结构力学自由度计算

合集下载

《工程力学》(二)辅导资料七

《工程力学》(二)辅导资料七

工程力学(二)辅导资料七主题:第三章结构力学知识回顾(第1~2节)学习时间:2012年11月12日-11月18日内容:本周我们学习平面体系组成分析,静定梁、静定平面刚架的内力计算及内力图绘制,三铰拱的内力分析及合理轴线的相关内容。

希望通过本周的学习,使同学们加深对相关知识的认识和理解。

基本要求与重点:1.理解自由度、几何可变体系与几何不变体系、瞬变体系、瞬铰的概念;2.了解计算自由度的计算方法;3.掌握几何不变体系的基本组成规律,并能应用这些规律分析平面体系的几何构造;4.理解静定梁的分析方法和受力特点;5.掌握各种荷载作用下梁的内力图画法,掌握叠加法画弯矩图;6.掌握静定刚架(简支、悬臂、三铰刚架)的内力计算和内力图的画法;7.了解拱式结构的分类及各自的特点,掌握三铰拱在竖向荷载作用下的内力计算;8.掌握静定平面桁架结构的受力特点和结构特点;9.熟练掌握结点法、截面法和联合法求解桁架结构的内力。

一、平面几何体系组成分析(一)概述1.几何不变体系与几何可变体系几何不变体系——在不考虑材料应变的条件下,体系的位置和形状是不能改变的;几何可变体系——在不考虑材料应变的条件下,体系的位置和形状是可以改变的。

2.自由度平面内一点有两种独立运动方式,因此一点在平面内有两个自由度。

一个刚片在平面内有三种独立的运动方式,因此一个刚片在平面内有三个自由度。

一般说来,如果一个体系有n个独立运动的方程,则这个体系有n个自由度。

换句话说,一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的数目。

(二)计算自由度计算自由度可采用以下几种算法:①把体系看作由许多刚片受铰结、刚结和链杆的约束而组成的。

以m表示体系中刚片的个数,则刚片的自由度个数总和为3m。

计算约束总数时,体系中如有复约束,则应事先把它折合成单约束;刚片内部如有多余约束,也应把它们计算在内。

以g代表单刚结个数,以h代表单铰结个数,以b代表单链杆根数,则约束总数为32++。

结构力学(几何组成分析)详解

结构力学(几何组成分析)详解

单铰-2个约束
刚结点-3个约束
四、多余约束 分清必要约束和非必要约束。
五、瞬变体系及常变体系
C
A
B
A C’
B
六、瞬铰 O . . O’
0 0' P
M 0 0
N1
N2
N3 Pr 0
N3
N3

Pr



A
B
C D
§2-2 几何不变体系的组成规律
讨论没有多余约束的,几何不变体系的组成规律。
j=8
b=12+4
W=2×8-12-4=0
单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。
连接 n个铰结点的复链杆相当于(2n-3)个单链杆。
j 7 b 3 3 5 3 14
W 2 7 14 0
三、混合体系的自由度
W (3m 2 j) (2h b)
(2,3)
1
2
3
5 4
6
(1,2)
1
2
3
(2,3)4
5 6
(1,2)
1
2
3
5 4
6
(2,3)
1
2
3 (1,2)
(2,3) 5
4
6
1
2
3 (1,3)
5 4 (1,2)
6
.
(2,3)
几何瞬变体系
补3 :
.O1

.O2
ⅡⅡ

ADCF和BECG这两部分都是几何不变的,作为刚 片Ⅰ、Ⅱ,地基为刚片Ⅲ。而联结三刚片的O1、 O2、 C不共线,故为几何不变体系,且无多余联系。 返 回

结构力学 2几何组成分析

结构力学 2几何组成分析

II
解: 三刚片三铰相连,三铰不共线,所以该体系 三刚片三铰相连,三铰不共线, 为无多余约束的几何不变体系. 为无多余约束的几何不变体系.
三刚片虚铰在无穷远处的讨论
一个虚铰在无穷远
一个虚铰在无穷远: 一个虚铰在无穷远:若组成此虚铰的二杆与另两铰的连 线不平行则几何不变;否则几何可变. 线不平行则几何不变;否则几何可变
例1: 对图示体系作几何组成分析
I II
III
解: 三刚片三铰相连,三铰不共线,所以该体 三刚片三铰相连,三铰不共线, 系为无多余约束的几何不变体系. 系为无多余约束的几何不变体系.
例2: 对图示体系作几何组成分析Байду номын сангаас
I
II
III
主从结构, 主从结构,顺序安装
例3: 对图示体系作几何组成分析
I III
FAy 如何求支 座反力? 座反力 静定结构
FB 无多余 联系几何 不变。 不变。
例1:如何通过减约束变成静定? 1:如何通过减约束变成静定 如何通过减约束变成静定?


