钢结构设计(平板钢闸门)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
漏顶式平面钢闸门设计
一、设计资料
闸门形式:溢洪道漏顶式平面钢闸门
孔口净宽:10m
设计龙头:5.8m
结构资料:3号钢(Q235)
焊条:E43型
止水橡皮:侧止水为P型橡皮,底止水为条形橡皮
行走支承:采用双滚轮式,采用压合胶木定轮轴套,滚轮采用国家定型产品
钢筋混凝土强度等级:C20
二、闸门结构的形式及布置
1、闸门尺寸的确定
闸门高度:不考虑风浪所产生的水位超高,H=5.8m;
闸门的荷载跨度为两侧止水的间距:L1=10m;
闸门的计算跨度:L=L0+2d=10+2×0.2=10.4m,其中,d为行走支承中心线到闸墩侧壁的距离。
2、主梁的形式
主梁的形式应根据木头和跨度大小而定,本闸门属于中等跨度,为了便于制造和维护,决定采用实腹式组合梁。
3、主梁的布置
由于L>1.5H,所以采用双主梁式。
为使两个主梁在合计水位时所受的水压力相等,两个主梁的位置应对称与水压力合力的作用线y'=H/3=1.93m,并要求下悬臂a≥0.12H,且a≥0.4m,同时满足于上悬臂c≤0.45H,且a≤3.6m,今取a=0.7m≈0.12H=0.696m;
主梁间距:2b=2(y'-a)=2×(1.93-0.7)=2.46m;
则c=H-2b-a=5.8-2.46-0.7=2.64m≈0.45H=2.61m,且c<3.6m,满足要求;
闸门的主要尺寸如图所示.
4、梁格的布置和形式
梁格采用复式布置和等高连接,水平次梁穿过横隔板上的小孔并被横隔板所支承,水平次梁为连续梁,其间距上疏下密,使面板各区格需要的厚度大致相等,梁格布置的具体尺寸见图2所示。
5、联结系的布置和形式
(1)横向联结系
根据主梁的跨度,决定布置三道横隔板,其间距为10.4/4=2.6m,横隔板兼做竖直次梁。
(2)纵向联结系
设在两个主梁下翼缘的竖平面内,采用斜杠式桁架。
6、边梁采用双复板式,行走支承采用双滚轮式;滚轮安装于边梁双腹板中间,为减小滚动摩擦力,采用压合胶木定轮轴套;滚轮采用国家定型产品。
三、水平次梁、顶梁和底梁的设计
1、荷载与内力计算
水平次梁和顶、底梁都是支承在横隔板上的连接梁,作用在它们上面的水压力课塞纳式(2-8)计算,即q=p(a上+a下)/2
现列表计算如表2:εq=164.28KN/m
根据上表计算,水平次梁计算荷载取32.89KN/m,水平次梁为四跨连续梁,跨度为2.6m,(如图)。
水平次梁弯曲时的边跨跨中弯矩为:M次中=0.077ql2 =0.077*32.89*2.62 =17.12kNm,支座B处的负
弯矩为:M次B =
0.107ql2=0.107*32.89*2.62=23.79kNm
2、截面选择
W=M/[σ]=23.79*106/160=148688mm3
考虑利用面板作为次梁截面的一部分,初选[18a,由附录一表4查得:
A=2569mm2,Wx=141400mm3,Ix=12727000mm4,b1=68mm,d=7mm.。
面板参加次梁工作有效宽度分别按式(6-11)和(6-12)计算,然后取其中较小的值。
式(6-11)B≤b1+60t= 68=60*8=548mm
式(6-12)B=ε1b(对于跨间正弯矩段);
B=ε2b (对于跨间正弯矩段)
按5号梁计算,设梁间距b=(b1+b2)/2=(770+780)/2=775mm。
确定上式中面板的有效宽度系数ε时,需要知道梁弯矩零点之间的距离和梁间的距离I0 与梁间距b之比值。
对于第一跨中正弯矩段,I0=0.81=0.8*2600=2080mm;对于支座伏弯矩段,取I0=0.41=0.4*2600=1040mm。
根据I0/b查表2-1:对于I0/b=2080/775=2.684,得ε=0.802,则B=ε1b=0.802*775=622mm;
对于I0/b=1040/775=1.342,得ε=0.382,则B=ε2b=0.382*775=296mm;
对于第一跨中选用B=548mm,则水平次量组合截面面积(如图):
