高中数学点线对称问题(精选.)
高二数学对称问题
高中数学例题:直线对称问题
高中数学例题:直线对称问题例3. 已知直线l 1:2x+y ―4=0,求l 1关于直线l :3x+4y ―1=0对称的直线l 2的方程.【答案】2x+11y+16=0【解析】 解法一:由2403410x y x y +-=⎧⎨+-=⎩,得直线l 1与l 的交点为P (3,―2),显然P 也在直线l 2上.在直线l 1上取一点A (2,0),又设点A 关于直线l 的对称点为B(x 0,y 0),则0000042320341022y x x y -⎧=⎪-⎪⎨++⎪⋅+⋅-=⎪⎩,解得48,55B ⎛⎫- ⎪⎝⎭. 故由两点式可求得直线l 2的方程为2x+11y+16=0.解法二:设直线l 2上一动点M (x ,y )关于直线l 的对称点为'(',')M x y ,则'4'3''341022y y x x x x y y -⎧=⎪⎪-⎨++⎪⋅+⋅-=⎪⎩,解得7246'252478'25x y x x y y -+⎧=⎪⎪⎨--+⎪=⎪⎩. 显然'(',')M x y 在l 1上,故724624782402525x y x y -+--+⋅+-=,即2x+11y+16=0,这便是所求的直线l 2的方程.【总结升华】 求一条直线关于另一条直线的对称直线的基本途径是把它转化为点关于直线对称的问题,即在其上取一点(或两点),求出它们关于直线的对称点坐标,再由两点式即可求得所求的直线方程.一般地,当对称轴的斜率为±1时,求P (x 0,y 0)的对称点Q ,只需由对称轴方程解出x ,再用y 0代替y ,即得到对称点的横坐标,类似地,可得到纵坐标.举一反三:【变式1】(1)求点P (x 0,y 0)关于直线x ―y+C=0的对称点坐标;(2)求直线l 1:Ax+By+C=0关于直线l 2:x+y ―3=0的对称直线l 3的方程.【答案】(1)(y 0―C ,x 0+C );(2)Bx+Ay ―3A ―3B ―C=0. 例4.在直线l :3x ―y ―1=0上求一点P ,使得:(1)P 到A (4,1)和B (0,4)的距离之差最大;(2)P 到A (4,1)和C (3,4)的距离之和最小.【答案】(1)(2,5)(2)1126,77⎛⎫ ⎪⎝⎭【解析】 设B 关于l 的对称点为B ',AB '与l 的交点P 满足(1);设C 关于l 的对称点为C ',AC '与l 的交点P 满足(2).事实上,对(1),若P '是l 上异于P 的点,则|'||'||'||''||'|P A P B P A P B AB -=-<||PA = |'|||||PB PA PB -=-;对于(2),若P '是l 上异于P 的点,则|'||'||'||'||'|P A P C P A P C AC +=+>||PA = ||PC +.(1)如图1所示,设点B 关于l 的对称点B '的坐标为(a ,b ), '1BB l k k ⋅=-,即431b a-⋅=-, ∴a+3b -12=0. ①又由于BB '的中点坐标为4,22a b +⎛⎫ ⎪⎝⎭,且在直线l 上,∴431022ab +⋅--=,即3a ―b ―6=0. ② 解①②得a=3,b=3,∴B '(3,3).于是直线AB '的方程为143134y x --=--,即2x+y -9=0. 解由l 的直线方程与AB '的直线方程组成的方程组得x=2,y=5,即l 与AB '的交点坐标为(2,5),所以P (2,5).(2)如图2所示,设C 关于l 的对称点为C ',求出C '的坐标为324,55⎛⎫ ⎪⎝⎭. ∴AC '所在直线的方程为19x+17y ―93=0.AC '和l 交点坐标为1126,77P ⎛⎫⎪⎝⎭. 故P 点坐标为1126,77⎛⎫ ⎪⎝⎭. 【总结升华】 由平面几何知识(三角形任两边之和大于第三边,任两边之差的绝对值小于第三边)可知,要在直线l 上求一点,使这点到两定点A 、B 的距离之差最大的问题,若这两点A 、B 位于直线l 的同侧,则只需求出直线AB 的方程,再求它与已知直线的交点,即得所求的点的坐标;若A 、B 两点位于直线l 的异侧,则先求A 、B 两点中某一点(如A )关于直线l 的对称点A ',再求直线A 'B 的方程,再求它们与直线l 的交点即可.对于在直线l 上求一点P ,使P 到平面上两点A 、B 的距离之和最小的问题可用类似方法求解.举一反三:【变式1】已知点M (3,5),在直线l :x ―2y+2=0和y 轴上各找一点P 和Q ,使△MPQ 周长最小.【答案】59,24P ⎛⎫ ⎪⎝⎭、70,2Q ⎛⎫ ⎪⎝⎭ 【解析】由点(3,5)M 及直线l ,可求得点M 关于l 的对称点1(5,1)M .同样容易求得点M 关于y 轴的对称点2(3,5)M -.据1M 及2M 两点可得到直线1M 2M 的方程为270x y +-=,解方程组270220x y x y +-=⎧⎨-+=⎩,得交点59,24P ⎛⎫ ⎪⎝⎭,令0x =,得到1M 2M 与y 轴的交点7(0,)2Q .。
(精选试题附答案)高中数学选修一真题
(名师选题)(精选试题附答案)高中数学选修一真题单选题1、点(1,2)关于直线x+y−2=0的对称点是()A.(1,0)B.(0,1)C.(0,−1)D.(2,1)答案:B分析:设出对称点,根据对称关系列出式子即可求解.解:设点A(1,2)关于直线x+y−2=0的对称点是B(a,b),则有{b−2a−1=1a+1 2+b+22−2=0,解得a=0,b=1,故点(1,2)关于直线x+y−2=0的对称点是(0,1). 故选:B.小提示:方法点睛:关于轴对称问题:(1)点A(a,b)关于直线Ax+By+C=0的对称点A′(m,n),则有{n−bm−a×(−AB)=−1A⋅a+m2+B⋅b+n2+C=0;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.2、直线y=x−1过抛物线C:y2=2px(p>0)的焦点F,且与C交于A、B两点,则|AB|=()A.6B.8C.2D.4答案:B分析:联立直线与抛物线的方程,根据抛物线的焦点坐标,结合焦点弦长公式求解即可因为抛物线C:y2=2px(p>0)的焦点坐标为F(p2,0),又直线y =x −1过抛物线C:y 2=2px(p >0)的焦点F ,所以p =2,抛物线C 的方程为y 2=4x ,由{y =x −1y 2=4x,得x 2−6x +1=0,所以x A +x B =6,所以|AB |=x A +x B +p =6+2=8. 故选:B3、如果AB >0且BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:C分析:通过直线经过的点来判断象限.由AB >0且BC <0,可得A,B 同号,B,C 异号,所以A,C 也是异号; 令x =0,得y =−CB >0;令y =0,得x =−CA >0; 所以直线Ax +By +C =0不经过第三象限. 故选:C.4、已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C .√2121D .4√2121答案:B分析:利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可. 