还有其他可能吗? 还有其他可能吗?
结论与讨论
结构的组装顺序和受力分析次序密切相关。 结构的组装顺序和受力分析次序密切相关。 正确区分静定、超静定,正确判定超静定结 构的多余约束数十分重要。 超静定结构可通过合理地减少多余约束使其 变成静定结构。 变成静定结构。 分析一个体系可变性时,应注意刚体形状可 任意改换。按照找大刚体(或刚片)、减二元 任意改换。按照找大刚体(或刚片)、减二元 体、去支座分析内部可变性等,使体系得到最 大限度简化后,再应用三角形规则分析。 大限度简化后,再应用三角形规则分析。
彼此等长 →常变
彼此不等长 →瞬变

结构力学自由度及几何分析讲解

结构力学自由度及几何分析讲解
一个单铰,可减少体系两个自由度相当于两个约束。
一个联结n个刚片的复铰,相当于n-1个单铰,相当于 2(n-1)个约束!
补充:体系的自由度计算
1.定义 W=各部件的自由度总和-全部约束数 2. W=3m- 2n - b [例1] m——刚片数(不计基础); n——单铰数(一个单铰、定向支座相当于两个约
几何瞬变体系
实例分析:
A
B
C
D
E
F
例1
1
2
3
D
E
C
A
B
例2
4
例3
5 6
A
例4
BC
D
E
F
F
G
H
A A
C
B
CD
B
D
E E
例5
实例分析 1
W=3×8-2×10-4=0
可能为几何不变体系。
利用二元体,依次去掉二元体C,B,A,D,E,F, 剩下稳定的地基,因此原体系为几何不变 体系。
不可主观臆测,认为平行四边形及为几何
两刚片 三
六个 三个
三铰(单或虚)不共线 链杆不过铰
三链杆不平行也不交于一点
四 一点一刚片 两个
两链杆不共线
2.3.4瞬变体系
1瞬变的类型 1)三刚片规则:三个铰在同一条直线上 2)二刚片规则:链杆通过铰; 三根链杆相交; 三根梁杆平行: 三根链杆平行且相等(常变)。
如约束不满足限制条件,将出现下列几种形式的瞬变体系 三铰共线瞬变体系
可变。
A
B
C
D
E
F
分析实例 2
F
D
E
C
A
B

结构力学答案 李廉锟

结构力学答案 李廉锟

第二章 作业参考答案习题2-3(b )(a )FAK解:先计算计算自由度:3(2)321(2303)0W m h r =−+=×−×+= 或者2()212(213)0W j b r =−+=×−+=这表明体系具有几何不变所需最少的联系数目。

此体系的支座链杆只有三根,且不完全平行也不交于一点,若体系为一刚片,则他与地基是按两刚片规则组成的,因此只需分析体系本身是不是一个几何不变的刚片即可。

去掉M 和C 两个二元体。

在b 图中,KFL 刚片、ABF 刚片和GEJ 刚片通过不共线的三个铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)两两连接,由三刚片规则可知,体系为几何不变体系,且无多余联系。

习题2-5解:先计算计算自由度:3(2)34(244)W m h r =−+=×−×+=0这表明体系具有几何不变所需最少的联系数目。

大地作为刚片Ⅰ,ACE 和BDF 分别作为刚片Ⅱ和Ⅲ,此三刚片用不共线的三个铰(Ⅰ,Ⅱ)(或者A )、(Ⅱ,Ⅲ)和(Ⅰ,Ⅲ)(或者B )两两连接,如上图,由三刚片规则可知,体系为几何不变体系,且无多余联系。

KNMFJA解:先计算计算自由度3(2)328(2200)4W m h r =−+=×−×+=>3 或者2()216(280)43W j b r =−+=×−+=>这表明体系具有几何可变的(常变)。

注:如果分不清是常变还是瞬变,可以直接写可变也行。

习题2-9解:先计算计算自由度:3(2)311(2153)W m h r =−+=×−×+=0 或者2()27(113)0W j b r =−+=×−+=这表明体系具有几何不变所需最少的联系数目。