A=2569+548*8=6953mm2
组合截面形心到槽钢中心线的距离:E=548*8*94/6953=59mm
跨中组合截面的惯性矩及截面的模量为:
I次中=12727000+2569*592+548*8*352=27040000mm4 W min=12727000/149=181500mm2
对于支座段选用B=296mm,则
组合截面面积:A=2569=296*8=4937mm2
组合截面形心到槽钢中心线的距离:E=296*8*94/4937=45mm
支座处组合截面的惯性矩用截面模量;
I次B=12727000+2569×452+296×8×492=23614793mm4
W min=23614793/135=174924mm2
3、水平次梁的强度验算
由于支座B处弯矩最大,而截面模量较小,故只需要验算支座B处截面的抗弯强度,即:σ次=M /W min=23.79×106/174924=136N/mm2<[σ]=160N/mm2
次B
说明水平次梁选用[18a满足要求。
轧成梁的剪应力一般很小,可不必验算。
4、水平次梁的挠度验算
受均布荷载的等跨连续梁,最大挠度发生在边跨,由于水平次梁在B支座处截面的弯矩已经求得M次B=23.79kN.m,则边跨挠度可近似地按下式计算:
w/L=5/384×ql3/EI次-M次B l/16EI次=5×32.89×(2.6×103)3/384×2.06×105×2704×104-23.79×106×2.6×103/16×2.06×105×2704×104=0.000725<[W/L]=1/250=0.004
故水平次梁选用[18a满足强度和刚度要求。
5、顶梁和底梁
顶梁所受荷载较小,但考虑水面漂浮物的撞击等影响,必须加强顶梁刚度,所以也采用[18a。
底梁也采用[18a。
四、主梁设计
(一)设计资料
1)主
梁跨
度
(如
图所
示):
净跨
(孔
口宽度)L0=10m,计算跨度L=10.4m,荷载跨度L1=10m;
2)主梁荷载:q=82.42kN/m;
3)横向隔板间距:2.6m;
4)主梁容许挠度:[w]=L/600。
(二)主梁设计
主梁设计内容:①截面选择;②梁高改变;③翼缘焊缝;④腹板局部稳定验算;⑤面板局部弯曲与主梁整体弯曲的折算应力验算。
1、截面选择
(1)弯矩与剪力
M max=82.42×10/2×(10.4/2-10/4)=1113kN.m
V max=qL1/2=82.42×10/2=412KN
(2)需要的截面抵抗矩
已知Q235号钢的容许应力[σ]=160N/mm2,考虑钢闸门自重引起的附加应力作用,取容许应力为[σ]=0.9×160N/mm2=144N/mm2,则所需要的截面抵抗矩为:
W=M max/[σ]=1113×100/144×0.1=7729cm2
(3)腹板高度选择
按刚度要求的最小梁高(变截面梁)由式(2-14)为:
h min=1.1×5/24×[σ]L/E[w/L]=1.1×5/24×144×100×10.4×100/2.06×107×(1/600)=100cm
对于变截面梁的经济梁高,由式(2-16)有,h e=2.8W2/5=2.8×77292/5=101cm
由于钢闸门中的横向隔板重量将随主梁增高而增加,故主梁高度宜选得比h e为小,但不小于h min。
现选用腹板高度h0=100cm。
(4)腹板厚度选择
按经验公式计算:t w
,选用t w=1.0cm=10mm。
(5)翼缘截面选择
每个翼缘需要截面为:
A1=T/h0-t w h0/6=7729/100-1.0×100/6=61cm2
根据钢板标准规格,下翼缘选用t1=2.0cm。
需要b1=A1/t1=61/2.0=30.5,选用b1=32cm(满足在h/5~h/2.5=20~40cm之间)。
上翼缘的部分截面面积可利用面板,故只需设置较小的上翼缘板同面板相连,选用t1=2.0cm,b1=14cm。
面板兼作主梁上翼缘的有效宽度取为B=b1+60t=14+60×0.8=62cm;
上翼缘截面面积A1=14×2.0+62×0.8=77.6cm2。
(6)弯应力强度验算
主梁跨中截面(如图)的几何特征如表3:
