探索直线平行的条件教案
《探索直线平行的条件》教案
《探索直线平行的条件》优秀教案一、教学目标:1. 知识与技能:(1)理解直线平行的定义及性质;(2)掌握直线平行的判定方法;(3)能够运用直线平行的知识解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳直线平行的条件;(2)培养学生的逻辑思维能力和空间想象力;(3)学会运用几何画板等工具辅助探究直线平行问题。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣;(2)培养学生勇于探究、合作交流的良好学习习惯;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点:1. 教学重点:(1)直线平行的定义及性质;(2)直线平行的判定方法。
2. 教学难点:(1)直线平行条件的推理与证明;(2)运用直线平行知识解决实际问题。
三、教学准备:1. 教学工具:黑板、粉笔、几何画板等;2. 教学素材:直线平行的图片、实例等;3. 学生活动:预习相关知识,准备进行探究。
四、教学过程:1. 导入新课:(1)利用图片、实例引导学生初步了解直线平行的概念;(2)提问:什么是直线平行?它们有什么特点?2. 自主探究:(1)让学生利用几何画板工具,尝试画出两条平行直线;(2)引导学生观察、分析、归纳直线平行的条件。
3. 合作交流:(1)分组讨论,让学生分享自己的探究成果;(2)总结直线平行的判定方法。
4. 讲解与演示:(1)教师对直线平行的判定方法进行讲解;(2)利用几何画板进行演示,加深学生对直线平行条件的理解。
5. 练习与拓展:(1)布置课堂练习题,巩固所学知识;(2)提供实际问题,引导学生运用直线平行知识解决。
五、课后反思:1. 教师对本节课的教学效果进行自我评价;2. 学生对学习收获进行总结,提出疑问;3. 针对教学过程中的不足,提出改进措施。
六、教学评价:1. 知识与技能:学生能准确表述直线平行的定义和性质,掌握直线平行的判定方法,并能运用这些知识解决具体问题。
2. 过程与方法:学生在探究过程中能运用观察、分析、归纳等方法,培养逻辑思维能力和空间想象力,并能使用几何画板等工具辅助探究。
北师大版数学七年级下册2.2《探索直线平行的条件》教案1
北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。
本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。
本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。
但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
三. 教学目标1.理解直线平行的条件,掌握平行线的性质。
2.能够运用直线平行的条件和平行线的性质解决一些简单问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。
2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。
五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。
六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。
4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。
直线与平面平行判定定理说课教案
直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。
2. 培养学生运用几何图形进行直观思考的能力。
教学内容:1. 直线与平面平行的定义。
2. 直线与平面平行的判定条件。
教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。
3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。
巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。
第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。
2. 培养学生运用逻辑推理和几何证明的能力。
教学内容:1. 直线与平面平行判定定理的表述。
2. 直线与平面平行判定定理的证明过程。
教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。
2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。
3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。
巩固练习:1. 证明一条直线与一个平面平行。
