(2)2230x x --=.(3)220x-=;(4)062ln =-+x x .学生活动:回答,思考解法。

教师活动:第四个方程我们没有学过它的解法,通过这节课的学习我们来解决这个问题。

上一章我们学习了基本初等函数,这节课我们就通过研究函数来解决方程根的问题。

画出前三个方程相应函数的图象,并求出图象和x 轴交点.学生活动:动手画图并求解。

教师活动:用屏幕显示方程的根、函数的图象以及函数图象与x 轴交点的坐标。

观察三者之间的关系。

学生活动:观察图象,思考作答。

得到方程的实数根是函数图象与x 轴交点的横坐标,是使函数值为零的x 的结论。

教师活动:我们就把使f (x )=0的实数x 称做函数的零点. 设计意图:通过纯粹靠代数运算无法解决的方程,引起学生认知冲突,激起探求的热情.通过回顾一次函数、二次函数、指数函数图象与x 轴的交点和相应方程的根的关系,将结论推广到一般函数,为零点概念做好铺垫.【环节二:形成概念,升华认知】引入零点定义,确认等价关系 教师活动:这是我们本节课的第一个知识点。

板书函数零点的定义。

教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答。

教师活动:这是我们本节课的第二个知识点。

板书方程的根与函数零点的等价关系。

在屏幕上显示:函数y=f(x)有零点⇔方程f(x)=0有实数根⇔ 函数y=f(x)的图象与x 轴有交点教师活动:强调方程与函数的思想。

教师活动:屏幕显示函数图象,指出这几个函数的零点是?学生活动:对比定义回答。

教师活动:强调:零点就是使函数值为0的实数而不是点!教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x 轴有交点。

方程的根与函数的零点 教学教案

方程的根与函数的零点 教学教案

方程的根与函数的零点教学教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 培养学生运用函数的性质解决方程问题的能力。

3. 渗透数学思想方法,提高学生的逻辑思维能力。

二、教学内容1. 方程的根与函数的零点的定义。

2. 方程的根与函数的零点的联系。

3. 利用函数的性质求解方程的根。

三、教学重点与难点1. 重点:方程的根与函数的零点的概念及其联系。

2. 难点:利用函数的性质求解方程的根。

四、教学方法1. 采用问题驱动的教学方法,引导学生探索方程的根与函数的零点的关系。

2. 利用数形结合的思想,让学生直观地理解函数的零点与方程的根的联系。

3. 采用小组讨论与合作交流的方式,培养学生的团队协作能力。

五、教学过程1. 导入:引导学生回顾方程的根的概念,引导学生思考方程的根与函数的关系。

2. 新课导入:介绍函数的零点的概念,引导学生理解函数的零点与方程的根的联系。

3. 案例分析:给出具体例子,让学生分析函数的零点与方程的根的关系。

4. 方法讲解:讲解如何利用函数的性质求解方程的根。

5. 练习与讨论:布置相关练习题,让学生巩固所学知识,并进行小组讨论。

6. 总结与反思:对本节课的内容进行总结,引导学生思考如何运用函数的性质解决实际问题。

7. 作业布置:布置适量的作业,巩固所学知识。

六、教学评价1. 学生能理解方程的根与函数的零点的概念及其联系。

2. 学生能运用函数的性质解决方程的根的问题。

3. 学生能积极参与课堂讨论,提高团队协作能力。

七、教学反思教师在课后应对本节课的教学效果进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。

八、教学拓展1. 引导学生思考方程的根与函数的零点在实际应用中的意义。

2. 引导学生探索其他求解方程根的方法。

九、教学资源1. PPT课件。

2. 相关练习题。

3. 数形结合的图形资料。

十、教学时间1课时(40分钟)六、教学内容1. 方程的根的判别式。

2. 利用判别式求解方程的根。

高一数学《方程的根与函数的零点》公开课教案(教学反思、点评)

高一数学《方程的根与函数的零点》公开课教案(教学反思、点评)

方程的根与函数的零点一、教学内容分析函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。

在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。

就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。

之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

二、学生学习情况分析地理位置:学生大多来自市区,学生接触面较广,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。