1
截面惯性矩:I=t w h03/12+∑Ay2=1×1003/12+373073=456406cm4;
截面抵抗矩:上翼缘顶边W max=I/y1=456406/49.6=9202cm4;
下翼缘底边W miin=I/y2=456406/55.2=8268cm2;
弯应力:σ=M max/W min=1113×100/8268=13.46kN/cm2<0.9×16=14.4kN/cm2,安全。
2、截面改变
因主梁上翼缘直接同钢面板相连,按规范规定可不必验算整体稳定性。
又因梁高大于按刚度要求的最小梁高,故梁的挠度也不必验算。
图主梁跨度较大,为减少门槽宽度和支承边梁高度,节省钢材,有必要将主梁支承端腹板高度减少为h0s=0.6h=60cm,如图7所示。
梁高开始改变的位置取在邻近支承端的横向隔板下翼缘的外侧,离开之承端的距离为260-10=250cm.。
剪切强度验算:考虑到主梁端部的腹板及翼缘部分别同支承边梁的副板及翼缘相焊接,故可按工字形截面来验算剪应力强度。
主梁支承端截面的几何特性如表4。
截面形心矩:y1=6121/201.6=157285cm
截面惯性矩:I0=1×60/12+139285=157285cm4
截面下半部分对中和轴的面积矩:S=64×33.4+32.4×1.0×32.4/2=2662cm3
剪应力:τ=V max S/I0tω=412×2882/157285×1.0=6.97KN/cm2<[τ]=9.5KN/cm2,安全。
3、翼缘焊缝
翼缘焊缝厚度h f按受力最大的支承端截面计算。
最大剪力V max=412KN,截面惯性矩I=157285cm4。
上翼缘对中和轴的面积矩:S1=49.6×30.0+28×28.6=2289cm3;
下翼缘对中和轴的面积矩:S2=64×33.4=2138cm3<S1;
需要h f=VS1/1.4I0[τωf]=412×2289/1.4/157285×11.5=0.372m
角焊缝最小厚度:h f≥1.5t0.5=1.5 200.5=6.7mm
全梁的上、下翼缘焊缝都采用h f=8mm.。
4、腹板的加劲肋和局部稳定验算
加劲肋的布置:因为h0/tω=100/1.0=100 >80, 故须设置横向加劲肋,以保证腹板的局部稳定性。
因闸门上已布置横向隔板可兼作横向加劲肋。
其间距a=260cm.。
腹板区格划分见图8。
梁高与弯矩都较大的区格可按式(2-25)验算:τ=V/h0tω≤φ·ε[σ]
区格左边截面的剪力V=412-82.42×(5-2.6)=214KN;
该截面的弯矩M=412×2.6-82.42×(5-2.6)2/2=833KN.m
腹板弯曲压应力σ=My0/I=833×100×46.8/456406=8.5KN/cm2=85N/mm2;
σ(h0/100t w)2=85×(100/100*1.0)2,查表2-4得ε=0.985
由a/b=260/100=2.6查表2-3得φ20=0.655,φ2=0.655(100/100×1.0)2=0.655;所以
τ=214/100×1.0=2.14KN/cm2<φ2×ε[σ]=0.655×0.985×16=10.3KN/cm2,安全。
故在横隔板之间(区段II)不必增设横向加劲肋。
再从剪力最大的区格I来考虑;
该区格的腹板平均高度h0=1/2(100+60)=80cm;因h0/tw=80.不必验算,故在梁高减小的区格I内也不必另设横向加劲肋。
5、面板局部弯曲与主梁整体弯曲的折算应力的验算
从上述的面板计算可见,直接与主梁相邻的面板区格,只有区格IV所需要的板厚较大,这意味着该区格的长边中点应力也较大,所以选取区格IV按式(2-4)验算其长边中点的折算应力。
面板区格IV在长边中点的局部弯曲应力;
σmax=kpa2/t2=0.5×0.039.7102/82=+154N/mm2
σmx=μσmy=+0.3×154=+46N/mm2;
对应于面板区格IV的边长中点的主梁弯矩(如图5所示)和弯应力:
σ0x=M/W=1043×106/(9.202×106)=113N/mm2;
面板区格IV的长边中点的折算应力;
