多项式乘多项式练习题

合集下载

多项式乘多项式课堂练习题

多项式乘多项式课堂练习题

多项式乘以多项式类型一(3m-n)(m-2n). (x+2y)(5a+3b). ()()5332--x x()()y x y x 2332+- ()()y x x y 5323-- ()()y x y x 432--()()()()2315332---+-x x x x ()()⎪⎭⎫ ⎝⎛----213265312x x x x()()()()y x y x y x y x -----3222332 ()()()y x x y x y x 5624334--+-类型二()()23++x x ()()56++x x ()()53--x x ()()61--x x()()53+-x x ()()58+-x x ()()56+-x x ()()2010+-x x 总结归纳()()=++b x a x三化简求值:1. m2(m+4)+2m(m2-1)-3m(m2+m-1),其中m=252.x(x2-4)-(x+3)(x2-3x+2)-2x(x-2),其中x=3.23.(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=四选择题1.若(x+m)(x-3)=x2-nx-12,则m、n的值为( )A.m=4,n=-1 B.m=4,n=1C.m=-4,n=1 D.m=-4,n=-12.若(x-4)·(M)=x2-x+(N),M为一个多项式,N为一个整数,则( ) A.M=x-3,N=12 B.M=x-5,N=20C.M=x+3.N=-12 D.M=x+5,N=-203.已知(1+x)(2x2+ax+1)的结果中x2项的系数为-2,则a的值为( )A.-2 B.1 C.-4 D.以上都不对4.若M=(a+3)(a-4),N=(a+2)(2a-5),其中a为有理数,则M与N的大小关系为( )A.M>N B.M<N C.M=N D.无法确定5 若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a6.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定7.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=28.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.21五.填空题1.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.2.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.3.当k=__________时,多项式x-1与2-kx的乘积不含一次项.4.在长为(3a+2)、宽为(2a+3)的长方形铁皮上剪去一个边长为(a-1)的小正方形,则剩余部分的面积为______________.5.如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b)、宽为(a+b)的大长方形,那么需要C类卡片_______张.六、解答题1.已知多项式(x 2+px +q )(x 2-3x +2)的结果中不含x 3项和x 2项,求p 和q 的值.2.若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,求a 和b 的值3、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .4.已知(x-1)(x+1)(x-2)(x-4)≡(x 2-3x)2+a(x 2-3x)+b ,求a ,b 的值.5.如图,AB =a ,P 是线段AB 上的一点,分别以AP 、BP 为边作正方形.(1)设AP =x ,求两个正方形的面积之和S .(2)当AP 分别为3a 和2a 时,比较S 的大小.。

多项式乘以多项式训练题

多项式乘以多项式训练题

五、解答题 1.证明 (a-1)(a 2-3)+a 2(a+1)-2(a 3-2a-4)-a 的值与 a 无关.
2.已知多项式 (x 2+ px+q)(x 2- 3x+2) 的结果中不含 x3 项和 x2 项,求 p 和 q 的值.
3. 若 (x 2+ ax- b)(2x 2- 3x+1) 的积中, x 3 的系数为 5, x2 的系数为- 6,求 a, b.
3. 当 k= __________ 时,多项式 x- 1 与 2- kx 的乘积不含一次项.
4. 在长为 (3a +2) 、宽为 (2a + 3) 的长方形铁皮上剪去一个边长为 (a - 1) 的小正方形, 则剩余部
分的面积为 ___________.
5.已知 ( x y) 2 1 , ( x y) 2 49 ,则 x 2 y2 =
三、计算题
1. (3m-n)(m-2n) .
2
. (x+2y)(5a+3b) .
3. (x+y)(x 2-xy+y 2) .
4
. (x+3y+4)(2x-y) .
四、化简求值
1. m 2(m+ 4) + 2m(m2-1) - 3m(m2+ m- 1) ,其中 m= 2 5
2.( a- 2)( a+ 2)+ 3( a+ 2)2 -6a( a+2) , 其中 a= 5.
3. x(x 2- 4) -(x + 3)(x 2-3x+ 2) -2x(x - 2) ,其中 x = 3 . 2
4. (x-2)(x-3)+2(x+6)(x-5)-3(x
2-7x+13) ,其中 x= 3 1 2
5. y n(y n+9y-12)-3(3y n+1-4y n) ,其中 y=-3 , n=2.

多项式乘多项式专项练习30题选择解答(有答案)ok

多项式乘多项式专项练习30题选择解答(有答案)ok

多项式乘多项式专项练习30题选择解答(有答案)ok1.若 $(x-1)(x+3)=x+mx+n$,则 $m$,$n$ 的值分别为()。

A。

$m=1$,$n=3$ B。

$m=4$,$n=5$ C。

$m=2$,$n=-3$ D。

$m=-2$,$n=3$2.下列各式中,计算结果是 $x+7x-18$ 的是()。

A。

$(x-1)(x+18)$ B。

$(x+2)(x+9)$ C。

$(x-3)(x+6)$ D。

$(x-2)(x+9)$3.若 $(x-a)(x+2)$ 的展开项中不含 $x$ 的一次项,则$a$ 的值为()。

A。

$a=-2$ B。

$a=2$ C。

无法确定4.如果 $(x-3)(2x+4)=2x-mx+n$,那么 $m$,$n$ 的值分别是()。

A。

$m=2$,$n=12$ B。

$m=-2$,$n=12$ C。

$m=2$,$n=-12$ D。

$m=-2$,$n=-12$5.已知$m+n=2$,$mn=-2$,则$(1-m)(1-n)$ 的值为()。

A。

$1-3$ B。

$-1$ C。

$5$6.先化简,再求值:$5(3xy-xy)-4(-xy+3xy)$,其中$x=-2$,$y=3$。

7.计算:1)$3-2+(-3)-(\frac{3}{2})$2)$(-2ab)+(-a)\cdot(2b)$3)$x(2x+1)(1-2x)-4x(x-1)(1-x)$4)$(2a-b+3)(2a+b-3)$5)$\frac{x^2-1}{2}(2x+1)$8.计算:1)$(-7x-8y)\cdot(-x+3y)$2)$(3x-2y)(y-3x)-(2x-y)(3x+y)$9.计算:$a(a+2)(a-3)$10.计算:$(a+b)(a-ab+b)$11.计算:$(2x-3y)(x+4y)$12.计算:1)$(2x+3y)(3y-4x)$2)$(-4x-3y)(3y-4x)$13.计算:$(2x+5y)(3x-2y)-2x(x-3y)$14.$5x-(x-2)(3x+1)-2(x+1)(x-5)$15.已知多项式$6x-7xy-3y+14x+y+a=(2x-3y+b)(3x+y+c)$,试确定 $a$,$b$,$c$ 的值。

多项式乘多项式试题附答案

多项式乘多项式试题附答案

多项式乘多项式试题精选(二)一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片_________张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m=_________.3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于_________.4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片_________张,B类卡片_________张,C类卡片_________张.5.计算:(﹣p)2?(﹣p)3=_________;=_________;2xy?(_________)=﹣6x2yz;(5﹣a)(6+a)=_________.6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为_________.7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_________块.8.若(x+5)(x﹣7)=x2+mx+n,则m=_________,n=_________.9.(x+a)(x+)的计算结果不含x项,则a的值是_________.10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_________平方米.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为_________.12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是_________.13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为_________.二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)18.(x+7)(x﹣6)﹣(x﹣2)(x+1)19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).20.计算:(a﹣b)(a2+ab+b2)21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式_________;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少?29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(a﹣1)(a+1)=_________(a﹣1)(a2+a+1)=_________(a﹣1)(a3+a2+a+1)=_________(2)你发现规律了吗?请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)=_________(3)根据上述规律,请你求42012+42011+42010+…+4+1的值._________.多项式乘单项式试题精选(二)参考答案与试题解析一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片3张.考点:多项式乘多项式.分析:根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合卡片的面积即可作出判断.解答:解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:3.点评:此题主要考查了多项式乘多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m=6.考点:多项式乘多项式.专题:计算题.分析:先求出(x+3)与(2x﹣m)的积,再令x的一次项为0即可得到关于m的一元一次方程,求出m的值即可.解答:解:∵(x+3)(2x﹣m)=2x2+(6﹣m)x﹣3m,∴6﹣m=0,解得m=6.故答案为:6.点评:本题考查的是多项式乘以多项式的法则,即先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于10,11,14,25.考点:多项式乘多项式.分析:根据多项式的乘法法则,可得一个多项式,根据多项式相等,可得对应项相等,由p?q=24,p,q为整数,可得p,q的值,再根据p+q=m,可得m的值.解答:解:∵(x+p)(x+q)=x2+mx+24,∴p=24,q=1;p=12,q=2;p=8,q=3;p=6,q=4,∵当p=24,q=1时,m=p+q=25,当p=12,q=2时,m=p+q=14,当p=8,q=3时,m=p+q=11,当p=6,q=4时,m=p+q=10,故答案为:10,11,14,25.点评:本题考察了多项式,先根据多项式的乘法法则计算,分类讨论p,q是解题关键.4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片1张,B类卡片2张,C类卡片3张.考点:多项式乘多项式.分析:根据边长组成图形.数出需要A类卡片1张,B类卡片2张,C类卡片3张.解答:解:如图,要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片1张,B类卡片2张,C 类卡片3张.点评:本题主要考查了多项式乘多项式,解题的关键是根据边长组成图形.5.计算:(﹣p)2?(﹣p)3=﹣p5;=﹣a6b3;2xy?(﹣3xz)=﹣6x2yz;(5﹣a)(6+a)=﹣a2﹣a+30.考点:多项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解答:解:(﹣p)2?(﹣p)3=(﹣p)5=﹣p5,(﹣a2b)3=(﹣)3?(a2)3b3=﹣a6b3,∵﹣6x2yz÷2xy=﹣3xz,∴2xy?(﹣3xz)=﹣6x2yz,(5﹣a)(6+a)=30+5a﹣6a﹣a2=30﹣a﹣a2=﹣a2﹣a+30,故答案为:﹣p5,﹣a6b3,﹣3xz,﹣a2﹣a+30.点评:本题考查了同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则的应用.6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为.考点:多项式乘多项式.分析:把式子展开,找到所有x2项的所有系数,令其为0,可求出m的值.解答:解:∵(x2﹣3x+1)(mx+8)=mx4+8x2﹣3mx2﹣24x+mx+8.又∵结果中不含x2的项,∴8﹣3m=0,解得m=.故答案为:.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖2块.考点:多项式乘多项式.分析:分别计算出4块A的面积和2块B的面积、1块C的面积,再计算这三种类型的砖的总面积,用完全平方公式化简后,即可得出少了哪种类型的地砖.解答:解:4块A的面积为:4×m×m=4m2;2块B的面积为:2×m×n=2mn;1块C的面积为n×n=n2;那么这三种类型的砖的总面积应该是:4m2+2mn+n2=4m2+4mn+n2﹣2mn=(2m+n)2﹣2mn,因此,少2块B型地砖,故答案为:2.点评:本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.8.若(x+5)(x﹣7)=x2+mx+n,则m=﹣2,n=﹣35.考点:多项式乘多项式.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解答:解:(x+5)(x﹣7)=x2﹣2x﹣35=x2+mx+n,则m=﹣2,n=﹣35.故答案为:﹣2,﹣35.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.9.(x+a)(x+)的计算结果不含x项,则a的值是.考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,依据法则运算,展开式不含关于字母x的一次项,那么一次项的系数为0,就可求a的值.解答:解:∵(x+a)(x+)=又∵不含关于字母x的一次项,∴,解得a=.点评:本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于0,难度适中.10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)平方米.考点:多项式乘多项式.分析:根据题意得出算式是(m﹣2)(n﹣2),即可得出答案.解答:解:根据题意得出房间地面的面积是(m﹣2)(n﹣2);(m﹣2)(n﹣2)=mn﹣2m﹣2n+4.故答案为:(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)点评:本题考查了多项式乘多项式的应用,关键是能根据题意得出算式,题目比较好,难度适中.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7.考点:多项式乘多项式.专题:计算题.分析:按照多项式的乘法法则展开运算后解答:解:∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.点评:本题考查了多项式的乘法,解题的关键是牢记多项式乘以多项式的乘法法则,属于基础题,比较简单.12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是3.考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项列出关于m与n的方程组,求出方程组的解即可得到m与n的值.解答:解:原式=x4+(m﹣3)x3+(n﹣3m+8)x2+(mn﹣24)x+8n,(x2+mx﹣8)(x2﹣3x+n)根据展开式中不含x2和x3项得:,解得:,∴mn=3,故答案为:3.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为2.考点:代数式求值;绝对值;多项式乘多项式.专题:计算题.分析:根据绝对值非负数,平方数非负数的性质可得1﹣a=0,从而得到a的值,然后代入求出x、y的值,再把a、x、y的值代入代数式进行计算即可求解.解答:解:∵|x|=1﹣a≥0,∴a﹣1≤0,﹣a2≤0,∴a﹣1﹣a2≤0,又y2=(1﹣a)(a﹣1﹣a2)≥0,∴1﹣a=0,解得a=1,∴|x|=1﹣1=0,x=0,y2=(1﹣a)(﹣1﹣a2)=0,∴x+y+a3+1=0+0+1+1=2.故答案为:2.点评:本题主要考查了代数式求值问题,把y2的多项式整理,然后根据非负数的性质求出a的值是解题的关键,也是解决本题的突破口,本题灵活性较强.二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.考点:多项式乘多项式.分析:把式子展开,让x4的系数,x2的系数为0,得到m,n的值.解答:解:(x2+2nx+3)(x2﹣5x+m)=x4﹣5x3+mx2+2nx3﹣10nx2+2mnx+3x2﹣15x+3m=x4+(2n﹣5)x3+(m﹣10n+3)x2+(2mn﹣15)x+3m,∵结果中不含奇次项,∴2n﹣5=0,2mn﹣15=0,解得m=3,n=.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).考点:多项式乘多项式.分析:根据立方和与立方差公式解答即可.解答:解:(1)(3x+2y)(9x2﹣6xy+4y2)=(3x)3+(2y)3=27x3+8y3;(2)(2x﹣3)(4x2+6xy+9)=(2x)3﹣33=8x3﹣27;(3)(m﹣)(m2+m+)=﹣=﹣;(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2)=(a3+b3)(a3﹣b3)=a6﹣b6.点评:本题考查了立方和与立方差公式,熟练记忆公式是解题的关键.16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)考点:多项式乘多项式.分析:(1)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可;(2)根据平方差公式计算即可.解答:解:(1)(2x﹣3)(x﹣5)=2x2﹣10x﹣3x+15=2x2﹣13x+15;(2)(a2﹣b3)(a2+b3)=a4﹣b6.点评:本题考查了多项式乘以多项式的法则以及平方差公式.注意不要漏项,漏字母,有同类项的合并同类项.17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)考点:多项式乘多项式;整式的加减.专题:计算题.分析:(1)先去小括号,再去大括号,最后按照整式加减混合运算规则进行计算即可;(2)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(1)原式=﹣2a+b+[a﹣3a﹣4b],=﹣2a+b+a﹣3a﹣4b,=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3,=a3+b3.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.(x+7)(x﹣6)﹣(x﹣2)(x+1)考点:多项式乘多项式.分析:依据多项式乘多项式法则运算.解答:解:(x+7)(x﹣6)﹣(x﹣2)(x+1)=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.点评:本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.关键是不能漏项.19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).考点:多项式乘多项式.分析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解答:解:(3a+1)(2a﹣3)+(6a﹣5)(a﹣4)=6a2﹣9a+2a﹣3+6a2﹣24a﹣5a+20=12a2﹣36a+17.点评:此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.20.计算:(a﹣b)(a2+ab+b2)考点:多项式乘多项式;单项式乘单项式.专题:计算题.分析:根据多项式乘以多项式的法则和单项式乘单项式的法则进行计算即可.解答:解:原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.点评:本题主要考查对多项式乘以多项式的法则和单项式乘单项式的法则得理解和掌握,能熟练地运用法则进行计算是解此题的关键.21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.考点:多项式乘多项式.分析:(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.解答:解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(9﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×32=36﹣+9=44.点评:本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.考点:整式的加减—化简求值;合并同类项;多项式乘多项式.专题:计算题.分析:根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.解答:解:原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.点评:本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.考点:多项式乘多项式.专题:计算题.分析:把(x﹣1)(x2+mx+n)展开后,每项的系数与x3﹣6x2+11x﹣6中的项的系数对应,可求得m、n的值.解答:解:∵(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n=x3﹣6x2+11x﹣6∴m﹣1=﹣6,﹣n=﹣6,解得m=﹣5,n=6.点评:本题主要考查了多项式乘多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.根据对应项系数相等列式求解m、n是解题的关键.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(a+2b)(a+b)=a2+3ab+2b2;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.考点:多项式乘多项式.专题:计算题.分析:(1)根据图形是一个长方形求出长和宽,相乘即可;(2)正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.解答:解:(1)观察图乙得知:长方形的长为:a+2b,宽为a+b,∴面积为:(a+2b)(a+b)=a2+3ab+2b2;(2)如图所示:恒等式是,(a+b)(a+b)=a2+2ab+b2.答:恒等式是a+b)(a+b)=a2+2ab+b2.点评:本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.考点:多项式乘多项式;代数式求值.分析:(1)剩余部分的面积即是边长为60﹣2x,40﹣2x的长方形的面积;(2)利用长方体的体积公式先表示出长方形的体积,再把x=5,代入即可.解答:解:(1)(60﹣2x)(40﹣2x)=4x2﹣200x+2400,答:阴影部分的面积为(4x2﹣200x+2400)cm2;(2)当x=5时,4x2﹣200x+2400=1500(cm2),这个盒子的体积为:1500×5=7500(cm3),答:这个盒子的体积为7500cm3.点评:此题主要考查用代数式表示正方形、矩形的面积和体积,需熟记公式,且认真观察图形,得出等量关系.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.考点:多项式乘多项式;解一元一次方程.分析:将方程的两边利用多项式的乘法展开后整理成方程的一般形式求解即可.解答:解:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣3.点评:本题考查了多项式乘多项式及解一元二次方程的知识,解题的关键是利用多项式的乘法对方程进行化简.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.考点:多项式乘多项式.分析:首先把)(x﹣3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.解答:解:(x﹣3)(x+m)=x2+(m﹣3)x﹣3m=x2+nx﹣15,则解得:.=.点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少?考点:多项式乘多项式.分析:根据被除式=商×除式,所求多项式是(2a﹣b)(b﹣1),根据多项式乘多项式的法则计算即可.解答:解:设所求的多项式是M,则M=(2a﹣b)(b﹣1)=2ab﹣2a﹣b2+b.点评:本题考查了多项式乘多项式法则,根据被除式、除式、商三者之间的关系列出等式是解题的关键,熟练掌握运算法则也很重要.29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.考点:多项式乘多项式.分析:先根据题意画出图形,然后求出长方形的长和宽,长为a+2b,宽为a+b,从而求出长方形的面积.解答:解:如图:或a2+3ab+2b2=(a+b)(a+2b).点评:考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.30.(1)填空:(a﹣1)(a+1)=a2﹣1(a﹣1)(a2+a+1)=a3﹣1(a﹣1)(a3+a2+a+1)=a4﹣1(2)你发现规律了吗?请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)=a n+1﹣1(3)根据上述规律,请你求42012+42011+42010+…+4+1的值.(42013﹣1).考点:多项式乘多项式.专题:规律型.分析:(1)根据平方差公式和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;(2)从而总结出规律是:(a﹣1)(a n+a n﹣1+…+a2+a+1)=a n+1﹣1;(3)根据上述结论计算下列式子即可.解答:解:根据题意:(1)(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;(2)(a﹣1)(a n+a n﹣1+a n﹣2+…+a2+a+1)=a n+1﹣1.(3)根据以上分析(1)42012+42011+42010+…+4+1299+298+297+…+2+1,=(4﹣1)(42012+42011+42010+…+4+1),=(42013﹣1).故答案为:(1)a2﹣1,a3﹣1,a4﹣1;(2)a n+1﹣1;(3)(42013﹣1).点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.。