第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。
2. 培养学生运用定理解决实际问题的能力。
教学内容:1. 直线与平面平行判定定理在实际问题中的应用。
2. 直线与平面平行判定定理在其他几何问题中的应用。
教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。
2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。
巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。
2. 培养学生运用定理解决综合问题的能力。
教学内容:1. 直线与平面平行判定定理的综合应用。
2. 直线与平面平行判定定理与其他几何定理的关联。
教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。
苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计
苏科版数学七年级下册《7.1 探索直线平行的条件》教学设计一. 教材分析《7.1 探索直线平行的条件》这一节内容,主要让学生掌握探索直线平行的条件,通过观察、实验、探究等活动,引导学生发现并证明两直线平行的条件。
教材中设置了丰富的活动,让学生在实践中掌握知识,提高学生的动手操作能力和思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段的基本概念,并对平行线有一定的认识。
但学生对直线平行的条件还没有深入的了解,需要通过本节课的学习,让学生在已有知识的基础上,进一步探索直线平行的条件,提高学生的数学思维能力。
三. 教学目标1.让学生掌握探索直线平行的条件。
2.培养学生观察、实验、探究的能力。
3.提高学生的动手操作能力和数学思维能力。
四. 教学重难点1.探索直线平行的条件。
2.如何引导学生发现并证明两直线平行的条件。
五. 教学方法1.观察法:让学生观察直线平行的特点,发现直线平行的条件。
2.实验法:让学生动手操作,验证直线平行的条件。
3.探究法:引导学生通过小组合作,共同探讨直线平行的条件。
4.讲解法:教师对直线平行的条件进行讲解,让学生加深理解。
六. 教学准备1.准备直线平行的相关图片,用于导入和呈现。
2.准备直线平行的实验材料,如直尺、三角板等。
3.准备直线平行的证明教案,用于讲解和引导学生探究。
七. 教学过程1.导入(5分钟)利用多媒体展示直线平行的图片,让学生观察直线平行的特点,引发学生的思考。
同时,提出问题:“你们认为直线平行有哪些条件?”让学生发表自己的看法。
2.呈现(10分钟)展示直线平行的实验材料,让学生动手操作,观察直线平行的条件。
在实验过程中,引导学生发现并总结直线平行的条件。
3.操练(10分钟)让学生进行直线平行的实践活动,运用所学知识,验证直线平行的条件。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)利用例题和练习题,让学生进一步巩固直线平行的条件。
教师讲解例题,引导学生运用所学知识解决问题。
北师大版七下数学《2.2探索直线平行的条件(2)》教案
北师大版七下数学《2.2探索直线平行的条件(2)》教案一. 教材分析本节课是北师大版七下数学《2.2探索直线平行的条件(2)》的内容。
在前一节课中,学生已经学习了探索直线平行的条件,了解到两条直线平行需要满足的条件。
本节课将进一步引导学生探究直线平行的性质,并通过实例来加深学生对直线平行性质的理解和应用。
二. 学情分析学生在六年级时已经学习了直线、射线、线段等基本概念,对直线有一定的认识。
但在实际操作中,部分学生可能对直线的性质和判定 still有些混淆。
此外,学生在之前的学习中已经接触过一些几何图形的性质和判定,因此具备一定的几何思维能力。
三. 教学目标1.让学生理解直线平行的性质,并能运用性质判断两条直线是否平行。
2.培养学生运用几何语言描述直线平行的性质,提高学生的几何思维能力。
3.通过实例分析,让学生学会将直线平行的性质应用于实际问题,提高学生的解决问题的能力。
四. 教学重难点1.教学重点:直线平行的性质及其应用。
2.教学难点:如何引导学生理解并证明直线平行的性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究直线平行的性质。
2.利用几何画板软件,动态展示直线平行的性质,帮助学生直观理解。
3.通过实例分析,让学生将理论知识应用于实际问题,提高解决问题的能力。
4.采用小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备几何画板软件,用于动态展示直线平行的性质。
2.准备相关实例,用于引导学生将理论知识应用于实际问题。
3.准备小组合作学习任务单,指导学生进行合作学习。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示两条直线平行的条件,引导学生回顾所学知识。