设该正面体的棱长为1,因为M 为BC 中点,N 为AD 中点, 所以|BN⃑⃑⃑⃑⃑⃑ |=|DM ⃑⃑⃑⃑⃑⃑ |=√12−(12×1)2=√32, 因为M 为BC 中点,N 为AD 中点, 所以有BN ⃑⃑⃑⃑⃑⃑ =BA ⃑⃑⃑⃑⃑ +AN ⃑⃑⃑⃑⃑⃑ =−AB ⃑⃑⃑⃑⃑ +12AD ⃑⃑⃑⃑⃑ , DM ⃑⃑⃑⃑⃑⃑ =DB ⃑⃑⃑⃑⃑⃑ +BM ⃑⃑⃑⃑⃑⃑ =DA ⃑⃑⃑⃑⃑ +AB⃑⃑⃑⃑⃑ +12BC ⃑⃑⃑⃑⃑ =−AD ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ +12(AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ )=−AD ⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ +12AC ⃑⃑⃑⃑⃑ , BN⃑⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑ =(−AB ⃑⃑⃑⃑⃑ +12AD ⃑⃑⃑⃑⃑ )(−AD⃑⃑⃑⃑⃑ +12AB ⃑⃑⃑⃑⃑ +12AC ⃑⃑⃑⃑⃑ )=AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ −12AB ⃑⃑⃑⃑⃑ 2−12AB ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ −12AD ⃑⃑⃑⃑⃑ 2+14AB ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ +14AC ⃑⃑⃑⃑⃑ ⋅AD ⃑⃑⃑⃑⃑ =1×1×12−12×12−12×1×1×12−12×12+14×1×1×12+14×1×1×12=−12,cos〈BN⃑⃑⃑⃑⃑⃑ ,DM ⃑⃑⃑⃑⃑⃑ 〉=BN⃑⃑⃑⃑⃑⃑ ⋅DM ⃑⃑⃑⃑⃑⃑⃑ |BN⃑⃑⃑⃑⃑⃑ |⋅|DM ⃑⃑⃑⃑⃑⃑⃑ |=−12√32×√32=−23,根据异面直线所成角的定义可知直线BN 与直线DM 所成角的余弦值为23, 故选:B5、若圆C 1:x 2+y 2−2ay =0(a >0)与圆C 2:x 2+y 2−4x +3=0相外切,则a 的值为( ) A .12B .23C .1D .32 答案:D分析:确定出两圆的圆心和半径,然后由两圆的位置关系建立方程求解即可.由x 2+y 2−2ay =0(a >0)可得x 2+(y −a )2=a 2,所以圆C 1的圆心为(0,a ),半径为a , 由x 2+y 2−4x +3=0可得(x −2)2+y 2=1,所以圆C 2的圆心为(2,0),半径为1, 因为两圆相外切,所以√4+a 2=a +1,解得a =32, 故选:D6、在直角坐标平面内,与点A(0,3)距离为2,且与点B(4,0)距离为3的直线共有( ) A .1条B .2条C .3条D .4条 答案:C分析:根据直线是否存在斜率,分类讨论,利用点到直线距离公式进行求解即可. 当直线不存在斜率时,设为x =a ,由题意可知:|a −0|=2且|a −4|=3, 没有实数a 使得两个式子同时成立;当直线存在斜率时,设直线方程为:y =kx +b ⇒kx −y +b =0,点A(0,3)到该直线的距离为2,所以有√k 2+(−1)2=2(1),点B(4,0)到该直线的距离为3,所以有√k 2+(−1)2=3(2),由(1)(2)得:b =8k +9或b =9−8k 5,当b =8k +9时,代入(1)中,得15k 2+24k +8=0,该方程的判别式Δ=242−4×15×8=96>0,该方程有两个不相等的实数根, 当b =9−8k 5时,代入(1)中,得9k 2−24k +16=0,该方程的判别式Δ=(−24)2−4×9×16=0,该方程有两个相等的实数根, 所以这样的直线共有三条, 故选:C.小提示:关键点睛:本题的关键是解方程组.7、已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A(72,4),则|PA |+|PM |的最小值是( ) A .5B .92C .4D .32答案:B分析:先根据抛物线的方程求得焦点坐标和准线方程,延长PM 交准线于H 点推断出|PA |=|PH |,进而表示出|PM |,问题转化为求|PF |+|PA |的最小值,由三角形两边长大于第三边得到|PF |+|PA |的最小值,则|PA |+|PM |的最小值可得.依题意可知焦点F (12,0),准线 x =−12,延长PM 交准线于H 点.则|PF |=|PH |,∴|PM |=|PH |−12=|PF |−12∴|PM |+|PA |=|PF |+|PA |−12,∴要使|PM |+|PA |当且仅当|PF |+|PA |最小. 由三角形两边长大于第三边可知,|PF |+|PA |≥|FA |,① 当P 与线段AF 与抛物线的交点P 0重合时取到最小值,.由A(72,4),可得|FA|=√(72−12)2+42=5.则所求为(|PM|+|PA|)min=5−12=92.故选:B.8、已知椭圆C1:x2a12+y2b12=1(a1>b1>0)与双曲线C2:x2a22−y2b22=1(a2>0,b2>0)有公共焦点F1,F2,且两条曲线在第一象限的交点为P.若△PF1F2是以PF1为底边的等腰三角形,曲线C1,C2的离心率分别为e1和e2,则1 e1−1e2=()A.1B.2C.3D.4答案:B分析:设曲线C1,C2的焦距为2c,则可得|PF2|=|F1F2|=2c,然后结合椭圆和双曲线的定义可求出a1,a2,c的关系,变形后可得结果.设曲线C1,C2的焦距为2c.△PF1F2是以PF1为底边的等腰三角形,则|PF2|=|F1F2|=2c.由点P在第一象限,知|PF1|=2a1−|PF2|=2a2+|PF2|,即2a1−2c=2a2+2c,即a1−a2=2c,即1e1−1e2=2.故选:B9、已知直线斜率为k,且−1≤k≤√3,那么倾斜角α的取值范围是()A.[0,π3]∪[π2,3π4)B.[0,π3]∪[3π4,π)C.[0,π6]∪[π2,3π4)D.[0,π6]∪[3π4,π)答案:B分析:根据直线斜率的取值范围,以及斜率和倾斜角的对应关系,求得倾斜角α的取值范围. 解:直线l的斜率为k,且−1≤k≤√3,∴−1≤tanα≤√3,α∈[0,π).∴α∈[0,π3]∪[3π4,π).故选:B.10、已知圆O1:x2+y2=4,圆O2:x2+y2−2mx−2my−4=0(m≠0),则同时与圆O1和圆O2相切的直线有()A.4条B.2条C.1条D.0条答案:B分析:利用已知条件判断圆O1与圆O2的关系,进而可以求解.由O1:x2+y2=4,得圆O1(0,0),半径为r1=2,由O2:x2+y2−2mx−2my−4=0(m≠0),得O2(m,m),半径为r2=12√(−2m)2+(−2m)2−4×(−4)=√2m2+4所以|O1O2|=√(m−0)2+(m−0)2=√2m2>0,|r2−r1|=√2m2+4−2>0,r1+r2=2+√2m2+4,所以|r2−r1|<|O1O2|<r1+r2,所以圆O1与圆O2相交,所以圆O1与圆O2有两条公共的切线.故选:B.填空题11、已知向量a =(3,1),b ⃑ =(1,0),c =a +kb ⃑ .若a ⊥c ,则k =________. 答案:−103.分析:利用向量的坐标运算法则求得向量c ⃗的坐标,利用向量的数量积为零求得k 的值 ∵a ⃗=(3,1),b ⃑⃗=(1,0),∴c ⃗=a ⃗+kb ⃑⃗=(3+k,1), ∵a ⃗⊥c ⃗,∴a ⃗⋅c ⃗=3(3+k )+1×1=0,解得k =−103,所以答案是:−103.