多项式的乘法练习题

多项式的乘法练习题

多项式的乘法练习题多项式乘多项式:(a+b)(c+d)=(x+a)(x+b)=平方差公式:(a+b)(a-b)=完整的平方公式:(a+b)2=(a-b)2=1。

简化a(B?C)?b(c?a)?C(a?B)的结果是()a.2ab?2bc?2ABC.2ab?2bcc。

2ab2。

以下公式中的计算误差为()a.2x?(2x3?3x?1)?4x4?6x2?2xc.?d.?2bcb、 b(b2?b?1)?b3?b2?屋宇署。

1x(2x2?2)??x3?x22332x(x?3x?1)?x4?2x2?X3233。

如果(8)×106)(5×102)(2×10)=m×10A,则m和a的值为()a.m=8,a=8b.m=8,a=10c.m=2,a=9d.m=5,a=104、若2x2+5x+1=a(x +1)2+b(x+1)+c,那么a,b,c应为()a.a=2,b=-2,c=-1c.a=2,b=1,c=-2b、 a=2,b=2,c=1d.a=2,b=1,c=25、.若(x?a)(x?b)的乘积中不含x的一次项,则a,b的关系是()a.互为倒数b.相等c.互为相反数d.a,b都为06、.下列各式中,不能用平方差公式计算的是()a、(4x?3y)(3y?4x)b.(2x2?y2)(2x2?y2)c.(a?b?c)(c?b?a)d.(x?y)(x?y)7、.下列各式中,相等关系一定成立的是()a、(x?y)2?(y?x)2b、(x?6)(x?6)?x2?6c、(x?y)?十、yd、6(x?2)?x(2?x)?(x?2)(x?6)8。

如果9x2+4y2=(3x+2Y)2+m,那么m是()a.6xyb.-6xyc。

12xyd.-12xy9。

下面的等式不成立,它是()a.(3x-y)2=9x2-6xy+y2b.(a+b-c)2=(c-a-b)2c.(0.5m-n)2=0.25m2-mn+n2d.(x-y)(x+y)(x2-y2)=x4-y410、已知(x+3)(x-2)=x+ax+b,则a、b的值分别是()a、 a=-1,b=-6b.a=1,b=-6c.a=-1,b=6d.a=1,b=611.观察下列算式:2=2,2=4,2=8,2=16,2=32,2=64,2=128,2=256,……根据其规律可知8的末位数是()a、2b、4c、6d、8一101234567822222.填空:1.(1.2?103)(2.5?1011)(4?109)?_______________.(3?102)2?(?103)?______-2ab (a2b+3ab2-1)=____________(4(?4x2?6x?8)?(?12x)?________;213?(?x)2?(?2x2y)3?2x2(x6y3?1)?2、(-2x+y)(-2x+y)=______(-x-3y)(-x-3y)=_______-(2x2+3y)(3y-2x2)=____________2121(m?n)(?m?n)=____________(a+b+2)(a+b-2)=__________22(1.5a?b)2=________(=_________322x?3y3y?2x=____________.233、(a+2b+3c)(a-2b-3c)=(______)2-(______)2;(2M?)(??)=____________ 三亿四千四百三十一万一千二百二十四(x+y)(_____)=y-x;(-5a-2b2)(______)=4b4-25a2.4164、2021-4010×2021+2021=____________二2壹仟玖佰玖拾玖元×2001=____________(1?x)(1?x)(1?x2)(1?x4)?______________(3x+2)(3x-2)(9x2+4)=____________(111x+y)(x-y)(x2+y2)=____________(y-3)2-2(y+2)(y-2)=___________3395、①(?x?3)(2)? 9? x2②(3x?2y)2?=(3x?2y)226.如果代数公式2x+3x+7的值为8,则代数公式4x+6x-9的值为;如果代数公式3x-4x+6的值是9,那么X-224x+1的值为(2),如果m2+m=1=0,则发现m3+2m2+2022=31=b7,即已知的A2+B2-2a+6b+10=0,然后是A2022~A2+B2的值。