此体系的支座链杆只有三根,且不完全平行也不交于一点,若体系为一刚片,则他与地基是按两刚片规则组成的,因此只需分析体系本身是不是一个几何不变的刚片即可。

02结构力学1-几何组成分析

02结构力学1-几何组成分析

§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例3:计算图示体系的计算自由度 2 1 解法一
9根杆,9个刚片
有几个单铰?
3 3
3根单链杆
2 1
W=3 ×9-(2×12+3)=0
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 铰结链杆体系:完全由两端 铰结的杆件所组成的体系
y 两个刚片一共6个自由 度 加两个单链杆之后:整 个体系有4个自由度 减少2个自由度
x
1单铰=2个单链杆
y
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 实铰 x
两个单链杆
y
y
虚铰 x
x
§2-1 基本概念
三. 约束(联系)
既不平行又不相交于一点 的三个单链杆=一个固定支 座
三个单链杆=一个固定支座?
§2-2 静定结构的组成规则
三边在两边之和大于第三边时,能唯一地组 成一个三角形——基本出发点。
二刚片规则: 二刚片规则: 两个刚片用三根 两个刚片用一 不全平行也不交 个铰和一根不通 于同一点的链杆 过此铰的链杆相 相联,组成无多 联,组成无多余 余联系的几何不 联系的几何不变 变体系。
体系。
§2-2 静定结构的组成规则
x
1单铰=2个约束
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置 y
复铰
三个刚片一共9个自由 度 加铰之后:整个体系有 5个自由度 减少4个自由度 x
复铰 等于多少个 单铰?
1连接N个刚片的复铰 =N-1个单铰
§2-1 基本概念
三. 约束(联系) 约束:减少自由度的装置

结构力学

结构力学

二、几何组成分析的目的
(1)判别体系是否几何不变; (2)按什么规律组成一个几何不变体系; (3)区分结构是静定的还是超静定的。
返回
§2-2 刚片、约束、体系自由度 和计算自由度
一、体系自由度的定义:
体系自由度:体系的独立运动方式数,或确定体系位置所需的独立坐标数。 例如:平面内一个点有2个自由度,一个刚片有3个自由度。
在某一瞬间可以产生微小运动的体系,称为瞬变体系,它是可变体系 的一种特殊情况。
FN
瞬变体系在工程中不能采用。
FP 2 Sin
如果一个几何可变体系可以发生大位移,则称为常变体系。
法则Ⅱ: 两刚片法则,两刚片用不完全 相交于一点且不完全平行的三 根连杆连接而成的体系,是几 何不变而无多余约束的。
两刚片以一铰及不通过该铰的一个链杆相联,构成几何不变体系。
法则Ⅲ:三刚片六连杆法则,三刚片之间用六连杆彼 此两两相连接,六连杆所组成的三个铰不在 同一条直线上,则所组成的体系是几何不变 而无多余约束的。
讨论
虚铰在无穷远的情形
二元体的概念
二元体的定义:从任意基础上用不共线的两根连杆形成一个 新结点的装置。
2.结论:给定体系为几何不变无多余约束体系。
返回
例六
试分析图示体系是否为几何不变系
解:1.几何组成分析 去除二元体 刚片Ⅰ、Ⅱ、Ⅲ符合三刚片法则。
2.结论:给定体系为几何不变无多余约束体系
返回
例七 试分析图示体系是否为几何不变体系
解:1.几何组成分析 ABEF与基础之间符合两刚片法则,组成新刚片Ⅲ 在刚片Ⅲ上增加一个二元体形成新节点G,由二元体的性质知 体系仍为几何不变,看作刚片Ⅳ CDHI看作刚片Ⅴ,刚片Ⅳ、Ⅴ之间三根连杆交于点D。 2.结论:该体系为几何瞬变体系。