小提示:本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量p ⃗=(x 1,y 1),q ⃗=(x 2,y 2)垂直的充分必要条件是其数量积x 1x 2+y 1y 2=0.12、设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,左,右顶点分别为A ,B ,以AB 为直径的圆与双曲线的渐近线在第一象限的交点为P ,若△PAF 2为等腰三角形,则直线PF 2的倾斜角的大小为________. 答案:5π6##150∘分析:由题意求得点P 的坐标,再根据△PAF 2为等腰三角形,得到x P =c−a 2,从而得到a ,b ,c 的关系,再利用斜率公式求解.解:以AB 为直径的圆的方程为x 2+y 2=a 2, 双曲线过第一象限的渐近线方程为y =ba x .由{x 2+y 2=a 2y =ba x,得P (a 2c ,ab c ). 由△PAF 2为等腰三角形,得点P 在线段AF 2的中垂线上,即x P =c−a 2.由a 2c =c−a 2,得c 2−ac −2a 2=0,即e 2−e −2=0,得e =2,所以c =2a .而b =√c 2−a 2=√3a ,则k PB=abca2c−c=−ab=−√33,故直线PE2倾斜角为5π6,所以答案是:5π6.13、已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P(x1,y1),Q(-x1,−y1)在椭圆C上,其中x1>0,y1>0,若|PQ|=2|OF2|,|QF1PF1|≥√33,则椭圆C的离心率的取值范围为_____.答案:(√22,√3−1]分析:设PF1=n,PF2=m,由已知得到mn的范围,再由椭圆的定义得到n,m间的关系,代入、换元,求出e 的范围.设PF1=n,PF2=m,由x1>0,y1>0,知m<n,因为P,Q在椭圆C上,|PQ|=2|OF2|,所以四边形PF1QF2为矩形,QF1=PF2;由|QF1||PF1|≥√33,可得√33≤mn<1,由椭圆的定义可得m+n=2a,n2+m2=4c2①,平方相减可得mn=2(a2-c2)②,由①②得4c 22(a2−c2)=m2+n2mn=mn+nm;令t=mn +nm,令v=mn ∈[√33,1),所以t=v+1v ∈(2,4√33],即2<4c22(a2−c2)≤4√33,所以a2-c2<c2≤2√33(a2-c2),所以1-e2<e2≤2√33(1-e2),所以12<e 2≤4−2√3,解得√22<e ≤√3−1.所以答案是:(√22,√3−1] .14、已知向量n =(2,0,1)为平面α的法向量,点A(−1,2,1)在α内,则点P(1,2,2)到平面α的距离为________________ 答案:√5分析:把点到平面距离问题转化为向量数量积问题求解. 解: PA⃑⃑⃑⃑⃑⃑ =(−2,0,−1),点P 到平面α的距离为|n ⃑⃑⃑⃑ ⋅PA ⃑⃑⃑⃑⃑ ||n⃑⃗|=√5=√5.所以答案是:√5.15、已知直线kx −y +2k =0与直线x +ky −2=0相交于点P ,点A (4,0),O 为坐标原点,则tan∠OAP 的最大值为_____________. 答案:√33##13√3 分析:根据给定条件,求出点P 的轨迹,结合图形利用几何意义求解作答. 直线kx −y +2k =0恒过定点M(−2,0),直线x +ky −2=0恒过定点N(2,0), 显然直线kx −y +2k =0与直线x +ky −2=0垂直,当k ≠0时,PM ⊥PN , 点P 在以MN 为直径的圆x 2+y 2=4(除点M ,N 外)上,当k =0时,点P(2,0), 因此,点P 的轨迹是以原点O 为圆心,2为半径的圆(除点M(−2,0)外),如图,观察图形知,点A 在圆O :x 2+y 2=4(x ≠−2)外,当直线AP 与圆O 相切时,∠OAP 为锐角且最大,tan∠OAP 最大,所以(tan∠OAP)max=√42−22=√33.所以答案是:√33解答题16、已知圆C:x2+y2−4x−2y+m=0与直线l:3x−4y−7=0相交于M,N两点且|MN|=2√3;(1)求m的值;(2)过点P作圆C的切线,切点为Q,再过P作圆C′:(x+2)2+(y+2)2=1的切线,切点为R,若|PQ|=|PR|,求|OP|的最小值(其中O为坐标原点).答案:(1)m=1;(2)35.分析:(1)写出圆C的圆心坐标,半径,利用半径、半弦、弦心距的关系列式求解即得;(2)设点P(x,y),借助切线长定理探求出点P的轨迹即可作答.(1)C:(x−2)2+(y−1)2=5−m>0的圆心C(2,1),半径R=√5−m,圆心到直线距离l的距离d=√32+42=1,则弦MN长|MN|=2√R2−d2=2√5−m−1=2√3,得m=1,所以m的值为1;(2)由(1)知圆C的圆心C(2,1),半径R=2,设P(x,y),由切线的性质得|PQ|=√|PC|2−R2=√(x−2)2+(y−1)2−4,圆C′:(x+2)2+(y+2)2=1的圆心C′(−2,−2),半径r=1,同理:|PR|=√|PC′|2−r2=√(x+2)2+(y+2)2−1,而|PQ|=|PR|,即√(x−2)2+(y−1)2−4=√(x+2)2+(y+2)2−1,化简得到:4x+3y+3=0,又点C(2,1)到直线4x+3y+3=0距离为145>2,点C′(−2,−2)到直线4x+3y+3=0距离为115>1,即直线4x+3y+3=0与两圆都无公共点,点P的轨迹为直线4x+3y+3=0,所以|OP|最小值即为原点到直线4x+3y+3=0距离d=√42+32=35.17、已知定点F1(−4,0)、F2(4,0)和动点M(x,y).(1)再从条件①、条件②这两个条件中选择一个作为已知,求:动点M的轨迹及其方程.条件①:|MF1|+|MF2|=12条件②:|MF1|+|MF2|=8(2)|MF1|+|MF2|=2a(a>0),求:动点M的轨迹及其方程.答案:(1)答案见解析;(2)答案见解析.分析:(1)根据不同的选择,结合椭圆的定义,即可求得动点M的轨迹及其方程;(2)对a的取值范围进行分类讨论,结合不同情况求得对应的轨迹及方程即可.(1)选择条件①:|MF1|+|MF2|=12,因为12>|F1F2|=8,故点M的轨迹是以F1,F2为焦点的椭圆,设其方程为x2a2+y2b2=1(a>b>0),则c=4,a=6,b2=a2−c2=20,故其方程为:x236+y220=1.即选择条件①,点M的轨迹是椭圆,其方程为x 236+y220=1;选择条件②:|MF1|+|MF2|=8,因为8=|F1F2|,故点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4).(2)因为|MF1|+|MF2|=2a(a>0),当0<a<4时,此时动点M不存在,没有轨迹和方程;当a=4时,此时2a=|F1F2|,由(1)可知,此时动点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4);当a>4时,此时2a>|F1F2|,此时点M的轨迹是以F1,F2为焦点的椭圆,其方程为x2a2+y2a2−16=1.综上所述:当0<a<4时,动点M没有轨迹和方程;当a=4时,动点M的轨迹是线段F1F2,其方程为y=0,(−4≤x≤4);当a>4时,动点M的轨迹是以F1,F2为焦点的椭圆,其方程为x2a2+y2a2−16=1.18、已知△ABC的顶点B(5,1),AB边上的高所在的直线方程为x−2y−5=0.(1)求直线AB的方程;(2)在两个条件中任选一个,补充在下面问题中.