多项式乘多项式试题附答案

多项式乘多项式试题附答案

多项式乘多项式试题精选(二)一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片_________ 张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= _________ .3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于_________ .4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片_________ 张,B类卡片_________ 张,C类卡片_________ 张.5.计算:(﹣p)2(﹣p)3= _________ ;= _________ ;2xy(_________ )=﹣6x2yz;(5﹣a)(6+a)= _________ .6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为_________ .7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_________ 块.8.若(x+5)(x﹣7)=x2+mx+n,则m= _________ ,n= _________ .9.(x+a)(x+)的计算结果不含x项,则a的值是_________ .10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_________ 平方米.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为_________ .12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是_________ .13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为_________ .二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)18.(x+7)(x﹣6)﹣(x﹣2)(x+1)19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).20.计算:(a﹣b)(a2+ab+b2)21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式_________ ;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(a﹣1)(a+1)= _________ (a﹣1)(a2+a+1)= _________ (a﹣1)(a3+a2+a+1)= _________ (2)你发现规律了吗请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= _________(3)根据上述规律,请你求42012+42011+42010+…+4+1的值._________ .多项式乘单项式试题精选(二)参考答案与试题解析一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片 3 张.考点:多项式乘多项式.分析:根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合卡片的面积即可作出判断.解答:解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:3.点评:此题主要考查了多项式乘多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= 6 .考点:多项式乘多项式.专题:计算题.分析:先求出(x+3)与(2x﹣m)的积,再令x的一次项为0即可得到关于m的一元一次方程,求出m的值即可.解答:解:∵(x+3)(2x﹣m)=2x2+(6﹣m)x﹣3m,∴6﹣m=0,解得m=6.故答案为:6.点评:本题考查的是多项式乘以多项式的法则,即先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于10,11,14,25 .考点:多项式乘多项式.分析:根据多项式的乘法法则,可得一个多项式,根据多项式相等,可得对应项相等,由pq=24,p,q为整数,可得p,q的值,再根据p+q=m,可得m的值.解答:解:∵(x+p)(x+q)=x2+mx+24,∴p=24,q=1;p=12,q=2;p=8,q=3;p=6,q=4,∵当p=24,q=1时,m=p+q=25,当p=12,q=2时,m=p+q=14,当p=8,q=3时,m=p+q=11,当p=6,q=4时,m=p+q=10,故答案为:10,11,14,25.点评:本题考察了多项式,先根据多项式的乘法法则计算,分类讨论p,q是解题关键.4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片 1 张,B类卡片 2 张,C类卡片 3 张.考点:多项式乘多项式.分析:根据边长组成图形.数出需要A类卡片1张,B类卡片2张,C类卡片3张.解答:解:如图,要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片1张,B类卡片2张,C 类卡片3张.点评:本题主要考查了多项式乘多项式,解题的关键是根据边长组成图形.5.计算:(﹣p)2(﹣p)3= ﹣p5;= ﹣a6b3;2xy(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .考点:多项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解答:解:(﹣p)2(﹣p)3=(﹣p)5=﹣p5,(﹣a2b)3=(﹣)3(a2)3b3=﹣a6b3,∵﹣6x2yz÷2xy=﹣3xz,∴2xy(﹣3xz)=﹣6x2yz,(5﹣a)(6+a)=30+5a﹣6a﹣a2=30﹣a﹣a2=﹣a2﹣a+30,故答案为:﹣p5,﹣a6b3,﹣3xz,﹣a2﹣a+30.点评:本题考查了同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则的应用.6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为.考点:多项式乘多项式.分析:把式子展开,找到所有x2项的所有系数,令其为0,可求出m的值.解答:解:∵(x2﹣3x+1)(mx+8)=mx4+8x2﹣3mx2﹣24x+mx+8.又∵结果中不含x2的项,∴8﹣3m=0,解得m=.故答案为:.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖 2 块.考点:多项式乘多项式.分析:分别计算出4块A的面积和2块B的面积、1块C的面积,再计算这三种类型的砖的总面积,用完全平方公式化简后,即可得出少了哪种类型的地砖.解答:解:4块A的面积为:4×m×m=4m2;2块B的面积为:2×m×n=2mn;1块C的面积为n×n=n2;那么这三种类型的砖的总面积应该是:4m2+2mn+n2=4m2+4mn+n2﹣2mn=(2m+n)2﹣2mn,因此,少2块B型地砖,故答案为:2.点评:本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.8.若(x+5)(x﹣7)=x2+mx+n,则m= ﹣2 ,n= ﹣35 .考点:多项式乘多项式.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解答:解:(x+5)(x﹣7)=x2﹣2x﹣35=x2+mx+n,则m=﹣2,n=﹣35.故答案为:﹣2,﹣35.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.9.(x+a)(x+)的计算结果不含x项,则a的值是.考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,依据法则运算,展开式不含关于字母x的一次项,那么一次项的系数为0,就可求a的值.解答:解:∵(x+a)(x+)=又∵不含关于字母x的一次项,∴,解得a=.点评:本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于0,难度适中.10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)平方米.考点:多项式乘多项式.分析:根据题意得出算式是(m﹣2)(n﹣2),即可得出答案.解答:解:根据题意得出房间地面的面积是(m﹣2)(n﹣2);(m﹣2)(n﹣2)=mn﹣2m﹣2n+4.故答案为:(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)点评:本题考查了多项式乘多项式的应用,关键是能根据题意得出算式,题目比较好,难度适中.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7 .考点:多项式乘多项式.专题:计算题.分析:按照多项式的乘法法则展开运算后解答:解:∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.点评:本题考查了多项式的乘法,解题的关键是牢记多项式乘以多项式的乘法法则,属于基础题,比较简单.12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是 3 .考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项列出关于m与n的方程组,求出方程组的解即可得到m与n的值.解答:解:原式=x4+(m﹣3)x3+(n﹣3m+8)x2+(mn﹣24)x+8n,(x2+mx﹣8)(x2﹣3x+n)根据展开式中不含x2和x3项得:,解得:,∴mn=3,故答案为:3.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为 2 .考点:代数式求值;绝对值;多项式乘多项式.专题:计算题.分析:根据绝对值非负数,平方数非负数的性质可得1﹣a=0,从而得到a的值,然后代入求出x、y的值,再把a、x、y的值代入代数式进行计算即可求解.解答:解:∵|x|=1﹣a≥0,∴a﹣1≤0,﹣a2≤0,∴a﹣1﹣a2≤0,又y2=(1﹣a)(a﹣1﹣a2)≥0,∴1﹣a=0,∴|x|=1﹣1=0,x=0,y2=(1﹣a)(﹣1﹣a2)=0,∴x+y+a3+1=0+0+1+1=2.故答案为:2.点评:本题主要考查了代数式求值问题,把y2的多项式整理,然后根据非负数的性质求出a的值是解题的关键,也是解决本题的突破口,本题灵活性较强.二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.考点:多项式乘多项式.分析:把式子展开,让x4的系数,x2的系数为0,得到m,n的值.解答:解:(x2+2nx+3)(x2﹣5x+m)=x4﹣5x3+mx2+2nx3﹣10nx2+2mnx+3x2﹣15x+3m=x4+(2n﹣5)x3+(m﹣10n+3)x2+(2mn﹣15)x+3m,∵结果中不含奇次项,∴2n﹣5=0,2mn﹣15=0,解得m=3,n=.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).考点:多项式乘多项式.分析:根据立方和与立方差公式解答即可.解答:解:(1)(3x+2y)(9x2﹣6xy+4y2)=(3x)3+(2y)3=27x3+8y3;(2)(2x﹣3)(4x2+6xy+9)=(2x)3﹣33=8x3﹣27;(3)(m﹣)(m2+m+)=﹣=﹣;(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2)=(a3+b3)(a3﹣b3)点评:本题考查了立方和与立方差公式,熟练记忆公式是解题的关键.16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)考点:多项式乘多项式.分析:(1)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可;(2)根据平方差公式计算即可.解答:解:(1)(2x﹣3)(x﹣5)=2x2﹣10x﹣3x+15=2x2﹣13x+15;(2)(a2﹣b3)(a2+b3)=a4﹣b6.点评:本题考查了多项式乘以多项式的法则以及平方差公式.注意不要漏项,漏字母,有同类项的合并同类项.17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)考点:多项式乘多项式;整式的加减.专题:计算题.分析:(1)先去小括号,再去大括号,最后按照整式加减混合运算规则进行计算即可;(2)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(1)原式=﹣2a+b+[a﹣3a﹣4b],=﹣2a+b+a﹣3a﹣4b,=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3,=a3+b3.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.(x+7)(x﹣6)﹣(x﹣2)(x+1)考点:多项式乘多项式.分析:依据多项式乘多项式法则运算.解答:解:(x+7)(x﹣6)﹣(x﹣2)(x+1)=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.点评:本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.关键是不能漏项.19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).考点:多项式乘多项式.分析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解答:解:(3a+1)(2a﹣3)+(6a﹣5)(a﹣4)=6a2﹣9a+2a﹣3+6a2﹣24a﹣5a+20=12a2﹣36a+17.点评:此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.20.计算:(a﹣b)(a2+ab+b2)考点:多项式乘多项式;单项式乘单项式.专题:计算题.分析:根据多项式乘以多项式的法则和单项式乘单项式的法则进行计算即可.解答:解:原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.点评:本题主要考查对多项式乘以多项式的法则和单项式乘单项式的法则得理解和掌握,能熟练地运用法则进行计算是解此题的关键.21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.考点:多项式乘多项式.分析:(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.解答:解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(9﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×32=36﹣+9=44.点评:本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.考点:整式的加减—化简求值;合并同类项;多项式乘多项式.专题:计算题.分析:根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.解答:解:原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.点评:本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.考点:多项式乘多项式.专题:计算题.分析:把(x﹣1)(x2+mx+n)展开后,每项的系数与x3﹣6x2+11x﹣6中的项的系数对应,可求得m、n的值.解答:解:∵(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n=x3﹣6x2+11x﹣6∴m﹣1=﹣6,﹣n=﹣6,解得m=﹣5,n=6.点评:本题主要考查了多项式乘多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.根据对应项系数相等列式求解m、n是解题的关键.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(a+2b)(a+b)=a2+3ab+2b2;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.考点:多项式乘多项式.专题:计算题.分析:(1)根据图形是一个长方形求出长和宽,相乘即可;(2)正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.解答:解:(1)观察图乙得知:长方形的长为:a+2b,宽为a+b,∴面积为:(a+2b)(a+b)=a2+3ab+2b2;(2)如图所示:恒等式是,(a+b)(a+b)=a2+2ab+b2.答:恒等式是a+b)(a+b)=a2+2ab+b2.点评:本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.考点:多项式乘多项式;代数式求值.分析:(1)剩余部分的面积即是边长为60﹣2x,40﹣2x的长方形的面积;(2)利用长方体的体积公式先表示出长方形的体积,再把x=5,代入即可.解答:解:(1)(60﹣2x)(40﹣2x)=4x2﹣200x+2400,答:阴影部分的面积为(4x2﹣200x+2400)cm2;(2)当x=5时,4x2﹣200x+2400=1500(cm2),这个盒子的体积为:1500×5=7500(cm3),答:这个盒子的体积为7500cm3.点评:此题主要考查用代数式表示正方形、矩形的面积和体积,需熟记公式,且认真观察图形,得出等量关系.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.考点:多项式乘多项式;解一元一次方程.分析:将方程的两边利用多项式的乘法展开后整理成方程的一般形式求解即可.解答:解:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣3.点评:本题考查了多项式乘多项式及解一元二次方程的知识,解题的关键是利用多项式的乘法对方程进行化简.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.考点:多项式乘多项式.分析:首先把)(x﹣3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.解答:解:(x﹣3)(x+m)=x2+(m﹣3)x﹣3m=x2+nx﹣15,则解得:.=.点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少考点:多项式乘多项式.分析:根据被除式=商×除式,所求多项式是(2a﹣b)(b﹣1),根据多项式乘多项式的法则计算即可.解答:解:设所求的多项式是M,则M=(2a﹣b)(b﹣1)=2ab﹣2a﹣b2+b.点评:本题考查了多项式乘多项式法则,根据被除式、除式、商三者之间的关系列出等式是解题的关键,熟练掌握运算法则也很重要.29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.考点:多项式乘多项式.分析:先根据题意画出图形,然后求出长方形的长和宽,长为a+2b,宽为a+b,从而求出长方形的面积.解答:解:如图:或a2+3ab+2b2=(a+b)(a+2b).点评:考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.30.(1)填空:(a﹣1)(a+1)= a2﹣1 (a﹣1)(a2+a+1)= a3﹣1 (a﹣1)(a3+a2+a+1)= a4﹣1 (2)你发现规律了吗请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= a n+1﹣1(3)根据上述规律,请你求42012+42011+42010+…+4+1的值.(42013﹣1).考点:多项式乘多项式.专题:规律型.分析:(1)根据平方差公式和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;(2)从而总结出规律是:(a﹣1)(a n+a n﹣1+…+a2+a+1)=a n+1﹣1;(3)根据上述结论计算下列式子即可.解答:解:根据题意:(1)(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;(2)(a﹣1)(a n+a n﹣1+a n﹣2+…+a2+a+1)=a n+1﹣1.(3)根据以上分析(1)42012+42011+42010+…+4+1299+298+297+…+2+1,=(4﹣1)(42012+42011+42010+…+4+1),=(42013﹣1).故答案为:(1)a2﹣1,a3﹣1,a4﹣1;(2)a n+1﹣1;(3)(42013﹣1).点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.。

多项式乘以多项式练习题

多项式乘以多项式练习题

多项式乘以多项式练习题班级:姓名:一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a66.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=40二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y) 2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52y),其中x=-1,y=2.四、探究创新乐园根据(x+p)(x+q)=x2+(p+q)x+pq,直接计算下列题(1)(x-4)(x-9) (2) (x-6)(x+3)(3) (x+4)(x-7) (2) (x+2)(x+8)五、数学生活实践一块长a m,宽b m的玻璃,长、宽各裁掉c m后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?。

多项式乘多项式练习

多项式乘多项式练习


其中y=-1
【例5】:解方程与不等式:
1、 2、
2x+3 x 4 x + 2 x 3 x 3x+4 3x 4 9 x 2 x + 3
2
+6
挑战极限:
应用提高
1.如图,在长方形 地中有两条小路. 依据图中标注的 数据,计算绿地的 面积?(a>b)
2C C
a- b
a+b
2.求不等式(3 x+4)(3x–4)>9(x –2)(x +3) 的正整数解.
2.求长方体的体积?(a>b)
a-b
a+2b
a+b
解:(a+2b)(a+b)(a-b) =(a2-b2)(a+2b)
=a3+2ba2-ab2-2b3
长方体
2、已知(x-p)(x+3)=x2+2x+q,求p+q的值 解: ∵(x-p)(x+3)=x2+(3-p)x-3p= x2+2x+q,
3-p=2 P=1 { -3p=q ∴ ∴ { q=-3 ∴p+q=1+(-3)=-2 3、若(x2+nx+3)(x2-3x+m)的积中不含x2和 x3项,求m,n的值 解:∵(x2+nx+3)(x2-3x+m) =x4+(-3+n)x3+(m-3n+3)x2+(mn-9)x+3m m-3n+3=0, 解之得 m=6, 依题意有: { n=3 {-3+n=0,

(完整版)多项式乘多项式练习题

(完整版)多项式乘多项式练习题

整式乘法:多项式乘多项式习题(4)一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()8.A.x=0 B.x=-4 C.x=5 D.x=409.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=210.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.2111.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6. 若(x +a )(x +2)=x 2-5x +b ,则a =__________,b =__________.7. 若a 2+a +1=2,则(5-a )(6+a )=__________.8. 当k =__________时,多项式x -1与2-kx 的乘积不含一次项.9. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.10. 如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积=__________.三、解答题1、计算下列各式(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x -3y )-(x -3y )(x +3y )(5))13()4(32-+•-b a ab a ; (6) )84)(21(323xy y y x +-;(7))()(a b b b a a ---; (8) )1(2)12(322--+-x x x x x .5、先化简,再求值:)22(32)231(2x x x x ----,其中2=x6、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .7、若(x2+mx+8)(x2-3x+n )的展开式中不含x3和x2项,求m 和n 的值。

多项式乘以多项式练习题

多项式乘以多项式练习题

3.多项式与多项式相乘一、选择题1.计算(2a-3b)(2a+3b)的正确结果是( )A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2 D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为( )A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是( )A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3 4.(x2-px+3)(x-q)的乘积中不含x2项,则( )A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是( )A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是( )A.2(a2+2) B.2(a2-2) C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是( )A.x=0 B.x=-4 C.x=5 D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为( )A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+d),则ac+bd等于( )A.36 B.15 C.19 D.2110.(x+1)(x-1)与(x4+x2+1)的积是( )A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=_________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6. 若(x +a )(x +2)=x 2-5x +b ,则a =__________,b =__________.7. 若a 2+a +1=2,则(5-a )(6+a )=__________.8. 当k =__________时,多项式x -1与2-kx 的乘积不含一次项.9. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.10. 如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积=__________.三、解答题1、计算下列各式(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x +3y )-(x -3y )(3x +4y )2、求(a +b )2-(a -b )2-4ab 的值,其中a =2009,b =2010.3、求值:2(2x -1)(2x +1)-5x (-x +3y )+4x (-4x 2-52y ),其中x =-1,y =2. 4、解方程组⎩⎪⎨⎪⎧(x -1)(2y +1)=2(x +1)(y -1)x (2+y )-6=y (x -4)四、探究创新乐园1、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .2、根据(x +a )(x +b )=x 2+(a +b )x +ab ,直接计算下列题(1)(x -4)(x -9) (2)(xy -8a )(xy +2a ).五、数学生活实践一块长ac m ,宽bc m 的玻璃,长、宽各裁掉1 c m 后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?六、思考题:请你来计算:若1+x +x 2+x 3=0,求x +x 2+x 3+…+x2012的值.参考答案:一.1~10 BBCCA DACDC .二.填空题: 1. 12x 2+11x -5;2 20x 2-3xy -2 y 2+10.4. y 3-6y 2+11y -6..;-147.29.8.-29.3;1.10. 331(278)2a b +. 三、解答题1..12.(3).6x 4 +13x 3+5x 2+x -1(4).3x 2+18xy +18 y 2 ..4. 11x y =⎧⎨=⎩ 四、探究创新乐园1.54,2a b ==- 2. (1)x 2-13x+36. (2)x 2 y 2-6a xy -16a 2五、数学生活实践21()ab a b cm --+.六、思考题:0。

