新课标人教A版高中数学必修5教案完整版
人教A版高中数学必修5《基本不等式》精品教案
人教A版高中数学必修5《基本不等式》精品教案课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节 1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。
这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。
本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。
2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。
针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。
3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。
(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。
(3)、巩固练习。
设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。
4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。
(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。
高中数学 人教A版必修五全册电子教案(含课程纲要))
(1)课内即时评价:对学生个体与群体的课堂纪律、学习态度、 参与程度、方法效果等方面的表现随堂作出及时评价,学段末综合每 个学生的表现,按等级 A、B、C 作出定性评价。 (2)课后自主学习与作业评价:对学生个体课后学习的主动自觉 性、完成学习任务的程度、书面作业的数量和质量、单元达标测试等 及时反馈评价,学段末综合每个学生的表现,按等级 A、B、C 作出定 性评价。 3、 研究性学习评价:按学校评价办法执行。 (四) 学分授予: 1、 原则:有以下三种情况之一者,不授予学分 (1) 出勤率不足百分之九十; (2) 学习状态评定等级为 C; (3) 学段末达标测试成绩达不到合格线。 2、学段末学科成绩以定性与定量两种方式告知本人和家长。 (五) 学段末教学达标测评 1、 量标测试重点: (1) 实际问题的建模与求解能力; (2) 推理运算能力; (3) 方程与数形结合的思想方法; (4) 正弦定理、余弦定理、等差数列、等比数列、一元二次不等 式的解法,二元一次不等式组表示平面区域的画法、线形规划的基本 思想方法。 2、 量标测试命题双向细目表
第 4 页,共 10 页 郑州市第二中学
11
简单线形规划
理解(操作、会、初步应 用)
6
12
基本不等式
理解(探索、会、初步应 用)
5
13 14
学段末复习
理解、掌握、应用 课时合计
6 54
(二)重点、难点分析 1、 解三角形 (1) 重点: (a) 正弦定理、余弦定理及三角形的度量; (b) 测量和计算实际问题。 (2) 难点: (a) 探索正弦定理、余弦定理; (b) 正弦定理、余弦定理的灵活应用和实际应用。 2、 数列 (1) 重点: (a) 等差、等比数列的概念、通项公式、求和公式; (b) 概念、公式、性质的应用。 (2) 难点: (a) 探求等差、等比数列前 n 项和公式; (b) 有关知识的灵活应用; (c) 数列建摸。 3、 不等式
高二数学人教A版必修5教学教案2-4等比数列(6)
以上课件基本自编。
教学准备保证或平板与多媒体系统或白板系统的计算机位于同一个无线局域网中,并连接好DroidcamX,微信pc版。
把所有课件打开备用。
组织方式60个学生分成10组。
以组为单位合作讨论回答问题。
在整节课中,教师始终利用flash记分牌在每个环节及时对各组打分,课结束时根据分值对优秀组给予鼓励。
学生分析学生有一定的自主学习能力,对导学案比较熟悉,对思维导图的手绘有一点了解,对小组合作学习方式比较习惯。
等差数列的概念和性质有比较好的基础.学习方法课前让学生完成导学案,课后自主完善知识网络。
教学环节教学内容教师活动设计学生活动设计设计意图和作用媒体使用及分析等比数列概1.“一尺之捶”,“日取其半”2.计算机病毒每轮新感染数3. 年利率按照复利计算的每年的本利和问题。
1.Ppt动画展示。
引导学生得出3个数列,展示等差数列的定义,以小组为单位回答相应问题1.让学生了解生活中的等比数列,1.Ppt动画依次展示3个例子,图片生动,能吸引学生注意力。
,,念的引入一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0 )2.要求学生类比等差数列的概念来推导等比数列概念。
3.根据学生表现给分。
自主推出等比数列的概念。
思考等比数列的公比能否为0.培养学生对数学的情感。
2.训练学生运用类比的思想来解决问题的能力3.体现学生的主体学习地位2.Flash计分给学生即时评价,营造紧张又有趣的课堂气氛。
等比数列概念的练习:1.判断下列数列是否是等比数列:1,3,9,27,81, ... ;5,5,5,5,5,... ;1,1,1,1,1,1, ...;1,0,1,0,1,0,...2.等比数列中的项能否为0,公比能不能是0?有没有既是等差又是等比的数列?Ppt展示问题。