然后提出本节课的问题:直线平行还有哪些性质?2.呈现(10分钟)呈现直线平行的性质,引导学生用几何语言描述。
例如,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
同时,解释性质的含义和应用。
3.操练(10分钟)学生分组讨论,利用几何画板软件,尝试证明直线平行的性质。
《探索直线平行的条件》第2课时示范公开课教案【北师大数学七年级下册】
《探索直线平行的条件》教学设计第2课时一、教学目标1.了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补,两直线平行”两种判定方法.2.灵活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.3.经历观察、操作、想象、推理、交流等活动,进一步发展空间想象、推理能力和有条理的表达能力.4.在积极参与探索、交流的数学活动中,体验数学与实际生活的密切联系,激发学生的求知欲,感受与他人合作的重要性.二、教学重难点重点:了解内错角和同旁内角的意义,掌握“内错角相等,两直线平行”和“同旁内角互补两直线平行”两种判定方法.难点:活运用两种判定方法,证明两直线平行,解决角度的计算和转换问题.三、教学用具电脑、多媒体、课件、教学用具等.四、教学过程设计2.平行于同一条直线的两条直线平行.教师活动:引导学生思考,不能用同位角的数量关系直接判断两直线是否平行时,我们该怎么办?【情境引入】小明有一块小画板,他想知道它的上、下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)小明利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行,你知道他是怎么做的吗?预设:可以测量∠1与∠2,也可以测量∠1与∠3....教师活动:进一步提出思考,这样做的理由呢?【合作探究】如何利用量角器,通过测量某些角的大小就能知道这个画板的上、下边缘是否平行?教师活动:演示测量过程,说明∠1=∠3,由此小明判断上下两个边缘是平行的.∠1+∠2=180°,由此他也能判断上下两个边缘是平行的.提出思考问题:你知道小明的判断依据吗?【探究】内错角与同旁内角的定义如图,具有∠1与∠2这样的位置关系的角称为内错角.具有∠1与∠3这样的位置关系的角称为同旁内角.请找出图中其他的内错角与同旁内角.预设:∠3与∠4是内错角;∠2与∠4是同旁内角.问题:你能说出内错角与同旁内角的特征吗?教师活动:引导学生观察内错角的位置特征,思考并说出内错角的特征.预设:内错角指在两条被截直线的内部,在截线的两侧,位置是交错的两个角.内错角是Z形状教师活动:引导学生观察同旁内角的位置特征,思考并说出同旁内角的特征.预设:同旁内角指在两条被截直线的内部,在截线的同旁的两个角.同旁内角是U形状【归纳】“三线八角”小结①位于两条被截直线同一方、且在截线同一侧的两个角,叫做同位角;如∠1与∠2.同位角是 F 形状②位于两条被截直线的内部,且在截线的两侧的两个角,叫做内错角;如∠7与∠2.内错角是Z形状③位于两条被截直线内部,且在截线的同侧的两个角,叫做同旁内角.如∠5与∠2.同旁内角是U形状.【议一议】(1)内错角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1 = ∠2 . 求证:a∥b证明:∵∠1 = ∠2 (已知)∠1 = ∠3 (对顶角相等)∴∠3 = ∠2 (等量代换)∴直线a∥b (同位角相等,两直线平行) 得出结论:内错角相等,两直线平行(2)同旁内角满足什么关系时,两直线平行?为什么?教师活动:引导学生梳理证明思路:书写证明过程:已知:∠1+∠2=180°,求证:a∥b∠1,∠2互补(已知)∠1,∠3互补(邻补角定义)∴∠3 =∠2 (同角的补角相等)∴直线a∥b (内错角相等,两直线平行) 教师活动:提示证明方法不唯一,证明过程中的∠3换成∠4就可以利用同位角相等,两直线平行来证明.得出结论:同旁内角互补,两直线平行【归纳】平行线的判定方法:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称为:内错角相等,两直线平行.同旁内角互补,两直线平行.【做一做】如图,三个相同的三角尺拼接成一个图形,请找出图中的一组平行线,并说明你的理由.教师活动:以举例的方式提示学生如何寻找.一位同学说:BC与AE是平行的,因为∠BCA与∠EAC是内错角,而且又相等.提问你能看懂她的意思吗?再找到另一组平行线,说说你的理由.预设:BA与CE是平行的,因为∠ACE 与∠BAC是内错角,而且又相等.AC与ED是平行的,因为∠ACE与∠CED 是内错角,而且又相等.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例已知:如图,∠1+∠2=180°,请用不同的方法说明:AB∥CD.