σzh=(σmy2+(σmx-σ0x)2-σmy(σmx-σ0x))1/2=(1542+(46-113)2-154×(46-113))1/2
=196N/mm2<a[σ]=1.55×160=248N/mm2;
故面板厚度选用8mm,满足强度要求。
五、边梁设计
边梁的截面型式采用双腹式,如图所示,边梁的截面尺寸按构
造要求确定,即截面高度与主梁端部高度相同,腹板厚度与主
梁腹板厚度相同,为了便于安装压合胶木滑动,下翼缘宽度不
宜小于300mm
边梁是闸门的重要受力构件,由于受力情况复杂,故在设计时
可将容许应力降低20%作为考虑受扭影响的安全储备。
1.荷载和内力计算
在闸门没侧边梁上各设两个滚轮。
(1)水平荷载
主要是主梁传来的水平荷载。
还有水平次梁和顶、底梁传来的水平荷载。
为了简化起见,可假定这些荷载由主梁传给边梁。
每根主梁作用于边梁的荷载为R=412kN。
(2)竖向荷载
有闸门自重、滑到摩阻力、止水摩阻力、起吊力等。
上滚轮所受的压力R1=421kN;
下滚轮所受的压力R2=412kN;
最大弯矩M max=412×0.7=288.4kN.m
最大剪力V max=R1=412kN;
最大轴向力为作用在一个边梁上的起吊力,估计为200kN(详细见计算后)。
在最大弯矩作用在截面上的轴向力,等于起吊力减去上滑块的摩阻力,该轴向力为N=200-R1f=200-412×
0.12=150.56kN。
2、边梁的强度验算
截面面积:A=500×20+2×10×600+2×100×20=2600mm2
面积矩:S max=500×20×238.5+2×10×238.52/2= 2907122.5mm3
形心矩上翼缘顶端:e=500×20×10+2×600×10×320+2×100×20×630/26000=248.5mm
截面惯性矩:I=500×20×238.52+2×(10×6003/12+600×10×71.52)+100220(610-238.5)
=1572338500mm4
截面抵抗矩:W=I/371.5=4232405mm3
截面边缘最大应力验算:σmax=N/A+M max/W=150.6×103/26000+288.4×106/4232405=73.9N/mm2<0.8[σ]=128N/mm2
腹板最大剪应力验算:τ=V max S max/It w==412×103×20907122.5/1572338500×10×2=381.5N/mm2<0.8[τ]=76N/mm2
腹板与下翼缘连接出折算应力验算:
σmax=N/A+M max/W.y'/y=5.8+68.1×351.5/371.5=70.3N/mm2
τ=V max S i/It w=412×103×2×100×20×(610-228.5)/1572338500×10×2=20.0N/mm2
σzh=78.4<0.8[σ]=128N/mm2
以上验算均满足强度要求。
六、面板设计
根据《水利水电工程钢闸门设计规范》(DL/T5039-95)关于面板的计算,先估算面板的厚
度,在主梁截面选择之后再验算面板的局部弯曲和主梁整体弯曲的折算应力。
1、估算面板厚度
假设梁格如上图所示,面板厚度按式:t=a(kp/0.9α[σ])^(1/2)计算.α=1.65,则t=a(kp/(0.9×1.65×160))^(1/2)=0.065a(kp)^(1/2);当b/a>3时,α=1.55,则t=a(kp/(0.9×1.55×160))^(1/2)=0.067a(kp)^(1/2).现列表计算如表1:
表1
注: 1、面板边长a、b都从面板与梁格的连接焊缝算起,主梁上翼宽度为140mm;
2、区格I、IV中系数k由三边固定一边简支板查得。
根据表1计算,选用面板厚度t=8mm。
2、面板与梁格的连接计算
面板局部挠曲时产生的垂直于焊缝长度方向的横拉力P按式P=0.07tσmax计算,已知面板厚度t=8mm,并且近似地取板中最大弯应力σmax=[σ]=160N/mm2,则:
面板与主梁连接焊缝方向单位长度内的剪力:
T=VS/2I0=412000×620×4×300/2×1572850000=195N/mm