引导学生抢答问题,计分。
抢答巩固加深理解概念同上000000000000,…0000,巩固等比数列通项公式及等比中项推导三数a,G,b成等比数列则1.Ppt展示等差数列利用不完全归纳法推导通项公式及等差中项的过程。
新人教A版必修5高中数学学案教案: (2.4.1 等比数列的概念及通项公式)
2.4 等比数列2.4.1 等比数列的概念及通项公式从容说课本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程.教学中应充分利用信息和多媒体技术,给学生以较多的感受,激发学生学习的积极性和思维的主动性.准备丰富的阅读材料,为学生提供自主学习的可能,进而达到更好的理解和巩固课堂所学知识的目的.教学重点1.等比数列的概念;2.等比数列的通项公式.教学难点1.在具体问题中抽象出数列的模型和数列的等比关系;2.等比数列与指数函数的关系.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着一类特殊的数列;2.理解等比数列的概念,探索并掌握等比数列的通项公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关的知识解决相应的实际问题;4.体会等比数列与指数函数的关系.二、过程与方法1.采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动;3.密切联系实际,激发学生学习的积极性.三、情感态度与价值观1.通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师现实生活中,有许多成倍增长的实例.如,将一张报纸对折、对折、再对折、…,对折了三次,手中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例子吗?生一粒种子繁殖出第二代120粒种子,用第二代的120粒种子可以繁殖出第三代120×120粒种子,用第三代的120×120粒种子可以繁殖出第四代120×120×120粒种子,…师非常好的一个例子!现实生活中,我们会遇到许多这类的事例.教师出示多媒体课件一:某种细胞分裂的模型.师 细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成一个数列,你能写出这个数列吗?生 通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从而得到每次细胞分裂所得到的细胞数组成下面的数列:1,2,4,8,…①教师出示投影胶片1:“一尺之棰,日取其半,万世不竭.”师 这是《庄子·天下篇》中的一个论述,能解释这个论述的含义吗?生 思考、讨论,用现代语言叙述.师 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?生 发现等比关系,写出一个无穷等比数列:1,21,41,81,161,… ② 教师出示投影胶片2:计算机病毒传播问题.一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成一个什么样的数列呢?师 (读题后)这种病毒每一轮传播的计算机数构成的数列是怎样的呢?引导学生发现“病毒制造者发送病毒称为第一轮”“每一轮感染20台计算机”中蕴涵的等比关系.生 发现等比关系,写出一个无穷等比数列:1,20,202,203,204,… ③教师出示多媒体课件二:银行存款利息问题.师 介绍“复利”的背景:“复利”是我国现行定期储蓄中的一种支付利息的方式,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.我国现行定期储蓄中的自动转存业务实际上就是按复利支付利息的.给出计算本利和的公式:本利和=本金×(1+本金)n ,这里n 为存期.生 列出5年内各年末的本利和,并说明计算过程.师 生合作讨论得出“时间”“年初本金”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下面数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.01985. ④师 回忆数列的等差关系和等差数列的定义,观察上面的数列①②③④,说说它们有什么共同特点?师 引导学生类比等差关系和等差数列的概念,发现等比关系.引入课题:板书课题 2.4等比数列的概念及通项公式推进新课[合作探究]师 从上面的数列①②③④中我们发现了它们的共同特点是:具有等比关系.如果我们将具有这样特点的数列称之为等比数列,那么你能给等比数列下一个什么样的定义呢? 生 回忆等差数列的定义,并进行类比,说出:一般地,如果把一个数列,从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列. [教师精讲]师 同学们概括得很好,这就是等比数列(geometric seque n ce)的定义.有些书籍把等比数列的英文缩写记作G.P.(Geometric Progressio n ).我们今后也常用G.P.这个缩写表示等比数列.定义中的这个常数叫做等比数列的公比(commo n r a tio),公比通常用字母q 表示(q≠0).请同学们想一想,为什么q≠0呢?生 独立思考、合作交流、自主探究.师 假设q=0,数列的第二项就应该是0,那么作第一项后面的任一项与它的前一项的比时就出现什么了呢?