多项式乘法计算题

多项式乘法计算题

多项式乘法练习题一、计算题(本大题共12小题,共72.0分)1.计算:(a−1)(a+4)−(a−2)22.计算:(1)(x+5)(x−2)−2(x+1)(x−2);(2)(x+2)2−(x−1)(x+1);3.解方程:(2−x)(3−x)+2(x+6)(x−5)=(3x−1)(x+5).4.计算:(2)8x2−(x−2)(3x+1)−2(x+1)(x−5).(4)3a(a2+4a+4)−a(a−3)(3a+4).5.3(x+5)(x−3)−5(x−2)(x+3)6.计算(2)(−2x−1)2−4(x−1)(x+2)7.计算:(4)(x+2)2−(x−3)(2x+1).8.计算:(4)(2a+3b)2−2(2a+3b)(a−2b)+(−a+2b)2;计算(2x−1)2−(3x−1)(x+1)+5x(x−1)9.计算(3)2(2x−1)(2x+1)−5x(−x+3y)+4x(−4x2−5y),其中x=−1,y=2.210.化简:(1)2(a+1)2+(a+1)(1−2a)11.化简下列各式:(1)3(x−1)2+(x+2)(1−2x)答案和解析1.【答案】解:原式=a2+3a−4−(a2−4a+4)=7a−8.【解析】本题考查了整式运算,涉及到完全平方公式、多项式乘多项式,属于基础题.解题时直接用公式,可以得到结果.2.【答案】解:(1)原式=x2+3x−10−2(x2−x−2)=x2+3x−10−2x2+2x+4=−x2+5x−6;(2)原式=x2+4x+4−(x2−1)=x2+4x+4−x2+1=4x+5;(3)原式=(a2−9)(a2+9)=a4−81;(4)原式=−(3x−4y)2=−9x2+24xy−16y2;(5)原式=[(m−n)−3]2=(m−n)2−6(m−n)+9=m2−2mn+n2−6m+6n+9;(6)原式=[m−(2n−3)][m+(2n−3)]=m2−(2n−3)2=m2−4n2+12n−9.【解析】本题主要考查了多项式的混合运算,其中涉及了多项式乘以多项式,平方差公式及完全平方公式,整式加减,解题的关键是熟练掌握它们的运算法则.(1)首先分别进行多项式乘以多项式的运算,然后再进行加减运算即可;(2)首先分别利用平方差公式及完全平方公式进行乘法运算,然后再进行加减运算即可;(3)连续运用平方差公式计算即可;(4)提取负号,再利用完全平方公式计算即可;(5)将原式变形为[(m−n)−3]2,再用完全平方公式计算即可;(6)将原式变形为[m−(2n−3)][m+(2n−3)],然后依次用平方差公式及完全平方公式计算即可.3.【答案】解:(2−x)(3−x)+2(x+6)(x−5)=(3x−1)(x+5),整理可得−17x=49,.解得x=−4917【解析】本题考查解方程,掌握多项式与多项式的乘法法则是解题关键.先利用多项式与多项式的乘法法则计算,再去括号,合并同类项,然后解方程求出x的值即可.4.【答案】解:=3x 2+13x +12=a 4−4a 2−5=3a 3+12a 2+12a −3a 3+5a 2+12a=17a 2+24a【解析】本题考查了多项式乘多项式及单项式乘多项式的:先把各多项式乘多项式及单项式乘多项式的积展开,然后进行同类项合并即可.(1)将多项式与多项式的积展开;(2)将多项式与多项式的积展开,同类项合并;(3)将多项式与多项式的积展开,同类项合并;(4)将单项式与多项式的积及多项式与多项式的积展开,同类项合并。

多项式乘多项式练习题

多项式乘多项式练习题

多项式乘多项式练习题篇一:多项式乘多项式试题精选(二)附答案多项式乘法多项式试题的选择(二)一.填空题(共13小题)1.如图所示,有几种类型的正方形卡片a、B和矩形卡片C。

如果你想拼写一个长度(2a+B)和宽度(a+B)的矩形,你需要一张C类卡片__________________2.(x+3)与(2xm)的积中不含x的一次项,则m=.3.如果(x+P)(x+Q)=x+MX+24,P和Q是整数,那么M的值等于4.如图,已知正方形卡片a类、b类和长方形卡片c类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要a类卡片_________张,b类卡片_________张,c类卡片_________张.二5.计算:(p) ??(p)=(6+a)=_________.6.如果计算结果(x3x+1)(MX+8)不包含x项,则常数M的值为_____7.如图是三种不同类型的地砖,若现有a类4块,b类2块,c类1块,若要拼成一个正方形到还需b类地砖2223=2xy?()=6xyz;(5a)28.若(x+5)(x7)=x+mx+n,则m=,n=.9.如果(x+a)(x+)的计算结果不包含x项,则a的值为10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是平方米.11.如果(x+m)(x+n)=x7x+Mn,则Mn的值为____12.若(x+mx+8)(x3x+n)的展开式中不含x和x项,则mn的值是_________.13.假设x,y和a是实数,|x |=1a,y=(1a)(A1A),x+y+a+1的值为。

223222二.解答题(共17小题)14.如果(x+2nx+3)(x5x+m)中没有奇数项,求m和n.22的值15.化简下列各式:(1)(3x+2y)(9x26xy+4y2)(2)(2x3)(4x2+6xy+9);(3)(m)(m2)+m+(4)(a+b)(a2ab+b2)(ab)(a2+ab+b2).16.计算:(1)(2x3)(x5);(2)(a2b3)(a2+b3)17.计算:(1)(2ab)+[a(3a+4b)](2)(a+b)(a2ab+b2)18.(x+7)(x6)(x2)(x+1)19.计算:(3a+1)(2A3)(6A5)(A4)20.计算:(ab)(a+ab+b)21.如果(x+PX)(x3x+Q)的乘积不包含术语x和x,(1)求p、q的值;(2)求代数表达式(2pq)+(3pq)+p222212222320212021q的值.22.先化简,再求值:5(3xyxy)4(xy+3xy),其中x=2,y=3.23.如果(x1)(x+MX+n)=x6x+11x6,求M和n的值24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面可以使用产品的不同表示来验证方程式a(a+b)=a+AB是否成立(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式_________;(2)试着写出一个类似于(1)中代数恒等式的方程,并用上面的拼图方法来说明它的正确性2322225.小明想把一张长60厘米、宽40厘米的长方形硬纸做成一个没有盖子的长方体盒子,所以他在这张长方形纸的四个角上剪下了同样的小正方形(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,找出这个盒子的体积26.(x1)(x2)=(x+3)(x4)+20.27.如果(x3)(x+m)=x+nx15,求2的值28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b1),把“乘以(b1)”错看成“除以(b1)”,结果得到(2ab),请你帮小明算算,另一个多项式是多少?29.有足够的矩形和方形卡片,如图所示如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(A1)(a+1)=(A1)(a+a+1)=(A1)(a+a+a+1)=nn12(2)你发现规律了吗?请你用你发现的规律填空:(a1)(a+a+…+a+a+1)=_________202220222022(3)根据上述规律,请找出4+4+4+…+的值4 + 1232多项式乘法单项试题的选择(2)参考答案与试题解析一、填空(共13个问题)1.如图,正方形卡片a类、b类和长方形卡片c类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要c类卡片3张.2.如果(x+3)和(2XM)的乘积不包含x的主项,则M=3.若(x+p)(x+q)=x+mx+24,p,q为整数,则m的值等于二篇二:多项式乘多项式课堂练习题多项式乘以多项式类型一(3m-n)(m-2n)。