分析:两条直线平行,可以利用同位角相等、内错角相等或同旁内角互补来证明.观察可知∠1的对顶角∠EHB与∠2是同旁内角,结合已知可证;∠2的补角∠CGH 与∠1是同位角,利用同角的补角相等可得同位角相等,从而证出两直线平行;同理可证∠1的补角∠AHG与∠2这对内错角相等,也可以证出结论.解题过程:2.下列条件能判断l1∥l2的是( )A. ∠2=∠3B. ∠1=∠3C. ∠4+∠5=180°D. ∠2=∠43.观察图中所标记的五个角,完成题目:(1)∠1 与是同位角;(2)∠5 与是同旁内角;(3)∠2 与是内错角.4.图中各角分别满足下列条件时,你能判断是哪两条直线平行吗?①∠1=∠4②∠2 =∠4③∠1+∠3 =180°答案:1.B ;2.B3.∠4;∠3;∠14.①a∥b;②l∥m;③l∥n.思维导图的形式呈现本节课的主要内容:。
《探索直线平行的条件》教案
《探索直线平行的条件》优秀教案第一章:引言1.1 教学目标:让学生了解直线平行的概念及实际应用。
激发学生对探索直线平行条件的兴趣。
1.2 教学内容:直线平行的定义及实例。
直线平行的实际应用场景。
1.3 教学方法:通过图片、实例等方式引入直线平行的概念。
引导学生思考直线平行的实际应用场景。
1.4 教学步骤:1. 引入直线平行的概念,引导学生理解直线平行的定义。
2. 展示直线平行的实例,让学生通过观察和分析来理解和记忆直线平行的特征。
3. 引导学生思考直线平行的实际应用场景,如交通运输、建筑设计等,激发学生对直线平行的兴趣。
第二章:直线平行的判定2.1 教学目标:让学生掌握直线平行的判定方法。
培养学生运用判定方法解决实际问题的能力。
2.2 教学内容:直线平行的判定方法。
判定方法的证明和解释。
2.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的判定方法。
通过证明和解释来说明判定方法的合理性。
2.4 教学步骤:1. 引导学生回顾直线平行的定义,复习相关知识。
2. 引入直线平行的判定方法,让学生通过观察和分析几何图形来理解和记忆判定方法。
3. 通过证明和解释来说明判定方法的合理性,帮助学生深入理解判定方法。
第三章:直线平行的性质3.1 教学目标:让学生掌握直线平行的性质。
培养学生运用性质解决实际问题的能力。
3.2 教学内容:直线平行的性质。
性质的证明和解释。
3.3 教学方法:通过几何图形和实例来引导学生理解和记忆直线平行的性质。
通过证明和解释来说明性质的合理性。
3.4 教学步骤:1. 引导学生回顾直线平行的判定方法,复习相关知识。
2. 引入直线平行的性质,让学生通过观察和分析几何图形来理解和记忆性质。
3. 通过证明和解释来说明性质的合理性,帮助学生深入理解性质。
第四章:直线平行的应用4.1 教学目标:让学生学会运用直线平行的条件解决实际问题。
培养学生的实际问题解决能力。
4.2 教学内容:直线平行的条件在实际问题中的应用。
七年级数学下册2.2.2探索直线平行的条件教案2北师大版
2.2。
2 探索直线平行的条件教学目标1.理解并掌握内错角和同旁内角的概念,能够识别内错角和同旁内角;2.能够运用内错角、同旁内角判定两条直线平行.教学重、难点重点:能够运用内错角、同旁内角判定两条直线平行.难点:能够运用内错角、同旁内角判定两条直线平行.导学方法启发式教学、小组合作学习导学步骤导学行为(师生活动)设计意图回顾旧知,引出新课观察下列图形:猜想其中任意两条直线的位置关系,想想如何证明你的猜想.从学生已有的知识入手,引入课题探究点一:内错角与同旁内角【类型一】判断内错角、同旁内角如图,下列说法错误的是()新知探索例题A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U"型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F"型,内错角的边构成“Z”型,同旁内角的边构成“U”型.【类型二】一个角的内错角、同旁内角不唯一的图形问题如图所示,直线DE与∠O的两边相交,则∠O的内错角是________,∠8的同旁内角是________.引出研究本节课要学习知识的必要性,清楚新知识的引出是由于实际生活的需要学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性体现教师的主导作用学以致用,举一反三精讲解析:直线DE与∠O的两边相交,则∠O的内错角是∠4和∠7,∠8的同旁内角是∠1和∠O.故答案为∠4和∠7,∠1和∠O.易错点拨:找某角的内错角、同旁内角时,应从各个方位观察,避免漏数.探究点二:利用内错角、同旁内角判定两条直线平行【类型一】内错角相等,两直线平行如图所示,若∠ACE=∠BDF,那么CE∥DF吗?解析:要判定CE∥DF,需满足∠ECB=∠FDA,利用“内错角相等,两直线平行”即可判定.解:CE∥DF.理由如下:因为∠ACE=∠BDF,又因为∠ACE+∠ECB=180°,∠BDF+∠FDA=180°,所以∠ECB=∠FDA(等角的补角相等),所以CE∥DF(内错角相等,两直线平行).方法总结:综合运用补角的性质及等量代换,将已知条件转换为内错角相等来判定两条直线平行,充分运用转化思想.教师给出准确概念,同时给学生消化、吸收时间,当堂掌握例2由学生口答,教师板书,【类型二】同旁内角互补,两直线平行如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC=90°,试判断AD与BC的位置关系,并说明理由.解析:先根据三角形内角和定理得出∠EDC+∠ECD +∠DEC=180°。