生 分母为0了.师 对了,问题就出在这里了,所以,必须q≠0.师 那么,等比数列的首项能不能为0呢?生 等比数列的首项不能为0.师 是的,等比数列的首项和公比都不能为0,等比数列中的任一项都不会是0. [合作探究]师类比等差中项的概念,请同学们自己给出等比中项的概念.生 如果在a 与b 中间插入一个数G ,使a 、G 、b 成等比数列,那么G 叫做a 、b 的等比中项. 师 想一想,这时a 、b 的符号有什么特点呢?你能用a 、b 表示G 吗?生 一起探究,a 、b 是同号的G b a G ,G=±ab ,G 2=ab . 师 观察学生所得到的a 、b 、G 的关系式,并给予肯定.补充练习:与等差数列一样,等比数列也具有一定的对称性,对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等比数列来说,有什么类似的性质呢? 生 独立探究,得出:等比数列有类似的性质:a n -k ·a n +k =a n 2.[合作探究]探究:(1)一个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等比数列呢?(2)写出两个首项为1的等比数列的前5项,比较这两个数列是否相同?写出两个公比为2的等比数列的前5项,比较这两个数列是否相同?(3)任一项a n 及公比q 相同,则这两个数列相同吗?(4)任意两项a m 、a n 相同,这两个数列相同吗?(5)若两个等比数列相同,需要什么条件?师 引导学生探究,并给出(1)的答案,(2)(3)(4)可留给学生回答.生 探究并分组讨论上述问题的解答办法,并交流(1)的解答.[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列又是等比数列的数列是存在的,每一个非零常数列都是公差为0,公比为1的既是等差数列又是等比数列的数列.概括学生对(2)(3)(4)的解答.(2)中,首项为1,而公比不同的等比数列是不会相同的;公比为2,而首项不同的等比数列也是不会相同的.(3)中,是指两个数列中的任一对应项与公比都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同;(5)中,结论是:若两个数列相同,需要“首项和公比都相同”.(探究的目的是为了说明首项和公比是决定一个等比数列的必要条件;为等比数列的通项公式的推导做准备) [合作探究]师 回顾等差数列的通项公式的推导过程,你能推导出等比数列的通项公式吗? 生 推导等比数列的通项公式. [方法引导]师 让学生与等差数列的推导过程类比,并引导学生采用不完全归纳法得出等比数列的通项公式.具体的,设等比数列{a n }首项为a 1,公比为q ,根据等比数列的定义,我们有: a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1q n -1.师 根据等比数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312..., 进而有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1.亦得a n =a 1q n -1.师 观察一下上式,每一道式子里,项的下标与q 的指数,你能发现有什么共同的特征吗?生 把a n 看成a n q 0,那么,每一道式子里,项的下标与q 的指数的和都是n .师 非常正确,这里不仅给出了一个由a n 倒推到a n 与a 1,q 的关系,从而得出通项公式的过程,而且其中还蕴含了等比数列的基本性质,在后面我们研究等比数列的基本性质时将会再提到这组关系式.师 请同学们围绕根据等比数列的定义写出的式子 q a a a a a a a a n n =====-1342312...,再思考. 如果我们把上面的式子改写成q a a q a a q a a q a a n n ====-1342312,...,,,. 那么我们就有了n -1个等式,将这n -1个等式两边分别乘到一起(叠乘),得到的结果是11-=n n q a a ,于是,得a n =a 1q n -1. 师 这不又是一个推导等比数列通项公式的方法吗?师 在上述方法中,前两种方法采用的是不完全归纳法,严格的,还需给出证明.第三种方法没有涉及不完全归纳法,是一个完美的推导过程,不再需要证明.师 让学生说出公式中首项a 1和公比q 的限制条件.生 a 1,q 都不能为0. [知识拓展]师 前面实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那里是用什么方法解决问题的呢?教师出示多媒体课件三:前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本金为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存入本金1 000元,每期利率为2.25%,试计算5期后的本利和.师 前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是用函数的知识和方法解决问题的.生 比较两种方法,思考它们的异同. [教师精讲]通过用不同的数学知识解决类似的数学问题,从中发现等比数列和指数函数可以联系起来.