①角A的平分线所在直线方程为x+2y−13=0②BC边上的中线所在的直线方程为2x−y−5=0______,求直线AC的方程.答案:(1)2x+y−11=0;(2)若选①:直线AC的方程为2x−11y+49=0;若选②:直线AC的方程为6x−5y−9=0.分析:(1)由两直线垂直时,其斜率间的关系求得直线AB的斜率为k,再由直线的点斜式方程可求得答案;(2)若选①:由{2x+y−11=0x+2y−13=0,求得点A(3,5),再求得点B关于x+2y−13=0的对称点B′(x0,y0),由此可求得直线AC的方程;若选②:由{2x+y−11=02x−y−5=0,求得点A(4,3),设点C(x1,y1),由BC的中点在直线2x−y−5=0上,和点C 在直线x−2y−5=0上,求得点C(−1,−3),由此可求得直线AC的方程.(1)解:因为AB边上的高所在的直线方程为x−2y−5=0,所以直线AB的斜率为k=−2,又因为△ABC的顶点B(5,1),所以直线AB的方程为:y−1=−2(x−5),所以直线AB的方程为:2x+y−11=0;(2)解:若选①:角A的平分线所在直线方程为x+2y−13=0,由{2x+y−11=0x+2y−13=0,解得{x=3y=5,所以点A(3,5),设点B 关于x +2y −13=0的对称点B ′(x 0,y 0),则{y 0−1x 0−5×(−12)=−1x 0+52+2×y 0+12−13=0 ,解得{x 0=375y 0=295,所以B ′(375,295),又点B ′(375,295)在直线AC 上,所以k AC =5−2953−375=211, 所以直线AC 的方程为y −5=211(x −3),所以直线AC 的方程为2x −11y +49=0;若选②:BC 边上的中线所在的直线方程为2x −y −5=0,由{2x +y −11=02x −y −5=0,解得{x =4y =3 ,所以点A(4,3), 设点C(x 1,y 1),则BC 的中点在直线2x −y −5=0上,所以2×5+x 12−1+y 12−5=0,即2x 1−y 1−1=0,所以点C 在直线2x −y −1=0上,又点C 在直线x −2y −5=0上,由{x −2y −5=02x −y −1=0解得{x =−1y =−3 ,即C(−1,−3), 所以k AC =−3−3−1−4=65, 所以直线AC 的方程为y −3=65(x −4),所以直线AC 的方程为6x −5y −9=0.19、求适合下列条件的双曲线的标准方程:(1)经过点(√6,0),(3,2);(2)焦点为(0,−5),(0,5),经过点(4√33,2√3); (3)a =b ,经过点(3,−1);(4)经过(3,−4√2)和(94,5)两点.答案:(1)x 26−y 28=1; (2)y 29−x 216=1;(3)x 28−y 28=1; (4)y 216−x 29=1.分析:(1)根据题意,由双曲线经过点(√6,0),分析可得双曲线的焦点为x 轴上,且a =√6,设双曲线的标准方程为:x 26−y 2b 2=1,将点(3,2)代入计算可得b 2的值,将b 2的值代入双曲线的方程,即可得答案;(2)根据题意,分析可得双曲线的焦点在y 轴上,且c =5,由双曲线的定义计算可得a 的值,结合双曲线的几何性质可得b 2的值,将a 2、b 2的值代入双曲线的方程,即可得答案.(3)根据题意,设双曲线的方程为:x 2−y 2=t ,将点(3,−1)代入其中计算可得t 的值,即可得双曲线的方程,变形为标准方程即可得答案;(4)根据题意,设双曲线的方程为mx 2−ny 2=1,将(3,−4√2)和(94,5)两点坐标代入双曲线方程可得{9m −32n =18116m −25n =1 ,解可得:m 、n 的值,将m 、n 的值代入双曲线方程即可得答案.(1)根据题意,双曲线经过点(√6,0),则双曲线的焦点在x 轴上,且a =√6,设双曲线的标准方程为:x 26−y 2b 2=1,双曲线经过(3,2),则有96−4b 2=1,解可得b 2=8,则双曲线的标准方程为:x 26−y 28=1;(2)根据题意,焦点为(0,−5),(0,5),则双曲线的焦点在y 轴上,且c =5,∵双曲线过点(4√33,2√3),故根据双曲线的定义可知: 2a =|√(4√33)2+(2√3+5)2−√(4√33)2+(2√3−5)2|=6,则a =3,则b 2=c 2−a 2=16,则双曲线的标准方程为:y 29−x 216=1;(3)根据题意,双曲线中a =b ,设双曲线的方程为:x 2−y 2=t , 又由双曲线经过点(3,−1),则有t = 32−(−1)2=8, 则双曲线的方程为x 2−y 2=8,则双曲线的标准方程为:x 28−y 28=1; (4)根据题意,设双曲线的方程为mx 2−ny 2=1(mn >0),双曲线经过(3,−4√2)和(94,5)两点,则有{9m −32n =18116m −25n =1 , 解可得:m =−19,n =−116,则双曲线的标准方程为:y 216−x 29=1.。
高中数学点线对称问题(精选.)
对称问题专题【知识要点】1•点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点 坐标公式的应用问题.设尸(xo, yo ),对称中心为A (a, b ),则尸关于A 的对称点为P' (2”一沏,2〃一四). 2•点关于直线成轴对称问题由轴对称定义知,对称轴即为两对称点连线的“垂直平分线” .利用“垂直”“平分”这两个条件建立 方程组,就可求出对顶点的坐标.一般情形如下:设点P (xo,州)关于直线产入+〃的对称点为P'(『,>,'),则有可求出丁、y特殊地,点尸(Xo, yo )关于直线4〃的对称点为P' (2(1—Xo,并);点尸(物 和)关于直线冲。
的 对称点为P' (AO ,劝一和).3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可 选特殊点,也可选任意点实施转化).一般结论如下:(1)曲线/ (x, y ) =0关于已知点A (a, b )的对称曲线的方程是/ (2a 一大2b —y ) =0.(2)曲线/(x, >1) =0关于直线户丘+b 的对称曲线的求法:设曲线/(x, y ) =0上任意一点为尸(xo, yo ), P 点关于直线尸H+A 的对称点为P' (x, >,),则由(2) 知,P 与尸’的坐标满足从中解出出、yo,代入已知曲线/(x, y ) =0,应有/(加 第)=0.利用坐标代换法就可求出曲线/G, y ) =0关于直线."云+〃 的对称曲线方程.4•两点关于点对称、两点关于直线对称的常见结论: 【典型例题】【例11求直线az 2x+y-4=0关于直线/: 3.v+4y —1=0对称的直线b 的方程.剖析:由平面几何知识可知若直线〃、%关于直线/对称,它们具有下列几何性质:(1)若“、〃相交, 则/是〃、〃交角的平分线;(2)若点A 在直线”上,那么A 关于直线/的对称点8一定在直线〃上,这时 AB_L/,并且A3的中点。
高中数学专题---对称问题