《探索直线平行的条件》教案
《探索直线平行的条件》优秀教案一、教学目标1. 让学生理解直线平行的概念,掌握直线平行的条件。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生逻辑思维能力和团队协作能力。
二、教学内容1. 直线平行的定义2. 直线平行的条件3. 平行线的性质4. 平行线的判定5. 直线平行在实际问题中的应用三、教学重点与难点1. 教学重点:直线平行的概念、条件、性质和判定。
2. 教学难点:直线平行条件的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探索直线平行的条件。
2. 利用几何画板软件,直观展示直线平行的过程,增强学生直观感知。
3. 组织小组讨论,培养学生团队协作能力和口头表达能力。
4. 运用例题讲解,让学生在实践中掌握直线平行的应用。
五、教学准备1. 教学课件:包括直线平行的图片、动画、例题等。
2. 几何画板软件:展示直线平行的过程。
3. 练习题:巩固直线平行的知识和应用。
4. 小组讨论卡片:分配给各小组,用于记录讨论成果。
教案一、导入新课1. 展示生活中常见的平行现象,如的道路、书本排版等。
2. 引导学生思考:这些平行现象背后有什么共同的规律?3. 引入本节课的主题:《探索直线平行的条件》。
二、自主学习1. 让学生阅读教材,了解直线平行的定义。
三、课堂讲解1. 讲解直线平行的条件,引导学生通过几何画板软件直观展示。
2. 利用几何画板软件,展示直线平行的过程,引导学生观察、思考。
3. 讲解平行线的性质,如同位角相等、内错角相等等。
4. 讲解平行线的判定方法,如同位角相等、内错角相等等。
四、巩固练习1. 让学生运用几何画板软件,自主探究直线平行的条件。
2. 学生完成练习题,教师点评并讲解答案。
五、小组讨论1. 发放小组讨论卡片,让学生分组讨论直线平行的应用。
六、课堂小结2. 强调直线平行在实际问题中的应用。
七、作业布置1. 让学生完成课后练习题,巩固直线平行的知识。
2. 选择一道实际问题,运用直线平行的知识解决。
探索直线平行的条件(第2课时)教案
由此引导学生概括得出内错角与同旁内角的概念。
1.2.稳固练习1:课本随堂练习1:
观察右图并填空:〔1〕∠1与 是同位角;
〔2〕∠5与 是同旁内角; 〔3〕∠2与 是内错角。
练习2:如图,直线AB ,CD 被EF 所截,构成了八个角, 你能找出哪些角是同位角、内错角、同旁内角吗?
2.创设情境,提出问题
2.1给出实际问题:小明有一块小画板,他想知道它的上下边缘是否
平行,于是他在两个边缘之间画了一条线段AB 〔如下图〕。
小明只有
一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是
否平行,你知道他是怎样做的吗?
2.2 画板上下边缘是否平行能利用同位角来判断吗?如果不能,是否可以利用其他角来判断?请你先自主探索,再与同伴交流。
3.大胆探究,各抒己见
依次完成以下几个步骤,引导学生从实践到理论探索直线平行的条件
3.1课本议一议:〔1〕内错角满足什么关系时,两直线平行?为什么?
a n m
b
3 4
5
2 1
4
1 2 3
5
6 7 8 D C B E A F。
鲁教版(五四制)六年级下册探索直线平行的条件教案
鲁教版(五四制)六年级下册7探究直线平行的条件(2)课时安排第 10 课时教学目标1.明白得平行线的判定方法.2.经历平行线判定的探究过程,从中体会转化的思想和研究平行线判定的方法.教学重难点重点:平行线的判定方法.难点:探究平行线的判定教学过程学生活动教师活动导入新课有两条直线相交引申到三条直线相交,明白得三线八角中的内错角和同旁内角。
是直线和直线被直线所截而成的角;是直线和直线被直线所截而成的角;是直线和直线被直线所截而成的角:简单地能够说成:用符号表示为::简单地能够说成:用符号表示为::简单地能够说成:用符号表示为:5、完成下列问题:如图,已知∠1=70°,要使AB∥CD,则须具备另一个条件______________.巩二、训练设计固训练1.如图,BE是线段AB的延长线.(1)由∠CBE=∠A能够判定哪两条直线平行?依照是什么?(2)由∠CBE=∠C能够判定哪两条直线平行?依照是什么?(3)由∠D+∠A= 180°能够判定哪两条直线平行?依照是什么?2.如图所示,下列条件中,能判定AB∥CD的是( )A.∠BAD=∠BCDB.∠1=∠2C.∠3=∠4D.∠BAC=∠ACD3.如图所示,假如∠D=∠EFC,那么( )A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF4.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行课堂小结_______________________,那么______________________;5=______或者______,理由是________.。