(1)在同一平面直角坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同一平面直角坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你又发现了什么?生 借助信息技术或用描点作图画出上述两组图象,然后交流、讨论、归纳出二者之间的关系.师 出示多媒体课件四:借助信息技术作出的上述两组图象.观察它们之间的关系,得出结论:等比数列是特殊的指数函数,等比数列的图象是一些孤立的点.师 请同学们从定义、通项公式、与函数的联系3个角度类比等差数列与等比数列,并填充下列表格:等差数列 等比数列 定 义从第二项起,每一项与它前一项的差都是同一个常数 从第二项起,每一项与它前一项的比都是同一个常数 首项、公差(公比)取值有无限制没有任何限制 首项、公比都不能为0 通项公式a n =a 1+(n -1)d a n =a 1q n -1 相应图象的特点直线y=a 1+(x-1)d 上孤立的点 函数y=a 1q x-1图象上孤立的点[例题剖析]【例1】 某种放射性物质不断变化为其他物质,每经过一年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师 从中能抽象出一个数列的模型,并且该数列具有等比关系.【例2】 根据右图中的框图,写出所打印数列的前5项,并建立数列的递推公式,这个数列是等比数列吗?师 将打印出来的数依次记为a 1(即A ),a 2,a 3,….可知a 1=1;a 2=a 1×21;a 3=a 2×21. 于是,可得递推公式⎪⎩⎪⎨⎧==-)1(21,111>n a a a n n . 由于211=-n n a a ,因此,这个数列是等比数列. 生 算出这个数列的各项,求出这个数列的通项公式.练习:1.一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.师 启发、引导学生列方程求未知量.生 探究、交流、列式、求解.2.课本第59页练习第1、2题.课堂小结本节学习了如下内容:1.等比数列的定义.2.等比数列的通项公式.3.等比数列与指数函数的联系.布置作业课本第60页习题2.4 A 组第1、2题.板书设计等比数列的概念及通项公式1.等比数列的定义 实例剖析2.等比数列的通项公式 从三个角度类比等差数列表 例1练习:1.(学生板演) 例2。
高二数学人教A版必修5教学教案1-1-1正弦定理(2)_1
正弦定理一、教学内容的分析“正弦定理”是人教A版必修五第一章第一节的主要内容。
其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.二、学生学习情况分析在初中学生已经学习过关于任意三角形中大边对大角、小边对小角的边角关系,本节内容是处理任意三角形中的边角关系,与初中学习的三角形的边与角的基本关系有着密切的联系;这里的一个重要问题是:是否能得到这个边、角关系准确量化的表示.也就是如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.三、设计思想培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。
这就要求教师在教学中引导学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得知识。
所以本节课的教学将以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
四、三维目标1、知识与技能通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及证明方法,并能解决一些简单的三角形问题。
2、过程与方法通过对特殊三角形边长和角度关系的探索,发现正弦定理,初步学会用特殊到一般的思想方法发现数学规律。
3、情感态度与价值观通过生活实例的探究引出正弦定理,体现数学来源于生活,并应用于生活,激发学生学习数学的兴趣,并体会数学的应用价值。
五、教学重难点重点:正弦定理的证明及其基本运用.难点:(1)正弦定理的探索和证明;(2)已知两边和其中一边的对角解三角形时,判断解的个a cb O B C A 数.六、教学过程设计(一)新课导入如图,河流两岸有A 、B 两村庄,有人说利用测角器与直尺,不过河也可以得到A 、B 两地的距离(假设现在的位置是A 点),请同学们讨论设计一个方案解决这个问题。
人教A版高中数学必修五《基本不等式》精品教案
《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
高中数学人教A版必修5《等比数列》教案
《等比数列》教案教学目标:1、通过实例,理解等比数列的概念2、探索并掌握等比数列的通项公式3、通过等比数列与指数函数的关系体会数列是一种特殊的函数。
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要的数列模型之一,探索并掌握等比数列的通项公式。
教学难点:等比数列与其对应函数的关系。
教学过程:一 、复习旧知:1、等比数列的定义及通项公式2、等差数列的通项公式与一次函数之间的关系二、探究新知1、(1)有人说:如果能将一张厚度为 的报纸对折、再对折。
对折50次后,报纸的厚度超过了地球与月球间的距离,你信吗?每次对折后报纸的厚度依次构成数列:(2)《庄子》一书中说:“一尺之棰,日取其半,万世不竭!”(3)某人年初向银行贷款1万元,如果贷款年利率是6%,那么,5年内各年末应该还款总额依次为:1×1.06, 1×1.062, 1×1.063,1×1.064, 1×1.065结合实例分析上述几个数列的共同特点。