高中数学专题--- 对称问题基本方法:对称问题是解析几何中的一个重要问题,主要类型有:1. 点关于点成中心对称问题(即线段中点坐标公式的应用问题)设点()000,P x y ,对称中心为(),A a b ,则点()000,P x y 关于(),A a b 的对称点为()002,2P a x b y '--.2. 点关于直线成轴对称问题由轴对称定义可知,对称轴即为两对称点连线的垂直平分线,利用“垂直”“平分”这两个条件建立方程,就可以求出对称点的坐标,一般情形如下:设点()000,P x y 关于直线y kx b =+的对称点为(),P x y ''',则有0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,可求得(),P x y '''.特殊情形:①点()000,P x y 关于直线x a =对称的点为()002,P a x y '-;②点()000,P x y 关于直线y b =对称的点为()00,2P x b y '-;③若对称轴的斜率为1±,则可把()000,P x y 直接代入对称轴方程求得对称点P '的坐标.一、典型例题1.已知椭圆C :2214x y +=,A 为椭圆左顶点,设椭圆C 上不与A 点重合的两点D ,E 关于原点O 对称,直线AD ,AE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被x 轴截得的弦长是定值.2.已知椭圆22143x y +=与直线y kx m =+相交于不同的两点,M N ,如果存在过点10,2P ⎛⎫- ⎪⎝⎭的直线l ,使得点M N ,关于l 对称,求实数m 的取值范围.二、课堂练习1.已知椭圆22184x y +=,上顶点为,P O 为坐标原点,设线段PO 的中点为M ,经过M 的直线l 与椭圆交于,A B 两点,()3,0C -,若点A 关于x 轴的对称点在直线BC 上,求直线l 方程.2.已知椭圆22:194x y C +=. 点P 为圆22:13M x y +=上任意一点,O 为坐标原点.设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,证明:直线PB 与椭圆C 相切.三、课后作业1.已知椭圆:Γ221106x y+=.ABC∆的顶点都在椭圆Γ上,其中,A B关于原点对称,试问ABC∆能否为正三角形?并说明理由.2.已知椭圆2212yx+=,记椭圆的右顶点为C,点(),D m n(0n≠)在椭圆上,直线CD交y轴于点M,点E与点D关于y轴对称,直线CE交y轴于点N.问:x轴上是否存在点Q,使得OQM ONQ∠=∠(O为坐标原点)?若存在,求点Q坐标;若不存在,说明理由.3.已知椭圆22413yx+=,右顶点为A,设直线l:1x=-上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D. 若APD线AP 的方程.。
高中数学平面几何对称问题(共25张PPT)
直线关于特殊直线的对称
Ax By C 0
x轴
Ax B( y) C 0
A( x) B( y) C 0
y轴
Ay Bx C 0
yx
A( y) B( x) C 0
练习
求直线m:2x+3y-1=0关于点P(1,4)对称的直线 n的方程.
二.轴对称(即关于直线的对称)
(一)点关于直线的对称:
例3.求点A(-7,1)关于直线l:2x-y-5=0的对称点B的坐标.
解(法一) 设B(m,n)由点关于直线对称的定义知: 线段AB⊥l 即;
n 1 2 m (7)
y x
几种特殊的对称(当堂口答):
点P(x,y)关于下列点或线的对称点分别为:
(-x,-y) 关于原点:__________; 关于y轴: __________; (-x,y) (-y,-x) 关于直线y=-x:______; (x,-y) 关于x轴:__________; (y,x) 关于直线y=x:______; 关于直线x=a:_______. (2a-x,y)
(1)|PA|+|PB|最小,并求出其最小值;
(2)||PA|-|PB||最大,并求出其最大值.
例:已知x,y满足x+y=0,求
( x 3) 2 ( y 1) 2 ( x 2) 2 ( y 3) 2 y 的最小值。 N(-2,3)
P O x M(3,-1)
M′(1,-3)
A( x) B( y) C 0 补:关于原点:____________ ;
应用一:解决物理光学方面的问题
高中数学同步教学课件 对称问题
经过直线AB反射回到P点,则光线所经过的路程为
A.2 10
B.6
C.3 3
√D. 26
1234
由题易知直线AB的方程为x+y=3,点P(0,2)关于x轴的对称点为P1 (0,-2),设点P(0,2)关于直线AB的对称点为P2(a,b),如图,
∴a2b+-a 22× +2 b-=13,=-1,
a=1, 解得b=3. ∴P2(1,3),
3.直线关于点对称 方法一:在已知直线上任取两点,求出这两点关于已知点的对称点的坐 标,再由两点式求出直线方程; 方法二:在已知直线上任取一点,求出该点关于已知点的对称点的坐标, 再利用两直线平行,由点斜式得到所求直线方程.
4.直线关于直线对称 求直线l1:ax+by+c=0(a,b不全为0),关于直线l2:dx+ey+f=0(d,e 不全为0)的对称直线l3(其中直线l1与l2不平行) 第一步:联立l1,l2的方程,求出交点P(x0,y0); 第二步:在l1上任找一点(非交点)Q(x1,y1),求出点Q关于直线l2的对称 点Q′(x2,y2); 第三步:利用两点式写出l3的方程.
2.点关于直线对称 点P(x1,y1)关于直线l:Ax+By+C=0(A,B不全为0)对称的点为P′(x2,y2), 连接PP′,交l于点M,则l垂直平分PP′,所以PP′⊥l,且M为PP′ 的中点,
kl·kPP′=-1, 又因为 M 在直线 l 上,故可得A·x1+2 x2+B·y1+2 y2+C=0, 解出(x2,y2)即可.
①
∵BB′的中点a2,b+2 4在直线 l 上,
∴a2-b+2 4-1=0,即 a-b-6=0.
②
由①②得ab= =-5,1,
∴点B′的坐标为(5,-1).
高中数学对称问题
3.已知直线l1:x+my+5=0和直线l2:x+ny+p=0,则l1、l2关于y轴对称的充要条件是
A. = B.p=-5C.m=-n且p=-5D. =- 且p=-5
解析:直线l1关于y轴对称的直线方程为(-x)+my+5=0,即x-my-5=0,与l2比较,
∴m=-n且p=-5.反之亦验证成立.
则 = .解得k=- .代入点斜式得直线b的方程为
y-(-2)=- (x-3),即2x+11y+16=0.
方法二:设直线b上的动点P(x,y),直线a上的点Q(x0,4-2x0),且P、Q两点关于直线l:3x+4y-1=0对称,则有
= ,
= .消去x0,得2x+11y+16=0或2x+y-4=0(舍).
A.2x-y-5=0 B.x+2y-3=0
C.x+2y+3=0D.2x-y-1=0
解析:将x+2y-1=0中的x、y分别代以2-x,-2-y,得(2-x)+2(-2-y)-1=0,即x+2y+3=0.故选C.
答案:C
8.两直线y= x和x=1关于直线l对称,直线l的方程是____________.
ቤተ መጻሕፍቲ ባይዱ解析:l上的点为到两直线y= x与x=1距离相等的点的集合,即 =|x-1|,化简得x+ y-2=0或3x- y-2=0.
解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(-3,5).
据M1及M2两点可得到直线M1M2的方程为x+2y-7=0.
令x=0,得到M1M2与y轴的交点Q(0, ).
点与直线间的对称问题专题+课件-高二上学期数学人教A版(2019)选择性必修第一册
的坐标是( )
A.(-1,-3)
B.(17,-9)
C.(-1,3)
D.(-17,9)
答案:A.
四、 直线关于直线对称
y
1.关于平行直线的对称
B.