结构力学复习指导

结构力学复习指导
上一张 下一张 退 出
第2章 结构的几何构造分析
计算自由度计算公式
W=各部件的自由度总和-全部约束总数
W 3m (2n r) (适用于任何体系)
W 2J (b r) (只适用于铰结体系)
W>0(几何可变)
W=0(无多余约束) 是几何不变的必要条件
上一张 下一张 退 出
W<0(有多余约束)
上一张 下一张 退 出
二、二刚片规则
规则: 二个刚片用一个铰和 一根不通过此铰的链杆相连, 组成的体系是几何不变的, 且无多余约束。
二个刚片用不完全相 交,也不完全平行的三根链 杆相连,组成的体系是几何 不变的,且无多余约束。
应用条件:
上一张 下一张 退 出
上一张 下一张 退 出
上一张 下一张 退 出
三、二元体规则
二元体定义:由两根不在 同一直线上的链杆连接一 个新结点的构造,称为二
元体。
规则:在一个体系上增加
或拿掉二元体,不会改变
原体系的几何构造性质。
上一张 下一张 退 出
二元体形式
上一张 下一张 退 出
二 元体的运用
上一张 下一张 退 出
几何组成分析举例
几何组成分析依据:前述三个规则(分析时可将基础 <大地>以及体系中的一根梁一根链杆或某些几何不 变部分视为一刚片) 步骤: (1)如果给定的体系可以看成是两个或三个刚片时则 可直接利用规则一、二加以判断。 (2)如果给定体系不能归结为两个或三个刚片时则先 把其中能直接观察出的某些几何不部分当作刚片, 或撤二元体使体系的组成简化,这样不会影响原体 系的几何构造性质,然后再根据规则做出判别。
平面几何不变体系的组成规律
一、三刚片规则

结构力学专题十三(多自由度体系的动力计算)

结构力学专题十三(多自由度体系的动力计算)

FP1
m1
l
EI
l
FP 2
m2
l
二、任意荷载作用*
运动方程: M y(t) Ky(t) FP (t) (a)
1、主振型矩阵
1 2 n
2、广义质量、广义刚度
} M * T M 对角阵
K* T K
3、正则坐标
y(t) (t)
(b)
M y(t) Ky(t) FP(t) (a)
4、振型迭加法分析强迫振动
例1:求图示结构的动位移幅值和动内力幅值。
k1 k,k2 2k,
m1
m1 m,m2 2m;
P0 sin t
EI1
k1 m2
h
已知:
2
k m
EI1
k2
h
A
P0 k
1 0
1
1
I
F
0P0
P0
P0
P0 k
动位移幅值图
动荷载图(虚拟)
例2:求图示结构的动位移幅值和动内力幅值。
已知:
i
(t
)
i
(0)
cos
it
i (0) i
sin
it
(i 1, 2)
l
0E.I041
P0 L3 EI
sinP0 stin
m
t
EI
从以上例题的计算中可看出,一般情况下 1l 〉2 〉l〉n
故在振型迭加法中,一般是前几阶振型起主要作用。
思考:用振型叠加法求例1所示结构的位移幅值。
2
k m
2
1 3
k m
2 5 k 3m
2
k m
P0 sin t
P0 sin t

02结构力学1-几何组成分析

02结构力学1-几何组成分析

练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
§2-1 基本概念
五. 多余约束 必要约束
必要约束:除去约束后,体系的自由度将增加
,这类约束称为必要约束
多余约束:除去约束后,体系的自由度并不改
变,这类约束称为多余约束
W< 0
体系几何不变 无多余约束几何不变
W= 0
W< 0
有多余约束几何不变
§2-1 基本概念
六. 静定结构 超静定结构 静定结构:仅有静 无多余约束的几何 力平衡方程可求出 不变体系是静定结 所有内力和约束力 构 的结构 无多余约束几何不变体系 计算自由度W=0 刚片数×3=约束数 每个刚片能列3个独立平衡方程 独立平衡方程数=刚片数×3 =约束数 仅由平衡方程就可以求解所有内力
W=2j-b
j--结点数 b--链杆数,含 支座链杆
§2-1 基本概念
四. 计算自由度 例3:计算图示体系的计算自由度 解法二
6个铰结点 12根单链杆 W=2 ×6-12=0
§2-1 基本概念 讨 四. 计算自由度

W=2 ×6-12=0
W=2 ×6-11=1
W=2 ×6-10=2 W>0时 缺少联系 几何可变
§2-1 基本概念 W = 3m-(3g+2h+b) 四. 计算自由度
例1:计算图示体系的计算自由度 解法一 刚片:m=8 单刚结点:g=1; 单铰:h=10; 3 单链杆:b=1 W=3m-3g-2h-b =24-3-20-1=0 1 3 2

结构力学计算自由度

结构力学计算自由度

结构力学计算自由度全文共四篇示例,供读者参考第一篇示例:结构力学计算自由度,作为结构分析领域的一个重要概念,是指结构系统内部各种相对独立的变形微元的数量。

在结构力学计算中,自由度的数量是影响计算精度和准确性的关键因素之一。

对于一个平面结构或者一个简单的杆件结构来说,自由度的计算可能相对简单,但是对于复杂的三维结构来说,自由度的计算就变得十分复杂。

本文将围绕结构力学计算自由度展开讨论,探讨其在结构分析中的重要性和应用。

自由度的概念是由结构的可能的位移引起的。

在结构分析中,对结构进行受力分析时,通常会对结构进行建模,将结构简化为一些简单的物理单元,如梁、柱、板等,然后通过有限元分析等方法进行数值计算。

在这个过程中,每个物理单元会有一定数量的自由度,例如一个梁单元可能有两个自由度,即横向位移和弯曲位移,而一个板单元可能有更多的自由度,如横向位移、纵向位移和剪切位移等。