多项式乘多项式试题精选(一)附答案

多项式乘多项式试题精选(一)附答案

多项式乘多项式试题精选(一)一.选择题(共25小题)1.计算:(x+1)(x﹣2)=()A.x2﹣x﹣2 B.x2+x﹣2 C.x2﹣x+2 D.x2+x+2 2.(2002•潍坊)计算(a+m)(a+)的结果中不含关于字母a的一次项,则m等于()A.2B.﹣2 C.D.﹣3.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=34.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1D.55.下列多项式相乘的结果是a2﹣3a﹣4的是()A.(a﹣2)(a+2)B.(a+1)(a﹣4)C.(a﹣1)(a+4)D.(a+2)(a+2)6.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=b B.a=0 C.a=﹣b D.b=07.计算(x+y)(x2﹣xy+y2)的结果是()A.x3﹣y3B.x3+y3C.x3+2xy+y3D.x3﹣2xy+y38.若(x﹣1)(x+2)=x2+px﹣2,则p的值是()A.1B.﹣1 C.2D.39.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为()A.B.﹣C.﹣5 D.510.(x2﹣mx+3)(3x﹣2)的积中不含x的二次项,则m的值是()A.0B.C.﹣D.﹣11.已知(5﹣3x+mx2﹣6x3)(1﹣2x)的计算结果中不含x3的项,则m的值为()A.3B.﹣3 C.﹣D.012.多项式(mx+4)(2﹣3x)展开后不含x项,则m的值为()A.2B.4C.﹣6 D.613.若(x+4)(x﹣3)=x2+mx﹣n,则()A.m=﹣1,n=12 B.m=﹣1,n=﹣12 C.m=1,n=﹣12 D.m=1,n=1214.计算(y+1)(y2﹣1)的结果正确的是()A.y3﹣y+y2﹣1 B.y3﹣y﹣y2﹣1 C.y3+y+y2﹣1 D.y3+y+y2+115.要使(4x﹣a)(x+1)的积中不含有x的一次项,则a等于()A.﹣4 B.2C.3D.416.若(x2+px+q)(x2+7)的计算结果中,不含x2项,则q的值是()A.0B.7C.﹣7 D.±717.若(x2+x﹣1)(px+2)的乘积中,不含x2项,则p的值是()A.1B.0C.﹣1 D.﹣218.若(x2+px﹣q)(x2+3x+1)的结果中不含x2和x3项,则p﹣q的值为()A.11 B.5C.﹣11 D.﹣1419.计算(2a﹣3b)(2b+3a)的结果是()A.4a2﹣9b2B.6a2﹣5ab﹣6b2C.6a2﹣5ab+6b2D.6a2﹣15ab+6b220.若(x+k)(x﹣5)的积中不含有x的一次项,则k的值是()A.0B.5C.﹣5 D.﹣5或521.利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x﹣5)的积的第一步骤是()A.(3x+2)x+(3x+2)(﹣5)B.3x(x﹣5)+2(x﹣5)C.3x2﹣13x﹣10 D.3x2﹣17x﹣1022.如果多项式4a4﹣(b﹣c)2=M(2a2﹣b+c),则M表示的多项式是()A.2a2﹣b+c B.2a2﹣b﹣c C.2a2+b﹣c D.2a2+b+c23.下面的计算结果为3x2+13x﹣10的是()A.(3x+2)(x+5)B.(3x﹣2)(x﹣5)C.(3x﹣2)(x+5)D.(x﹣2)(3x+5)24.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a﹣b)2(a﹣b+1)=(a﹣b)3﹣(b﹣a)2C.(b+c﹣a)(x+y+1)=x(b+c﹣a)﹣y(a﹣b﹣c)﹣a+b﹣c D.(a﹣2b)(11b﹣2a)=(a﹣2b)(3a+b)﹣5(2b﹣a)225.根据需要将一块边长为x的正方形铁皮按如图的方法截去一部分后.制成的长方形铁皮(阴影部分)的面积是多少?几名同学经过讨论给出了不同的答案,其中正确的是()①(x﹣5)(x﹣6);②x2﹣5x﹣6(x﹣5);③x2﹣6x﹣5x;④x2﹣6x﹣5(x﹣6)A.①②④B.①②③④C.①D.②④二.填空题(共5小题)26.(2014•江西样卷)已知(x+5)(x+n)=x2+mx﹣5,则m+n=_________.27.(2011•翔安区质检)若x2﹣2x﹣15=(x+3)(x+m),则m=_________.28.已知a2﹣a+5=0,则(a﹣3)(a+2)的值是_________.29.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为_________.30.若(x+2)(x2+px+4)的化简结果不含x2和x项,则p=_________.多项式乘多项式试题精选(一)附答案参考答案与试题解析一.选择题(共25小题)1.计算:(x+1)(x﹣2)=()A.x2﹣x﹣2 B.x2+x﹣2 C.x2﹣x+2 D.x2+x+2考点:多项式乘多项式.分析:运用多项式乘多项式展开求解.解答:解:(x+1)(x﹣2)=x2﹣x﹣2,故选:A.点评:本题主要考查了多项式乘多项式,熟练掌握运算法则是解题的关键.2.(2002•潍坊)计算(a+m)(a+)的结果中不含关于字母a的一次项,则m等于()A.2B.﹣2 C.D.﹣考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.依据法则运算,展开式不含关于字母a的一次项,那么一次项的系数为0,就可求m的值.解答:解:∵(a+m)(a+)=a2+(m+)a+m,又∵不含关于字母a的一次项,∴m+=0,∴m=﹣.故选D.点评:本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于0.3.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=3考点:多项式乘多项式.分析:运用多项式与多项式相乘的法则将等式左边展开,通过比较左右两边的对应项系数,将问题转化为关于m,n的方程来确定m,n的值.解答:解:∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选C.点评:本题考查了多项式乘多项式,运算法则需要熟练掌握,利用对应项系数相等求解是解题的关键.4.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1D.5考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积转换成以m+n,mn为整体相加的形式,代入求值.解答:解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n),=1﹣(m+n)+mn,=1﹣2﹣2,=﹣3.故选A.点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.5.下列多项式相乘的结果是a2﹣3a﹣4的是()A.(a﹣2)(a+2)B.(a+1)(a﹣4)C.(a﹣1)(a+4)D.(a+2)(a+2)考点:多项式乘多项式.分析:首先根据多项式乘多项式的法则分别对各选项计算,然后比较即可.解答:解:A、(a﹣2)(a+2)=a2﹣4,不符合题意;B、(a+1)(a﹣4)=a2﹣3a﹣4,符合题意;C、(a﹣1)(a+4)=a2+3a﹣4,不符合题意;D、(a+2)(a+2)=a2+4a+4,不符合题意.故选B.点评:本题考查多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.要求学生熟练掌握.本题还可以直接将a2﹣3a﹣4进行因式分解,得出结果.6.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=b B.a=0 C.a=﹣b D.b=0考点:多项式乘多项式.分析:把式子展开,找到所有x项的所有系数,令其为0,可求出m的值.解答:解:∵(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab.又∵结果中不含x的一次项,∴a+b=0,即a=﹣b.故选C.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.计算(x+y)(x2﹣xy+y2)的结果是()A.x3﹣y3B.x3+y3C.x3+2xy+y3D.x3﹣2xy+y3考点:多项式乘多项式.专题:计算题.分析:直接利用立方和公式即可得到答案.解答:解:由立方和公式得:(x+y)(x2﹣xy+y2)=x3+y3,故选B.点评:本题考查了立方和公式,也可以利用多项式的乘法进行计算.8.若(x﹣1)(x+2)=x2+px﹣2,则p的值是()A.1B.﹣1 C.2D.3考点:多项式乘多项式.分析:将等式左边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,再根据等式左右两边对应项的系数相等计算即可.解答:解:∵(x﹣1)(x+2)=x2+x﹣2,且(x﹣1)(x+2)=x2+px﹣2,∴x2+x﹣2=x2+px﹣2,根据对应项系数相等得p=1.故答案选A.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.同时也考查了恒等式的性质.9.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为()A.B.﹣C.﹣5 D.5考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则展开,再合并同类项,根据已知得出方程﹣5a+1=0,求出即可.解答:解:(x+1)(x2﹣5ax+a)=x3﹣5ax2+ax+x2﹣5ax+a=x3+(﹣5a+1)x2+ax+a,∵(x+1)(x2﹣5ax+a)的乘积中不含x2项,∴﹣5a+1=0,a=,故选A.点评:本题考查了多项式乘以多项式的法则,关键是能根据题意得出关于a的方程.10.(x2﹣mx+3)(3x﹣2)的积中不含x的二次项,则m的值是()A.0B.C.﹣D.﹣考点:多项式乘多项式.专题:计算题.分析:根据多项式乘多项式的法则先把原式展开得出3x3+(﹣2﹣3m)x2+(2m+9)x﹣6,根据已知积中不含x 的二次项得出方程﹣2﹣3m=0,求出方程的解即可.解答:解:(x2﹣mx+3)(3x﹣2)=3x3﹣2x2﹣3mx2+2mx+9x﹣6=3x3+(﹣2﹣3m)x2+(2m+9)x﹣6,∵(x2﹣mx+3)(3x﹣2)的积中不含x的二次项,∴﹣2﹣3m=0,解得:m=﹣.故选:C.点评:本题考查了多项式乘多项式和解一元一次方程的应用,关键是根据题意得出方程﹣2﹣3m=0,题型较好,主要培养学生的理解能力和计算能力.11.已知(5﹣3x+mx2﹣6x3)(1﹣2x)的计算结果中不含x3的项,则m的值为()A.3B.﹣3 C.﹣D.0考点:多项式乘多项式.分析:把式子展开,找到所有x3项的所有系数,令其为0,可求出m的值.解答:解:∵(5﹣3x+mx2﹣6x3)(1﹣2x)=5﹣13x+(m+6)x2+(﹣6﹣2m)x3+12x4.又∵结果中不含x3的项,∴﹣2m﹣6=0,解得m=﹣3.故选B.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.多项式(mx+4)(2﹣3x)展开后不含x项,则m的值为()A.2B.4C.﹣6 D.6考点:多项式乘多项式.分析:根据多项式乘以多项式法则展开后,根据x项的系数相等0可得出m的值.解答:解:(mx+4)(2﹣3x)=2mx﹣3mx2+8﹣12x=(2m﹣12)x﹣3mx2+8∵展开后不含x项,∴2m﹣12=0∴m=6.故选:D.点评:本题考查了多项式乘以多项式的法则的应用,主要考查学生的化简能力.13.若(x+4)(x﹣3)=x2+mx﹣n,则()A.m=﹣1,n=12 B.m=﹣1,n=﹣12 C.m=1,n=﹣12 D.m=1,n=12考点:多项式乘多项式.分析:首先根据多项式乘法法则展开(x+4)(x﹣3),然后根据多项式各项系数即可确定m、n的值.解答:解:∵(x+4)(x﹣3)=x2+x﹣12,而(x+4)(x﹣3)=x2+mx﹣n,∴x2+x﹣12=x2+mx﹣n,∴m=1,n=12.故选D.点评:此题主要考查了多项式的定义和乘法法则,首先利用多项式乘法法则展开,再根据多项式的定义确定m、n 的值.14.计算(y+1)(y2﹣1)的结果正确的是()A.y3﹣y+y2﹣1 B.y3﹣y﹣y2﹣1 C.y3+y+y2﹣1 D.y3+y+y2+1考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(y+1)(y2﹣1)=y3﹣y+y2﹣1,故选:A.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.15.要使(4x﹣a)(x+1)的积中不含有x的一次项,则a等于()A.﹣4 B.2C.3D.4考点:多项式乘多项式.分析:先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a 的等式,再求解.解答:解:(4x﹣a)(x+1),=4x2+4x﹣ax﹣a,=4x2+(4﹣a)x﹣a,∵积中不含x的一次项,∴4﹣a=0,解得a=4.故选:D.点评:本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.16.若(x2+px+q)(x2+7)的计算结果中,不含x2项,则q的值是()A.0B.7C.﹣7 D.±7考点:多项式乘多项式.分析:把式子展开,找到所有x2项的系数,令它的系数分别为0,列式求解即可.解答:解:∵(x2+px+q)(x2+7)=x4+7x2+px3+7px+qx2+7q=x4+px3+(7+q)x2+7px+7q.∵乘积中不含x2项,∴7+p=0,∴q=﹣7.故选:C.点评:考查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.17.若(x2+x﹣1)(px+2)的乘积中,不含x2项,则p的值是()A.1B.0C.﹣1 D.﹣2考点:多项式乘多项式.分析:根据多项式乘以多项式法则展开,合并后根据对应的x2的系数相等得出2+p=0,求出即可.解答:解:(x2+x﹣1)(px+2)=px3+2x2+px2+2x﹣px﹣2=px3+(2+p)x2+(2﹣p)x﹣2,∵(x2+x﹣1)(px+2)的乘积中,不含x2项,∴2+p=0,p=﹣2,故选D.点评:本题考查了多项式乘以多项式法则的应用.18.若(x2+px﹣q)(x2+3x+1)的结果中不含x2和x3项,则p﹣q的值为()A.11 B.5C.﹣11 D.﹣14考点:多项式乘多项式.分析:把式子展开,找到所有x2和x3项的系数,令它们的系数分别为0,列式求解即可.解答:解:∵(x2+px﹣q)(x2+3x+1)=x4+3x3+x2+px3+3px2+px﹣qx2﹣3qx﹣q=x4+(3+p)x3+(1+3p﹣q)x2+(p﹣3q)x﹣q.∵乘积中不含x2与x3项,∴3+p=0,1+3p﹣q=0,∴p=﹣3,q=﹣8.∴p﹣q=﹣3﹣(﹣8)=5.故选:B.点评:查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.19.计算(2a﹣3b)(2b+3a)的结果是()A.4a2﹣9b2B.6a2﹣5ab﹣6b2C.6a2﹣5ab+6b2D.6a2﹣15ab+6b2考点:多项式乘多项式.专题:计算题.分析:按照多项式的乘法法则展开运算即可.解答:解:(2a﹣3b)(2b+3a)=4ab+6a2﹣6b2﹣9ab,=6a2﹣6b2﹣5ab故选B.点评:考查了多项式的乘以多项式的知识,解题的关键是牢记运算法则,符号容易出错.20.若(x+k)(x﹣5)的积中不含有x的一次项,则k的值是()A.0B.5C.﹣5 D.﹣5或5考点:多项式乘多项式.分析:根据多项式乘多项式的运算法则,展开后令x的一次项的系数为0,列式求解即可.解答:解:(x+k)(x﹣5)=x2﹣5x+kx﹣5k=x2+(k﹣5)x﹣5k,∵不含有x的一次项,∴k﹣5=0,解得k=5.故选B.点评:本题考查了多项式乘多项式的运算法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.21.利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x﹣5)的积的第一步骤是()A.(3x+2)x+(3x+2)(﹣5)B.3x(x﹣5)+2(x﹣5)C.3x2﹣13x﹣10 D.3x2﹣17x﹣10考点:多项式乘多项式.分析:把3x+2看成一整体,再根据乘法分配律计算即可.解答:解:(3x+2)(x﹣5)的积的第一步骤是(3x+2)x+(3x+2)(﹣5).故选A.点评:本题主要考查了多项式乘多项式的运算,把3x+2看成一整体是关键,注意根据题意不要把x﹣5看成一整体.22.如果多项式4a4﹣(b﹣c)2=M(2a2﹣b+c),则M表示的多项式是()A.2a2﹣b+c B.2a2﹣b﹣c C.2a2+b﹣c D.2a2+b+c考点:多项式乘多项式.分析:首先将多项式4a4﹣(b﹣c)2分解成两个因式的乘积,然后与M(2a2﹣b+c)进行比较,得出结果.解答:解:∵4a4﹣(b﹣c)2,=(2a2+b﹣c)(2a2﹣b+c),=M(2a2﹣b+c),∴M=2a2+b﹣c.故选C.点评:本题主要考查了多项式乘多项式的运算,灵活应用平方差公式a2﹣b2=(a+b)(a﹣b),将多项式4a4﹣(b﹣c)2分解成两个因式的乘积,是解本题的关键.23.下面的计算结果为3x2+13x﹣10的是()A.(3x+2)(x+5)B.(3x﹣2)(x﹣5)C.(3x﹣2)(x+5)D.(x﹣2)(3x+5)考点:多项式乘多项式.分析:依据多项式乘以多项式的法则分别计算,然后比较.解答:解:A、(3x+2)(x+5)=3x2+17x+10;B、(3x﹣2)(x﹣5)=3x2﹣17x+10;C、(3x﹣2)(x+5)=3x2+13x﹣10;D、(x﹣2)(3x+5)=3x2﹣x﹣10.故选C.点评:主要考查多项式乘以多项式的运算法则,可表示为(a+b)(m+n)=am+an+bm+bn,熟练掌握运算法则是解题的关键.24.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a﹣b)2(a﹣b+1)=(a﹣b)3﹣(b﹣a)2C.(b+c﹣a)(x+y+1)=x(b+c﹣a)﹣y(a﹣b﹣c)﹣a+b﹣c D.(a﹣2b)(11b﹣2a)=(a﹣2b)(3a+b)﹣5(2b﹣a)2考点:多项式乘多项式;单项式乘多项式.分析:根据多项式乘以多项式的法则.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.解答:解:A、应为2ac(5b2+3c)=10ab2c+6ac2,故本选项错误;B、应为(a﹣b)2(a﹣b+1)=(a﹣b)3+(b﹣a)2,故本选项错误;C、应为(b+c﹣a)(x+y+1)=x(b+c﹣a)﹣y(a﹣b﹣c)﹣a﹣b﹣c,故本选项错误;D、(a﹣2b)(11b﹣2a)=(a﹣2b)(3a+b)﹣5(2b﹣a)2.故选D.点评:本题主要考查了多项式乘多项式的运算,熟练掌握运算法则是解题的关键,注意各项符号的处理.25.根据需要将一块边长为x的正方形铁皮按如图的方法截去一部分后.制成的长方形铁皮(阴影部分)的面积是多少?几名同学经过讨论给出了不同的答案,其中正确的是()①(x﹣5)(x﹣6);②x2﹣5x﹣6(x﹣5);③x2﹣6x﹣5x;④x2﹣6x﹣5(x﹣6)A.①②④B.①②③④C.①D.②④考点:多项式乘多项式.分析:因为正方形的边长为x,一边截去宽5的一条,另一边截去宽6的一条,所以阴影部分长方形的长和宽分别为x﹣5与x﹣6.然后根据长方形面积计算公式进行计算.解答:解:①由题意得:阴影部分长方形的长和宽分别为x﹣5、x﹣6,则阴影的面积=(x﹣5)(x﹣6)=x2﹣11x+30.故该项正确;②如图所示:阴影部分的面积=x2﹣5x﹣6(x﹣5),故该项正确;④如图所示:阴影部分的面积=x2﹣6x﹣5(x﹣6),故该项正确;③由④知本项错误.故选:A.点评:本题主要考查了整式的乘除运算﹣多项式乘多项式.实际上也是去括号、合并同类项,这是各地中考的常考点.二.填空题(共5小题)26.(2014•江西样卷)已知(x+5)(x+n)=x2+mx﹣5,则m+n=3.考点:多项式乘多项式.分析:把式子展开,根据对应项系数相等,列式求解即可得到m、n的值.解答:解:展开(x+5)(x+n)=x2+(5+n)x+5n∵(x+5)(x+n)=x2+mx﹣5,∴5+n=m,5n=﹣5,∴n=﹣1,m=4.∴m+n=4﹣1=3.故答案为:3点评:此题主要考查了多项式乘多项式,根据对应项系数相等求解是解本题的关键.27.(2011•翔安区质检)若x2﹣2x﹣15=(x+3)(x+m),则m=﹣5.考点:多项式乘多项式.专题:计算题.分析:根据多项式的乘法将(x+3)(x+m),展开,然后根据对应项系数相等列式求解即可.解答:解:∵x2﹣2x﹣15=(x+3)(x+m)=x2+(3+m)x+3m,∴3m=﹣15解得:m=﹣5.故答案为:﹣5.点评:本题主要考查多项式的乘法,根据对应项系数相等列出等式是求解的关键.28.已知a2﹣a+5=0,则(a﹣3)(a+2)的值是﹣11.考点:多项式乘多项式.分析:先把所求代数式展开后,利用条件得到a2﹣a=﹣5,整体代入即可求解.解答:解:(a﹣3)(a+2)=a2﹣a﹣6,∵a2﹣a+5=0,∴a2﹣a=﹣5,∴原式=﹣5﹣6=﹣11.点评:本题考查多项式乘以多项式的法则和整体代入思想,熟练掌握运算法则是解题的关键.29.如果(x+1)(x2﹣5ax+a)的乘积中不含x2项,则a为.考点:多项式乘多项式.分析:先用多项式乘以多项式的运算法则展开求它们的积,并且把a看作常数合并关于x2的同类项,令x2的系数为0,求出a的值.解答:解:原式=x3﹣5ax2+ax+x2﹣5ax+a,=x3+(1﹣5a)x2﹣4ax+a,∵不含x2项,∴1﹣5a=0,解得a=.点评:本题考查了多项式乘多项式法则,并利用不含某一项,就是让这一项的系数等于0求解.30.若(x+2)(x2+px+4)的化简结果不含x2和x项,则p=﹣2.考点:多项式乘多项式.分析:把式子展开,找到所有不含x2和x项,项的系数,令它的系数分别为0,列式求解即可.解答:解:(x+2)(x2+px+4)=x3+(p+2)x2+(4+2p)x+8∵乘积中不含x2项x项,∴p+2=0,4+2p=0∴p=﹣2.故答案为:﹣2.点评:考查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.。