程度差异性:中低等程度的学生占大多数,程度较高与程度很差的学生占少数。

知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。

再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。

这也为我们归纳函数的零点与方程的根联系提供了知识基础。

关于方程的根与函数的零点内容的教学反思

关于方程的根与函数的零点内容的教学反思

关于方程的根与函数的零点内容的教学反思近年来,数学教育在我国受到了广泛的关注和重视。

在数学中,方程的根与函数的零点是一项基础且重要的知识点。

本文将对关于方程的根与函数的零点的教学进行反思,并提出一些改进和优化的措施。

首先,关于方程的根,教师应该在初始阶段对学生进行足够的引导和启发。

在引入方程根的概念时,可以通过生动的例子,如植物生长的过程中地下部分与地上部分长度之间的关系等,帮助学生理解什么是方程根。

同时,可以以图形的形式展示方程的解法,让学生通过观察图像与数学公式之间的关系来理解方程的根与函数的零点。

其次,在教学中应该注重方程的根与函数的零点的实际应用。

可以通过生动的实例,如物理、经济、生活中的问题,引导学生将所学的知识应用到实际中去,增强学生的兴趣和实践动力。

同时,教师可以引导学生进行实际问题的建模,将问题转化为方程求解的实际场景,培养学生解决问题的能力。

此外,对于函数的零点的教学,可以尝试采用多种途径和方法。

例如,引入实数轴和坐标轴的概念,将函数的零点与图像进行对应,让学生通过观察图像找到函数的零点。

另外,可以通过数值方法,如迭代法和二分法,帮助学生近似求解函数的零点,从而培养学生的计算能力和创新思维。

此外,为了提高教学效果,教师还可以增加互动环节。

例如,将学生分为小组进行讨论和合作,让学生发挥主动性和创造性,共同解决问题。

同时,教师可以设计一些有趣的思考题和练习题,让学生在课后进行巩固和拓展,提高学生的自主学习能力。

总结起来,关于方程的根与函数的零点的教学需要注重启发性、实际应用性和多样化的方法。

通过引导学生进行观察、思考和实践,培养学生的问题解决能力和创新思维。

同时,教师应加强与学生的互动,提高教学效果。

相信通过不断的改进和优化,方程的根与函数的零点的教学将更加生动有趣,让学生更好地理解和应用这一重要知识点。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 理解方程的根与函数的零点的概念及它们之间的关系。

2. 学会利用函数的零点判断方程的根的情况。

3. 掌握求解一元二次方程的方法,并能够应用到实际问题中。

二、教学内容:1. 方程的根与函数的零点的概念。

2. 函数的零点的判断方法。

3. 一元二次方程的求解方法。

三、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及它们之间的关系,一元二次方程的求解方法。

2. 教学难点:函数的零点的判断方法,一元二次方程的求解方法的运用。

四、教学方法与手段:1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究来理解方程的根与函数的零点的关系。

2. 利用多媒体课件,生动形象地展示函数的零点的判断方法和一元二次方程的求解过程。

五、教学过程:1. 导入:通过展示一个实际问题,引导学生思考如何求解方程的根,从而引出方程的根与函数的零点的关系。

2. 教学内容与活动:a. 讲解方程的根与函数的零点的概念,并通过示例让学生理解它们之间的关系。

b. 讲解函数的零点的判断方法,并通过示例让学生学会如何判断函数的零点的情况。

c. 讲解一元二次方程的求解方法,并通过示例让学生掌握求解一元二次方程的步骤。

3. 巩固练习:给出一些练习题,让学生运用所学知识解决问题,巩固对方程的根与函数的零点的理解。

4. 总结与反思:通过总结本节课所学内容,让学生明确方程的根与函数的零点的关系,以及如何利用函数的零点判断方程的根的情况。

教学评价:通过课堂讲解、练习题和课后作业的完成情况,评价学生对方程的根与函数的零点的理解和掌握程度。

六、教学准备:1. 教学课件:制作包含动画、图表和例题的课件,以便直观展示概念和原理。

2. 练习题库:准备一系列针对不同知识点的练习题,用于课堂练习和课后作业。

3. 教学工具:准备白板和标记笔,以便在课堂上进行板书和解释。

七、教学过程设计:1. 导入新课:通过一个实际问题,如物理中的振动问题,引入方程的根与函数的零点的重要性。

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案(精选6篇)

方程的根与函数的零点教案方程的根与函数的零点教案(精选6篇)作为一名为他人授业解惑的教育工作者,就不得不需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