在实际的结构分析中,结构的自由度数量可能非常庞大。

对于一个复杂的三维结构来说,可能存在数千甚至数百万个自由度。

在进行结构分析时,需要考虑这些自由度的数量,以确保计算的准确性和稳定性。

通常情况下,自由度的数量越大,计算的精度也会随之提高,但同时也会增加计算的复杂度和计算时间。

为了降低计算的复杂度和提高计算效率,常常需要使用一些优化方法来减少结构的自由度数量。

在进行结构分析时,可以采用一些减小自由度的技术,如将某些约束条件作用于结构上,以减少自由度数量。

还可以利用一些专门设计的优化算法,如模态剖分法、减缩法等,来对结构进行优化和简化,从而减小自由度数量。

结构力学计算自由度是结构分析中一个至关重要的概念,其数量直接影响着计算的精度和效率。

在进行结构力学计算时,需要综合考虑结构的实际情况,合理选择自由度数量,并采取相应的优化方法,以确保计算的准确性和稳定性。

通过不断的研究和实践,我们可以更好地理解和应用结构力学计算自由度,提高结构分析的水平和质量。

结构力学几何体系判断方法

结构力学几何体系判断方法

11
2
AC+二原体FD为钢片1;
BC+二原体GE为钢片2;
钢片1、2加链杆DE,梁钢片原

加上三个铰支座,为简支梁结

几何不变体系
习题
1
2
自由度计算:
7*3—2*5—2*2*2-3=0 钢片1和钢片2+链杆 ;两钢片原则,整体 成为一个大钢片
习题
自由度: 8*3-2*3-2*2*2-2*3-4=0 去除二原体AFB,CDB,ABC,AEC
多余约束:增加后,体系自由度并不会减少 必要约束:拆除体系后就不能保持几何不便体系
图一 多余约束
的几何不变体 系
图二 不含多余约 束的几何不变体系
图三 不含多余
约束的几何不变 体系
图二中,整体结构为一个钢片,自由度为3,三个链杆约束为3 整体自由度:3-3=0
自由度和约束
单铰与复铰
连接两个钢片的铰成为单铰 连接两个以上钢片的铰成为复铰
1号、2号处为二原体,去除后, 3号处为二原体,4号为二原体
(5号处仍为钢片) 剩余框架可按三钢片原则, 或两钢片,或用自由度计算
1号处二原体, 2号处为二原体 剩余地基
习题
自由度计算: 15*3—2*2—2*4—2*3*3—2*2*3—
3=0
复铰处自由度计算: 连接n个钢片的复铰, 相当于 n—1个单铰
由三钢片原则,此结构为不变体系
三钢片原则
三钢片规则:
三个钢片用不在同一直线上的三个单铰两两相连,组成的体系是几何 不变体系,且无多余约束 注意点:
三个铰不再同一直线上 三个钢片两两相连 铰可以是实铰,可以是虚铰
AC为钢片1;BC为钢片2; 大地加上铰支座可看成钢片3; 三钢片三个铰点两两连接,几何不变体系

结构力学 体系的计算自由度

结构力学 体系的计算自由度
O13 行吗?
瞬变体系
它可 变吗?
2


个 单
3
铰?
1
讨论
2
3 1
体系W
等于多少? 可变吗?
W=0,体系 是否一定
几何不变呢?
W=3 ×9-(2×12+3)=0
除去约束后,体系的自由度将增 加,这类约束称为必要约束。
因为除去图中任 意一根杆,体系 都将有一个自由 度,所以图中所 有的杆都是必要 的约束。
除去约束后,体系的自由度并不 改变,这类约束称为多余约束。
在m=2的情况下,刚片间没有铰结点,h=0
W=3×2-(3×3+7)=-10
解法一: 所有结点都是铰结点,j=16
包括支座在内共有连杆31根
W=2×16-31=1
解法二: 图示三角形视为刚片,m=8 刚片间单铰h=8,刚结点没有,g=0 包括支座在内共有连杆7根
W=3×8-(2×8+7)=1
例1:计算图示体系的自由度
瞬 变 体 系
常变体系
小结
几何不变体系 可作为结构
体系
几何可变体系 不可作结构
无多余联系
静定结构
有多余联系
超静定结构
常变
瞬变
分析示例 加、减二元体 无多几何不变
瞬变体系 去支座后再分析
加、减 二元体
无多几何不变
找虚铰 无多几何不变
找 刚Ⅰ 片 、 O23 找 虚 铰
无多几何不变 O12
Ⅱ Ⅲ
在m=11的情况下,刚片间没有铰结点,h=0
W=3×11-(3×12+7) =-10