由式(2-7)计算面板与主梁的焊缝度:
h f=((p/1.22)2+T2)^(1/2)/(0.7[τt h)=((89.6/1.22)2+1952)^(1/2)/0.7×113=2.6mm
面板与梁格连接焊缝取其最小厚度h f=6mm
七、横隔板设计
1、荷载和内力计算
横隔板同时兼作竖直次梁,它主要承受水平次梁、顶梁和底梁传来的集中荷载和面板传来的分布荷载,计算时可把这些荷载用以三角形分布的水压力来替代,并且把横隔板作为支承在主梁上的双悬臂梁。
则每片横隔板在上悬臂的最大负弯矩为:
M=((2.64×25.9)/2)×2.46×2.64/3=74.0kN.m
2、横隔板截面选择和强度计算
其腹板选用与主梁腹板同高,采用1000mm*8mm,上翼缘利用面板,下翼缘采用200mm*8mm 的扁钢。
上翼缘可利用面板的宽度按式B=ε2b确定,其中b=2600mm,按l0/b=22640/2600=2.031,从表2-1查得有效宽度系数ε2=0.51,则B=0.51×2600=1326mm,取B=1300mm。
截面几何特性:
截面形心到腹板中心线的距离;
E=(1300×8×504-200×8×504)/(1300×8+200×8+1000×8)=222mm
截面惯性矩 I=8×10003/12+8×1000×2222+8×200×7262+8×1300×2822=273131×104mm4
截面抵抗矩W min=273131×104/730=3741500mm3
验算弯应力ð =M/Wmin=74.0×106/3741500=19.78N/mm2<[ð]
由于横隔板截面高度较大,剪切强度不必验算,横隔板译缘焊缝采用最小焊缝厚度h f=6mm 八、纵向联结系设计
1.荷载和内力计算
纵向连接承受闸门自重。
露顶式平面钢闸门门叶自重按表十一计算:
G=K z K c K g H1.43B0.88×9.8=1.0×1.0×0.13×5.81.43×100.88×9.8=119.4kn
下游纵向联结系承受0.4G=0.4×119.4=47.8kn
纵向联结系视作简支的平面桁架,其桁架腹杆布置见图所示:
其节点荷载为:47.8/4=11.95kn
杆件内力计算结果如图所示。
2.斜杆截面计算
斜杆承受最大拉力N=25.35kn ,同时考虑闸门偶然扭曲时可能承受压力,谷长细比的限制应与压杆相同,即λ≤[λ]=200
选用单角钢∠100×8,有表三查得:
截面面积:A=15.6cm2=1560mm2:
回转半径:i=1.98cm=19.5mm ;
斜杠计算长度:l=0.9×2.642+2.642+0.42=3.63m
长细比:λ=l0/i y0=3.63×103/19.8=183.4<[λ]=200
验算拉杆强度:ð=25.35×103/1560=16.25N/mm2<0.85[ð]=133N/mm2
上式考虑单角钢受力偏心的影响,将容许应力降低15%进行强度验算。
3.斜杠与节点板的连接计算
九、闸门启闭力和吊座计算
1、启闭力计算
根据式(2-44)有,T启=1.1G+1.2(T zd+T zs)+P x,其中自重G=119.4KN,T zd=(f1r+f k)W/R,f1为压合胶木轴间的摩擦系数f1=0.2,W为水压力W=γH2/2=9.8*5.82*10/2=1648.36KN,滚轮半径R=300mm,
轮轨摩擦系数为f k=0.1cm,滚轴半径r=60mm,则:
T zd=1648.36*103/0.3*(0.2*0.06+0.1*10-2)=66.25KN
止水摩擦阻力:Tzs=2fbHP
查表可知,橡皮止水与钢板间摩擦系数f=0.65,橡皮止水宽b=0.06m,则
Tzs=2*0.65*0.06*9.8*5.82/2=12.9KN
Gj=50KN,为附加重量。
下吸力Px:根据规范,启门时闸门底缘平均下吸强度为20KN/m2,则Px=20*10.4*0.016=3.3KN
所以T启=1.1*119.4+1.2*(66.25+12.9)+3.3+50=280KN
2、闭门力计算
T闭=1.2(Tzd+Tzs)-0.9G+Pt