教案应该怎么写呢?下面是小编整理的方程的根与函数的零点教案,仅供参考,欢迎大家阅读。

方程的根与函数的零点教案篇1学习目标1. 结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2. 掌握零点存在的判定定理.学习过程一、课前准备(预习教材P86~ P88,找出疑惑之处)复习1:一元二次方程 +bx+c=0 (a 0)的解法.判别式 = .当 0,方程有两根,为 ;当 0,方程有一根,为 ;当 0,方程无实根.复习2:方程 +bx+c=0 (a 0)的根与二次函数y=ax +bx+c (a 0)的图象之间有什么关系?判别式一元二次方程二次函数图象二、新课导学学习探究探究任务一:函数零点与方程的根的关系问题:① 方程的解为,函数的图象与x轴有个交点,坐标为 .② 方程的解为,函数的图象与x轴有个交点,坐标为 .③ 方程的解为,函数的图象与x轴有个交点,坐标为 .根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x轴交点的 .你能将结论进一步推广到吗?新知:对于函数,我们把使的实数x叫做函数的零点(zero point).反思:函数的零点、方程的实数根、函数的图象与x轴交点的横坐标,三者有什么关系?试试:(1)函数的零点为 ;(2)函数的零点为 .小结:方程有实数根函数的图象与x轴有交点函数有零点.探究任务二:零点存在性定理问题:① 作出的图象,求的值,观察和的符号② 观察下面函数的图象,在区间上零点; 0;在区间上零点; 0;在区间上零点; 0.新知:如果函数在区间上的图象是连续不断的一条曲线,并且有0,那么,函数在区间内有零点,即存在,使得,这个c也就是方程的根.讨论:零点个数一定是一个吗? 逆定理成立吗?试结合图形来分析.典型例题例1求函数的零点的个数.变式:求函数的零点所在区间.小结:函数零点的求法.① 代数法:求方程的实数根;② 几何法:对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.动手试试练1. 求下列函数的零点:练2. 求函数的零点所在的大致区间.三、总结提升学习小结①零点概念;②零点、与x轴交点、方程的根的关系;③零点存在性定理知识拓展图象连续的函数的零点的性质:(1)函数的图象是连续的,当它通过零点时(非偶次零点),函数值变号.推论:函数在区间上的图象是连续的,且,那么函数在区间上至少有一个零点.(2)相邻两个零点之间的函数值保持同号.学习评价自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟满分:10分)计分:1. 函数的零点个数为().A. 1B. 2C. 3D. 42.若函数在上连续,且有 .则函数在上().A. 一定没有零点B. 至少有一个零点C. 只有一个零点D. 零点情况不确定3. 函数的零点所在区间为().A. B. C. D.4. 函数的零点为 .5. 若函数为定义域是R的奇函数,且在上有一个零点.则的零点个数为 .课后作业1. 求函数的零点所在的大致区间,并画出它的大致图象.2. 已知函数 .(1)为何值时,函数的图象与轴有两个零点;(2)若函数至少有一个零点在原点右侧,求值.方程的根与函数的零点教案篇2教学目标:1、能够结合二次函数的图像判断一元二次方程根的存在性及根的个数。