平行线教案5篇
平行线教案5篇平行线教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.平行线教案篇2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∠b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠∠ef,cd∠ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )a.由∠1=∠6,得ab∠fg;b.由∠1+∠2=∠6+∠7,得ce∠eic.由∠1+∠2+∠3+∠5=180°,得ce∠fi;d.由∠5=∠4,得ab∠fg四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b 的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠cd.(第1题) (第2题)2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )a.因为∠1=∠4,所以de∠abb.因为∠2=∠3,所以ab∠ecc.因为∠5=∠a,所以ab∠ded.因为∠ade+∠bed=180°,所以ad∠be2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )a.∠2=∠4b.∠1=∠4c.∠2=∠3d.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点b在ac上,bd∠be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.平行线教案篇3一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。
北师大版七下数学2.2.2探索直线平行的条件教案
北师大版七下数学2.2.2探索直线平行的条件教案一. 教材分析《北师大版七下数学》2.2.2探索直线平行的条件是学生在学习了直线、射线、线段的基本概念后,进一步研究直线平行的性质。
这部分内容是整个初中数学的重要基础,对于学生理解几何图形、解决实际问题具有重要意义。
通过本节课的学习,学生将掌握直线平行的判定方法,为后续学习平行线的性质打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,他们对直线、射线、线段有了初步的认识。
但部分学生在理解概念和定理时,仍存在一定的困难。
因此,在教学过程中,教师要关注学生的个体差异,引导他们通过观察、操作、思考、交流、归纳等途径,发现并理解直线平行的条件。
三. 教学目标1.知识与技能:使学生掌握直线平行的判定方法,能够运用平行线的性质解决简单问题。
2.过程与方法:培养学生观察、操作、思考、交流的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 教学重难点1.重点:直线平行的判定方法。
2.难点:理解直线平行条件的推导过程,能够灵活运用平行线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入直线平行的概念,激发学生学习兴趣。
2.启发式教学法:引导学生观察、操作、思考,发现直线平行的判定方法。
3.合作学习法:分组讨论,培养学生的团队协作能力和沟通能力。
4.巩固练习法:通过适量练习,巩固所学知识,提高运用能力。
六. 教学准备1.教具:直尺、三角板、多媒体课件。
2.学具:每人一份直线平行的实验器材。
七. 教学过程1.导入(5分钟)利用生活实例,如操场上的跑道、书桌上的直线等,引导学生回顾直线、射线、线段的概念,为新课学习做好铺垫。
2.呈现(10分钟)呈现直线平行的实验,让学生观察、操作,引导他们发现直线平行的条件。
3.操练(10分钟)分组讨论,让学生用自己的语言描述直线平行的条件,并进行实验验证。
江苏省连云港市东海县七年级数学下册7.1探索直线平行的条件(1)教案苏科版
7。
1探索直线平行的条件教学目标 1。
会正确识别图形中的同位角;2。
理解基本事实同位角相等,两直线平行,并能进行简单说理;3.经历观察、操作、想象、说理、交流等数学活动,进一步发展空间观念、有条理地 思考和表达的能力.教学难点 对给定的两个角,能正确指出哪两条直线被哪一条直线所截。