解法二:
将ABCDEGHI、FGHIJ看
作刚片,m=2
A

《结构力学》第二章 平面体系的机动分析

《结构力学》第二章 平面体系的机动分析
常变体系
§2-5 机动分析示例
加、减二元体
无多几何不变
瞬变体系 去支座后再分析
加、减 二元体
无多几何不变
找找虚虚铰铰 无无多多几几何何不不变变
§2-5 几何构造与静定性的关系
F FAx
FAy
如何求支 座反力?
静定结构
FB
无多余 联系几何 不变。
F FAx
FAy
FC
FB
能否求全 部反力?
超静定结构
有多余 联系几何 不变。
小结
几何不变体系 可作为结构
体系
几何可变体系 不可作结构
无多余联系
静定结构
有多余联系
超静定结构
常变
瞬变
s=3
3.体系的计算自由度:
计算自由度等于刚片总自由度数减总约束数
W = 3m-(3g+2h+b)
m---刚片数(不包括地基) g---单刚结点数 h---单铰数 b---单链杆数(含支杆)
铰结链杆体系---完全由两端铰结的杆 件所组成的体系
铰结链杆体系 的计算自由度:
W=2j-b
j--结点数 b--链杆数,含
在一个体系上增加 或拆除二元体,不 改变原体系的几何 构造性质。
加二元体组成结构
如何减二元体?
二刚片规则:
两个刚片用一个铰 和一根不通过此铰 的链杆相联,组成 无多余联系的几何不变 体系。
二刚片规则:
两个刚片用三根 不全平行也不交 于同一点的链杆 相联,组成无多 余联系的几何不 变体系。在其交点处的一个单铰,这种铰称为 虚铰(瞬铰)。
三边在两边之和大于第三边时,能唯一地组成 一个三角形——基本出发点.
三刚片规则:
三个刚片用不在同 一直线上的三 个单 铰两两相连,组成 无多余联系的几何 不变体系。

结构力学第二章

结构力学第二章
Ⅱ Ⅱ
Ⅰ (a) 几何常变体系 [Ⅰ, Ⅱ] Ⅱ
Ⅰ (b) 几何常变体系

2 1 3
Ⅰ (c) 几何瞬变体系
Ⅰ (d) 几何瞬变体系
图2.26 不满足二刚片规则表述二的几何可变体系
42
3)不满足三刚片规则的约束条件
如果三铰共线,且全是有限远铰,则体系几何瞬变,如
图2.27所示。
Ⅱ Ⅰ

Ⅱ Ⅰ

Ⅱ Ⅰ
(a) W<0且几何不变
(b) W<0且几何可变
W<0,表明体系具备多余的约束装置,但若约束布置不合理,有可能为几何可变
27
4. 平面几何不变体系的基本组成规则
A ② B Ⅰ ≠ ③ C Ⅱ B Ⅰ A ③ C
(b) 二元体规则 ②
A ③ ① B C (a) 总规则
(c) 两刚片规则表述一
A Ⅱ ③ B ④ ⑤ Ⅰ C
在体系中添加或去掉二元体,不会改变体系的几何性质和多余约 束数。
2. 两刚片规则
I
表述一:平面上的两个刚片通过一铰和一链杆相连,如果链杆所在
直线不通过铰心,则组成内部几何不变且无多余约束的体系
A(∞) II
II I
A
II
I
I
表述二:平面上的两个刚片通过三根链杆相连,如果这些链杆不全平 行且所在直线不全交于一点,则组成内部几何不变且无多余约束的体 系。 30
Ⅰ A B ① C
图2.25 不满足二刚片规则表述一的几何瞬变体系
41
对表述二,可分为图2.26所示的两类四种情况来讨论: (1)三根链杆常交一点,则体系几何常变,如图2.26 (a)、 (b),其中图2.26(b)中三根链杆全部平行且等长。 (2)三根链杆瞬交一点,则体系几何瞬变,如图2.26 (c)、 (d),其中图2.26 (d)中三根链杆全部平行但不全等长