方程的根与函数的零点教案

方程的根与函数的零点教案

方程的根与函数的零点教案一、教学目标1. 让学生理解方程的根与函数的零点的概念及其联系。

2. 培养学生运用数形结合的方法分析问题、解决问题的能力。

3. 引导学生掌握求解方程根的方法,提高学生解决实际问题的能力。

二、教学内容1. 方程的根与函数的零点的定义。

2. 方程根的判别式及其应用。

3. 函数的零点与方程根的关系。

4. 求解方程根的方法。

5. 实际问题中的应用。

三、教学重点与难点1. 教学重点:方程的根与函数的零点的概念、联系,求解方程根的方法。

2. 教学难点:方程根的判别式的应用,函数的零点与方程根的关系。

四、教学方法1. 采用问题驱动的教学方法,引导学生主动探究方程的根与函数的零点的关系。

2. 利用数形结合的方法,直观地展示函数的零点与方程根的求解过程。

3. 运用实例分析,让学生体会方程根在实际问题中的应用。

五、教学过程1. 导入:通过引入实际问题,激发学生对方程根的求解的兴趣。

2. 讲解方程的根与函数的零点的定义,引导学生理解两者之间的关系。

3. 讲解方程根的判别式,并通过实例分析让学生掌握判别式的应用。

4. 讲解求解方程根的方法,如直接开平方法、因式分解法、公式法等。

5. 利用数形结合的方法,展示函数的零点与方程根的求解过程。

6. 通过课后练习,巩固所学知识,提高学生解决实际问题的能力。

7. 总结本节课的主要内容,强调方程的根与函数的零点在实际问题中的应用。

8. 布置作业,让学生进一步巩固方程的根与函数的零点的相关知识。

六、教学活动1. 小组讨论:让学生分组讨论如何运用判别式判断方程根的情况。

2. 实例分析:选取几个实例,让学生运用所学知识求解方程的根。

3. 练习:布置一些有关方程根与函数零点的练习题,巩固所学知识。

七、教学评价1. 课堂提问:检查学生对方程的根与函数的零点的概念、判别式的应用的理解。

2. 作业批改:检查学生运用所学知识解决实际问题的能力。

3. 课后访谈:了解学生对课堂教学的反馈,以便改进教学方法。

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计

“方程的根与函数的零点”教学教案设计一、教学目标:1. 理解方程的根与函数的零点的概念及其关系。

2. 学会运用因式分解、配方法、求根公式等方法求解一元二次方程。

3. 能够运用函数的零点判断方程的根的情况。

4. 提高学生解决问题的能力,培养学生的逻辑思维能力。

二、教学重点与难点:1. 教学重点:方程的根与函数的零点的概念及其关系。

运用因式分解、配方法、求根公式等方法求解一元二次方程。

运用函数的零点判断方程的根的情况。

2. 教学难点:理解方程的根与函数的零点的本质联系。

灵活运用各种方法求解一元二次方程。

判断方程根的情况。

三、教学方法与手段:1. 教学方法:讲授法:讲解方程的根与函数的零点的概念及其关系,传授求解一元二次方程的方法。

案例分析法:分析实际案例,引导学生理解方程的根与函数的零点的应用。

讨论法:组织学生分组讨论,培养学生的合作与交流能力。

2. 教学手段:投影仪:展示相关概念、例题和讲解过程。

纸质教案:提供详细的解题步骤和练习题。

网络资源:提供相关的学习资料和在线练习平台。

四、教学过程:1. 引入新课:通过展示实际问题,引导学生思考方程的根与函数的零点的关系。

2. 讲解概念:讲解方程的根与函数的零点的概念,阐述它们之间的联系。

3. 方法讲解:讲解因式分解、配方法、求根公式等方法求解一元二次方程的步骤。

4. 案例分析:分析实际案例,引导学生运用方程的根与函数的零点判断方程的根的情况。

5. 练习与讨论:布置练习题,组织学生分组讨论,互相交流解题思路和方法。

五、课后作业:1. 巩固所学知识,运用方程的根与函数的零点判断方程的根的情况。

2. 练习求解一元二次方程,提高解题速度和准确性。

3. 总结方程的根与函数的零点的应用,思考如何将所学知识运用到实际问题中。

六、教学评价:1. 评价目标:学生能理解方程的根与函数的零点的概念及其关系。

学生能运用因式分解、配方法、求根公式等方法求解一元二次方程。

学生能运用函数的零点判断方程的根的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①/ 1 > , 2 > ;② f 1 > , ( ) 0 ③_ 1 < , ( ) f() 0 O () 0f 2 < ; 厂 ) 0 (
/( ) ;④ _( ) , 2 >0 2 <0 厂 1 <0 f( ) . 思考 4 :一般地 ,如果函数 Y= ( ) 厂 在区间[ ,6 上 的图象 o ]
是连续不断 的一条曲线 ,那么在什么条件下 ,函数 Y 厂 ) 区 = ( 在

教师 :我们把使方程f x = ( ) 0成立的实数 称作函数 Y 厂 间( ,6 内一定有零点? = () 。 )
的零点 . 这是我们本节课的第 一个知识点.

教师 :我们看到 ,当函数值 从正 到负 ,从负到正 ,必然经
我们开始学 习第 三章 “ 函数 的应用 ” 本 章我们将 运用 函数 的思 .
通 过表格与 图象 ,从 具体 的二次 函数 上升到一般 的二次 函
想, 建立 函数模 型 ,去解决现实生活 中的一些简单 问题 . 为此 , 数 ,剖析一元 二次方程 的根 与对应的二次 函数 图象 与 轴交点 的横坐标之 间的关系. 从而得出结论. 今天 的课 ,我们就是要准备必需要的工具.