mm050、.2050 ...... 2050 ,2050.2050......2050,20502,050 2,05050325032⨯⨯⨯⨯⨯⨯⨯⨯、、、、、、、、 (32)1,161,81,41,21,12、探究等比数列的定义定义:如果一个数列从第2项起,每一项与它的前一项 的比等于同一个常数,那么这个数列叫做等比数列,这 个常数叫做等比数列的公比,通常用字母q 表示 (q ≠0).3、类比等差数列探究等比数列的通项公式(一)不完全归纳法 (二)累乘法4、探究通项公式与指数函数间的关系思考:教材第50页的探究题课后探究:当 满足什么条件时,等比数列 是递增数列、递减数列?三、例题精析例1:在等比数列{a n}中, (1)a 4=2,a 7=16,求a n ; (2)a 2+a 5=18,a 3+a 6=9,a n=1,求n . (3)a 3=2,a 2+a 4= ,求a n . 变式训练:变式训练:已知数列 满足 , (1)求证:数列 是等比数列 (2)求 的表达式. 四、课堂练习1.在等比数列{a n }中,a 1=8,a 4=64,则a 2等于( ) A .16 B.16或-16 C.32 D.32或-322.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为 ( ) 320 【例1】 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n . 分析:设公比q,列出关于a 1和q 的方程组来求解. 解:设等比数列{a n }的公比为q, 则有 a 5-a 1=a 1q 4-a 1=15,a 4-a 2=a 1q 3-a 1q =6,①② 由①÷②,得q=12或q=2. 当q=12时,a 1=-16. 当q=2时,a 1=1. 故a n =-16· 12 n -1或a n =2n-1. 【例2】 已知数列{a n }满足lg a n =3n+5,求证:{a n }是等比数列. 分析:可由lg a n =3n+5求出a n ,再证明a n+1a n 是与n 无关的常数. 证明:∵lg a n =3n+5,∴a n =103n+5. ∴a n+1=103(n+1)+5=103n+8.∴a n+1a n =103n+8103n+5=1 000. ∴数列{a n }是等比数列.{}n a 12,111+==+n n a a a {}1+n a {}n a q a 1和{}n aA.4 B.8 C.6 D.323.已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7等于() A.64 B.81 C.128 D.2434.若数列{a n}的前n项和S n=23an+13,则{a n}的通项公式是a n=________.。
高中数学教案:必修5第二章教学设计(新人教A版)
数学 5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n 项和公式,体会等差数列的前n 项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n 项和公式,体会等比数列的前n 项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议本章教学时间约 12 课时2.数列的概念与简单表示法约2课时12.2 等差数列约2课时2.3 等差数列的前 n 项和约 2 课时2.4 等比数列约 2 课时2.5 等比数列的前 n 项和约 2 课时问题与小结约 2 课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
新课标人教A版高中数学必修5教案完整版
新课标人教A版高中数学必修5教案完整版一、教学目标1.了解函数的基本概念,能够将现实中的问题转化为函数的形式。
2.理解函数的性质,掌握常用函数的性质及图像特征。
3.能够利用函数的性质,解决实际问题。
二、教学重点1.函数的基本概念;2.常用函数的性质;3.利用函数解决实际问题。
三、预备知识1.初中数学基本概念;2.函数概念的初步了解。
四、教学内容第一节函数基本概念1.函数的定义;2.定义域、值域和对应关系;3.奇偶性、周期性、单调性等基本性质。
第二节常用函数及其性质1.幂函数、指数函数、对数函数、三角函数等;2.函数的图像特征及性质。
第三节函数的应用1.函数与方程的联系;2.应用题解法:建立函数模型,求解实际问题。
五、教学方法本节课采用“导入-讲解-演示-练习-总结”等教学方法,其中:1.导入:通过举例子,引导学生了解相关概念。
2.讲解:深入浅出,分析函数性质及应用。
3.演示:通过实例,引导学生理解函数的应用。
4.练习:课后布置作业,帮助学生掌握相关知识。
5.总结:概括本节课所学知识,为下一步教学打下基础。
六、教学过程导入教师通过一个实际问题,引导学生思考如何把问题转化为函数的形式,如:某人5年前的年龄是现在年龄的2倍减3年,建立相关函数模型。
讲解1.函数的定义:函数是一种对应关系,它将定义域内的每一个元素都对应唯一的一个值。
2.函数的基本概念:定义域、值域及对应关系等。
3.常用函数的性质及图像:函数的奇偶性、周期性和单调性等。
其中幂函数、指数函数、对数函数、三角函数等为常用函数。