多项式乘以多项式练习题

多项式乘以多项式练习题

14.1.4(3)(一)多项式乘以多项式②一、选择题1.下列计算错误的是( )A .(x+1)(x+4)=x 2+5x+4;B .(m-2)(m+3)=m 2+m-6;C .(y+4)(y-5)=y 2+9y-20;D .(x-3)(x-6)=x 2-9x+18.2.t 2-(t+1)(t-5)的计算结果正确的是( )A .-4t-5;B .4t+5;C .t 2-4t+5;D .t 2+4t-5.3.若(x +m)(x -3)=x 2-nx -12,则m 、n 的值为 ( )A .m =4,n =-1B .m =4,n =1C .m =-4,n =1D .m =-4,n =-14.已知(1+x)(2x 2+ax +1)的结果中x 2项的系数为-2,则a 的值为 ( )A .-2B .1C .-4D .以上都不对5.若(x +a)(x +b)=x 2-kx +ab ,则k 的值为( ) A .a +b B .-a -bC .a -bD .b -a6.(x 2-px +3)(x -q)的乘积中不含x 2项,则( )A .p =q B .p =±q C .p =-qD .无法确定7. 若2x 2+5x +1=a(x +1)2+b(x +1)+c ,那么a ,b ,c 应为( )A .a =2,b =-2,c =-1B .a =2,b =2,c =-1C .a =2,b =1,c =-2D .a =2,b =-1,c =28.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 与N 的大小关系为( )A .M>NB .M<NC .M =ND .无法确定二、填空题1.(x 3+3x 2+4x -1)(x 2-2x +3)的展开式中,x 4的系数是__________.2.若(x +a)(x +2)=x 2-5x +b ,则a =__________,b =__________.3.当k =__________时,多项式x -1与2-kx 的乘积不含一次项.4.在长为(3a +2)、宽为(2a +3)的长方形铁皮上剪去一个边长为(a -1)的小正方形,则剩余部分的面积为___________.5.已知49)(,1)(22=-=+y x y x ,则22y x +=;xy=.6. 若6x 2-19x +15=(ax +b)(cx +b),则ac +bd=__________.7.如图,正方形卡片A 类、B 类和长方形卡片C 类各有若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,那么需要C 类卡片_______张.三、计算题1.(3m-n)(m-2n). 2.(x+2y)(5a+3b). 3.(x+y)(x 2-xy+y 2). 4.(x+3y+4)(2x-y).四、化简求值1. m 2(m +4)+2m(m 2-1)-3m(m 2+m -1),其中m =252.(a -2)(a +2)+3(a +2)2-6a (a +2),其中a =5.3. x(x 2-4)-(x +3)(x 2-3x +2)-2x(x -2),其中x =32.4. (x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),其中x=2135. y n (y n +9y-12)-3(3y n+1-4y n ),其中y=-3,n=2.五、解答题1.证明(a-1)(a 2-3)+a 2(a+1)-2(a 3-2a-4)-a 的值与a 无关.2.已知多项式(x 2+px +q)(x 2-3x +2)的结果中不含x 3项和x 2项,求p 和q 的值.3.若(x 2+ax -b)(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .4.求不等式(3x+4)(3x-4)>9(x-2)(x+3)的正整数解.5.如图,AB =a ,P 是线段AB 上的一点,分别以AP 、BP 为边作正方形.(1)设AP =x ,求两个正方形的面积之和S .(2)当AP 分别为3a 和2a 时,比较S 的大小.。