激发 求知欲 ,从 而进入课题——利 用函数 的性质 、图象去探 究
方程 的根的情形. 出 “ 给 函数 零点”的定义 ,得到 等价 关系,探
究零 点存在 的条件 ,引 出 “ 零点存在性定理 ” .对定理辨析 ,利 它可 以用十字相乘法或求根公式求解. 方程 ( ) ,它是一个 一元五次方程.次数越高 ,方程越复 2呢 用定 理 解 决教 材例 1 实 战 演练 , 归纳提 升 ,一 气呵 成 . .再 数学史上 ,人们总希望像低次方程那样去求解 ,但经 过长期 关键 词 :函数零 点 ;零点存在性 定理 ;数形 结合 ;函数与 杂. 努 力 ,都无 果而终 ,事实上不可能.12 ,2 的挪威天 才 8 4年 2岁 方程 数学家阿贝尔 (. .bl 8 2 12 )成功地证明了五次及 以 N HA e,10 - 89 上的一般方程没有根式解. 方程 ( ) 3 呢?有实数根吗?它不是一元二次方程 ,没有 ,没
2 0 1 2年
第 1 2期 —
\\
J u n lo h n s te t s E u ain o r a fC ie e Mah mai d c t c o
N — 2 1 012 0 2
0 0 0 0 0 0 0 0

牟秀锦

执教 ( 四川省 成都树德 中学外 国语校 区)
教 学 重 点 :方 程 的根 与 函 数 零 点 的等 价 关 系 , 函数 零 点 存 图象去探究方程的根 的情形. 首先我们从熟悉 的一元二次方程及其对应 的二次函数人手 . 在性定理. 教学难点 :探究 函数零点存在 的条件.
教学过程 :

二 、新 授 课
例 1 1 解下 列 一元 二 次方 程 : 一2 一 = , : 2 + = , () x 3 0 一 x 1 0
2 下面给 出三个方程 : .
( ) x + +1 ; 1 3 =0
( 3 + 1=0: 2) x +4
结论 :一元二次方程 似 +c=0 ( ≠0 +6 n )的根就是二次
函数 Y=似: 6 + +c (#O a )的图象 与 轴交点 的横坐标.
那么 ,方程 的根 ,是函数 图象与 轴交点 的横坐标 .对方
收稿 日期 :2 1 — 2 0 011—2
作者简介 :牟秀锦 (96) 16一 ,男,四川苍 溪人 ,中学高级教师 ,主要从事 高中数学教 学与高考研 究

程 ,把它称 为根 ;对 图象 ,是 与 轴交点 的横坐标.对于函数 , 又该把它称为什么呢? 揭示课题 板书课题 :311方程的根 与函数 的零点 ..
板书 :1 .函数 零点 的定 义 :对 于 函 数 ,= ( ,使 方程 过 零点.即是 说 函数 图象穿过 轴 时 ,图象就 与 轴产生 了交 , 厂 )
ห้องสมุดไป่ตู้
fx = ( ) 0的实数 叫做 函数 y /( 的零点 ( r o t. = ) z op i ) e n 教师 :屏幕显示 函数的图象. 学生 :观察 图象 ,思考作答 .


新 课 引入
2 + 3= 0. x
1 .同学们 ,通过第二章 的学习 ,我们 已经认识了指数 函数 、
( ) 出下列 函数 的图象 :Y= 一2 2画 x一3 ,Y= 一2 : x+1 ,
Y= 一2 +3 .
对数 函数 、幂函数这 些初等 函数 的定 义 、图象 和性 质 ,今天 ,
吴 中林
点评 ( 四川省教育科学研究所)
( ) n +2 3 I x一6=0 .
摘 要 : “ 程 的根 与 函数 的零 点 ” 一 课 内容 包含 一 个 概 念 、 方

种 关 系、一 个 定 理 . 过 三 个 方 程 的 引 入 ,让 学 生 产 生 困 惑 , 通
这三个方程你能求出它们 的根吗? 我们看方程( ) 1 ,一元二次方程 ,它有两个实数根一 ,一 . 1

点.函数图象 穿过 轴这是一种几何现象 ,那 么如何用代数形式 来给予描述呢? 学生 :通过思考和 观察 图象 ,得 出函数零点 的左右 两侧 函 教师 :好 !我们 明确一下这个结论 ,函数 y f() 备什么 = 具 条件时 ,它在区间 (,6 。 )上就存在零点?
教 学设计
教学 目标 :理解 函数零 点的定义 ,了解 函数零点 与方 程根
的等价关 系 ,理解 函数零 点存在性定理 ,能够判断 函数零 点个
数和所在区间.
有求根公式 ,也不可能去求解 .
因此 ,( )3用我们现有的方法去求解的路被堵上了. 2 () 这就促使我们转换角度来研究方程 的根 :利用 函数的性质 、
相关文档
最新文档