例4、试求直线l1:x-y-1=0
0
关于直线 l2:x-y+1=0对称的
直线l 的方程。
解题思路:l1//l2,转化为点关于直线对称
l l2:x-y+1=0
练习2、已知点M(-1 , 3), 点N(2 , 5), 点P在直线
l:2x+y-1=0上运动, 则PM+PN的最小值
为
;
点关于点的对称
点 中心对称问题
与 直
直线关于点的对称
线
间
对
称 问
点关于直线的对称
题 轴对称问题
直线关于直线的对称
点与直线间的对称问题
一、点关于点对称
y
例1、求点A(2,4) 关于点B(3 ,5) 对称点C的坐标。
C
. . . B(3,5)
A(2,4)
0
x
解题要点:中点公式的运用
二、 直线关于点对称
例2、求直线l1: 2x+11y+16=0关于
点P(0,1)对称的直线l2的方程。
.
A(-8,0)
2x+11y-38=0
y
.P(0,1)
0
解题要点:l1// l2,转化为点关于点对称
.A1
x
三、 点关于直线对称
例3、求点A(1,3)关于直线 l :x+2y-3=0的
对称点A1的坐标。
y
. A(1,3)
点关于直线对称
【高中数学】秒杀秘诀--对称问题
对称问题对称问题1点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题设P (x 0,y 0),对称中心为A (a ,b ),则P 关于A 的对称点为P ′(2a -x 0,2b -y 0)2点关于直线成轴对称问题由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标一般情形如下:设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,可求出x ′、y ′特殊地,点P (x 0,y 0)关于直线x =a 的对称点为P ′(2a -x 0,y 0);点P (x 0,y 0)关于直线y =b 的对称点为P ′(x 0,2b -y 0)3曲线关于点、曲线关于直线的中心或轴对称问题:一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化)一般结论如下:(1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0(2)曲线f (x ,y )=0关于直线y =kx +b 的对称曲线的求法:设曲线f (x ,y )=0上任意一点为P (x 0,y 0),P 点关于直线y =kx +b 的对称点为P ′(x ,y ),则由(2)知,P 与P ′的坐标满足0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩从中解出x 0、y 0,代入已知曲线f (x ,y )=0,应有f (x 0,y 0)=0利用坐标代换法就可求出曲线f (x ,y )=0关于直线y =kx +b 的对称曲线方程4两点关于点对称、两点关于直线对称的常见结论:(1)点(x ,y )关于x 轴的对称点为(x ,-y );(2)点(x ,y )关于y 轴的对称点为(-x ,y );(3)点(x ,y )关于原点的对称点为(-x ,-y );(4)点(x ,y )关于直线x -y =0的对称点为(y ,x );(5)点(x ,y )关于直线x +y =0的对称点为(-y ,-x )(6)点(x ,y )关于直线x -y+c =0的对称点为(y -c ,x+c );(7)点(x ,y )关于直线x +y+c =0的对称点为(-c -y ,-c -x );例1:求直线a :2x +y -4=0关于直线l :3x +4y -1=0对称的直线b 的方程.例2:求圆例3:自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆224470x y x y +--+=例4:已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,使△MPQ 的周长最小.例6:圆对称的圆的方程.对称的重要定理/C (或直线)的方1.已知点A (1,3)、B (5,2),在x 轴上找一点P ,使得|PA|+|PB|最小,则最小值为____________,P 点的坐标为____________.2.已知点M (a ,b )与N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线x +y =0对称,则点Q 的坐标为()A.(a ,b )B.(b ,a )C.(-a ,-b )D .(-b ,-a )3.已知直线l 1:x +my +5=0和直线l 2:x +ny +p =0,则l 1、l 2关于y 轴对称的充要条件是A.m 5=n p B.p =-5 C.m =-n 且p =-5D .m 1=-n1且p =-54.点A (4,5)关于直线l 的对称点为B (-2,7),则l 的方程为____________.5.设直线x +4y -5=0的倾斜角为θ,则它关于直线y -3=0对称的直线的倾斜角是____________.6.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为A.(x +1)2+y 2=1B.x 2+y 2=1C.x 2+(y +1)2=1D .x 2+(y -1)2=17.与直线x +2y -1=0关于点(1,-1)对称的直线方程为A.2x -y -5=0B.x +2y -3=0C.x +2y +3=0D .2x -y -1=08.两直线y =33x 和x =1关于直线l 对称,直线l 的方程是____________.9.直线2x -y -4=0上有一点P ,它与两定点A (4,-1)、B (3,4)的距离之差最大,则P 点的坐标是____________.10.已知△ABC 的一个顶点A (-1,-4),∠B 、∠C 的平分线所在直线的方程分别为l 1:y +1=0,l 2:x +y +1=0,求边BC 所在直线的方程.11.求函数y =92+x +4182+-x x 的最小值.12.直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A (-4,2)、B (3,1),求点C 的坐标,并判断△ABC 的形状.13.已知两点A (2,3)、B (4,1),直线l :x +2y -2=0,在直线l 上求一点P .(1)使|PA |+|PB |最小;(2)使|PA |-|PB |最大.1.41(517,0)2.解析:N (a ,-b ),P (-a ,-b ),则Q (b ,a ).答案:B ;3.解析:直线l 1关于y 轴对称的直线方程为(-x )+my +5=0,即x -my -5=0,与l 2比较,∴m =-n 且p =-5.反之亦验证成立.答案:C4.解析:对称轴是以两对称点为端点的线段的中垂线.答案:3x -y +3=05.解析:数形结合.答案:π-θ6.解析:由M (x ,y )关于y =-x 的对称点为(-y ,-x ),即得x 2+(y +1)2=1.答案:C7.解析:将x +2y -1=0中的x 、y 分别代以2-x ,-2-y ,得(2-x )+2(-2-y )-1=0,即x +2y +3=0.故选C.答案:C8.解析:l 上的点为到两直线y =33x 与x =1距离相等的点的集合,即2)3(1|3|+-y x =|x -1|,化简得x +3y -2=0或3x -3y -2=0.答案:x +3y -2=0或3x -3y -2=09.解析:易知A (4,-1)、B (3,4)在直线l :2x -y -4=0的两侧.作A 关于直线l 的对称点A 1(0,1),当A 1、B 、P 共线时距离之差最大.答案:(5,6)10.解:设点A (-1,-4)关于直线y +1=0的对称点为A ′(x 1,y 1),则x 1=-1,y 1=2×(-1)-(-4)=2,即A ′(-1,2).在直线BC 上,再设点A (-1,-4)关于l 2:x +y +1=0的对称点为A ″(x 2,y 2),则有()⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=+-+--=-⋅++030124211114222222y x y x x y 即A ″(3,0)也在直线BC 上,由直线方程的两点式得202--y =131++x ,即x +2y -3=0为边BC 所在直线的方程.11.解:因为y =22)30()0(-+-x +22)50()4(-+-x ,所以函数y 是x 轴上的点P (x ,0)与两定点A (0,3)、B (4,3)距离之和.y 的最小值就是|PA |+|PB |的最小值.由平面几何知识可知,若A 关于x 轴的对称点为A ′(0,-3),则|PA |+|PB |的最小值等于|A ′B |,即22)35()04(++-=45.所以y min =45.12.解:由题意,点A 关于直线y =2x 的对称点A ′在BC 所在直线上,设A ′点坐标为(x 1,y 1),则x 1、y 1满足4211+-x y =-21,即x 1=-2y 1.①221+y =2·241-x ,即2x 1-y 1-10=0.②解①②两式组成的方程组,得⎩⎨⎧-==2411y x ∴BC 所在直线方程为121---y =343--x ,即3x +y -10=0.解方程组⎩⎨⎧==⇒⎩⎨⎧==-+4220103y x x y y x ∴所求C 点坐标为(2,4).由题意|AB |2=50,|AC |2=40,|BC |2=10,∴△ABC 为直角三角形.13.解:(1)可判断A 、B 在直线l 的同侧,设A 点关于l 的对称点A 1的坐标为(x 1,y 1).⎪⎪⎩⎪⎪⎨⎧-=-=⇒⎪⎪⎩⎪⎪⎨⎧-=⎪⎭⎫ ⎝⎛-⋅--=-+⋅-+5952121230223222111111y x x y y x 由两点式求得直线A 1B 的方程为y =117(x -4)+1,直线A 1B 与l 的交点可求得为P (2556,-253).由平面几何知识可知|PA |+|PB |最小.(2)由两点式求得直线AB 的方程为y -1=-(x -4),即x +y -5=0.直线AB 与l 的交点可求得为P (8,-3),它使|PA |-|PB |最大.。
人教B版高中数学选择性必修第一册专题3对称问题及其应用课件
+C=0(C≠-4)上,所以3×4-2+C=0,所以C=-10,所以所求直线l的方程为3x-y-10=0.