多项式乘多项式试题精选附的答案

多项式乘多项式试题精选附的答案

多项式乘多项式试题精选(二)一.境空题(共13小鹿)1.如图,正方形K•片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片张.h2.(x+3)与(2x-m)的积中不含x的一次项,则m=3.若(x+p)(x+q)=x2+mx+24.p.q为整数,则m的值等于4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片张,B类卡片张,C类卡片张.b5.计算:(*b)3=)=-6x2yz;(5-a)(6+a)=6.计算(x2.3x+l)(mx+8)的结果中不含x?项,则常数m的值为.7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_n8.若(x+5)(x-7)=x2+mx+n.则m=,n=.9.(x+a)(x+1)的计算结果不含x项,则a的值是_____________.510.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_平方米.1].若(x+m)(x+n)=x2-7x+mn,则・m«n的值为.12.若(x2+mx+8)(x2-3x+n)的展开式中不含x3和x?项,则mn的值是.13.已知X、y、a都是实数,且|x|=l-a.y2=(1-a)(a-1-a2).则x+y+a3+l的值为二.解答(共17小鹿)14.若(x?+2nx+3)(x2-5x+m)中不含奇次项,求m、n的值.15.化简下列各式:(1) (3x+2y)(9x2-6xy+4y2):(2)(2x-3)(4x2+6xy+9):(3)(-nU)(』m2+im+』):23469(4) (a+b)(a^b+b2)(a-b)(a2+ab+b2).16.计算:(1)(2x3)(x-5):(2)(a2-b3)(a2+b3)17.计算:(1).(2&b)+[a-(3a+4b)](2)(a+b) (a2-ab-{-b2)18.(x+7)(x-6)-(x-2)(x+1)19.计算:(3a+l)(2a-3)-(6a-5)(a4).20.计算:(a.b)(a2+ab+b2)2】.若(x2+px』)(x2-3x+q)的积中不含x项与x3项,3(】)求p、q的值:(2)求代数式(-2p2q)2+(3pq)4+p2012q2°,4的值.22.先化简,再求值:5(3x?y.xy2)-4(-xr+Jx^),其中x2,y=3.23.若(x-1)(x2+mx+n)=x3-6x2+l Ix-6.求m,n的值.24.如图,有多个长方形和正方形的K•片,图甲是选取了2块不同的E•片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b) =a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积:(2)当x=5时,求这个盒子的体积.26.(x-1)(x-2)=(x+3)(x-4)+20.2_227.若(x・3)(x+m)=x2+nx-15,求马:;—的值.8n+528.小明在进行两个多项式的乘法运算时(其中的一个多项式是卜1),把"乘以(b.D"错看成“除以(2)",结果得到(2a-b),请你帮小明算算,另一个多项式是多少?29.有足够多的长方形和正方形的K•片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(a-1)(a+1)=(a-1)(a2+a+l)=(a-1)(a3+a2+a+l)=_(2)你发现规律了吗?请你用你发现的规律填空:(a-1)(a n+a n-,+...+a2+a+l)=(3)根据上述规律,请你求420,2+420,,+420,0+...+4+1的值..多项式乘单项式试题精选(二)参考答案与试题解析一.填空息(共13小题)B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形, 1.如图,正方形卡片A类、则需要C类卡片上张.b考点:多项式乘多项式.分析:根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合K•片的面积即可作出判断.解答:解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b) =2a2+3ab+b2,A图形面积为a?,B图形面积为廿,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类F片3张.故答案为:3.点评:此题主要考查了多项式乘多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.2.(x+3)与(2x-m)的积中不含x的一次项,则m=6.考点:多项式乘多项式.专题:计算题.分析:先求出(x+3)与(2x.m)的积,再令x的一次项为0即可得到关于m的一元一次方程,求出m的值即可.解答:解:•••(x+3)(2x-m)=2x2+(6-m)x-3m..•.6-m=0,解得m=6.故答案为:6.点评:本题考查的是多项式乘以多项式的法则,即先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.若(x+p)(x+q)=x2+mx+24,p.q为整数,则m的值等于10,11,】4,25.考点:多项式乘多项式.分析:根据多项式的乘法法则,可得一个多项式,根据多项式相等,可得对应项相等,由p・q=24,p.q为整数,可得P,q的值,再根据p+q=m,可得m的值.解答:解:(x+p)(x+q)=x2+mx+24..*.p=24.q=l:p=12,q=2:p=8.q=3:p=6.q=4,•••当p=24,q=l时,m=p+q=25,当p=12»q=2时,m=p+q=14.当p=8,q=3时,m=p+q=l1.当 p=6, q=4 时,m=p+q=10.故答案为:10, 11, 14, 25.点评:本题考察了多项式,先根据多项式的乘法法则计算,分类讨论p, q 是解题关键.4.如图,已知正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的 大长方形,则需要A 类卡片1张,B 类卡片2张,C 类卡片3张.A考点:分析:解答:多项式乘多项式.根据边长组成图形.数出需要A 类卡片1张,B 类火片2张,C 类K •片3张.b b解:如图,要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A 类未片1张,B 类K •片2张,C 类卡片3张.点评:本题主要考查了多项式乘多项式,解题的关键是根据边长组成图形.5.计算:(•p) 2. (.p) 3=.p :—: 2xy・(-3xz ) =-6x 2yz : (5q) (6+a) = -a 2-a+30 .6.计算(x 2.3x +1) (mx+8)的结果中不含妙项.则常数m 的值为*考点:多项式乘多项式:同底数薛的乘法:蒂的乘方与税的乘方:单项式乘单项式.分析:根据同底数幕的乘法、积的乘方和蒂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解竺.解:(.p) 2* (-p) 3= (.p) 5=-p 5,(i 2b) 3= (J) 3. (a 2) 3b3=Ja6b3,v.6x 2yzr2xy=-3xz ..••2xy・(・3xz) =^6x 2yz,(5-a) (6+a) =30+5a-6a-a 2=30-a-a 2=-a 2-a+30.故答案为:・p5, i 6b 3, -3xz, -a 2-a+30.8点评:本题考查了同底数篝的乘法、积的乘方和箝的乘方、单项式除以单项式法则、多项式乘以多项式法则的应 3考点:多项式乘多项式.分析:把式子展开,找到所有x2项的所有系数,令其为0,可求出m的值.解答.'解:(x2-3x+1)(mx+8)=mx4+8x2-3mx2-24x+mx+8.又•.•结果中不含X?的项,.•.&3m=0.解得m宜.3故答案为:是.3点评:木题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0. 7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_n考点:多项式乘多项式.分析:分别计算出4块A的面积和2块B的面积、1块C的面枳,再计算这三种类型的砖的总面积,用完全平方公式化筒后,即可得出少了哪种类型的地砖.解答:解:4块A的面积为:4xmxm=4m2:2块B的面积为:2xmxn=2mn:1块C的面积为nxn=n2:那么这三种类型的砖的总面枳应该是:4m2+2mn+n2=4m2+4mn+n2-2mn=(2m+n)2-2mn.因此,少2块B型地砖,故答案为:2.点评:本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.8.若(x+5)(x-7)=x2+mx+n,则m=.2,n=-35.考点:多项式乘多项式.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解容.''解:(x+5)(x-7)=x2-2x-35=x2+mx+n.则m=-2,n=-35.故答案为:・2,.35.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.9.(x+a) (x+1)的计算结果不含x项,则a的值是5考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.依据法则运算,展开式不含关于字母X的一次项,那么一次项的系数为0.就可求a的值.解答:解:•••(x+a)(xg)=x2+(a+§)xga又•.•不含关于字母x的一次项.•••a+|=0-解得a=-X5点评:本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于0.难度适中.10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_(m・2)(n-2)或(mn.2n2n+4)平方米.考点:多项式乘多项式.分析:根据题意得出算式是(m・2)(n-2),即可得出答案.解答.解:根据题意得出房间地面的面枳是(m-2)(n-2):(m-2)(n-2)=mn-2m-2n+4.故答案为:(m-2)(n-2)或(mn-2m-2n+4)点评:本题考查了多项式乘3项式的应用,关键是能根据题意得出算式,题目比较好,难度适中.11.若(x+m)(x+n) =x2-7x+mn,则.mm的值为7.考点:多项式乘多项式.专题:计算题.分析:按照多项式的乘法法则展开运算后解答:解:(x+m)(x+n)=x2+(m+n)x+mn=x2-7x+mn,.,.m+n=-7».•.•m-n=7,故答案为:7.点评:本题考查了多项式的乘法,解题的关键是牢记多项式乘以多项式的乘法法则,属于基础题,比较简单. 12.若(x2+mx+8)(x2-3x+n)的展开式中不含x3和x?项,则mn的值是3.考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项列出关于m与n的方程组,求出方程组的解即可得到m与n的值.解答:解:原式=x‘+(m-3)x3+ (n-3m+8)x2+(mn-24)x+8n.(x2+mx-8)(x2-3x-s-n)根据展开式中不含X?和x3项得:in-3=0n-3irr1-8=0jth3n=l,•••mn=3・故答案为:3.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.解得:13.已知x、y、a都是实数,且|x|=la y?=(l«a)(a-1-a2),则x+y+a3+1的值为2.考点:专题:分析:代数式求值:绝对值:多项式乘多项式.计算题.根据绝对值非负数,平方数非负数的性质可得1/=0,从而得到a的值,然后代入求出x、y的值,再把a、x、y的值代入代数式进行计算即可求解.解答:解:•.,|x|=La>0,又寸=(1-a)(a-l-a2)>0,.•!a=0.解得a=l.x=0,声(1-a)(-1-a2)=0,点评:.-.x+y+a3+1=0+0+1+1=2.故答案为:2.本题主要考查了代数式求值问题,把y2的多项式整理,然后根据非负数的性质求出a的值是解题的关键,也是解决本题的突破口,本题灵活性较强.二.解答U(共17小短)14.若(x2+2nx+3)(x2-5x+m)中不含奇次项,求m、n的值.考点:分析:解答:多项式乘多项式.把式子展开,让x4的系数,X?的系数为0,得到m,n的值.解:(x2+2nx+3)(x2-5x+m).,■a-l<0,-a2<0..••a-l-a2<0..,•|x|=l-l=0.=x4-5x3+mx2+2nx3-l0nx2+2mnx+3x2-l5x+3m=x4+(2n-5)x3+(m-10n+3)x2+(2mn-15)x+3m,•.•结果中不含奇次项,.,•2n-5=O.2mn-15=0,解得m=3,n=^.2点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.化简下列各式:(1) (3x+2y)(9x2^xy+4y2):(2)(2x-3)(4x2+6xy+9):(3)dm2+in侦):23469(4) (a+b)(a2-ab+b2)(a-b)(a2+ab+b2).考点:多项式乘多项式.分析:根据立方和与立方差公式解答即可.解答.'解:(1)(3x+2y)(9\2^+4^)=(3x)3+(2y)3=27x3+8y3:(2)(2x-3)(4x2+6xy+9)=(2x)3罗=8x3.27:(3)(-m-i)(址+虬223469=(右)3-(*)3_13 1.飞m窗.(4)(a+b)(a2-ab+b2)(a-b)(a2+ab+b2)=(a3+b3)(a3-b3)=a6-b6.点评:本题考查了立方和与立方差公式,熟练记忆公式是解题的关键.1116.计算:(1)(2x3)(x-5):(2)(a2-b3)(a2+b3)考点:多项式乘多项式.分析:(1)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn.计算即可:(2)根据平方差公式计算即可.解答.'解:(1)(2x-3)(x-5)=2x2-I0x-3x+15=2x2-13x+15:(2)(a24)3)(aW)=a4-b6.点评:本题考查了多项式乘以多项式的法则以及平方差公式.注意不要漏项,漏字母,有同类项的合并同类项.17.计算:(1).(2&b)+[a-(3a44b)](2)(a+b)(a2-ab+b2)考点:多项式乘多项式:整式的加减.专题:计算题.分析:(I)先去小括号,再去大括号,最后按照整式加减混合运算规则进行计算即可:(2)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn.计算即可.解答:解:(1)原式=-2a-i-b+(a.3a4b].=>2a+b+a-3a*4b,=4a-3b:(2)原^=a3-a2b-J-ab2+a2b.ab2+b3,=a3+b3.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.(x+7)(x-6)-(x-2)(x+1)考点:多项式乘多项式.分析:依据多项式乘多项式法则运算.解答:解:(x+7)(x-6)-(x-2)(x+1)=x2-6x+7x42-x2-x+2x+2=2x40.点评:本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.关键是不能漏项.19.计算:(3a+l)(2a.3)-(6a-5)(a4).考点:多项式乘多项式.分析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解答.'解:(3a+l)(2a-3)+(6a-5)(a4)=6a2-9a+2a-3+6a2-24a-5a+20=12a2-36a+17.点评:此题考查了整式的混合运算.在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.20.计算:(a.b)(a2+ab+b2)考点:多项式乘多项式:单项式乘单项式.专题:计算题.分析:根据多项式乘以多项式的法则和单项式乘单项式的法则进行计算即可.解分,解:原式=a3+a2b+ab2.a2b.ab2.b3=a)b3.点评:本题主要考查对多项式乘以多项式的法则和单项式乘单项式的法则得理解和掌握,能熟练地运用法则进行计算是解此题的关键.21.若(x2+px^)(x2-3x+q)的积中不含x项与x3项,(1) 求p、q的值:(2) 求代数式(-2p2q) 2+(3pq)■1+p20,2q2°,4的值.考点:多项式乘多项式.分析:(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.解答:解:(1)(x2+px^)(x2-3x+q)=乂4+(p.3) x3+(9-3p^) x2+(qp+1)x+q,•••积中不含x项与x3项,•••P-3=().qp+l=O.••p=3,q=-^.(2)(-2p2q) 2+(3pq)•,+p20,2q201411T12012=[.2x32x(_A)]2+[3x3X(-A) ]+[3X(一*)]x32333=3法9=44^.3点评:本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值22.先化简,再求值:5(3x2y-xy2)-4(-xy2+3x2y)»其中x=>2,y=3.考点:整式的加减一化简求值:合并同类项:多项式乘多项式.专题:计算题.分析:根据单项式乘多项式的法则展开,再合并同类项,把xy的值代入求出即可.解解:原式=15乂2).5乂9+4乂尸.12乂2)=3x2y-xy2,当x=2尸3时,原式=3x(-2)2x3-(.2)x32=36+18=54.点评:本题考查了对整式的加减.合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入.2时应用括号.23.若(x-1)(x2+mx+n)=x3-6x2+l lx-6.求m,n的值.考点:多项式乘多项式.专题:计算题.分析:把(x-1)(x2+mx+n)展开后,每项的系数与x3-6x2+11x^中的项的系数对应,可求得m、n的值.解答:解:(x-1)(x2+mx+n)=x3+(m-1)x2+(n-m)x-n=x3-6x2+1lx-614.•.m』=6-n=-6.解得m=.5,n=6.点评:本题主要考查了多项式乘多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.根据对应项系数相等列式求解m、n是解题的关键.24.如图,有多个长方形和正方形的K•片,图甲是选取了2块不同的K•片,拼成的一个图形,借助图中阴影部分面枳的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(a+2b)(a+b)=a?+3ab+2b2:(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.考点:多项式乘多项式.专题:计算题.分析:(1)根据图形是一个长方形求出长和宽,相乘即可:(2)正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.解答:解:(1)观察图乙得知:长方形的长为:a+2b,宽为a+b,.••面积为:(a+2b)(a+b) =a2+3ab+2b2:(2)如图所示:恒等式是,(a+b)(a+b) =a2+2ab+b2.答:恒等式是a+b)(a+b)=a2+2ab+b2.点评:本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无孟的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm・求图中阴影部分的面枳:(2)当x=5时,求这个盒子的体积.考点:多项式乘多项式:代数式求值.分析:(1)剩余部分的面积即是边长为60-2X,4(X2x的长方形的面积:(2)利用长方体的体税公式先表示出长方形的体税,再把x=5,代入即可.解答:解:(1)(6Q2x)(40-2x)=4x2-200x+2400.答:阴影部分的面积为(4x2-200x+2400)cm2:(2)当x=5时,4x2-200x+2400=1500(cm2).点评:这个盒子的体枳为:1500x5=7500(cm3),答:这个盒子的体积为7500cm3.此题主要考查用代数式表示正方形、矩形的面积和体积,需熟记公式,且认真观察图形,得出等量关系.26.(x-1)(x-2)= (x+3)(x4)+20.考点:分析:解答:多项式乘多项式:解一元一次方程.将方程的两边利用多项式的乘法展开后整理成方程的一般形式求解即可.解:原方程变形为:x2-3x+2=x2-x-12+20整理得:.2x6=0,解得:x=-3.点评:本题考查了多项式乘多项式及解一元二次方程的知识,解题的关键是利用多项式的乘法对方程进行化简.2_227.若(x・3)(x+m)=x2+nx-15.求兰----的值.8n+5考点:分析:多项式乘多项式.首先把)(x・3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.解答:解:(x・3)(x+m)=x2+(m-3)x-3m=x2+nx-I5,则<in-3=n一3ith-15解得:ith5n=2n2-m2=22-52_8n+5=8X2+5一,点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.1628.小明在进行两个多项式的乘法运算时(其中的一个多项式是b-1),把“乘以(b.l)"错看成“除以(XI)",结果 得到(2a-b),请你帮小明算算,另一个多项式是多少? 考点:多项式乘多项式.:根据被除式=商、除式,所求多项式是(2a-b) (b-I),根据多项式乘多项式的法则计算即可.解答:解:设所求的冬项式是M,则M= (2a-b) (b-i)=2ab-2a-b 2+b.点评:本题考查了多项式乘多项式法则,根据被除式、除式、商三者之间的关系列出等式是解题的关键.熟练掌握运算法则也很重要.29.有足够多的长方形和正方形的K •片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形 的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.考点:分析:解答:多项式乘多项式.先根据题意画出图形,然后求出长方形的长和宽,长为a+2b,宽为a+b,从而求出长方形的面积.解:如图:a 2+3ab+2b 2= (a+b) (a+2b).点评:考查多项式与多项式相乘问题:根据面枳的不同表示方法得到相应的等式是解决本题的关键.30. ( 1)填空:(a-1) (a+1) = a 2-l (a-1) (a 2+a+l ) = a 3-l (a-1) (a 3+a 2+a+l ) = a 4-l (2)你发现规律了吗?清你用你发现的规律填空:31) (a n +a n -«+...+a 2+a+l ) = a n+1-l(3)根据上述规律,清你求 420,2+420,,+42010+...+4+1 的值.{(42013.]).—3考点:多项式乘多项式.专题:规律型.分析:(1)根据平方差公式和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果:(2)从而总结出规律是:(a-1) (a n +a n -,+...+a 2+a+l) =a n+,-l:(3)根据上述结论计算下列式子即可.解答•解:根据题意:(1)(a.l)(a+1)=a2.1:(a-1)(a2+a+l)=a3-l:(a-i)(a3+a2+a+l) =a4-l:(2)(a-i)(aJaq+adJ^.+aS+l) =a n+,-l.(3) 根据以上分析(1)42012+42011+42010++4+12"+298+297+...+2+l,—(4-1)(420,2+420,,+420,0+...+4+l),3呈(4253.1).3故答案为:(1)a2-l,a3-l,a4-l;(2)a"】」:(3)1(420,3-l).3点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析.从特殊值的规律上总结出一般性的规律.18。