教学过程 一、操作引入:(1)利用三角板和直尺画平行线:(2)观察:∠1与∠2相等时,所画的直线a 、b 是否平行? (3)探索:∠1与∠2不相等,所画的直线a 、b 平行吗?定义:两条直线a 、b 被第三条直线c 所截而成的8个角中,像∠1与∠2这样的一对角称为同位角. (4)图7—4中还有其它的同位角吗?(5)实践告诉我们一个基本事实:同位角相等,两直线平行。
二、学以致用:cbaab a2211211b cc4 8 76 53cbb 1aa2211c例1、(1)如图(1),直线AB 、CD 被直线AE 所截,∠A 和______是同位角。
(2)如图(2),∠3和∠9是直线________、_______被直线_______所截而成的______角;∠6和∠9是直线_____、______被直线________所截而成的_______角。
(1) (2)例2、如图所示:∠1=∠C,∠2=∠C 请你找出图中互相平行的直线,并说明理由。
解: AB ∥CD,AC ∥BD.因为∠1与∠C 是 AB 、CD 被AC 截成的同位角, 且∠1 =∠C 所以 AB ∥CD理由是:同位角相等,两直线平行因为∠2与∠C 是BD 、AC 被CD 截成的同位角,且∠2=∠C 所以AC ∥BD理由是:同位角相等,两直线平行例3、如图直线a 。
b 被c 所截∠1=35°,∠2=145°。
问直线a 与b 平行吗? 解: a ∥b因为∠2+∠3=180°,∠2=145° 所以∠3=180°— 145°=35°=∠1因为∠1与∠3是a 、b 被c 截成的同位角,且∠2=∠3 所以a ∥b理由是:同位角相等,两直线平行BDCA213三、小结:本节课学习目标你完成了吗?1.正确识别图形中的同位角2.能用基本事实同位角相等,两直线平行,判断两直线是否平行四、当堂检测课本7页至8页练一练1—3作业:《建构式生态课堂学习手册》第1页课时1课外作业:《补充习题》1页7。
《探索直线平行的条件》优秀教案
《探索直线平行的条件》优秀教案一、教学目标:1. 让学生理解直线平行的概念,掌握直线平行的条件。
2. 培养学生运用几何知识解决实际问题的能力。
3. 培养学生合作交流、积极思考的学习习惯。
二、教学内容:1. 直线平行的概念。
2. 直线平行的条件。
三、教学重点与难点:1. 教学重点:直线平行的条件。
2. 教学难点:如何运用直线平行的条件解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动探究直线平行的条件。
2. 利用几何画板软件,直观展示直线平行的过程。
3. 开展小组讨论,培养学生合作交流的能力。
五、教学过程:1. 导入新课:引导学生回顾直线、射线的基本概念,为新课学习做好铺垫。
2. 探究直线平行的条件:(1)让学生观察几何画板上的直线,引导学生发现直线平行的特征。
(2)引导学生总结直线平行的条件,并用字母表示。
3. 验证直线平行的条件:(1)让学生运用几何画板软件,自行验证直线平行的条件。
(2)开展小组讨论,让学生互相交流验证结果。
4. 运用直线平行的条件解决实际问题:(1)出示实际问题,让学生独立解决。
(2)引导学生总结解决实际问题的方法。
5. 课堂小结:回顾本节课所学内容,强调直线平行的条件及其运用。
6. 布置作业:让学生运用直线平行的条件,解决一些相关的几何问题。
六、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度以及教学方法的适用性。
针对学生的反馈,调整教学策略,以便更好地促进学生的学习。
七、评价建议:1. 学生能够准确地描述直线平行的条件。
2. 学生能够运用直线平行的条件解决实际问题。
3. 学生能够通过几何画板软件,直观地展示直线平行的过程。
八、教学拓展:1. 引导学生探索直线、射线、线段的性质及其之间的关系。
2. 介绍平行线的其他性质,如平行线之间的距离相等。
九、教学资源:1. 几何画板软件。
2. 直线、射线、线段的模型。
3. 实际问题案例。
十、教学计划:1. 下一节课将介绍直线、射线、线段的性质及其之间的关系。
《探索直线平行的条件》教案
1.理论介绍:首先,我们要了解直线平行的基本概念。直线平行是指在同一平面内,两条直线不相交且始终保持等距。它是几何学中的一个重要概念,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。通过观察铁轨的图形,分析直线平行的特点及其在实际中的应用,了解它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“直线平行在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直线平行的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直线平行的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解平行线的定义:学生对“同一平面内”和“不相交”这两个概念的理解容易混淆;
