全等三角形几种类型总结

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形与角平分线

全等图形:能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形.

相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.

如下图,两个全等的五边形,记作:五边形 ABCDE 也五边形A'B'C'D'E'.

全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;

反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:

能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、

角分别叫作对应顶点、对应边、对应角•全等符号为

么”.

全等三角形的性质: 对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的 角平分线相等,面积相等.

寻找对应边和对应角,常用到以下方法:

(1) 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2) 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3) 有公共边的,公共边常是对应边. (4) 有公共角的,公共角常是对应角. (5) 有对顶角的,对顶角常是对应角. 全等三角形的判定方法:

(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS :三边对应相等的两个三角形全等.

(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等. 判定三角形全等的基本思路:

找夹角 SAS

已知两边 找直角 HL

找另一边

SSS

边为角的对边T 找任意一角T AAS

找这条边上的另一角T ASA 找这条边上的对角T AAS 找该角的另一边T

SAS

找两角的夹边 ASA 找任意一边

AAS

已知一边一角

边就是角的一条边 这里符号“也”表示全等,读作“全等于”

E'

D'

全等三角形的图形归纳起来有以下几种典型形式:

⑴平移全等型

由全等可得到的相关定理:

⑴ 角的平分线上的点到这个角的两边的距离相等.

⑵ 到一个角的两边的距离相同的点,在这个角的平分线上. ⑶ 等腰三角形的性质定理:等腰三角形的两个底角相等

(即等边对等角)•

⑷等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合. ⑸等腰三角形的判定定理 如果一个三角形有两个角相等, 那么这两个角所对的边也相等⑹ 线段垂直

平分线上的点和这条线段两个端点的距离相等.

⑺和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.

与角平分线相关的问题

角平分线的两个性质:

⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.

角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1 •由角平分线上的一点向角的两边作垂线, 2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,

3.

OA OB ,这种对称的图形应用得也较为普遍,

三角形中线的定义:三角形顶点和对边中点的连线 三角形中线的相关定理:

直角三角形斜边的中线等于斜边的一半

等腰三角形底边的中线三线合一 (底边的中线、顶角的角平分线、底边的高重合 )

三角形中位线定义: 连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理: 三角形的中位线平行于第三边并且等于它的一半.

中位线判定定理: 经过三角形一边中点且平行于另一边的直线必平分第三边. 中线中位线相关问题(涉及中点的问题)

见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理 (以后还要学习中线长公式),尤

其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.

⑵对称全等型

⑶旋转全等型

半例题精讲

板块一、全等三角形的认识与性质

在AB、AC上各取一点E、D,使AE AD,连接BD、CE相交于0再连结AO、BC ,

若1 2,则图中全等三角形共有哪几对?并简单说明理由.

板块二、三角形全等的判定与应用

【例2】(2008年巴中市高中阶段教育学校招生考试AF BD .

)如图,AC II DE , BC II EF , AC DE .求证:【例3】(2008年宜宾市)已知:如图,AD BC , AC BD,求证: C D .

【例1】

【巩固】如图所示, AB AD , BC DC , E、F在AC上,AC与BD相交于P .图中有几对全等三角形?请一一找出来,并简述全等的理由

.

C

【巩固】如图, AC 、BD 相交于0点,且 AC BD , AB CD ,求证:OA OD .

【例4】(哈尔滨市2008年初中升学考试)已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC ,

BE CF , B C .求证:OA OD .

【例5】 已知,如图, AB AC , CE AB , BF AC ,求证:BF CE .

【例6】 F 分别是正方形 ABCD 的BC 、CD 边上的点,且 BE

CF .求证:AE BF .

【巩固】

E 、

F 、

G 分别是正方形 ABCD 的BC 、CD 、AB 边上的点, BG CF BC .

GE EF , GE EF .求证:

【例7】在凸五边形中, B E , C D , BC DE , M 为 CD 中点•求证:AM CD .

4 / 17

D

C

D

F

C

相关文档
最新文档