多项式乘多项式试题精选附答案

多项式乘多项式试题精选附答案

多项式乘多项式试题精选(二)一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片_________ 张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= _________ .3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于_________ .4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片_________ 张,B类卡片_________ 张,C类卡片_________ 张.5.计算:(﹣p)2•(﹣p)3= _________ ;= _________ ;2xy•(_________ )=﹣6x2yz;(5﹣a)(6+a)= _________ .6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为_________ .7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_________ 块.8.若(x+5)(x﹣7)=x2+mx+n,则m= _________ ,n= _________ .9.(x+a)(x+)的计算结果不含x项,则a的值是_________ .10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_________ 平方米.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为_________ .12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是_________ .13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为_________ .二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)18.(x+7)(x﹣6)﹣(x﹣2)(x+1)19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).20.计算:(a﹣b)(a2+ab+b2)21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式_________ ;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(a﹣1)(a+1)= _________ (a﹣1)(a2+a+1)= _________ (a﹣1)(a3+a2+a+1)= _________ (2)你发现规律了吗请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= _________(3)根据上述规律,请你求42012+42011+42010+…+4+1的值._________ .多项式乘单项式试题精选(二)参考答案与试题解析一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片 3 张.考点:多项式乘多项式.分析:根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合卡片的面积即可作出判断.解答:解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,则可知需要A类卡片2张,B类卡片1张,C类卡片3张.故答案为:3.点评:此题主要考查了多项式乘多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= 6 .考点:多项式乘多项式.专题:计算题.分析:先求出(x+3)与(2x﹣m)的积,再令x的一次项为0即可得到关于m的一元一次方程,求出m的值即可.解答:解:∵(x+3)(2x﹣m)=2x2+(6﹣m)x﹣3m,∴6﹣m=0,解得m=6.故答案为:6.点评:本题考查的是多项式乘以多项式的法则,即先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于10,11,14,25 .考点:多项式乘多项式.分析:根据多项式的乘法法则,可得一个多项式,根据多项式相等,可得对应项相等,由p•q=24,p,q为整数,可得p,q的值,再根据p+q=m,可得m的值.解答:解:∵(x+p)(x+q)=x2+mx+24,∴p=24,q=1;p=12,q=2;p=8,q=3;p=6,q=4,∵当p=24,q=1时,m=p+q=25,当p=12,q=2时,m=p+q=14,当p=8,q=3时,m=p+q=11,当p=6,q=4时,m=p+q=10,故答案为:10,11,14,25.点评:本题考察了多项式,先根据多项式的乘法法则计算,分类讨论p,q是解题关键.4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片 1 张,B类卡片 2 张,C类卡片 3 张.分析:根据边长组成图形.数出需要A类卡片1张,B类卡片2张,C类卡片3张.解答:解:如图,要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片1张,B类卡片2张,C类卡片3张.点评:本题主要考查了多项式乘多项式,解题的关键是根据边长组成图形.5.计算:(﹣p)2•(﹣p)3= ﹣p5;= ﹣a6b3;2xy•(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .考点:多项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解答:解:(﹣p)2•(﹣p)3=(﹣p)5=﹣p5,(﹣a2b)3=(﹣)3•(a2)3b3=﹣a6b3,∵﹣6x2yz÷2xy=﹣3xz,∴2xy•(﹣3xz)=﹣6x2yz,(5﹣a)(6+a)=30+5a﹣6a﹣a2=30﹣a﹣a2=﹣a2﹣a+30,故答案为:﹣p5,﹣a6b3,﹣3xz,﹣a2﹣a+30.点评:本题考查了同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则的应用.6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为.考点:多项式乘多项式.分析:把式子展开,找到所有x2项的所有系数,令其为0,可求出m的值.解答:解:∵(x2﹣3x+1)(mx+8)=mx4+8x2﹣3mx2﹣24x+mx+8.又∵结果中不含x2的项,∴8﹣3m=0,解得m=.故答案为:.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖 2 块.考点:多项式乘多项式.分析:分别计算出4块A的面积和2块B的面积、1块C的面积,再计算这三种类型的砖的总面积,用完全平方公式化简后,即可得出少了哪种类型的地砖.解答:解:4块A的面积为:4×m×m=4m2;2块B的面积为:2×m×n=2mn;1块C的面积为n×n=n2;那么这三种类型的砖的总面积应该是:4m2+2mn+n2=4m2+4mn+n2﹣2mn=(2m+n)2﹣2mn,因此,少2块B型地砖,故答案为:2.点评:本题考查了完全平方公式的几何意义,立意较新颖,注意面积的不同求解是解题的关键,对此类问题要深入理解.考点:多项式乘多项式.分析:已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解答:解:(x+5)(x﹣7)=x2﹣2x﹣35=x2+mx+n,则m=﹣2,n=﹣35.故答案为:﹣2,﹣35.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.9.(x+a)(x+)的计算结果不含x项,则a的值是.考点:多项式乘多项式.分析:多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,依据法则运算,展开式不含关于字母x的一次项,那么一次项的系数为0,就可求a的值.解答:解:∵(x+a)(x+)=又∵不含关于字母x的一次项,∴,解得a=.点评:本题考查了多项式乘多项式法则,相乘后不含哪一项,就让这一项的系数等于0,难度适中.10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)平方米.考点:多项式乘多项式.分析:根据题意得出算式是(m﹣2)(n﹣2),即可得出答案.解答:解:根据题意得出房间地面的面积是(m﹣2)(n﹣2);(m﹣2)(n﹣2)=mn﹣2m﹣2n+4.故答案为:(m﹣2)(n﹣2)或(mn﹣2m﹣2n+4)点评:本题考查了多项式乘多项式的应用,关键是能根据题意得出算式,题目比较好,难度适中.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7 .考点:多项式乘多项式.专题:计算题.分析:按照多项式的乘法法则展开运算后解答:解:∵(x+m)(x+n)=x2+(m+n)x+mn=x2﹣7x+mn,∴m+n=﹣7,∴﹣m﹣n=7,故答案为:7.点评:本题考查了多项式的乘法,解题的关键是牢记多项式乘以多项式的乘法法则,属于基础题,比较简单.12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是 3 .考点:多项式乘多项式.专题:计算题.分析:利用多项式乘以多项式法则计算得到结果,根据展开式中不含x2和x3项列出关于m与n的方程组,求出方程组的解即可得到m与n的值.解得:,∴mn=3,故答案为:3.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为 2 .考点:代数式求值;绝对值;多项式乘多项式.专题:计算题.分析:根据绝对值非负数,平方数非负数的性质可得1﹣a=0,从而得到a的值,然后代入求出x、y的值,再把a、x、y的值代入代数式进行计算即可求解.解答:解:∵|x|=1﹣a≥0,∴a﹣1≤0,﹣a2≤0,∴a﹣1﹣a2≤0,又y2=(1﹣a)(a﹣1﹣a2)≥0,∴1﹣a=0,解得a=1,∴|x|=1﹣1=0,x=0,y2=(1﹣a)(﹣1﹣a2)=0,∴x+y+a3+1=0+0+1+1=2.故答案为:2.点评:本题主要考查了代数式求值问题,把y2的多项式整理,然后根据非负数的性质求出a的值是解题的关键,也是解决本题的突破口,本题灵活性较强.二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.考点:多项式乘多项式.分析:把式子展开,让x4的系数,x2的系数为0,得到m,n的值.解答:解:(x2+2nx+3)(x2﹣5x+m)=x4﹣5x3+mx2+2nx3﹣10nx2+2mnx+3x2﹣15x+3m=x4+(2n﹣5)x3+(m﹣10n+3)x2+(2mn﹣15)x+3m,∵结果中不含奇次项,∴2n﹣5=0,2mn﹣15=0,解得m=3,n=.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).考点:多项式乘多项式.分析:根据立方和与立方差公式解答即可.解答:解:(1)(3x+2y)(9x2﹣6xy+4y2)(2)(2x﹣3)(4x2+6xy+9)=(2x)3﹣33=8x3﹣27;(3)(m﹣)(m2+m+)=﹣=﹣;(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2)=(a3+b3)(a3﹣b3)=a6﹣b6.点评:本题考查了立方和与立方差公式,熟练记忆公式是解题的关键.16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)考点:多项式乘多项式.分析:(1)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可;(2)根据平方差公式计算即可.解答:解:(1)(2x﹣3)(x﹣5)=2x2﹣10x﹣3x+15=2x2﹣13x+15;(2)(a2﹣b3)(a2+b3)=a4﹣b6.点评:本题考查了多项式乘以多项式的法则以及平方差公式.注意不要漏项,漏字母,有同类项的合并同类项.17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)考点:多项式乘多项式;整式的加减.专题:计算题.分析:(1)先去小括号,再去大括号,最后按照整式加减混合运算规则进行计算即可;(2)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(1)原式=﹣2a+b+[a﹣3a﹣4b],=﹣2a+b+a﹣3a﹣4b,=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3,=a3+b3.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.(x+7)(x﹣6)﹣(x﹣2)(x+1)考点:多项式乘多项式.=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.点评:本题考查了多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.关键是不能漏项.19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).考点:多项式乘多项式.分析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解答:解:(3a+1)(2a﹣3)+(6a﹣5)(a﹣4)=6a2﹣9a+2a﹣3+6a2﹣24a﹣5a+20=12a2﹣36a+17.点评:此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.20.计算:(a﹣b)(a2+ab+b2)考点:多项式乘多项式;单项式乘单项式.专题:计算题.分析:根据多项式乘以多项式的法则和单项式乘单项式的法则进行计算即可.解答:解:原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3.点评:本题主要考查对多项式乘以多项式的法则和单项式乘单项式的法则得理解和掌握,能熟练地运用法则进行计算是解此题的关键.21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.考点:多项式乘多项式.分析:(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.解答:解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(9﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×32=36﹣+9=44.点评:本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.考点:整式的加减—化简求值;合并同类项;多项式乘多项式.专题:计算题.分析:根据单项式乘多项式的法则展开,再合并同类项,把x y的值代入求出即可.解答:解:原式=15x2y﹣5xy2+4xy2﹣12x2y原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.点评:本题考查了对整式的加减,合并同类项,单项式乘多项式等知识点的理解和掌握,注意展开时不要漏乘,同时要注意结果的符号,代入﹣2时应用括号.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.考点:多项式乘多项式.专题:计算题.分析:把(x﹣1)(x2+mx+n)展开后,每项的系数与x3﹣6x2+11x﹣6中的项的系数对应,可求得m、n的值.解答:解:∵(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n=x3﹣6x2+11x﹣6∴m﹣1=﹣6,﹣n=﹣6,解得m=﹣5,n=6.点评:本题主要考查了多项式乘多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.根据对应项系数相等列式求解m、n是解题的关键.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(a+2b)(a+b)=a2+3ab+2b2;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.考点:多项式乘多项式.专题:计算题.分析:(1)根据图形是一个长方形求出长和宽,相乘即可;(2)正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.解答:解:(1)观察图乙得知:长方形的长为:a+2b,宽为a+b,∴面积为:(a+2b)(a+b)=a2+3ab+2b2;(2)如图所示:恒等式是,(a+b)(a+b)=a2+2ab+b2.答:恒等式是a+b)(a+b)=a2+2ab+b2.点评:本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.考点:多项式乘多项式;代数式求值.分析:(1)剩余部分的面积即是边长为60﹣2x,40﹣2x的长方形的面积;(2)利用长方体的体积公式先表示出长方形的体积,再把x=5,代入即可.解答:解:(1)(60﹣2x)(40﹣2x)=4x2﹣200x+2400,答:阴影部分的面积为(4x2﹣200x+2400)cm2;(2)当x=5时,4x2﹣200x+2400=1500(cm2),这个盒子的体积为:1500×5=7500(cm3),答:这个盒子的体积为7500cm3.点评:此题主要考查用代数式表示正方形、矩形的面积和体积,需熟记公式,且认真观察图形,得出等量关系.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.考点:多项式乘多项式;解一元一次方程.分析:将方程的两边利用多项式的乘法展开后整理成方程的一般形式求解即可.解答:解:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣3.点评:本题考查了多项式乘多项式及解一元二次方程的知识,解题的关键是利用多项式的乘法对方程进行化简.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.考点:多项式乘多项式.分析:首先把)(x﹣3)(x+m)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到m、n的值,从而求解.解答:解:(x﹣3)(x+m)=x2+(m﹣3)x﹣3m=x2+nx﹣15,则解得:.=.点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少考点:多项式乘多项式.分析:根据被除式=商×除式,所求多项式是(2a﹣b)(b﹣1),根据多项式乘多项式的法则计算即可.解答:解:设所求的多项式是M,则M=(2a﹣b)(b﹣1)=2ab﹣2a﹣b2+b.点评:本题考查了多项式乘多项式法则,根据被除式、除式、商三者之间的关系列出等式是解题的关键,熟练掌握运算法则也很重要.29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.考点:多项式乘多项式.分析:先根据题意画出图形,然后求出长方形的长和宽,长为a+2b,宽为a+b,从而求出长方形的面积.解答:解:如图:或a2+3ab+2b2=(a+b)(a+2b).点评:考查多项式与多项式相乘问题;根据面积的不同表示方法得到相应的等式是解决本题的关键.30.(1)填空:(a﹣1)(a+1)= a2﹣1 (a﹣1)(a2+a+1)= a3﹣1 (a﹣1)(a3+a2+a+1)= a4﹣1 (2)你发现规律了吗请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= a n+1﹣1(3)根据上述规律,请你求42012+42011+42010+…+4+1的值.(42013﹣1).考点:多项式乘多项式.专题:规律型.分析:(1)根据平方差公式和立方差公式可得前2个式子的结果,利用多项式乘以多项式的方法可得出第3个式子的结果;(2)从而总结出规律是:(a﹣1)(a n+a n﹣1+…+a2+a+1)=a n+1﹣1;(3)根据上述结论计算下列式子即可.解答:解:根据题意:(1)(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;(2)(a﹣1)(a n+a n﹣1+a n﹣2+…+a2+a+1)=a n+1﹣1.(3)根据以上分析(1)42012+42011+42010+…+4+1299+298+297+…+2+1,=(4﹣1)(42012+42011+42010+…+4+1),=(42013﹣1).故答案为:(1)a2﹣1,a3﹣1,a4﹣1;(2)a n+1﹣1;(3)(42013﹣1).点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式乘法:多项式乘多项式习题(4)
一、选择题
1.计算(2a-3b)(2a+3b)的正确结果是()
A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b2
2.若(x+a)(x+b)=x2-kx+ab,则k的值为()
3.A.a+b B.-a-b C.a-b D.b-a
4.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()
5.A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y3
6.(x2-px+3)(x-q)的乘积中不含x2项,则()
7.A.p=q B.p=±q C.p=-q D.无法确定
8.若0<x<1,那么代数式(1-x)(2+x)的值是()
9.A.一定为正B.一定为负C.一定为非负数D.不能确定
10.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()
11.A.2(a2+2)B.2(a2-2)C.2a3D.2a6
12.方程(x+4)(x-5)=x2-20的解是()
13.A.x=0 B.x=-4 C.x=5 D.x=40
14.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()
15.A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1
16.C.a=2,b=1,c=-2 D.a=2,b=-1,c=2
17.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()
18.A.36 B.15 C.19 D.21
19.(x+1)(x-1)与(x4+x2+1)的积是()
20.A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1
二、填空题
1.(3x-1)(4x+5)=__________.
2.(-4x-y)(-5x+2y)=__________.
3.(x+3)(x+4)-(x-1)(x-2)=__________.
4.(y-1)(y-2)(y-3)=__________.
5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.
6. 若(x +a )(x +2)=x 2-5x +b ,则a =__________,b =__________.
7. 若a 2+a +1=2,则(5-a )(6+a )=__________.
8. 当k =__________时,多项式x -1与2-kx 的乘积不含一次项.
9. 若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.
10. 如果三角形的底边为(3a +2b ),高为(9a 2-6ab +4b 2),则面积=__________.
三、解答题
1、计算下列各式
(1)(2x +3y )(3x -2y ) (2)(x +2)(x +3)-(x +6)(x -1)
(3)(3x 2+2x +1)(2x 2+3x -1) (4)(3x +2y )(2x -3y )-(x -3y )(x +3y )
(5))13()4(32-+•-b a ab a ; (6) )84)(2
1(323xy y y x +-

(7))()(a b b b a a ---; (8) )1(2)12(322--+-x x x x x .
5、先化简,再求值:)2
2(32)231(2x x x x ----,其中2=x
6、若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为-6,求a ,b .
7、若(x2+mx+8)(x2-3x+n )的展开式中不含x3和x2项,求m 和n 的值。

相关文档
最新文档