上托力Pt=γHDB,其中D为受托厚度,其值为底止水与面板总厚度之和,即D=16+8=24mm,
B=10.0m,则Pt=9.8*5.8*24*10-3*10.0=13.6KN
故,T闭=1.2*(66.25+12.9)-0.9*119.4-13.6=1.12KN
为确定闸门在自重作用下关闭,附加Gj=50KN的附加重量。
3、吊轴和吊身验算:
(1)叼轴
P=1.2*T启/4=1.2*280/4=84KN
吊轴剪力V=P/2=42KN
所以A=V/[τ]=42*103/65=646.2mm2,又A=πd2/4=0.785d2
所以d≥A/0.7851/2=28.7mm,d=60mm
(2)吊耳板厚
t=P/d[σj]=84*103/60*80=17.5mm,则在边梁的腹板上部内外两侧各焊一块厚度为10mm的加强板,3d=3*60=180mm。
吊耳壁拉应力验算式:
σk=σcj*(R2+r2)/R2-r2≤0.8[σk]
又σcj=P/td=84*103/20*60=70mm
吊耳板半径取R=90mm,r=30mm,[σk]=120N/mm2
所以σk=70*(902+302)/902-302=87.5N/mm2<0.8*120=96N/mm2,满足强度要求。
十、行走支承设计
行走支承采用双滚轮式,滚轮安装于边梁的双腹板中间,为减小滚动摩擦力,采用压合胶木定轮轴套:滚轮采用国家定型产品。
定型滑轮:轮轴为ZG230-450,压合胶木轴套:
主要尺寸:外径D=600mm,轮轴d=120mm,轮厚240mm。
钢结构课程设计任务书
课程名称:钢结构课程设计
课程代码:WE472B
学分:1学分
周数:1周
一、设计课题
露顶式平面钢闸门设计
二、设计资料
1、闸门形式:露顶式平面钢闸门
2、闸门净宽:10M
3、设计水头:5.8M
4、门叶的结构材料:
3号钢(Q235),主轮用ZG35铸钢,压合胶木轴套,止水;
侧止水为P型橡皮,底止水为条形橡皮;
焊条采用E43型;
混凝土强度为C20。
5、设计规范:
《水利水电工程闸门设计规范》(DL/T5039-95)
《水工建筑物荷载设计规范》(DL5-7751997)
三、课程设计要求
1、钢闸门的形式和尺寸的确定
(1)露顶闸门
(2)荷载作用情况:上游有水、上下游均有水
(3)主要尺寸:孔口尺寸、闸门尺寸、荷载作用尺寸、闸门支承尺寸
2、闸门各部件的形式、布置及尺寸规格的确定
(1)面板设计
(2)梁格布置的形式
(3)主、次梁的数目、形式、位置、尺寸及结构计算
(4)联结系的形式、布置及结构计算
(5)支承边梁、行走支承、吊具的形式、布置及结构计算
3、工程图绘制
(1)上游视图(2)下游视图(3)横剖图(4)仰视图
(5)侧视图(6)纵剖图(7)明细表(8)图框
四、时间安排
1、确定钢闸门的形式和尺寸1天
2、确定闸门各部件的形式、布置及尺寸规格1天
3、结构计算1天
4、绘制结构总图并整理计算说明书2天
5、成果提交截止时间:2009年1月4日下午17:00W5402。
五、设计成果
1、计算说明书
(1)封面
(2)设计任务书
(3)计算说明书
(4)参考文献
要求:第2项用16开纸打印,第3、4项分别用“三峡大学课程实际稿纸”书写或打印,然后按照顺序装订成册。
2、平面钢闸门结构总图1张
要求:A1图幅。
计算说明书和图纸一并装入档案袋提交。
六、参考文献
[1]水工金属结构,扬兆福,中国水利水电出版社
[2]水工钢结构设计,范崇仁,中国水利水电出版社
[3]水工钢闸门设计,安徽省水利局勘测设计院,水力电力出版社
[4]小型水电站机电设计手册·金属结构,黄希元、唐怡生,水力电力出版社
[5]闸门与启闭设备,陈得亮,中国水利水电出版社
[6] 《水利水电工程钢闸门设计规范》DL/T 5039-95
[7]水工钢结构课程设计指导书,陈媛,四川大学水利水电工程学院
[8] 《水工钢结构》,武汉大学、大连理工大学、河海大学合编
三峡大学
水工钢结构课程设计
设计题:露顶式平面钢闸门设计
班级:20064015
学号:2006401537
姓名:李路
指导教师:刘春玉
日期:2009年1月2日。