4.函数的应用:函数与方程的联系以及实际问题的应用,通过建立函数模型,解决实际问题。
演示老师通过现实中的例子,引导学生理解函数的应用,如:电费问题、最小二乘法问题等。
练习1.要求学生掌握函数的基本概念及性质;2.要求学生了解常用函数及其图像特征,掌握函数的基本变换和应用;3.练习题包括基础练习题和应用题,要求学生灵活掌握函数的应用。
高二数学人教A版必修5教学教案2-2等差数列(3)
普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。
人教A版高中数学必修五全册教案
人教A版高中数学必修五全册教案教案:高中数学必修五全册教材:人教A版高中数学必修五教学目标:1.掌握数列概念,能够计算等差数列和等比数列的通项和前n项和;2.理解极限的概念,能够计算函数在其中一点的极限;3.理解一元一次方程、二次方程的根及其性质,能够求解一元一次方程和二次方程;4.理解函数概念,能够绘制简单的函数图像,计算函数值及函数的性质;5.掌握数学应用题的解题方法和技巧。
教学内容:第一单元数列与数学归纳法1.1数列的概念与通项的求法1.2等差数列及其求和公式1.3等比数列及其求和公式第二单元函数与极限2.1函数的概念及表示法2.2函数的图像和性质2.3极限的概念及计算第三单元一元一次方程与不等式3.1一元一次方程与方程的解3.2一元一次方程组与解的性质3.3一元一次不等式及其解第四单元二次函数与一元二次方程4.1二次函数的图像和性质4.2一元二次方程及其性质4.3一元二次方程的解法与应用第五单元测度与图形的性质5.1弧长与扇形面积5.2直线与圆的相交关系5.3平面向量的概念与性质5.4弧度制与角的变化率教学方法:1.通过讲解掌握基本概念与定理,引导学生分析例题,提高解题技巧;2.运用举一反三、归纳法,培养学生的综合运用能力和思维能力;3.坚持理论与实践相结合,通过练习和应用题,巩固知识点和技能;4.引导学生进行思考与讨论,激发学生的兴趣,培养其数学思维。
教学步骤:第一步:导入通过引入相关例子,激发学生的兴趣,预习相关内容,引起学生的思考。
第二步:知识点讲解通过课本中的例题和习题,详细讲解每个知识点的概念、公式、性质、注意事项等。
第三步:练习与讨论学生进行课后习题的练习,老师对错的例题进行解析和讲解,学生之间进行讨论和交流。
第四步:拓展与应用通过一些应用题目,让学生把所学内容应用到实际问题中,提高学生的应用能力。
第五步:总结与归纳对所学内容进行总结归纳,涵盖知识点和解题技巧,为下一节课的学习做好准备。
高中数学《1.1.1 正弦定理》教案 新人教A版必修5
课题:1.1.1正弦定理
【学习目标】
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法。
2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
【学习重点】正弦定理的探索和证明及其基本应用。
【学习难点】已知两边和其中一边的对角解三角形时判断解的个数。
【授课类型】新授课
【教具】课件、电子白板
【学习方法】
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形
ABC中,设BC=a,AC=b,AB=c, 根可分为锐角三角形和钝角三角形两种情况:
课题:1.1.1正弦定理
课题:1.1.1正弦定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A版高中数学精品教案Word精排版1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 一.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? 二.讲授新课[探索研究]在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C=== 从而在直角三角形ABC 中,sin sin sin a b c==思考1:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,(1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin ab=, C同理可得sin sin cbC B =, b a 从而sin sin abAB=sin cC=A c B(2)当∆ABC 是钝角三角形时,以上关系式仍然成立。
(由学生课后自己推导) 思考2:还有其方法吗?由于涉及边长问题,从而可以考虑用向量来研究这问题。
(证法二):过点A 作单位向量j AC ⊥, 由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+C A BB CA∴j AB j AC j CB ⋅=⋅+⋅()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即=a c同理,过点C 作⊥j BC ,可得 sin sin =b c B C 从而sin sin a b =sin c=从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC思考:正弦定理的基本作用是什么?①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。