(2)判定条件的运用:学生在运用同位角相等、内错角相等、同旁内角互补这三个条件判断直线平行时,容易混淆条件,不能灵活运用;
(3)几何图形的识别:在复杂的几何图形中,学生难以准确识别对应的角和边,从而影响判断;
此外,小组讨论环节,学生的参与度较高,能够积极发表自己的观点。但在引导和启发学生思考方面,我觉得自己还有待加强。在接下来的教学中,我将更加关注学生的思维过程,提出更有针对性的问题,激发他们的思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
B
34
F
C
∴DB∥EF
∵∠B+∠5=180°
∴∥,
。
五、归纳小结,反思提高
师生以谈话交流的形式对本节课所学知识进行总结:
到目前为止,我们共学习了几种判断直线平行的方法它们之间有
何区别与联系
学生可用自己的语言归纳总结本节课的内容,指导学生总结本节
课的知识要点:鼓励学生积极发言,在总结过程中,让学生熟记:
明只有
一个量角器,他通过测量某些角的大小就能知道这个画板的上下
边缘是
否平行,你知道他是怎样做的吗
2.2 画板上下边缘是否平行能利用同位角来判断吗如果不能,
是否可以利用其他角来判断请你先自主探索,再与同伴交流。 3.大胆探究,各抒己见 依次完成以下几个步骤,引导学生从实践到理论探索直线平行的
条件
课本议一议:(1)内错角满足什么关系时,两直线平行为什么
(2)∠5 与
是同旁内角;
(3)∠2 与
是内错角。
是同位角;
练习 2:如图,直线 AB,CD 被 EF 所截,构成了八个角, 你能找出哪些角是同位角、内错角、同旁内角吗
A
E
21 3
4
B
85
C7 6
D
2.创设情境,提出问题
F
给出实际问题:小明有一块小画板,他想知道它的上下边缘是否
平行,于是他在两个边缘之间画了一条线段 AB(如图所示)。小
2
3
a
b
1
(1)∠1=∠4;(2)∠2=∠4;(3)∠1+∠3=180°
.看图填空: (1)如右图,∵∠1=∠2 ∴∥, ∵∠2=
C
1A
D
2 3
E
F
4
B
G
∴ ∥ ,同位角相等,两直线平行
∵∠3+∠4=180°
∴∥ ,
∴AC∥FG,
(2)如右图,∵∠2= ,
A
∴DE∥BC ∵∠B+
=180°,
D5
1 2
问题 3:它们具备什么关系能够判断直线 a∥b 你的依据是什么
问题 4:图中∠3 与∠5,∠4 与∠6 这样位置关系的角有什么特
点∠3 与∠6,∠4 与∠5 这样位置关系的角呢说说你的理由。
由此引导学生概括得出内错角与同旁内角的概念。
m
n
2
1
3
a
5
b
.巩固练习 1:课本随堂练习 1:
观察右图并填空:(1)∠1 与
第二章 平行线与相交线
2 探索直线平行的条件(第 2 课时)
一、教学目标 知识与技能:会识别由“三线八角”构成的内错角和同旁内角。 过程与方法:经历探索直线平行条件的过程,掌握利用同位角相
等、同旁内角互补判别直线平行的结论,并能解决 一些问题。 情感与态度:经历观察、操作、想象、图利、交流等活动,体会 利用操作、归纳获得数学结论的过程,进一步发展 空间想象、推理能力和有条理表达的能力.使学生 在参与探索、交流的数学活动中,进一步体验数学 与实际生活的密切联系。 二、教学重难点 教学重点:两条直线平行的条件. 教学难点:选择各种角判断两条直线是否平行. 三、教学方法 教法:引导学生利用类比方法探索两条直线平行的的其他条件, 并引导学生动手实验进行合作探究. 学法:通过复习回顾,利用类比方法,动手实践、观察、发现 由内错角之间的关系和同旁内角之间的关系来判断两直线是否 平行.学会思考问题并与同学进行交流. 四、教学过程 1.立足基础,温故知新
(2)同旁内角满足什么关系时,两直线平行为
什么
请你先独立思考,采用你认为适当的方式来说明理由,然后再与
同学交流。
观察课件中的三线八角,内错角的变化和同旁内角的变化,
得出结论:
内错角相等,两直线平行。
同旁内角互补,两直线平行。
3.3 挑战自我:你能结合图形用推理的方式来说明以上两个
c
结论成立的理由吗
如图,直线 a,b 被直线 c 所截,
13
a
当(1)∠1=∠2,(2)∠1+∠3=180°时, 2
b
说明 a∥b 的理由。 B
C
D
4.及时巩固,深化提高
A
E
.做一做:三个相同的三角尺拼接成一个图形,
请找出图中的一组平行线,并说明你的理由。
.图中各角分别满足下列条件时,你能判断哪两条直线平
行吗
l
m
4
n
通过以下问题带领学生在复习“三线八角”基本图形和同
位角的基础上,进一步学习内错角和同旁内角。
问题 1:如图,直线 a,b 被直线 c 所截,数一数图中有几个角(不
含平角)
c
a
b
问题 2:写出图中的所有同位角,并用自己的语言说明什么样的
角是同位角
引导学生从角与截线与被截线的位置关系的角度来描述同位角。
① 同位角相等,两直线平行; ② 内错角相等,两直线平行;
③ 同旁内角互补,两直线平行.
教师要在思想方法方面进一步提升,扩大学生的认知结构,发展
能力,从而使课堂教学真正落实到学生的发展上。
六、布置作业
七、、板书设计
八、教学反思