方法总结 直线关于点P的对称问题的求解策略 (1)在所求对称直线上任取一点( x, y),根据中点坐标公式求出点( x, y)关于点P的 对称点( x', y'),利用点( x', y')在已知直线上即可求解; (2)在已知直线上任取两点,利用中点坐标公式分别求出它们关于点P对称的两 点坐标,从而得到所求对称直线的方程; (3)利用已知直线与所求对称直线平行,得到所求对称直线的斜率.再在已知直线 上任取一点(x0,y0),根据中点坐标公式求出点(x0,y0)关于点P的对称点(x,y),利用 点(x,y)在所求对称直线上及所求对称直线的斜率求出所求对称直线的方程.
所以直线l2的两点式方程为 y 0 = x 2,即直线l2:x-2y-2=0,所以点M到直线l2的距
1 0 0 2
离为|1 4 2 |= 5.
1 4
类型四 直线关于直线的对称问题 8.如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么 ( A )
A.a=1 ,b=6
3
C.a=3,b=-2
5 2
2
b 2a
2a b
=
9 8
,
当且仅当a=
4 3
,b=
8 3
时等号成立,所以
1 2a
+
2 b
的最小值为
9 8
.故选B.
类型六 圆关于点的对称问题 13.(2024江苏宿迁泗阳县实验高级中学校考)圆x2+y2+4x-1=0关于点(0,0)对称的 圆的标准方程为 ( D ) A.x2+y2-4x-1=0 B.x2+(y-2)2=5 C.x2+y2+8x+15=0 D.(x-2)2+y2=5
高中数学:直线方程中的对称问题
高中数学:直线方程中的对称问题在高中数学必修二的第三章“直线方程”中,可以有一个小专题为直线中的“对称问题”。
这主要有:点关于点对称;点关于直线对称;直线关于点对称;直线关于直线对称。
一、对称问题的求解方法1、点关于点的对称【例1】已知点A(-2,3),求关于点P(1,1)的对称点B。
分析:利用点关于点对称的几何特性,直接应用中点坐标公式求解。
2、直线关于点的对称【例2】求直线3x-y-4=0关于点P(2,-1)对称的直线l的方程。
分析:由已知条件可得出所求直线与已知直线平行,所以可设所求直线方程为3x-y+b=0。
说明:充分利用直线关于点对称的特性:对称直线与已知直线平行且点P到两条直线的距离相等。
几何图形特性的灵活运用,可为解题寻找一些简捷途径。
此题还可在直线3x-y-4=0上取两个特殊点,并分别求其关于点P(2,-1)的对称点,这两个对称点的连线即为所求直线。
3、点关于直线的对称【例3】求点A(2,2)关于直线2x-4y+9=0的对称的点的坐标。
分析:利用点关于直线对称的性质求解。
4、直线关于直线的对称二、关于对称常见的几种题型1、角平分线问题已知的一顶点A的坐标为(x0,y0),∠B、∠C的内角平分线分别为直线A1x+B1y+C1=0与A2x+B2y+C2=0,求边BC所在的直线方程。
根据角平分线的性质,点A分别关于∠B、∠C的内角平分线分别为直线A1x+B1y+C1=0与A2x+B2y+C2=0的对称点P、D均在直线BC上,所以只要分别计算出P、D的坐标,再由两点式方程即可得BC所在直线方程。
例1:已知△ABC的顶点A(-1,-4),内角B、C的平分线所在直线分别为1:y+1=0,2:x+y+1=0 ,求BC边所在的直线方程。
2、入射光线和反射光线问题关于过点A(x0,y0),入射光线遇直线A1x+B1y+C1=0的反射光线经过点B(x1,y1),求反射线所在直线方程的有关问题。
根据光学性质,点A关于直线A1x+B1y+C1=0的对称点C在反射光线所在的直线上.因此,只要求出A点关于直线A1x+B1y+C1=0的对称点C的坐标。
高中数学对称问题
高中数学对称问题一、点关于已知点或已知直线对称点问题1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),x′=2a-x,由中点坐标公式可得:y′=2b-y2、点P(x,y)关于直线L:Ax+By+C=O的对称点为x′=x-(Ax+By+C),P′(x′,y′)则y′=y-(AX+BY+C)事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C解此方程组可得结论。
(- )=-1(B≠0)特别地,点P(x,y)关于1、x轴和y轴的对称点分别为(x,-y)和(-x,y)2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)例1 光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。
解:如图,由公式可求得A关于直线x-2y=0的对称点A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0`C(0, )`直线BC的方程为:5x-6y+25=0二、曲线关于已知点或已知直线的对称曲线问题求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O 上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。
1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=02、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0特别地,曲线F(x,y)=0关于(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y 轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x 轴下方图象翻折上去得到y=|f(x)|的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:B
2.曲线 y2=4x 关于直线 x=2 对称的曲线方程是
A.y2=8-4x
B.y2=4x-8
C.y2=16-4x
D.y2=4x-16
解析:设曲线 y2=4x 关于直线 x=2 对称的曲线为 C,在曲线 C 上任取一点 P(x,y),则 P(x,y)关
于直线 x=2 的对称点为 Q(4-x,y).因为 Q(4-x,y)在曲线 y2=4x 上,
答案:(5,6) 10.已知△ABC 的一个顶点 A(-1,-4),∠B、∠C 的平分线所在直线的方程分别为 l1:y+1=0,l2: x+y+1=0,求边 BC 所在直线的方程. 解:设点 A(-1,-4)关于直线 y+1=0 的对称点为 A′(x1,y1),则 x1=-1,y1=2×(-1)-(- 4)=2,即 A′(-1,2). 在直线 BC 上,再设点 A(-1,-4)关于 l2:x+y+1=0 的对称点为 A″(x2,y2),则有
即 (4 0)2 (5 3)2 =4 5 .
所以 ymin=4 5 .
12.直线 y=2x 是△ABC 中∠C 的平分线所在的直线,若 A、B 坐标分别为 A(-4,2)、B(3,1),求点 C 的坐标,并判断△ABC 的形状.