方案介绍-结构力学自由度计算13

方案介绍-结构力学自由度计算13

y
y
x

y
o
o
x
x
A
1①
B
2 ②3 E
C
D
解: m 3, n 2, r 4
w 3m (2n r)
3 3 (2 2 4)
1
A 1
4 B
2D
1
C
E2
J
M
2
F
H
G
2
2
F
G
H
2
A
3
2
1
2
3
D
C2
B
1 E
A J
B 2
H 1C 2 G1源自DE2F 1
K
A
J
B2
三杆交于一点
F D B
A
C
E
刚片1
三杆平行不等长
A
C
B
三铰共线
常变体系——发生大位移的体系。
刚片2
B
D
F
A
C
E
刚片1
A
K
L
N H
B M
G
C
D E F
That's why I want to stay here. 那就是我想待在这里的原因。(从句作表 语) (四)宾语 表示谓语动词动作对象的成分叫宾语,即宾语是动作的承受者。英语 中,及物动词(或相当于及物动词的动词短语)、介词需带宾语。可以充 当宾语的有名词、代词、动词不定式、动名词、名词化的形容词以及 从句(宾语从句)等。 I am reading a book. 我在看书。(名词作动词的宾语) I'm going to Beijing with my father.我计划和我父亲去北京。(名词作介 词的宾语) Yesterday, Tom's mother looked after him at home.昨天汤姆的妈妈在家

结构力学自由度计算

结构力学自由度计算
一、自由度 1、定义:决定结构体系几何位置所需
的独立坐标数目。
2、刚片:体系几何形状和尺寸不会改变, 可视为刚体的物体。
3、点、刚片、结构的自由度: 1)、一个点在平面上有两个自由度 2)、一个刚片在平面上有三个自由度
A (x, y)
A (x, y)
二、约束
1、约束定义——凡能减少自由度的装置。
1) 一根链杆相当于一个约束,在体系的适当 位置增加一个链杆可使减少体系一个自由度。
y
y
x
y
o
o
x
x
2)、一个单铰相当于两个约束。在体系的适当 位置增加一个单铰可使体系减少两个自由度。
y
y
x
y
o
o
x
x
3)、联结n个刚片的复铰相当于(n-1)个单铰, 相当于(n-1)×2个约
x
4)、刚性联结或固定端约束相当于三链杆,即三 个约束。在体系的适当位置增加一个固定端可使体 系减少3个自由度。
II
I
C 刚片2 E
A
B
D
刚片1
特殊情况: 1、三根链杆交于一点
实饺:几何可变
O
刚片2
B
D
F
A
C
E
刚片1
虚饺:几何瞬变
2、三根链杆相互平行
3. 三刚片规则
三个刚片之间用三个铰两两相连,且三个铰不在 一直线上,则组成无多余约束的几何不变体系。
瞬变体系——体系本来是几何可变,经过微小位 移后又成为几何不变的体系
E2
K
Q
P
O
1
1
1
N 1
1M 1L
把一端共铰而不共线的两根链杆装置(或两
根不共线链杆用铰连接成整体的装置)称为二 元体.