解:根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理, 00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理, 0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 评述:对于解三角形中的复杂运算可使用计算器。
练习:在∆ABC 中,已知下列条件解三角形。
(1) 45=A , 30=C ,cm c 10=, (2) 60=A ,45=B ,cm c 20=例2. 在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B⑴ 当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A ⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C ccm A 应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
课堂练习第4页练习第2题。
思考题:在∆ABC 中,sin sin ab=(>o)sin ck k ==,这个k 与∆ABC 有什么关系?三.课时小结(由学生归纳总结) (1)定理的表示形式:sin sin abA B =sin cC ==()0sin sin sin a b ck k A B C ++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k > (2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;②已知两边和其中一边对角,求另一边的对角。
四.课后作业:P10面1、2题。
1.2解三角形应用举例 第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 教学难点:根据题意建立数学模型,画出示意图 三、教学设想 1、复习旧知复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? 2、设置情境请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。
如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。
于是上面介绍的问题是用以前的方法所不能解决的。
今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。
3、 新课讲授(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。
求A 、B 两点的距离(精确到0.1m)提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 提问2:运用该定理解题还需要那些边和角呢?请学生回答。
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB = ABCACB AC ∠∠sin sin = ABCACB ∠∠sin sin 55=)7551180sin(75sin 55︒-︒-︒︒ = ︒︒54sin 75sin 55 ≈ 65.7(m)答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?老师指导学生画图,建立数学模型。
解略:2a km例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。
首先需要构造三角形,所以需要确定C 、D 两点。
根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。
解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得AC =)](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++aBC =)](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离 AB = αcos 222BC AC BC AC ⨯-+分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。
变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒ 略解:将题中各已知量代入例2推出的公式,得AB=206评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。
4、 学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。
5、 课堂练习:课本第14页练习第1、2题 6、 归纳总结解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 四、课后作业1、 课本第22页第1、2、3题2、 思考题:某人在M 汽车站的北偏西20︒的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。