解:由题意,点 A 关于直线 y=2x 的对称点 A′在 BC 所在直线上,设 A′点坐标为(x1,y1),则 x1、y1 满足
y y0 ·k=-1, x x0
可求出 x′、y′.
y y0 =k· x x0 +b,
2
2
特殊地,点 P(x0,y0)关于直线 x=a 的对称点为 P′(2a-x0,y0);点 P(x0,y0)关于直线 y=关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可
word.
y M2
Q
M l
P M1
O
x
解:由点 M(3,5)及直线 l,可求得点 M 关于 l 的对称点 M1(5,1).同样容易求得点 M 关于 y 轴
的对称点 M2(-3,5).
据 M1 及 M2 两点可得到直线 M1M2 的方程为 x+2y-7=0.
令 x=0,得到 M1M2 与 y 轴的交点 Q(0, 7 ). 2
知,P 与 P′的坐标满足
y y0 ·k=-1,
x x0
从中解出 x0、y0,
y0 y =k· x0 x +b,
2
2
代入已知曲线 f(x,y)=0,应有 f(x0,y0)=0.利用坐标代换法就可求出曲线 f(x,y)=0 关于直线 y=kx+b
的对称曲线方程.
4.两点关于点对称、两点关于直线对称的常见结论:
x0 2 3
55
2 ( 8) 3 4
5
5
即 2x+11y+16=0.
方法二:设直线 b 上的动点 P(x,y)关于 l:3x+4y-1=0 的对称点 Q(x0,y0),则有
3× x x0 +4× y y0 -1=0,
2
2
y y0
4 =.
x x0 3
解得 x0= 7x 24 y 6 ,y0= 24x 7 y 8 .
何性质,直接由轨迹求方程,在使用这种方法时,要注意区分动点坐标及参数,本题综合性较强,只有对
坐标法有较深刻的理解,同时有较强的数形结合能力才能较好地完成此题.
【例 2】 光线从点 A(-3,4)发出,经过 x 轴反射,再经过 y 轴反射,光线经过点
B(-
2,6),求射入 y 轴后的反射线的方程.
剖析:由物理中光学知识知,入射线和反射线关于法线对称.
【例 3】 已知点 M(3,5),在直线 l:x-2y+2=0 和 y 轴上各找一点 P 和 Q,使△MPQ 的周长最小.
剖析:如下图,作点 M 关于直线 l 的对称点 M1,再作点 M 关于 y 轴的对称点 M2,连结 MM1、MM2, 连线 MM1、MM2 与 l 及 y 轴交于 P 与 Q 两点,由轴对称及平面几何知识,可知这样得到的△MPQ 的周长 最小.
解方程组
x+2y-7=0, x-2y+2=0,
得交点
P(
5 2
,
9 4
).
故点 P( 5 , 9 )、Q(0, 7 )即为所求.
24
2
评述:恰当地利用平面几何的知识对解题能起到事半功倍的效果.
深化拓展
恰当地利用平面几何的知识解题. 不妨再试试这个小题:已知点 A(1,3)、B(5,2),在 x 轴上找一点 P,使得|PA|+|PB|最小,则最小 值为____________,P 点的坐标为____________.
答案:C
7.与直线 x+2y-1=0 关于点(1,-1)对称的直线方程为
A.2x-y-5=0
B.x+2y-3=0
C.x+2y+3=0
D.2x-y-1=0
解析:将 x+2y-1=0 中的 x、y 分别代以 2-x,-2-y,得(2-x)+2(-2-y)-1=0,即 x+2y+3=0.
故选 C.
答案:C
9.直线 2x-y-4=0 上有一点 P,它与两定点 A(4,-1)、B(3,4)的距离之差最大,则 P 点的坐标 是____________.
解析:易知 A(4,-1)、B(3,4)在直线 l:2x-y-4=0 的两侧.作 A 关于直线 l 的对称点 A1(0,1), 当 A1、B、P 共线时距离之差最大.
答案: 41 ( 17 ,0) 5
【巩固练习】
1.已知点 M(a,b)与 N 关于 x 轴对称,点 P 与点 N 关于 y 轴对称,点 Q 与点 P 关于直线 x+y=0 对
称,则点 Q 的坐标为
A.(a,b)
B.(b,a)C.(-a,-b)
D.(-b,-a)
解析:N(a,-b),P(-a,-b),则 Q(b,a).
所以 y2=4(4-x),即 y2=16-4x.
答案:C
3.已知直线 l1:x+my+5=0 和直线 l2:x+ny+p=0,则 l1、l2 关于 y 轴对称的充要条件是
A. 5 = p mn
B.p=-5 C.m=-n 且 p=-5
D. 1 =- 1 且 p=-5 mn
解析:直线 l1 关于 y 轴对称的直线方程为(-x)+my+5=0,即 x-my-5=0,与 l2 比较, ∴m=-n 且 p=-5.反之亦验证成立.
选特殊点,也可选任意点实施转化).一般结论如下:
(1)曲线 f(x,y)=0 关于已知点 A(a,b)的对称曲线的方程是 f(2a-x,2b-y)=0.
(2)曲线 f(x,y)=0 关于直线 y=kx+b 的对称曲线的求法:
设曲线 f(x,y)=0 上任意一点为 P(x0,y0),P 点关于直线 y=kx+b 的对称点为 P′(x,y),则由(2)
答案:C
4.点 A(4,5)关于直线 l 的对称点为 B(-2,7),则 l 的方程为____________.
解析:对称轴是以两对称点为端点的线段的中垂线.
答案:3x-y+3=0
5.设直线 x+4y-5=0 的倾斜角为θ,则它关于直线 y-3=0 对称的直线的倾斜角是____________.
解析:数形结合.
8.两直线 y= 3 x 和 x=1 关于直线 l 对称,直线 l 的方程是____________. 3
解析:l 上的点为到两直线 y= 3 x 与 x=1 距离相等的点的集合,即 | x 3y | =|x-1|,化简得 x+ 3 y
3
1 ( 3)2
-2=0 或 3x- 3 y-2=0.
答案:x+ 3 y-2=0 或 3x- 3 y-2=0
25
25
Q(x0,y0)在直线 a:2x+y-4=0 上,
则 2× 7x 24 y 6 + 24x 7 y 8 -4=0,
25
25
化简得 2x+11y+16=0 是所求直线 b 的方程.
方法三:设直线 b 上的动点 P(x,y),直线 a 上的点 Q(x0,4-2x0),且 P、Q 两点关于直线 l:3x+4y -1=0 对称,则有
答案:π-θ
word.
6.已知圆 C 与圆(x-1)2+y2=1 关于直线 y=-x 对称,则圆 C 的方程为
A.(x+1)2+y2=1
B.x2+y2=1
C.x2+(y+1)2=1
D.x2+(y-1)2=1
解析:由 M(x,y)关于 y=-x 的对称点为(-y,-x),
即得 x2+(y+1)2=1.
| 3x 4y 1| = | 3x0 4(4 2x0 ) 1| ,
5
5
y (4 2x0 ) = 4 .
x x0
3
消去 x0,得 2x+11y+16=0 或 2x+y-4=0(舍). 评述:本题体现了求直线方程的两种不同的途径,方法一与,除了点 E 外,分别找出确定直线位置的
另一个条件:斜率或另一个点,然后用点斜式或两点式求出方程,方法二与方法三是利用直线上动点的几
对称问题专题
【知识要点】
1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点 坐标公式的应用问题.
设 P(x0,y0),对称中心为 A(a,b),则 P 关于 A 的对称点为 P′(2a-x0,2b-y0). 2.点关于直线成轴对称问题 由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立 方程组,就可求出对顶点的坐标.一般情形如下: 设点 P(x0,y0)关于直线 y=kx+b 的对称点为 P′(x′,y′),则有