结构力学自由度计算公式w=2j-b

结构力学自由度计算公式w=2j-b

结构力学自由度计算公式w=2j-b
这个公式中,w代表结构的自由度数,j代表节点数,b代表边界条件数。

结构力学中,节点是构件连接点,边界条件是指约束节点的运动,如固定、支座等。

这个公式的意义是,结构的自由度数等于节点数乘以2(因为每个节点有两个自由度,即x 和y方向的位移),再减去边界条件数。

举个例子,如果一个结构有10个节点,其中3个节点被固定(即有边界条件),那么它的自由度数就是2×10-3=17。

这个数字告诉我们,这个结构在运动时有17个自由度,也就是说,可以有17个独立的位移模式。

《结构力学》龙驭球第2章_结构的几何构造分析2

《结构力学》龙驭球第2章_结构的几何构造分析2

W = 2 j −b
j—结点数; 结点数; 结点数 b—简单链杆数。 简单链杆数。 简单链杆数 3. 混合公式 —— 将体系中刚片和结点为被约束对象,铰、刚结和链杆为 将体系中刚片和结点 被约束对象, 刚片和结点为 刚结和链杆为 约束,则计算自由度公式为: 约束,则计算自由度公式为:
W = (3m + 2 j ) − (3g + 2h + b)
C 2
III 3
W = 3×3−(2×3+3) = 9 −9 = 0
I A II
m=3 g = 0 h =3 b =3
例2-3.4:求图示体系的计算自由度。 :求图示体系的计算自由度。 解:
m = 2 g =1 h = 1 b = 5 W = 3×2 −(3×1+ 2×1+5) = 6 −10 = −4
复铰:连接两个以上刚片的铰结点。 复铰:连接两个以上刚片的铰结点。 连接n个刚片的铰相当于 ) 连接 个刚片的铰相当于(n-1)个单铰 个刚片的铰相当
3 6-2×(1)= 4 - × ) 9-2×(2)= 5 - × )
单链杆:连接两个铰结点的链杆。 单链杆:连接两个铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。 复链杆:连接两个以上铰结点的链杆。 个铰结点的复链杆相当于(2n-3)个单链杆。 个单链杆。 连接 n 个铰结点的复链杆相当于 个单链杆
二、平面体系的计算自由度 W 平面体系的计算自由度
1、平面刚片体系公式 —— 将体系中刚片为被约束对象,铰、刚结和链杆 、 将体系中刚片 被约束对象, 刚片为 约束。则计算自由度公式为: 为约束。则计算自由度公式为:
W = 3m − (3 g + 2h + b)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
y
x
y
o
o
x
x
A
1①
B
2 ②3 E
C
D
解: m 3, n 2, r 4
w 3m (2n r)
3 3 (2 2 4)
1
A 1
4 B
2D
1
C
E2
J
M
2
F
H
G
2
2
F
G
H
2
A
3
2
1
2
3
D
C2
B
1 E
A J
B 2
H 1
C 2 G
1
D
E
2
F 1
K
A
J
B2
H
2
C2 D2
G 2
2F
R
2、刚片:体系几何形状和尺寸不会改变, 可视为刚体的物体。
3、点、刚片、结构的自由度: 1)、一个点在平面上有两个自由度 2)、一个刚片在平面上有三个自由度
A (x, y)
A (x, y)
二、约束
1、约束定义——凡能减少自由度的装置。
1) 一根链杆相当于一个约束,在体系的适当 位置增加一个链杆可使减少体系一个自由度。
杆件自由度计算:
W 3m (2h 3g r)
m:刚片数目 h:单铰数目(n个刚片的复铰相当n-1单铰) g:单刚节点( n个刚片的复刚节点相当n-1单刚节点) r:链杆数目(一个铰约束相当于2个链杆,一个固定端约 束相当于3个链杆)
一、自由度 1、定义:决定结构体系几何位置所需
的独立坐标数目。
II
I
C 刚片2 E
A
B
D
刚片1
特殊情况: 1、三根链杆交于一点
实饺:几何可变
O
刚片2
B
D
F
A
C
E
刚片1
虚饺:几何瞬变
2、三根链杆相互平行
3. 三刚片规则
三个刚片之间用三个铰两两相连,且三个铰不在 一直线上,则组成无多余约束的几何不变体系。
瞬变体系——体系本来是几何可变,经过微小位 移后又成为几何不变的体系
y
y
x
y
o
o
x
x
2)、一个单铰相当于两个约束。在体系的适当 位置增加一个单铰可使体系减少两个自由度。
y
y
x
y
o
o
x
x
3)、联结n个刚片的复铰相当于(n-1)个单铰, 相当于(n-1)×2个约束。
y
x
y
o
x
4)、刚性联结或固定端约束相当于三链杆,即三 个约束。在体系的适当位置增加一个固定端可使体 系减少3个自由度。
E2
K
Q
P
O
1
1
1
N 1
1M 1L
把一端共铰而不共线的两根链杆装置(或两
根不共线链杆用铰连接成整体的装置)称为二 元体.
1. 二元体规则:在杆件体系上依次增减二 元体不改变原体系的几何组成性质。
II
III
I
A
B
C
E
F
D
G H
F
G
H
A
D
C
B
E
2. 二刚片规则
两个刚片之间用一个铰和一根链杆相连, 且 三铰不在一直线上,则组成无多余约束的几何 不变体系.或两个刚片之间用三根链杆相连,且 三根链杆不全平行或不交于一点,则组成无多 余约束的几何不变体系。
三杆交于一点
F D B
A
C
E
刚片1
三杆铰共线
常变体系——发生大位移的体系。
刚片2
B
D
F
A
C
E
刚片1
A
K
L
N H
B M
G
C
D E F
相关文档
最新文档